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Abstract

Current implementations for aspect-oriented programming lan-
guages map the aspect-oriented concepts of source programs to
object-oriented bytecode. This hinders execution environments
with dedicated support for such concepts in applying their opti-
mizations, as they have to recover the original aspect definition
from bytecode. To address this representational gap we propose
an architecture for implementations of pointcut-advice languages
where aspect-oriented concepts are preserved as first-class entities.
In this architecture, compilers generate a model of the crosscutting
which is executed by virtual machines.

In this paper we discuss a meta-model for aspect-oriented con-
cepts and a virtual machine-integrated weaver for the meta-model.
As a proof of concept, we also provide an instantiation of the meta-
model with the Aspect] language and an Aspect] compiler comply-
ing with the proposed architecture. We also discuss how preexisting
high-performance optimizations of aspect-oriented concepts bene-
fit from the proposed architecture.

1. Introduction

This paper is concerned with the implementation of the pointcut-
advice sub-family of aspect-oriented languages, PA languages [1]
for short. Most aspect-oriented languages belong to this family
as they provide the pointcut and advice constructs to support the
modularization of behavioral crosscutting. For simplicity, we will
use the term “aspect-oriented languages” to refer to the pointcut-
advice sub-family where no distinction is necessary.

The most prevalent implementation strategies of PA languages
share the following conceptual workflow [2, 3]. First, the aspect-
oriented program is parsed to retrieve pointcuts and advice from
aspect modules. Next, join point shadows [2, 4] are searched for.
Finally, bytecode instructions for dispatching advice functionality
are generated and inserted at these shadows. The latter two steps
are generally referred to as the weaving phase.

During this phase aspect-oriented (AO) concepts, which are ex-
pressed by special language constructs in the source code, drive
code generation and transformations in the compiler. One implica-
tion of this approach is that code originally modularized in aspects
is merged with code of the base language’s modules. An obvious
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problem with this is the weakening of the continuity property of
incremental compilation: Modifying an aspect potentially requires
re-weaving in multiple other modules [5]. Moreover, the aspect-
oriented concepts become implicit instead of staying first-class in
the generated bytecode.

This is different from object-oriented programming languages,
e.g., Java, where concepts like classes, methods, fields and even
polymorphism are also reflected in the bytecode. In Java byte-
code, polymorphic method calls can be immediately identified be-
cause they are represented by a special instruction rather than
general-purpose instructions encoding the resolution logic. In con-
trast, current implementations of aspect-oriented languages gener-
ate sequences of general-purpose instructions to realize concepts
like the cflow pointcut designator [6].

This representational gap hinders a range of optimizations by
the execution environment [7, 8]. It is very difficult task for the just-
in-time compiler of a virtual machine to recognize the intention of a
sequence of instructions generated by the weaver, e.g., for checking
whether a control flow is active. On the contrary, a first-class repre-
sentation of quantifications over the control-flow, can be exploited
by the virtual machine’s just-in-time compiler to perform optimiza-
tions during the native code generation [9]. Other optimizations of
this kind are also outlined in [9]. Furthermore, with a first-class
representation of aspect-oriented concepts, object layouts that bet-
ter suit the needs of aspects can be designed in the virtual machine
[10].

Approaches like the AspectBench Compiler framework (abc)
[11, 12] apply static analyzes based on a first-class model of the
aspects to achieve some performance optimizations. Yet, this first-
class model also only exists during compile- and weaving-time and
is abandoned afterwards. Optimized implementations that can rely
on virtual machine features to achieve efficient runtime execution
are out of reach.

