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Figure 1: Armadillo model refracting a distant environment rendered using ray tracing (left) and using our technique (center). Jumping
Armadillo rendered with our technique (right). Our approach requires no preprocessing, allowing real-time rendering of deforming objects.

Abstract

Light refraction is an important optical phenomenon whose simu-
lation greatly contributes to the realism of synthesized images. Al-
though ray tracing can correctly simulate light refraction, doing it
in real time still remains a challenge. This work presents an image-
space technique to simulate the refraction of distant environments
in real time. Contrary to previous approaches for interactive refrac-
tion at multiple interfaces, the proposed technique does not require
any preprocessing. As a result, it can be directly applied to objects
undergoing shape deformations, which is a common and important
feature for character animation in computer games and movies. Our
approach is general in the sense that it can be used with any object
representation that can be rasterized on a programmable GPU. It is
based on an efficient ray-intersection procedure performed against a
dynamic depth map and carried out in 2D texture space. We demon-
strate the effectiveness of our approach by simulating refractions
through animated characters composed of several hundred thousand
polygons in real time.
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1 Introduction

The synthesis of photorealistic images has long been one of the
major goals in computer graphics. In its pursuit, researchers have
proposed different strategies for simulating the complex interac-
tion between light and scene elements. For translucent objects,
light refraction is an important optical phenomenon whose simula-
tion significantly contributes to the realism of synthesized images.
While ray tracing [Whitted 1980] can correctly simulate light re-
fraction, its computational cost is prohibitive for real-time applica-
tions, even when acceleration techniques are used. Thus, several
techniques for rendering approximate refractions at a single inter-
face have been proposed for use in applications where speed tends
to be more important than accuracy [Oliveira 2000; Lindholm et al.
2001; Schmidt 2003]. More recently, Wyman [Wyman 2005a] pre-
sented an interactive technique for approximating refraction of dis-
tant environments at two interfaces that produces quite impressive
results. The images usually look very similar to the ones rendered
with a ray tracer. However, the technique requires information
about some distance measured along the normal direction at each
vertex of model. This limits its use in applications where charac-
ters may undergo non-rigid transformations, vertex morphing and
skinning, which are common in games.

This paper presents a technique for approximating the refraction of
distant environments at two interfaces in real time. Our approach
was inspired by the work of Wyman [Wyman 2005a], but contrary
to previous techniques for interactive simulation of refraction at
multiple interfaces [Wyman 2005a; Genevaux et al. 2006], it re-
quires no preprocessing. As a result, it can be directly applied to
models undergoing shape deformations and is general in the sense
that it can be used with any object representation that can be ras-
terized on a programmable GPU. This flexibility is achieved using
an efficient ray-intersection procedure performed against a dynamic
depth map and carried out in 2D texture space. Besides supporting
dynamic geometry, the proposed approach requires less memory
(no need to store and send per-vertex distances to the GPU). Fig-
ure 1 illustrates the use of our technique applied to the Armadillo



model on different poses. On the left, one sees an image rendered
using a ray tracer [Pharr and Humphreys | and used for reference.
The image in the center was rendered from the same viewpoint us-
ing our technique. Note how similar they are. Except for the feet,
where total internal reflection (TIR) occurs, they are virtually in-
distinguishable from each other. The image on the right shows the
Armadillo model during a jump, also rendered with our technique.

The main contributions of this paper include:

e A real-time technique for rendering approximate refraction of
distant environments that is capable of handling any object
representation that can be rasterized using a programmable
GPU, including dynamically deforming models (Section 3);

e A new texture-space GPU-based algorithm for computing ray
intersection against a depth map generated in perspective pro-
jection (Section 3.2). It extends previous work presented
in [Policarpo et al. 2005], which is restricted to orthographic
representations of depth maps (i.e., height fields);

Section 2 discusses some related work and Section 3 provides the
details of the proposed technique. We present some of our results
in Section 4 and discuss limitations and possible extensions of the
work in Section 5. Section 6 summarizes the paper.

