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ABSTRACT
Pervasive games are a new and exciting field where the user experi-
ence benefits from the blending of real and virtual elements. Play-
ers are no longer confined to computer screens. Rather, interactions
with devices embedded within the real world and physical move-
ments become an integral part of the gaming experience. Several
prototypes of pervasive games have been proposed by both indus-
try and academia. However, in such games the issues arising from
the integration of players and real world, the management of the
context surrounding the players, and the need for communication
and distributed coordination are often addressed in an ad-hoc fash-
ion. Therefore, the underlying software fabric is often not reusable,
ultimately slowing down the diffusion of pervasive games.

In this paper we describe the design and implementation of a per-
vasive game on top of TinyLIME, a middleware system supporting
data sharing among mobile and embedded devices. By illustrating
the design of a pervasive game we developed, we argue concretely
that the programming abstractions supported by TinyLIME greatly
simplify the data and context management characteristics of perva-
sive games, and provide an effective and reusable building block
for their development.

TinyLIME was originally designed to support applications where
mobile users collect data from sensors scattered in the physical en-
vironment. We build upon this capability to put forth a second con-
tribution, namely, the use of wireless sensor devices (or motes) as a
computing platform for pervasive games. Besides reporting physi-
cal data for the sake of the game, we use motes to store information
relevant to the game plot, e.g., virtual objects. Motes are typically
very small in size, and therefore can be hidden in the environment,
enhancing the sense of immersion in a virtual world. To the best of
our knowledge, this original use of wireless sensor devices is novel
in the scientific and gaming literature. Furthermore, it is naturally
supported by TinyLIME, yielding a unified programming abstrac-
tion that spans the heterogeneous gaming platform we propose.

1. INTRODUCTION
Before the advent of the computer era, games were based on

interactions among humans or between humans and the physical
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world. However, thanks to impressive technological advances, com-
puter games have now become a cornerstone of the entertainment
industry. In computer games, the players are usually confined to the
use of keyboards, mice, and joysticks to interact with a completely
virtual environment. Conversely, a more exciting game experience
can be provided by bringing back physical movements and social
interactions in computer games [15]. This has given rise to a new
gaming genre, called pervasive games, where players are no longer
limited to a purely virtual environment. Rather, it is the interaction
with the real world or devices embedded within it that poses new
challenges to the players, enhancing their gaming experience.

Several prototypes of pervasive games (e.g., [3, 8, 26, 27]) have
been developed, each focusing on different kinds of interactions be-
tween the players and the surrounding physical environment. There-
fore, much attention has been paid to the technological aspects
regarding hardware platforms, usability, and human-computer in-
teraction. Conversely, less effort has been spent on the software
infrastructure enabling the distributed processing needed by perva-
sive games. Several challenging issues arise when analyzing the
requirements of pervasive games:

• Pervasive games need a software infrastructure able to pro-
vide seamless integration between the players’ devices and
the devices embedded within the real world.

• The system must be context-aware [28], as the players ac-
tions and decisions, as well as the game evolution, are af-
fected by the physical context.

• Distributed coordination and communication is needed at two
levels: i) among players, to enable their collaboration to-
wards a common goal, and ii) to enforce the intended game
behavior and support the evolution of the game “behind the
scenes”, i.e., without the players being explicitly aware of
what is happening in the game.

In this work we show how the above challenges can be tackled
effectively by using TinyLIME [4, 5], a middleware originally de-
veloped for pervasive computing scenarios involving mobile users
and wireless sensor networks [2]. Our claim is that TinyLIME pro-
vides programming abstractions that naturally support the kind of
context-aware interaction required by pervasive games, and effec-
tively hides the complexity of dealing with heterogeneous devices.