Besides facilitating optimizations in the execution environment,
a first-class representation of AO concepts also supports develop-
ment of new language extensions. The abc framework already sup-
ports re-using and extending the implementation of some core con-
cepts in static compilers. It exposes interfaces for join point shadow
search and weaving, which can be used to realize new kinds of
pointcut designators [11, 12]. However, other concepts, e.g., con-
cerning the aspect instantiation strategy or advice precedence, are
not first-class. Hence, language extensions that target these parts of
an aspect-oriented language can not re-use implementation efforts
provided by the abc framework. Aspect-oriented languages that,
e.g., support runtime deployment of aspects, like JAsCo [13, 14] or
AspectWerkz [15, 16], can not benefit from abc at all, because the
latter lacks an abstraction over the aspect deployment strategy.

The work presented in this paper targets the problems outlined
so far. We propose an architecture for aspect-oriented language



implementations where the aspect-oriented concepts stay first-class
until execution. Centric to this architecture is a meta-model of core
aspect-oriented concepts which acts as interface between compilers
and runtime environments'. Compilers instantiate the meta-model
with language constructs while runtime environments implement
the execution of the meta-model. The core concepts made explicit
in the current meta-model are: advice, join point shadows, dynamic
properties of matching join points, context reification at join points,
strategies for implicitly instantiating aspects, advice ordering at
shared join points and aspect deployment.

A concrete instantiation of the architecture is also presented,
consisting of two parts. First, to show that the meta-model is ap-
propriate to express state-of-the-art aspect-oriented languages, we
provide a compiler that expresses the Aspect] language features
as instantiations of the meta-model. Second, we provide an imple-
mentation of the meta-model by means of a Java 5 agent and Class
Redefinition [17]. This implementation serves as an unoptimized
default solution to execute the meta-model on any standard Java 5
virtual machine.

The default implementation targets only one of the problems
identified with current implementations: It better supports the con-
tinuity of incremental compilation. To show how the proposal sup-
ports sophisticated optimizations of the AO concepts, we discuss a
second optimized implementation of the model by a dedicated vir-
tual machine. Thereby, we show how the first-class AO concepts
can drive advanced optimizations by the just-in-time compilers of
virtual machines. Finally, to show that the architecture and its meta-
model supports language extensions, a mapping for some advanced
AO concepts and optimized implementations thereof is outlined.

The remainder of this paper is organized as follows. In section
2, the proposed architecture of PA language implementations and
its meta-model is presented. Section 3 discusses a concrete instanti-
ation and the default implementation of the proposed meta-model.
We discuss alternative instantiations of the architecture in section 4
and present related work in section 5. Finally, section 6 concludes
the paper and presents areas of future work.

2. Architecture and Meta-Model

In this section, an overview of the proposed architecture is given
and the underlying meta-model of pointcut-advice languages is
presented.

2.1 Overview of the Architecture

The proposed architecture is schematically shown in figure 1. The
central block of the architecture is the meta-model of pointcut-
advice languages which has been designed to be generic enough
to accommodate the concepts of most current PA languages. It is
defined as a set of interfaces and classes in the Java language. A
concrete language implementation has different connections to the
meta-model.

Concrete AO language features are mapped to the meta-model
by implementing the interfaces according to the feature’s seman-
tics, we speak of instantiating the meta-model. Mapping a concrete
language to the meta-model results in the model for the respective
language.

Compilers adhering to the architecture (in the front-end block
of the figure) generate bytecode as usual for the non-aspect parts of
the program, i.e., object-oriented modules and object-oriented parts
of aspect-oriented modules. Additionally, they create bytecode,
called the preamble, that instantiates and configures model entities
according to the behavioral crosscutting definitions in the source
code under compilation. The preamble is executed before running

'One could also call the meta-model an intermediate representation for
aspect-oriented programming languages.
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Figure 1. Schema of the proposed architecture for pointcut-advice
language implementations.

the actual application. Its execution creates and possibly deploys
the first-class representation of the crosscutting definitions.