2 Related Work

There have been a few initiatives to simulate refraction through
multiple interfaces in recent years. Diefenbach and Badler [Diefen-
bach and Badler 1997] render refractions through planar surfaces at
interactive rates using a multi-pass rendering approach. Heidrich et
al. [Heidrich et al. 1999] store ray directions on a Lumigraph rep-
resentation to render reflections and refractions on curved objects.
The approach takes advantage of graphics hardware to accelerate
the rendering, but it requires the use of pre-acquired Lumigraphs
and cannot handle deforming geometry.

Hakura and Snyder [Hakura and Snyder 2001] use a hybrid ap-
proach for generating images of reflective and refractive objects
that combines the use of ray tracing for local objects and hardware-
supported environment maps for distant ones. While the technique
produces good results, it is not sufficiently fast for real-time appli-
cations.

Guy and Soler [Guy and Soler 2004] presented a real-time tech-
nique for rendering gems that handles approximations of several
optical phenomena, including refraction. Their approach takes ad-
vantage of the faceted shaped of processed gems, not being appli-
cable to arbitrary shapes.

Genevaux et al. [Genevaux et al. 2006] simulate refractions through
several interfaces for static scenes. During a preprocessing stage,
light paths are evaluated by tracing rays through the refractive ob-
jects from many different entry directions. The resulting data as-
sociates each pair (object’s surface point, incoming direction) to an
outgoing direction which will be used to sample a distant environ-
ment map during runtime. The resulting table is then compressed
using spherical harmonics and uploaded onto graphics hardware for
interactive rendering. While the technique can produce nice results
at interactive rates, the preprocessing stage prevents its use with ob-
jects undergoing deformations. Moreover, its memory requirements
are relatively high (of the order of several dozens of megabytes).
Due to the impossibility to precompute all possible light paths, the
technique is prone to aliasing.
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2.1 Image-Space Refraction
Wyman [Wyman 2005a] introduced an image-space technique for
approximating the refraction of distant environments at two inter-
faces. Despite its simplicity, the approach produces very nice re-
sults. The algorithm runs on the GPU, consisting of two passes.
Conceptually, it can be described as:

e First, it renders the back-facing portion of the refractive ob-
ject, saving the information about normals and depth of the
most distant fragments from the camera;

e The final image is obtained by rendering the front-facing por-
tion of the object. This time, a per-fragment refracted ray
Ty (Figure 2) is computed at the first interface using the cur-
rent’s fragment normal (N7) and its associated viewing direc-
tion (V). Ty is then used to obtain the intersection point P»
at the second interface. The coordinates of the projection of
P, onto the camera’s image plane are used to index the saved
normal map and recover N,. Finally, 77 and N, are used to
compute the direction of 7>, the refracted ray at the second in-
terface, which is used to index an environment map. Figure 2
illustrates this concept.

Figure 2: Refraction of distant environment through two interfaces.

Wyman [Wyman 2005a] avoids computing the intersection of T;
with the saved depth map. Instead, he uses a heuristic to obtain an
estimate P, for P;. Assuming that 1, > M, where 1), is the index
of refraction of the object and 1, is the index of refraction of the
surrounding medium, then (1, /M) € [1,°0]. At the extrema of this
interval, 71 would have the same direction as V and —Nj, respec-
tively, which are indicated in Figure 2 by the vectors dy and dy.
Thus, Wyman estimates the position of point 2 along 7 by inter-
polating the lengths of the vectors dy and dy (Figure 2) according
to Equations 1 and 2. The length of dy is the distance between the
first and second interfaces considered along the normal direction of
the current fragment. It is pre-computed on a per-vertex basis and
stored for use during runtime, when these values are interpolated
during rasterization. The length of dy is also the distance between
the first and second interfaces, but this time measured along the
viewing direction. It is computed for each fragment as the differ-
ence between the front and the stored depth values.

P, =P +dT (D
where 0 0
5 t t

= — 1—— 2

d OidV+( o )dy 2)

Note that these equations have been empirically defined and al-
though they can produce acceptable approximations of P, for con-



vex objects, the approximation error tends to grow for non-convex
ones. This situation is illustrated in Figures 2 and 3. Figure 3
shows a schematic representation for the geometry (left) and nor-
mals (right) of the dragon model. The error in the estimate P, (left)
lends, via its projection onto the camera’s image plane, to the re-
covery of an incorrect normal N, used to compute 7> and, subse-
quently, to index the environment map. Both N, and N, are shown
on Figure 3 (right).