We support concretely this claim by reporting the design and
implementation of a simple game called “Save the Princess!”. A
distinctive trait of our game is an original use of wireless sensor
network devices. These tiny devices, often called motes, normally
enable measurement of physical parameters such as temperature
or light, and can be programmed to perform simple local compu-
tational tasks and manage the communication necessary to report
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Figure 1: Interaction between a user and a virtual object, repre-
sented by a mote.

data. In the context of our game, mote programmability is ex-
ploited to support the creation of a virtual environment, by pro-
gramming motes to store the state of virtual objects, characters,
and locations. As shown in Figure 1, the application of a mobile
user close to a mote communicates with it, and displays the corre-
sponding information about the virtual objects to the user, therefore
enabling context-aware virtual interactions. Because of their small
size, motes can be hidden in the environment allowing them to “dis-
appear” [24], therefore enhancing the illusion of a virtual world.

The game requires mobile users to cooperate to achieve a com-
mon goal, and game dynamics are determined by both player-to-
player interactions as well as interaction with the physical and vir-
tual environment, as shown in Figure 2. Players communicate di-
rectly among themselves in an opportunistic fashion, based on the
availability of connectivity. Moreover, they can communicate in-
directly by storing information in the virtual world around them.
For instance, a player can give a virtual object she is holding either
directly to another player, or leave it behind (i.e., stored transpar-
ently on a nearby mote) for another player to pick up later. The
game and its requirements, along with the details of the hardware
and software platform, are illustrated in Section 2.

The TinyLIME middleware, described in Section 3, supports per-
vasive game development through the abstraction of a tuple
space [10]. Applications communicate by writing tuples (elemen-
tary data items) in the tuple space, and by reading them by speci-
fying the pattern of data they are interested in. Therefore, the tuple
space can be regarded as a sort of data repository. To deal with
mobility and context changes, TinyLIME provides the programmer
with the illusion of a single, shared tuple space containing the data
contributed by all the devices in range. The middleware takes care
of maintaining this abstraction consistent with respect to the dy-
namics of the system. This means that the programmer does not
need to be explicitly aware of the current network configuration,

Figure 2: Direct and indirect interactions among players.

rather it is the middleware that transparently deals with the me-
chanics of data access based on the current connectivity. Moreover,
TinyLIME extends the original tuple space model with the notion
of reactions. In contrast with reading operations, reactions enable
applications to declare their interest in the presence of a tuple with
a specified pattern. When a matching tuple is actually found in the
tuple space, a callback is asynchronously executed. This ability to
react to new data is of paramount importance in the dynamic en-
vironment we target, and supports the reactive behavior necessary
to model context-aware interactions. These and other capabilities
of the TinyLIME middleware are demonstrated “in action” in Sec-
tion 4, where we illustrate the design and implementation of our
pervasive game, and show that TinyLIME indeed provides natural
abstractions simplifying game development.

Finally, since TinyLIME was originally designed as a data col-
lection middleware for wireless sensor networks, its focus was on
retrieving data from sensors, essentially regarded by the user as
“read-only” devices. Instead, to support pervasive games the ap-
plication must be able to write data to the sensor devices, e.g., to
change the state of a virtual object. This required changes to the
original TinyLIME implementation, whose rationale and impact are
concisely described in Section 5.

In short, this paper puts forth two main contributions:

1. We propose an original use of wireless sensor devices as tiny
computing platforms that can be hidden in the environment
and can actively contribute to enrich the gaming experience
by hosting game-related data. To the best of our knowledge,
this use of motes is unprecedented in the gaming and scien-
tific literature.

2. We show how the TinyLIME middleware, originally designed
to support mobile data collection from sensors, naturally sup-
ports the context-aware interactions necessary for pervasive
game development and effectively masks the hardware and
software heterogeneity.

These contributions are concretely supported and exemplified by
our proof-of-concept pervasive game, described next.

2. SAVE THE PRINCESS!
The Game. “Save the Princess!” tells the age-old story of a princess
imprisoned in a castle. To save her, the players must beat the black
knight, who kidnapped the princess. To this end, they must collect
a set of ingredients to prepare a magical poison. Once the poison
is ready, all the players together must face the black knight in the
final battle.