Execution environments that adhere to the architecture (in the
back-end block of the figure) implement the meta-model. Since all
elements of the aspect-oriented programs are represented as ob-
jects at runtime, the execution environment has full access to a
high-level description of the behavioral crosscutting defined by the
AO program. This enables it to employ sophisticated optimizations.
But also simple bytecode weaving as in existing implementations
is possible. Beyond advanced optimizations, different implementa-
tions of the deployment interface can also provide advanced fea-
tures such as synchronized or transactional aspect deployment.

In other words, the meta-model serves as the interface between
AO compilers and execution environments, hence, decoupling the
front-end from the back-end of an AO language. Besides provid-
ing the execution environment with first-class representations of
AO concepts, this decoupling makes compilers and execution envi-
ronments independently interchangeable: New implementations of
the meta-model by new virtual machines can be used as the back-
end for existing compilers, and the code produced by new compil-
ers can execute on any execution environment that implements the
meta-model.

2.2 A Meta-Model for Pointcut-Advice

The meta-model breaks down an aspect into small, differentiated
units to improve re-usability and to avoid ambiguities. Figure 2
shows the elements of the model and their connections by means of
a class diagram. The Aspect module provides a logical grouping of
AdviceUnits — representing pointcut-advice pairs — to be deployed
together. The other modules are concerned with expressing either
pointcuts or advice functionality.

2.2.1 Expressing Pointcuts.

Pointcuts are represented as JoinPointSet data structures — the par-
ticipating classes are marked by the box labeled pointcut in figure
2. A JoinPointSet corresponds to a simple clause in a pointcut
expression of an aspect. A simple clause is one that consists of a
single static pointcut designator, e.g., a call or a field access desig-
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Figure 2. A meta-model for pointcut-advice languages.

nator, eventually combined with dynamic properties by an and (&&)
operation. For instance, call(pattern)&& dyn is a simple point-
cut clause where call(pattern) is a static pointcut designator se-
lecting all calls to methods that match pattern, and dyn is some
dynamic property that the method calls selected by the static desig-
nator must also fulfill.

Accordingly, each JoinPointSet, jps, has a static component,
jpss of type JoinPointShadowSet, representing its shadows [2],
and a dynamic component, an set of DynamicProperty objects. A
join point in jps occurs at runtime when an instruction in jpss
is executed and all dynamic properties are satisfied. In addition,
a JoinPointSet may also refer to Context objects, representing
values that are exposed to the advice at member join points.

Context objects represent some part of a join point’s context
— e.g., the this object or the source code location of a join point’s
shadow — and are used by several parts of the meta-model. Contexts
can also be composed of other contexts, e.g., the thisJoinPoint
value in AspectJ can be realized as a composed context.

A compound pointcut expression can be expressed in the meta-
model by simple clauses combined with or (||) operators. An
example of a pointcut in the ored form is (call(patternl)&&
dyn1) || (set(pattern2)&& dyn2). However, not all pointcuts in
Aspect]J-like pointcut languages are already in this form. For in-
stance, the pointcut expression call (pattern1)&& dyn && call(
pattern2) is not in the ored form. Yet such pointcut expressions
can be transformed into the ored form. That is, the ored form does
not constrain the valid pointcut expressions that can be defined.

The idea is that any pointcut expression that produces a non-
empty join point set can be brought into an ored form. Given two
pointcut designators, p1 and p> with patterns pt; respectively pta,
the pointcut p; && p2 is equivalent to the pointcut p in ored form
whose pattern is pt1 A pta.

For illustration, consider the following listing. It shows several
pointcut definitions in a pseudo language, followed by an equiv-
alent pointcut expression in ored form. The third example cannot
be expressed in an ored form. However, this pointcut represents a
family of pointcuts with empty join point sets. There can never be
a join point which is a method call and a field set at the same time.

/L

// original pointcut  definition :
call(patternl) && dyn && call(pattern2)

// equivalent pointcut  definition in ored form:
call(patternl && pattern2) && dyn

/2.