Figure 3: Schematic representation for the geometry (left) and nor-
mals (right) of the dragon model. The error in the estimate P; lends
to incorrect sampling of the normal map at N, (right), causing the
environment map to be sampled using an incorrect 7> direction.

3 Refraction through Deformable Objects

Our approach supports the rendering deforming models by per-
forming the intersection of the refracted ray 77 (Figure 2) against
the stored depth map. This approach has some advantages com-
pared to Wyman’s technique: first, it does not require any prepro-
cessing and tends to produce better estimates for P, and, conse-
quently, of N,.

Our technique consists of three GPU passes:

1st pass : Similar to Wyman’s approach, it consists of rendering
the back-facing portion of the refractive object, saving the in-
formation about normals and depth of the fragments with the
highest Z values;

2nd pass : It computes the depth range (minimum and maximum
values) of the back-facing portion of the object by applying
a parallel reduction [Harris 2005] to the depth map saved in
the previous pass. At each step of the reduction, the minimum
and maximum depth values from each group of four elements
are saved, respectively, in the R and G channels of the output
texture;

3rd pass : This is the actual rendering step, which consists of ren-
dering the front-facing portion of the refractive object, com-
puting the refracted rays and sampling the environment map.
The position of point P, (Figure 2) is obtained computing the
intersection of the refracted ray 77 with the second interface
represented by the perspective depth map saved in the first
pass. The search is optimized by restricting it to the range
computed in the second pass, and by using a new and efficient
ray perspective-depth-map intersection solution entirely per-
formed in 2D texture space (Section 3.2). The result of the in-
tersection procedure directly provides the texture coordinates
required to sample the normal map.
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3.1 Saving Second Interface Normals and Depth

The first pass is straightforward and simply renders the back-
facing geometry, saving normals and depth information. While
normals and depth could potentially be saved on a single RGBA
texture [Policarpo et al. 2005], we store them in two textures. Al-
though this requires more memory, according to our experience,
sampling the normal map using mipmapping [Williams 1983] tends
to reduce noise in the final images. This can be explained by the
fact that discontinuities in the normal field may cause two neighbor
fragments to refract the incident rays in an incoherent manner, thus
introducing undesirable artifacts. By filtering the normals, mipmap-
ping helps to minimize this problem. On the other hand, filtering
a depth map tends to introduce artifacts, which can be avoided by
using a nearest neighbors sampling strategy.

Normals and depth information are saved using multiple render tar-
gets (MRTs). We use the integer GL_.TEXTURE_2D texture for-
mat, as it is currently the only format supporting automatic genera-
tion of mipmaps. Thus, the X, Y and Z components of the normals
expressed in camera space are stored in the R, G, B channels of
the texture, after being mapped to the [0,1] range. Although no
mipmapping will be applied to the depth texture, OpenGL’s Frame-
BufferObject (FBO) extension requires all textures associated to a
given FBO to have the same format [OpenGL ]. Thus, we also store
depth information using integer values in the [0, 1] range, which are
obtained after dividing the depth values expressed in camera space
by —Z¢ayr, Wwhere Zg,, is the far clipping plane distance. The minus
sign comes from OpenGL’s right-hand coordinate system conven-
tion. Although ideally the depth normalization to the [0, 1] interval
should be done considering the Z range found on the depth map,
this information is not available during the first pass. Such an ideal
depth normalization would require extra rendering passes, since the
range information needs to be available before the values are stored
using the 8-bit integer representation, when precision is lost. Fig-
ure 4 shows examples of a normal and a depth map captured for the
Stanford bunny. The black texels correspond to regions in the im-
age plane containing no information about the back portion of the
model.

The Z test is performed using GL_GREATER to keep the frag-
ments that are furthest from camera. This is done in accordance
to Wyman’s observation that in case more than two interfaces map
to given a fragment, using the furthest one tends to produce images
that better approximate the actual refraction [Wyman 2005a].

Figure 4: Normal (left) and depth maps of the back-facing geometry
of the Stanford bunny as seen in perspective from a given viewpoint.
Black pixels do not contain information about the projected object.