Players have different abilities and are divided in teams accord-
ing to the role they incarnate: possible roles are wizards, dwarfs,
and knights. In addition, each team has a leader whose abilities
are extended beyond those germane to her game role. Wizards are
the only players able to collect ingredients. These must then be
brought to a cauldron, whose location is a-priori unknown. In addi-
tion, ingredients might not be immediately available for pickup: an
ogre or a skeleton could hide the ingredients or occupy the passage
to the location where the ingredient is located. Ogres can be beaten
only by dwarfs, whereas skeletons can be defeated only by knights.
Whether a knight or a dwarf actually wins a battle depends on a
player’s current abilities (and on a bit of randomness).

Beyond the ingredients needed for the poison, players can pick
up any other object they find. These objects can be exchanged
among players, immediately used to augment the abilities of a pla-
yer, or held in the hope of combining them with other objects found
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Figure 3: A coin-size Crossbow MICA2DOT mote.

later to form more powerful objects. For instance, a knight could
find a sword in a certain location, and using that sword he can at-
tack the skeletons. Although objects can be used multiple times,
once used for the first time they can no longer be combined with
others. The player can therefore decide not to use the sword imme-
diately, and later combine it with a shield. In this case, the player
will defeat the skeletons much more easily, but she must survive
until the shield is found.

Hardware and Software Platform. Players are equipped with lap-
top computers with an IEEE 802.11 wireless interface, forming a
mobile ad-hoc network [20]. Clearly, this is only for the sake of
prototyping, and more sophisticated devices (e.g., head-mounted
displays) can be used. The game, as well as the TinyLIME middle-
ware on top of which the game is developed, are written in Java.

The real world is augmented with computing facilities using the
Crossbow MICA2DOT motes [1], shown in Figure 3. These are
tiny devices (about the size of a coin) equipped with a small amount
of volatile memory, a short range radio interface and an 8-bit mi-
croprocessor. Motes are fairly unobtrusive, and can be deployed
so that players are not aware of their exact location. In addition,
they feature a wide range of real sensors, from acoustic to vibration
sensors and GPS receivers, and can also control simple external
devices such as buzzers or LEDs. These features can be used to
enable additional interactions between the players and the physi-
cal world, using real-world data and actuators to further improve
the gaming experience. The motes run the TinyOS [13] operating
system, based on the nesC [9] language. It is an event-driven pro-
gramming language targeted to resource constrained devices.

Communication among player laptops is naturally achieved us-
ing the Wi-Fi interfaces. Conversely, communication between lap-
tops and motes is achieved by using an additional mote attached
to each laptop via a serial line. This mote does not perform any
relevant operations, it simply acts as an antenna between the laptop
and the motes deployed in the environment.

Requirements. The pervasive game challenges we pointed out in
the introduction are all present in “Save the Princess!”. First, we
need to face the integration between the player laptops and the
motes. The former are powerful devices equipped with rich user
interfaces, easily rechargeable, and able to run a wide range of ex-
ecution environments. Conversely, the motes do not feature any
user interface, making application debugging difficult, and run a
severely constrained operating system with no support for dynamic
memory allocation or high-level programming constructs such as
multithreading. The only communication facility provided out-of-
the-box is a simple form of message passing to other motes within
the wireless communication range. In this setting there is a clear
need for unifying programming abstractions able to hide the under-
lying heterogeneity of the system.

Pervasive games are inherently state-based applications. More-

over, this state is distributed, partly located on the players’ devices
and partly on the mote devices. The application state, along with
connectivity relationships, determine the context around the play-
ers. Game developers need to deal with and reason about the dis-
tributed application and context state, and react when changes are
observed. For instance, consider a mote holding data represent-
ing a magical ingredient. When a wizard is in proximity of this
mote, he must be informed of the possibility to pick up the ingredi-
ent. Without appropriate programming abstractions, a programmer
must explicitly poll for the presence of nearby motes and explic-
itly query them, therefore wasting programming effort as well as
communication bandwidth. The management of application data
and context is also key to achieve coordination and communication
among players both directly and through the (virtual) environment.