// original pointcut  definition :
(call(patternl) || set(pattern2)) && dyn

w| // equivalent pointcut  definition in ored form:
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11| (call(patternl) && dyn) || (set(pattern2) && dyn)
12

1| /3.

w| // original pointcut  definition :

15| (call(patternl)) && (set(pattern2))

16| // this is an illegal pointcut

A pointcut in our meta-model is specified as an array of
JoinPointSets which corresponds to a list of simple pointcut
clauses combined with an or (| ) operation.

An instance of JoinPointShadowSet refers to a Pattern object,
which describes lexical properties of join point actions, e.g., the
name or signature of the called method. A join point shadow set is,
conceptually, evaluated by matching the lexical context of all join
point shadows in the application against its pattern object.

Dynamic properties model the program’s state at the time a join
point is executed, e.g., the active control flow or the receiver object.
A DynamicProperty can specify which values from the context of
a join point are required for its evaluation by referring to respective
Context objects.

2.2.2 Expressing Advice Functionality.

An AdviceUnit defines crosscutting functionality by specifying its
what, where, and when. The what is defined in an AdviceMethod
2 and the where by a set of JoinPointSets. The time property
of AdviceUnit (representing the when) determines whether the
advice method is executed before, after® or around a join point. In
the following, we will discuss the meta-model entities concerned
with defining the what, marked in figure 2 by a box labled advice
functionality.

Advice methods may need an object on which to execute —
an advice instance. Generally, an advice may execute on differ-
ent advice instances at different join points matched by its point-
cut. For illustration, consider an Aspect] aspect declared with a
pertarget clause and consisting of a call pointcut and an advice.
The pertarget clause states that the advice of this aspect executes
on different advice instances for different target objects at call join
points matched by the pointcut.

The strategy for retrieving an advice instance is captured by
InstantiationStrategy. To specify the values that it may need
from a join point’s context to retrieve an appropriate advice in-
stance an instantiation strategy may refer to an arbitrary number
of Context objects. When an advice method is executed at some
join point, the required context values are determined and passed
to the InstantiationStrategy which returns the advice instance
on which to execute the advice method.

An advice unit also has ScheduleMetaData associated with it.
ScheduleMetaData is used to determine the order of execution
when multiple advice apply at the same join point. A simple form
of schedule meta-data is a priority level associated with each advice
unit. When two or more advice units are executed at the same
join point, the one with the highest priority gets executed first.
The Scheduler interface — which is responsible for generating
a concrete order given some schedule meta-data — must be co-
implemented with the schedule meta-data.

When multiple advice units must be executed at a join point
shadow, the meta-model implementation will pass their schedule
meta-data to the scheduler, which determines an ordering of the
advice. The ordering is encoded as a chain of AdviceOrderElement

objects. The structure of such a chain is defined by the class
diagram in figure 3, whereby action is a reference to either an
advice unit or the actual join point action.

2 In the default implementation normal methods are used as advice methods.

3 It is possible to specify that the advice executes after normal or exceptional
execution of the join point.



Each AdviceOrderElement object stores a (possibly empty) list
of before advice in the order of their execution, followed by an
around advice, which, in turn, is followed by a (possibly empty) list
of after advice to be executed after the around advice has finished.
Any AdviceOrderElement, aoe;, may be linked to a following
element, aoe;1, thus, specifying the advice to execute, when the
around advice of aoe; proceeds. Once the execution of the last
after advice of aoe; 1 is over, the around advice of aoe; continues
after its proceed, followed by the after advice of aoe;, if any. The
around of the last element of an AdviceOrderElement chain refers
to the join point action rather than to an advice.

proceedsTo

AdviceOrderElement

before : List<Action>|
around: Action
after : List<Action>

Figure 3. Data structure for representing the order of advice.

For illustration, consider a priority-based scheduler and three
advice units - A, B, C - to be executed at the same join point shadow.
A and B are before advice units with priorities 100, respectively 80;
C is an around advice with priority 90. Further, assume that the
scheduling strategy is such that a before advice with a lower priority
than an around advice is executed only when the latter proceeds.
Figure 4 shows the order structure returned by the scheduler for this
example.