3.2 Intersecting the Second Interface

In our approach, we compute the position of point P, (Figure 2)
by intersecting the ray refracted at the first interface (77) against
the depth map saved during the first pass of the algorithm. Our
approach differs from the GPU-based ray-height-field intersection
by Policarpo et al. [Policarpo et al. 2005] in several ways: (i) we
intersect the ray against dynamically generated depth maps created
under perspective projection. Policarpo et al., on the other hand,
used static depth maps created off-line under orthographic projec-
tion. (ii) In our approach, although the search is performed by ad-
vancing 77 in a way that resembles a binary search, the ray can only
advance, never recede. In [Policarpo et al. 2005], the intersection
is computed using a linear search followed by a binary search re-
finement step; (iii) In our algorithm, the stored normals correspond
to the back-facing portion of the model and are used for computing
the direction of refracted rays, while in relief mapping [Policarpo
et al. 2005] normals are used for shading visible surfaces.

By capturing and storing the depth maps under perspective projec-
tion, the linear mapping between 3D space and texture space that
can be used when searching for the intersection of a ray with a
height field does not hold anymore. For instance, consider the situ-
ation depicted in Figure 5. As the refracted ray 77 advances into the
scene along regularly spaced points represented by the green dots,
the foreshortening caused by perspective projection requires that a
variable step size be used to sample the depth texture at their corre-
sponding projections. The crossings of the projection (dotted) lines
with the image plane get closer to each other as 77 gets further from
the camera.

In Figure 5, the blue triangular region corresponds to a clipped ver-
sion of the camera’s view frustum, providing an approximate sep-
aration between the front and back-facing portions of the model
for the given viewpoint. Z,;, and Z,,,y indicate the minimum and
maximum depth values obtained during the second pass of the al-
gorithm.

'min

max

Figure 5: Nonlinear mapping of equally spaced distances traversed
by the refracted ray 77 in 3D and the lengths of their projections on
the image plane. The blue region corresponds to a clipped version
of the camera’s view frustum, providing an approximate separation
between the front and back-facing portions of the model for the
given viewpoint. Z,;, and Zy,, are the minimum and maximum
depth values from the back-facing geometry.
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3.2.1 Nonlinear Search in Texture Space

This section describes a 2D texture-space approach to compute the
intersection of the refracted ray 77 with the second interface (rep-
resented by the saved depth map). This intersection procedure is
performed for several fragments at a time, taking advantage of the
parallel architectures of modern GPUs.

Let S = (Sx,Sy,S;) and E = (Ex, Ey, E;) be two points along the ray
T, corresponding to the intersections of 77 with the planes Z = Z,,,;,,
and Z = Z,,4x, respectively, expressed in camera space (Figure 6).
Note that S and E do not need to fall inside the view frustum. Also
let ¢; and 7, be the 2D coordinates of the projections of S and E,
respectively, on the camera’s image plane. Once normalized to the
o, 1]2 domain, f#; and 7, define the starting and ending points for
searching for an intersection between 77 and the second interface
in texture space. The coordinates of S and E are given by

S= P+ (Zyin—2Zp,)(T1 /T1 .2) 3)

E =P+ (Znar =21, )(T1/T1.2) @

where P; is the intersection of the viewing ray V with the front-
facing portion of the refractive object (Figure 6), Z,,i, and Zx
are respectively the minimum and maximum depth values associ-
ated with the back-facing portion of the object, fl is the normalized
vector representing the direction of the refracted ray 77 at Py, fl .z
is the Z component of ﬂ, and Zp, is the Z coordinate of point P;.
Any point P along the segment from S to E can be expressed as the
following linear combination, with 8 € [0,1]

P=(1-p)S+BE ®)

Likewise, any point # along the segment from #; to #, can be repre-
sented as

t=(1-a);+ ot 6)

with a € [0, 1]. However, due to the nonlinear mapping induced by
the perspective distortion, 3 # o, except at the end points of the
interval.