The transparent sharing of data and context information pro-
vided by TinyLIME, coupled with its asynchronous reactive fea-
tures, greatly simplify the programming task. Before arguing con-
cretely in support of this statement by illustrating our design, we
provide a concise introduction to the TinyLIME model and middle-
ware.

3. THE TINYLIME MIDDLEWARE
TinyLIME is a data sharing middleware based on LIME [18],

which in turn adapted the Linda tuple space model [10] to mo-
bile environments. In this section we outline the characteristics of
TinyLIME that are most important for the development of perva-
sive games. A more comprehensive overview of TinyLIME can be
found in [4].

Tuple Spaces. A tuple is an elementary data structure composed
of an ordered sequence of typed fields, whereas a tuple space is a
multiset of tuples. A sample tuple is:

〈“Milan”, 80, 9.75〉 (1)

Processes interact by reading or writing tuples from/to a tuple space
logically shared by a set of processes. Read operations can be per-
formed in this tuple space using the rd(p) operation, which takes
a pattern p as a parameter specifying the type of data desired. A
sample pattern is:

〈“Milan”, ?integer , ?float〉 (2)

The pattern itself is a tuple whose fields can be either actual or
formal: actuals constrain the values that must be present in the cor-
responding fields of the tuples returned by the operation. The first
field in (2) is an example of an actual. Instead, formals act like
“wild cards” and are matched against actual values when selecting
a tuple from the tuple space. The last two fields of (2) are formals.
As such, the pattern in (2) matches the tuple in (1). Additional op-
erations insert a tuple in the tuple space by means of the out(t)
operation, and remove tuples from the tuple space using the in(p)
operation.

The tuple space model inherited from LIME also allows the reg-
istration of reactions on the shared tuple space. These are code
fragments to be executed when a tuple matching a specific pattern
is found anywhere in the tuple space, thus providing the developer
with the ability to monitor changes in the underlying tuple space.
The code executed when a reaction fires can perform an arbitrary
sequence of actions, including further operations on the shared tu-
ple space.

Mobility, Context, Sensors. TinyLIME inherits LIME’s view of
application components as software agents installed on mobile hosts.
In LIME, each agent has a local tuple space permanently attached.



(a) Initial configuration. (b) New configuration after Bob and Tom moved.

Figure 5: The TinyLIME federated tuple space changes according to connectivity: motes in range of a mobile device are seen as software agents residing on
that device. If no mobile device is in range of a mote, it is not part of the federated tuple space.

Figure 4: Agent-level, host-level and federated tuple spaces in
LIME and TinyLIME.

Two agents are considered connected when either co-located on the
same physical host or located on two different hosts able to com-
municate through the underlying network. The union of all tuple
spaces of connected agents yields a federated tuple space, as il-
lustrated in Figure 4, providing the illusion of a common memory
space. This abstraction enables a form of communication decou-
pled in time and space: senders and receivers need not be active at
the same time, nor do they need to know each others’ identity or
location.

With respect to LIME, TinyLIME brings motes into the picture:
when a mote is in range of some mobile device, it is represented
as another software agent logically residing on that mobile device.
Therefore, it is connected to the other agents on this device, and
becomes part of the host-level tuple space and hence the federated
tuple space. It is the middleware that takes care of creating this ab-
straction, and of providing access to the tuples stored on the motes
as if they were stored on any other mobile device. Clearly, this
enables transparent access to the information located on the mo-
bile devices as well as stored on the motes. This characteristic,
along with the ability to restrict the scope of in and rd operations
to a given agent or host, naturally provides context-aware opera-
tions. Indeed, one can query only the surrounding motes by simply
limiting the scope of rd operations to her own host. Moreover,

TinyLIME keeps the federated tuple space abstraction up to date
across all devices as the underlying network topology changes, as
illustrated in Figure 5.

As we show in the following section, many of the requirements
arising in the implementation of “Save the Princess!” are easily
solved by the combination of i) the data sharing abstraction that
provides seamless access to a distributed and dynamically chang-
ing state described in terms of tuples, and ii) the ability to install
reactions to fire in response to changes in this distributed state.