AdviceOrderElement AdviceOrderElement
before : {A} proceedsTo before : {B}

around: C around: join point action
after : {} after : {}

Figure 4. Example AdviceOrderElement data structure.

3. Default Instantiation of the Architecture

To show that the meta-model is appropriate for expressing aspect-
oriented features of current languages and to illustrate the proposed
architecture we will discuss an instantiation of the architecture,
here. We have instantiated the meta-model with the Aspect] lan-
guage features and implemented both, a compiler and an execution
environment for the meta-model.

In the following subsection, we discuss how the Aspect] fea-
tures are expressed as instantiations of the meta-model as well as
the compiler for the Aspect] language that obeys the proposed ar-
chitecture. In subsection 3.2 we present an implementation of an
execution environment to execute the meta-model based on byte-
code weaving. Dynamic aspect deployment is facilitated by means
of a Java 5 agent and Class Redefinition [17].

3.1 Mapping Aspect]

In the following, we discuss how AspectJ features described in ap-
pendix B Language Semantics of the Aspect] Programming Guide
[6] can be mapped to our meta-model. We also discuss the code
generated by a compiler for building model entities that represent
the crosscutting in the source code. The Aspect] compiler conform-
ing to our architecture is built using the JastAdd compiler frame-
work [18] which allows for flexibly extending the processed lan-
guage features.

The Aspect] aspect in listing 1 will be used to illustrate the dis-
cussion in this section. Listing 2 shows the preamble code that ex-
presses the same aspect in terms of our meta-model, using imple-
mentations of meta-model interfaces discussed in this subsection.
Figure 5 shows an object diagram created by the preamble.

aspect BoundPoint issingleton() {

before(Point p):
call(void Point.set*(*)) &&
target (p)
{
Va
}
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0] }

Listing 1. Aspect definition in the Aspect] language.

:AdviceMethod
name="before_setter"

:TargetContext
7

,| :SingletoninstantiationStrategy

T )
:TargetDynamicProperty

:TargetContext
type="Point"

joinPointSet L,‘ :PrecedenceScheduleMetaData
:JoinPointSet %ﬁ . ]

shadowSet
:MethodCallJoinPointShadowSet
T J

:MethodPattern
pattern="void set*(*)"

Figure 5. Meta-object structure modeling the Aspect] aspect.

adviceUnit
:AdviceUnit

time=BEFORE

boundPointAspect
:Aspect

To start with, the compiler creates a class for each aspect (lines
1 to 5 in listing 2) that contains a method (lines 2 to 4, listing 2) for
each advice (lines 6 to 8, listing 1).

Next, the compiler generates the preamble code, shown in lines
8 to 30 in listing 2. Our Aspect] compiler generates this code
into the static initializer of the main class. The preamble contains
code for setting up the pointcut (lines 8 to 17) and the advice
functionality (lines 19 to 26), finally, the preamble also contains
the deployment of the defined aspects (lines 28 to 30).

3.1.1 Pointcut.

Join points described in [6], method call, field set, etc., are mapped
to implementations of the classes JoinPointShadowSet and Pattern
4. For illustration, consider the lines 8 to 17 in listing 2, where a
MethodPattern and a MethodCallJoinPointShadowSet object are
created to express the call pointcut from line 4 in listing 1.

Pattern classes are provided for matching the fully qualified
signature of a method, field, and type against a pattern specified in
the Aspect] wildcard notation. To evaluate type patterns containing
the “+” operator, the Pattern implementation needs information
about the type hierarchy. The required information can be gathered
by intercepting class loading.

Aspect] also defines pointcut designators (PCD) that select
join points based on dynamic properties. The pointcut designators
target, this, and args, specify the dynamic type that the receiver
object, the executing object, respectively the argument objects,
must have in order for an execution point to classify as a join point.