Let P = (Py, Py, P;, 1) be the homogeneous representation of a point
along T; with coordinates (Py,Py,P;) defined in camera space, and
let 2 = (P, P,,P,,B,) = TIP, where II is the camera’s projection
matrix. Similarly, let § = (§X,§y,fz,§w) and £ = (Ey,Ey,E, E,,) be
homogeneous representations of points S and E, respectively, under
the same transformation. Recalling that pixel space and the 3D
homogeneous space are related by a linear transformation [Blinn
1992], one can express the Z coordinate of a point along 77 as

P (1-a)(8:/50) + a(E:/Ey)
(1 - OC)(I/SW) + a(l/Ew)
since P,, = —P, (assuming a right-hand coordinate system and the

Z B,
projection matrix used by OpenGL), then Sy = —S; and E,= —E;,
and Equation 7 simplifies to

N

1

R (YA ey ®
Equation 8 gives the Z coordinate, in camera space, of a point along
the segment S-E as a function of the parameter o defined in image
space. Solving Equation 8 for &, and substituting its value in Equa-
tion 6, one gets the image coordinates associated with the projection
of point P on the image plane. These coordinates need to be nor-
malized to the [0, 1}2 range before using them to sample the texture.
The value of the parameter ¢ is given by

1
a=(=—kk
(Pz 1)ka

©)



where k; = (Si) and ky = (%) are constants for a given ray Tj.
Thus, given a: the texture coordinates needed to access the texture
can be computed from Equation 6 as

texCoord = (1 — o)t} + at, (10)
where # = 0.5t; +0.5 and ¢, = 0.5¢, +0.5. The 0.5 scaling and
translation factors simply perform the mapping from the canonical
projection range [—1.0, 1.0]? to the 2D texture range [0.0, 1.0]>. The
pseudo code shown in Algorithm 1 exemplifies the computation of
the texture coordinates necessary to sample the depth texture at the
projection of any point P along 77.

// Given P = (Py,Py,P;), S = (Sx,Sy,S;) and E = (Ex,E, ,E;)
// compute the constants ki and ky

float k; =1/S.z

float k) = (S.z+E.z)/(S.z—E.2)

// Project S and E to texture coordinates

float4 § = mul(projectionMatrix, float4(S, 1.0f))

float2 ¢/ = (S.xy /S.w) * 0.5+ 0.5

float4 £ = mul(projectionMatrix, floatd(E, 1.0f))

float2 ¢, = (E.xy / E.w) ¥ 0.5 + 0.5

// Search vector in texture coordinates

float2 d; = (¢, —1})

// For any given point P = (Py, Py, P;) along the ray T

// & and texCoord are computed as

float oo = (1/(P.z) — k1) *ky

float2 texCoord =t + ot x dy
Algorithm 1: Pseudo code for computing the texture coordi-
nates for sampling the depth texture at the projection of a point
P along Ty.

3.3 Conservative Binary Search

In relief mapping [Policarpo et al. 2005], a two-stage approach
is used to perform ray-height-field intersection in texture space:
first, a linear search is used to identify the neighborhood around
the intersection point, which is subsequently refined using a binary
search. Since the goal of that technique is to map fine details to
geometric surfaces facing the camera, the ability to intersect such
delicate structures is crucial, thus justifying the cost of the linear
search. When simulating refraction, however, the depth map rep-
resents surfaces hidden from the camera, making the application
more tolerant to the missing of thin structures when compared to
relief mapping. Moreover, when rendering non-convex refractive
objects, more than two interfaces may project onto any given frag-
ment, but our technique only stores the furthest one. That means
that for the case of non-convex objects, one has only an approxi-
mate representation for the second interface. As such, we avoid the
use of a linear search as it incurs in an extra cost while, accord-
ing to our experience, the images produced with and without it are
virtually indistinguishable from each other.

The binary search algorithm described in [Policarpo et al. 2005] is
not appropriate for the kinds of depth and normal maps used in our
approach for simulating refraction. While for relief mapping such
maps cover the entire texture, that is not the case for the technique
described in this paper. Figure 4 shows a typical pair of normal
and depth maps. The black texels contain no information about the
projected object, and their (R,G,B) channels are set to (0,0,0). Since
the binary search computes an estimate for the intersection point,
using a finite (small) number of steps, the search may end up in an
invalid (i.e., black) texel. Figure 6 illustrates this situation for the
case of a hypothetical binary search using four steps. The light blue
triangle represents the camera’s field of view, whereas the white and
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gray triangle is the frustum defined by the object and the camera’s
center of projection. The gray portion of the frustum identifies the
set of potential polygons that contribute to the depth and normal
maps of the back-facing portion of the model. The search space
covers the extension of ray 77 from T1.z = Zyip to T1.2 = Zmax,
which corresponds to points S and E in Figure 6. The order in
which the points are visited during the binary search is indicated by
the numbers 1 to 4. Although the process was converging toward
the silhouette of the model, the last visited point (4) maps to a texel
outside the silhouette of the object, resulting on an invalid normal
(N> = (0,0,0)) and producing an undefined refracted ray direction
at the second interface. This situation will manifest itself as noisy
artifacts in the rendered images.