4. GAME DESIGN
AND IMPLEMENTATION

To realize our pervasive game, we started by analyzing the func-
tionality that must be available to each player. These are illustrated
in Figure 6. The game is characterized by a set of interactions oc-
curring either between the players and the environment, or among
players themselves. The outcome of each interaction is reflected
in a change in the game state, which is distributed across the play-
ers’ devices and the motes. Therefore, we report on how we both
represent the game state and realize the required interactions. Ad-
ditionally, to better highlight the expressiveness of the TinyLIME
programming model, we show representative code excerpts.

Representing the Game State. As all data is represented in
TinyLIME as tuples, we make a straightforward mapping from all
game elements into only six different tuple formats, as summarized
in Figure 7. In our design, the tuples describing the game state can
be located either on the mobile devices carried by the players or on
the motes embedded in the environment. Where a tuple is stored
implies certain semantics. For example, tuples stored on a mobile
device correspond to objects currently held by the corresponding
player. Conversely, the tuples stored on the motes represent objects
left in the environment and available for pick up.

Interacting with Objects. To make the game more realistic, in-



Tuple Type Format Description
LocationTuple 〈id, name, description〉 Represents a location in the game. name represents the name of the location, e.g., “the entrance of the castle”. description is a

string shown to the user when she is logically in that particular location, e.g., to provide a narrative related to the location.
PlayerTuple 〈id, name, role, leader,

strength, abilities, maxIn-
gredients, maxObjects〉

Represents a player in the game. name represents her name, while role is a constant equal to either WIZARD, DWARF or
KNIGHT. leader is a boolean flag stating whether this player is the leader of his team. strength reflects the current health status
of the player. abilities encodes the player’s current capabilities, while maxIngredients and maxObjects represent the maximum
number of ingredients and objects a player can carry, respectively.

ObjectTuple 〈id, locationId, name,
description, abilities,
combinations〉

Represents an object the players can pick up or drop in a given location. locationId represents the id of the location where the
object resides. When it is held by a player, this field is set to the player’s id. name and description provide information similar to
the same fields in a LocationTuple. abilities encodes the additional abilities a player gains in using this object. Correspondingly,
combinations encodes the ids of the other objects this object can be combined with.

IngredientTuple 〈id, locationId, name, de-
scription, decay〉

Represents a magical ingredients for the final poison. locationId, name and description have the same meanings as in Ob-
jectTuple. decay represents how deteriorated is the ingredient. When it reaches zero, the ingredient disappears and cannot be
used.

EnemyTuple 〈id, locationId,
name, type, strength,
hidingLocationId〉

Represents an enemy in the game. locationId and name represent the place where the enemy currently resides and her name,
respectively. type can be either OGRE or SKELETON, while strength represents the health status of the enemy. When it reaches
zero, the enemy is defeated and the location she was hiding, represented by hidingLocationId, now becomes visible.

MessageTuple 〈id, locationId, sender-
Name, receiverName,
message〉

Represents a message in the game, and is used to let the players communicate with each other. senderName and receiverName
represent the name of the sender and receiver players, respectively. They can also be left unspecified. Leaving senderName un-
specified allows sending anonymous messages. Conversely, an unspecified receiverName enables the players to leave messages
in the environment, making them available for pick up by any other player.

Figure 7: Tuple formats defined in “Save the Princess!”.

private void dropObject(GameObject obj, GameLocation location, AgentLocation targetMote) {
// Creates the tuple
ITuple tuple = new Tuple().addActual(obj.getId()).addActual(location.getId()).addActual(obj.getName())

.addActual(obj.getDescription()).addActual(obj.getAbilities()

.addActual(obj.getCombinations());
// Outputs the tuple
lts.out(targetMote, tuple);

}

Figure 8: Code to drop an object in the game. location represents the current location where the player resides, and targetMote
indicates the mote where the tuple will be stored.