A

Figure 6: Problem when using a finite number of binary search
steps to find P», the intersection of ray 77 with the second interface.
Point 4, the resulting approximation for P», projects onto an invalid
sample on the saved depth and normal maps. The light blue region
represents the complete field of view of the camera.

The inspection of Figure 6 suggests a simple solution to the prob-
lem just described: before stepping forward from P; to P along
Ty, one should check if P, maps to a valid texel. In this case,
one proceeds with the move; otherwise, the step size is halved and
the test is repeated. We call this modified binary search conser-
vative binary search (CBS). It guarantees that the estimate of the
intersection point will always have a valid normal. Note that the se-
quence of checked points (e.g., points 1 to 4 in the example shown
in Figure 6) is exactly the same as for a conventional binary search,
except that CBS will not move from point 1, returning it as an
approximation for the actual intersection point P». Also note that
since the stored depth values are zero outside the object’s silhou-
ette, sampling one such texel indicates that the ray has crossed the
silhouette (i.e., T1.z > storedDepth) and T} should not advance. Al-
gorithm 2 presents a pseudo code for performing the conservative
binary search.

Assuming that P, can be exactly computed after k£ binary-search
steps, the approximation error resulting from using only c¢ steps of
the CBS can be expressed in terms of the parameter 3 (see Equa-
tion 5) used for interpolation in 3D as :

ifk<c
otherwise

07
ﬁermr = { (O.S)C _ (O.S)k,

Thus, for instance, Berror < 3.125% after 5 steps of CBS. Algo-
rithm 2 shows a pseudocode for implementing a conservative binary
search in 2D texture space.



// variables ki, ky, t; and d; were computed in Algorithm 1
// initialize P> with S and compute the search range in 3D
float3 P, =S
float3 d, = (E—S)
// start the conservative binary search loop
for (i=0; i < conservative_binary_search_steps; i++) {
dyx=0.5
float Pz =P,.z+d, .2
float a = (1/(Pz) — ki) xky
float2 texCoord =t} + o x d;
// sample depth stored in the texture
storedDepth = f1tex2D(DepthTex,texCoord)
storedDepth *= Zz,y // recover a positive Z value
// check if it is ok to advance
// invalid texels have depth = 0.0
if (—P.z < storedDepth) {
P+ = d,

// now use texCoord to sample Ny from the normal texture

// then compute T, and sample the environment map.

// Use the resulting color to shade the fragment or use a

// Fresnel approximation to combine reflection and refraction

Algorithm 2: Pseudo code for a conservative binary search in
2D texture space. The negative sign in —P.z (if statement) com-
pensates for the fact that OpenGL uses a right-hand coordinate
system.

4 Results

We have implemented the refraction technique described in the pa-
per as a set of shaders written in Cg [Mark et al. 2003]. The host
program was written in C++ and OpenGL. Both depth and nor-
mal maps saved during the first pass were stored as 32-bit-per-texel
RGBA textures. We used our technique to render the approximate
refraction of distant environments through several geometric mod-
els and visually compared these results to the ones obtained us-
ing three other techniques: single-interface refraction (SIR), image-
space refraction (ISR) [Wyman 2005a], and ray tracing (RT) [Whit-
ted 1980]. The single-interface refraction technique was imple-
mented as described in [Fernando and Kilgard 2003]. For ISR, we
used the shaders available at Wyman’s website [ Wyman 2006]. The
ray-traced images were generated with pbrt [Pharr and Humphreys
] with 32 samples per pixel. For all images shown in the paper we
set the material index of refraction to 1.2. All examples rendered
with our technique, including the accompanying video, were pro-
duced using 5 steps of the conservative binary search.

Figure 1 shows refractions through the Armadillo model. On the
left, one sees a ray traced image used for reference. The image in
the center was rendered using our technique from the same view-
point. Note the similarity between them. The differences, basically
noticeable on the feet, are primarily due to the occurrence of total
internal reflection (TIR), which is not simulated by the current ver-
sion of our technique. The image on the right shows the Armadillo
during a jump, also rendered using our technique. The accompany-
ing video was recorded in real time and shows several examples of
models undergoing deformations.

Figure 7 shows the dragon model rendered using the four different
techniques for comparison. Figure 7 (a) shows the result produced
by our technique. (b), (c) and (d) show the renderings produced
with the use of image-space refraction [Wyman 2005a], ray trac-
ing, and single-interface refraction, respectively. Although there
are small differences between Figures 7 (a) and (b), they are virtu-
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ally identical and also very similar to the ray-traced image in (c).
Essentially, the differences between (a) and (b), and the reference
image (c) are in regions where total internal reflection occurs, since
the phenomenon is simulated by the ray tracer, but not by the other
techniques. Although it is possible to find viewing configurations
for which our technique exhibits results that are slightly closer to
the image produced by the ray tracer (for some parts of the model),
when compared to ISR, in general, the images produced by both
technique are very similar. This can be understood considering the
fact that most models are not convex (i.e., they present more than
two interfaces as seen from most viewpoints) and, although our ap-
proach for computing P, tends to be less inaccurate than the one
used in [Wyman 2005a], for geometric complex objects the saved
depth maps tend to store a rough approximation for the object’s
back surface anyway. Thus, the main practical advantages of our
technique over ISR are the ability to handle dynamic models in real
time and to support any object representation that can be rasterized
on a programmable GPU.

(@

Figure 7: Dragon model rendered using four different refrac-
tion techniques: (a) Our technique; (b) Image-Space Refrac-
tion [Wyman 2005a]; (c) Ray tracing; (d) Single Interface Refrac-
tion.

Figure 8 presents two frames of an animation showing a deforming
bunny. The animation was produced using a simple vertex program
to perturb the coordinates of the vertices. Note the changes on the
chest, head, ears and feet, which can be observed by the changes in
the refracted environment. The accompanying video has a complete
animation sequence of the deforming bunny. Figure 9 shows two
renderings of the Lacador model, a statue of a gaucho, which is a
symbol of the city of Porto Alegre, in Brazil. The image on the left
was rendered using our technique, while the image on the right is a
ray-traced version generated using pbrt. Note how the two images
are similar. Again, the differences are mostly associated with the
occurrence of TIR.

Table 1 summarizes the performance of our algorithm (DIR) for
several different models and compares it with the other three tech-
niques. The table also shows the number of polygons and the num-



Figure 8: Rendering dynamic geometry. The images show two
frames extracted from an animation showing a deforming bunny.
Note the changes on the chest, head, ears and feet, which can be
observed by the changes in the refracted environment.

Figure 9: Lacador model rendered using our technique (left) and
using ray tracing (right).

ber of pixels covered by the projection of the refractive objects on
the image plane (second and third columns, respectively). The mea-
surements were performed by rendering images with 512x512 pix-
els using an Athlon64 3500+ (2.21 GHz) PC with 2 GB of mem-
ory and a PCI express 16x GeForce 7800 GTX with 256 MB of
memory. When rendering each object, all techniques used the same
viewing configurations, as illustrated in the example of Figure 7.
Each object was scaled to a maximum size that would still com-
pletely fit in the image. Note from the last two rows of Table 1 that
the performances of DIR, ISR and SIR are limited by the number
of polygons that need to be sent to GPU, transformed and raster-
ized, and not by the number of pixel covered on the screen (for
these three algorithms we store the models using display lists). The
graph shown in Figure 10 compares the performance (in fps) of DIR
and ISR for the examples listed in Table 1. As the number of poly-
gons increases, the performance gap between the two techniques
disappear, while DIR retains its extra advantages.

The accompanying videos were recorded in real time on the same
machine, also at 512x512 pixels. During editing, the videos were
resized to 400x400 pixels in order to reduce storage requirements.