Figure 6: A subset of the use cases for “Save the Princess!”.

teractions are enabled or inhibited based on the current state. For
instance, a player can only use an object if she is currently carrying
it, i.e., the tuple representing the object is in the tuple space on her
mobile device. More importantly, the operations to pick up or drop
an object make sense only if the two parties involved are in direct
communication. In TinyLIME, such object movement involves the
corresponding movement of the tuple representing that object (an

Figure 9: A possible situation in the game.

in followed by an out). By simply restricting the scope of the in
operation to the local host (that includes the motes in range), the
direct connectivity between the player and the mote is guaranteed.
Figure 8 shows the code necessary to drop an object. Picking up an
object and exchanging objects among players are similarly imple-
mented.

At this point, it is interesting to look at Figure 9, where we il-
lustrate the same situation as in Figure 5(b) in the context of “Save



private void locationManagementSetup(){
// Creates the tuple
ITuple tuple = new Tuple().addFormal(GameLocationIdentifier.class)

.addFormal(String.class) // The name of the location

.addFormal(String.class); // The associated description
// Creates the template
MoteLimeTemplate template = new MoteLimeTemplate(tuple);
// Builds a location object in LIME corresponding the the local host
HostLocation localHost = new HostLocation(

new LimeServerID(InetAddress.getLocalHost(), agent.getMgr().getPort()));
// Creates a reaction localized to the local host
Reaction r = new LocalizedReaction(localHost, new AgentLocation(agent.getMgr().getID()),

new LocationChangeListener(), template, Reaction.ONCEPERTUPLE);
// Registers the reaction
lts.addWeakReaction(new Reaction[]{r});

}

Figure 10: Installing a reaction for location tuples. lts is a reference to an instance of MoteLimeTupleSpace providing access to the
federated tuple space. (This is actual code, only exception blocks are omitted for readability).

public class LocationChangeListener implements ReactionListener {
public LocationChangeListener(GameEngine gameEngine){

// ...
}
public void reactsTo(ReactionEvent mre) {

LocationTuple newLocation = (LocationTuple) mre.getEventTuple();
gameEngine.notifyLocationChange(newLocation);

}
}

Figure 11: Handling a location change after the reaction installed in Figure 10 fired. The location tuple is passed to the game engine to
process a possible change of location.

the Princess!”. The bottom of Figure 9 shows how TinyLIME ren-
ders the situation depicted at the top of the same figure. The mote
storing the tuple representing the poison is currently not in range of
any player. As such, the poison cannot be picked up. On the other
hand, Alice is in range of a sword. Therefore, she can pick it up.
If she does so, this will be reflected by moving the tuple represent-
ing the sword from the mote to Alice’s device. At the bottom of
Figure 9 Bob is shown in range of a mote, but this mote does not
store any tuples. Therefore, Bob cannot pick up any objects at his
current location, but he could drop something there.

Game Location Changes. Each player has an associated virtual
location she is residing in. However, this virtual location is tied to
the physical world, as it is inferred from the motes in range storing
tuples of type LocationTuple. This avoids the use of GPS receivers
or more complex location mechanisms.

In particular, players infer their location based on the location tu-
ples they have been in direct contact with. The most recently seen
location tuple serves as the player’s location, therefore even if a
player is not in range of a mote with a location tuple, it retains the
most recent (virtual) location. Keeping this information up to date
is as straightforward as registering a reaction for tuples of type Lo-
cationTuple with the scope of the operation restricted to the local
host. Figure 10 shows the installation of this reaction while Fig-
ure 11 shows the reaction listener code that will be called when the
reaction fires. How the game handles the reaction is independent
from the code that fires the reaction.

Finally, the game does not always report a new location up to the
player graphical interface when the aforementioned reaction fires.
If an enemy is present at the newly discovered location, the player
is prevented from entering the location unless she defeats the en-
emy. Therefore, the presence of the enemy is notified instead of
the new location. To detect if an enemy is present, when the loca-
tion reaction fires a rd operation is issued to look for local enemy
tuples. If no tuple is returned, the player is notified about the new
location and any objects and players present in it.

Player-to-Player Interaction. Players interact among themselves
either to exchange objects or to communicate. Similarly to the pro-
cess for picking up and dropping objects, two players are allowed
to exchange an object only when their mobile devices are within
communication range. When this condition is true, object move-
ment is reflected in the movement of its corresponding tuple from
one player’s mobile device to the other, again using in and out
operations.

Regarding communication, TinyLIME is used to enable both tran-
sient and persistent forms of communication. The former is sup-
ported as long as communication is available. In this case, the
message tuple is directly output to the tuple space of the receiving
player. A reaction for message tuples restricted to the local tuple
space fires, removing the tuples from the tuple space and displaying
the message content to the player.

In contrast, we also allow players to leave messages in the envi-
ronment, e.g., stored by issuing an out operation to that mote. This
enables a form of persistent communication, decoupled in time.
Messages can be left in the environment for an unbounded amount
of time. When a player moves to a new location, a reaction noti-
fies her about the messages found in it. The player can read the
messages or even remove them, making them unavailable to future
players passing through the same location.

5. TINYLIME FOR PERVASIVE GAMES
The version of TinyLIME we used for developing our game dif-

fers from the original described in [4]. Indeed, data collection in
wireless sensor networks—the original TinyLIME target domain—
does not require applications to request data storage on the motes.
Therefore, the original version allowed only operations on the mote
tuple spaces that did not change their content (namely rd and re-
actions). In fact, inside the implementation tuples were never even
physically present on the motes; they were generated on the fly by
the middleware when data was requested. Instead, in the context of
this paper the capability to store and manipulate data on the motes
is vital to manage the virtual objects. Therefore, we extended Tiny-



LIME to allow storage of arbitrary tuple formats and to enable out
and in operations to manipulate the tuple space.

We faced several options to include these extensions. On one
hand, the motes could be considered as any other host, and all the
operations would be implemented by exchanging messages from
the mobile device to the motes. For instance, an in(p) operation
could be implemented by sending a message containing the pattern
p to the mote, this pattern would be matched against the stored
tuples, and possibly remove one of them. This approach would
require an explicit message for each operation involving the motes,
as well as a suitable encoding in nesC of the matching semantics.

While using a message for each operation is possible, it is likely
to be too expensive in terms of battery consumption on the motes.
Further, an expressive matching semantics involving comparisons
among complex data types [21] would be prohibitive on a resource-
poor device such as the Crossbow MICA2DOT [1]. In addition, the
limited storage space on motes constrains the number of tuples that
can be hosted. Finally, operations that do not change the contents of
the tuple space (e.g., rd operations) are likely to constitute the vast
majority of the processing. For these reasons, we chose to replicate
the tuples stored on a mote on each mobile device in range of that
mote, to perform all the processing on the local replica owned by
the mobile device, and to reflect the changes (if any) back to the
mote. This requires only 1459 lines of non-commented nesC code.
Further, because the implementation is in nesC [9], a rather low
level programming language whose expressive power is compara-
ble to that of ANSI C, porting TinyLIME to other embedded devices
should be straightforward. Note also that this replication may gen-
erate consistency issues when more than one mobile device is in
range of the same mote, as discussed later.

Replication and Write Operations. Tuples are stored on the motes
as opaque types, i.e., a sequence of bits associated to a unique iden-
tifier. As soon as a mote enters the range of a mobile device, it
communicates all the tuples it currently stores to the mobile de-
vice. These can be packed in a single physical message, optimizing
the communication overhead. The mobile device decodes the se-
quence of bits received and creates actual tuples. These are inserted
in a tuple space attached to a local software agent representing the
mote in range. All read-only operations are performed on this tuple
space, including explicit rd operations as well as the processing
needed to possibly fire reactions matching the tuples on the mote.

We use explicit acknowledgments to make write operations re-
liable. In particular, a out operation is performed by having the
mobile device encode the tuple and generate a unique identifier for
it before shipping the data to the target mote. The mote replies
with an acknowledgment after it has successfully stored the new
tuple. At this time, the change is reflected in the local replica of
the mote tuples. Similarly, to implement in operations, the mobile
device first matches the pattern against the local replica of the tu-
ples stored on the mote. If a matching tuple is found, its identifier
is communicated to the mote where the tuple is removed, and an
acknowledgment sent. At this point, the tuple is removed from the
local replica as well.