5 Discussion

Our technique provides only an approximate solution for render-
ing the refraction of distant environments. Like Wyman’s tech-
nique [Wyman 2005a], ours also does not simulate total internal
reflection (TIR). Whenever the computed transmission angle hap-
pens to be bigger than the critical angle, we make it equal to the
critical angle, causing the refracted ray to be tangent to the surface.
This strategy was proposed by Wyman [Wyman 2005a].
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Table 1: Performance of our algorithm (DIR) on different models
and comparison with other techniques. Performance in fps, except
for RT which is expressed in seconds.

[ Model | polygons [ pixels [ DIR [ ISR | SIR | RT |
Buddha 50,000 56,739 288 | 345 | 601 | 151s
Bunny 69,630 89,050 | 210 | 261 | 390 | 1395
Venus 100,000 91,360 166 | 204 | 317 | 137 s
Lacador 153,372 37,445 156 | 163 | 311 60 s
Dragon 250,000 | 113,845 80 83 161 | 286s

Armadillo | 345,944 66,191 74 78 169 | 105s

50

Number of Triangles

Figure 10: Performance comparison (in fps) of the techniques DIR
and ISR using the data shown in Table 1. As the number of poly-
gons increase, the performances of the two techniques converge.

Using the depth buffer to save a representation for the back portion
of the model can only provide an approximation for the back sur-
face. Simulating TIR and refractions at more than two interfaces
can be achieved using a multilayer representation that stores both
front and back-facing depth and normal information, similar to the
one used in [Policarpo and Oliveira 2006]. In this case, however,
one needs to save the depth and normal maps in perspective projec-
tion. Our ray-intersection procedure described in the paper would
directly work for these extensions, simply requiring to follow the
extra bouncing and refracted rays. Dynamically acquiring multiple
depth layers for deforming geometry can be done using depth peel-
ing [Mammen 1989] at the cost of additional rendering passes. Ap-
parently, the extra cost required for computing refractions at mul-
tiple interfaces does not seem to be justifiable in general, as the
results obtained with the use of techniques such as DIR and ISR are
already very similar to ray-traced ones. Simulating TIR might be a
more promising direction for exploration, but due to the recursive
nature of the phenomenon, rays may bounce many times before es-
caping to the external medium, which will impact the performance
of the technique.

Although uncommon, depending on the geometry of the front-
facing portion of the object, the intersection of the refracted ray
Ty with the second interface may happen on the front-facing geom-
etry. Thus, for instance, consider a configuration similar to the one
depicted in Figure 6, where 77 would hit the second interface (point
P,) still inside the white portion of the frustum. In these situations,
the normal used to compute 7; would still be sampled from the back
portion of the model.

Currently, our technique does not handle refractions of nearby ge-
ometry [Wyman 2005b]. Since our technique provides good esti-
mates for the 3D coordinates of P>, we would like to explore this
subject in the future.



6 Conclusion

We have presented a real-time technique for rendering approximate
refractions of distant environments through objects. Unlike previ-
ous techniques, our approach can be directly applied to models un-
dergoing shape deformation as well as to any object representation
that can be rasterized on a GPU. Also, our approach needs no pre-
processing and requires less memory than competing techniques.

We introduced an efficient GPU algorithm for computing ray inter-
section against a depth image represented in perspective projection.
The search for the intersection is performed in 2D texture space.
We have also presented conservative binary search, a variation of
the binary search algorithm for 2D texture space that avoids sam-
pling invalid texels. For this, we presented a bound on the error
associated with its conservative estimation.

‘We have demonstrated the effectiveness of our approach by render-
ing and animating several models consisting of different number of
polygons. We have shown that as the number of polygons of the re-
fractive object increases, the performances of ISR [Wyman 2005a]
and of our approach converge. Our technique, however, is more
general in the sense it can be directly applied to any kind of model
representation that can be rasterized.

A possible way of accelerating our technique is to avoid the parallel
reduction (second pass of the algorithm), using the limits of the
object’s bounding box as Z,;, and Z,,y, since these are only used
to constrain the search space. We would also like to explore the
simulation of total internal reflection, as it is currently the biggest
cause of differences between images rendered with our technique
and ray-traced ones.
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