Consistency Handling. Consistency issues may arise if more than
one mobile device is in range of the same mote. Two mechanisms
are used to manage this problem in our modified version of Tiny-
LIME. First, each mote inserts the tuple it added or removed1 in the
acknowledgment it sends to the requesting mobile device. If other
mobile devices are in range of that mote, they will also overhear the
same acknowledgment. This way, all devices have all the necessary

1In the case of an in operation the tuple identifier is sufficient.

information to reflect the operation also in their local replicas. Sec-
ondly, each mote inserts the identifier(s) of the tuples it currently
stores in the message used to advertise its presence. This way,
each mobile station in range can recognize potential mismatches
between the local replica and the tuples on the motes. In case of an
in operation not yet reflected in the tuple space, the mobile device
will simply remove a tuple from the local replica, without the need
for further communication. Conversely, in the case of a missing
tuple, the mobile device can explicitly retrieve it from the mote.

6. RELATED WORK
While the use of augmented artifacts to embed computing within

the environment is not novel [14, 23], to the best of our knowledge
we are the first to use environmentally-immersed devices such as
the Crossbow’s MICA2DOT motes to store game information. In
contrast to their use in sensor networks, we leverage their com-
puting capabilities to represent virtual objects in a pervasive game,
and exploit their small size to allow them to “disappear” [24] in
the physical world. In [17] motes are attached to the players of a
centralized pervasive game, but their storage and computing capa-
bilities are not exploited, as they are used only to gather light and
acceleration data. Conversely, the work in [25] provides only the
software architecture to manage sensed information, still consider-
ing the sensors simply as data sources, and does not explore their
actual use in developing pervasive games.

The use of wireless networks in pervasive games has been ex-
plored in several proposals, e.g., [16]. In particular, mobile ad-
hoc networks offer a promising infrastructure for building games
augmented with physical interactions and movements [22]. In this
work, we further push this approach by proposing a two-tier archi-
tecture in which the ad-hoc network spans both the mobile devices
of the players and the motes deployed in the environment.

Existing proposals in the field of middleware for game develop-
ment have mostly addressed massive, multiplayer, online games,
and concentrate on communication aspects. For instance, the work
in [7] proposes a content-based, publish-subscribe [6] communica-
tion infrastructure to face the dynamic aspects stemming from play-
ers joining or leaving unpredictably. Similarly, the proposal in [29]
discusses a communication infrastructure based on grouping play-
ers in clusters to achieve load-balanced event delivery. Real-time
aspects are instead taken into account in [12], where the authors
illustrate a system and algorithms to achieve fair message deliv-
ery in multiplayer games based on a client-server infrastructure. In
TinyLIME, the scenario is radically different, as we target wireless
ad-hoc networks with dynamic topologies instead of a quasi-static,
wired network infrastructure. More importantly, we provide not
only a communication infrastructure, but the abstractions of Tiny-
LIME also enable state-full coordination mechanisms to govern the
(distributed) game state and its evolution.

Finally, middleware for pervasive computing in general is an ac-
tive area of research [19]. Most of the solutions in this field focus
on exporting devices to the applications in terms of available ser-
vices, e.g., as in [11]. Therefore, discovery and composition of
services constitute the core of the abstractions offered to program-
mers. Conversely, in TinyLIME we take a data-centric approach,
making data (i.e., tuples) the main tool developers exploit to pro-
gram their applications. As we have demonstrated in this paper,
this actually constitutes a natural abstraction for game developers.

7. CONCLUSION
We presented the design and implementation of a pervasive game,

supporting two contributions. On one hand, our game makes an



original and unprecedented use of wireless sensor networks, treat-
ing them as tiny computing devices maintaining the game repre-
sentation of virtual objects, characters, and locations. On the other
hand, by analyzing the game design and implementation using Tiny-
LIME, we show that this middleware naturally and effectively sup-
ports the development of pervasive games.
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