4The current implementation does not support Handler execution, Ad-
vice execution, Constructor execution, Object initialization and Object pre-
initialization; implementations of these constructs are subject to future
work. As for object creation join points, we currently only provide an equiv-
alent to Constructor call.



class BoundPoint {

before_setter(Point p) {
V4

}

1
2
3
4
s| }
6
7
8
9
12| Set<DynamicProperty> dynamicProperties =

19| Class boundPointClass = BoundPoint.class;

AdviceUnit adviceUnit = new AdviceUnit(
22| BEFORE,
23| Collections.singleton(joinPointSet),

N
4

25 adviceMethod,
26| new PrecedenceScheduleMetaData());

30| AspectModelFactory.deploy(boundPointAspect) ;

MethodCallPattern setterPattern = Patterns.ajMethodPattern("call(void Point.set*(*))");

10| JoinPointShadowSet shadowSet = AspectModelFactory.createMethodCallJoinPointShadowSet (setterPattern) ;

13| Collections.singleton(AspectModelFactory.createTargetDynamicProperty(Point.class));
15| List<Context> contexts = Collections.singleton(AspectModelFactory.createTargetContext());

17| JoinPointSet joinPointSet = AspectModelFactory.createJoinPointSet (shadowSet, dynamicProperties, contexts);

20| Method adviceMethod = boundPointClass.getDeclaredMethod("before_setter", new Class[]{Point.class});

24| AspectModelFactory.createSingletonInstantiationStrategy(boundPointClass),

28| Aspect boundPointAspect = AspectModelFactory.createAspect(Collections.singleton(adviceUnit));

Listing 2. Aspect from listing 1 in our model.

We provide implementations of the interface DynamicProperty for
these designators. These implementations are configured with the
type to which the respective context value must conform. For illus-
tration, consider the code in line 13 in listing 2, which expresses
the target pointcut designator in line 5 of listing 1.

In our model, the pointcut designators within, withincode,
cflow and cflowbelow, are also mapped to implementations of
DynamicProperty. In Aspect], within and withincode select join
points based on their lexical scope and are statically resolved by the
ajc and abc weaver [2, 19]. At the conceptual level, we consider
them more generally as dynamic properties that select join points
based on the topmost frame in the call stack. This allows to keep the
mapping independent of a certain weaving strategy. For instance,
in the efficient weaving technique presented in [20, 21], it is not
possible to evaluate within statically.

When a mapping of concrete language features to the meta-
model is provided, the feature must be realized in terms of the
interface of the meta-model. This interface is very general — for
dynamic properties it is simply the method isSatisfied — which
allows (a) a uniform treatment by meta-model implementations
(e.g., a weaver) and (b) an implementation of the feature using
Java’s full computational power. A weaver that optimizes certain
features will not use this general interface, but instead directly
generate code driven by the special knowledge about the feature.

Listing 3 sketches the default implementation of the cflow
pointcut designator of Aspect], which basically follows the imple-
mentation scheme of the Aspect] compilers [19].

The constructor of CflowDynamicProperty’s default implemen-
tation receives an array of JoinPointSets, corresponding to the
pointcut of a cflow in Aspect]. From these join point sets a be-
fore AdviceUnit is created, whose advice method is the increase

method defined in the class CflowDynamicProperty. Similarly,
an after advice unit is created that decreases the counter. The
ExplicitInstantiationStrategy used in line 19 always returns

the specified object as the advice instance. The isSatisfied
method of a CflowDynamicProperty returns true if the counter
is greater than zero.

Because we use the abstract factory design pattern [22] to create
the model entities, it is easily possible to replace their concrete im-
plementations. A virtual machine with dedicated optimizations for
cflow, e.g., can overwrite the factory and construct an appropriate
object for representing the cflow dynamic property in a way trans-
parent to the user. The factory method receives all information that
describes the cflow dynamic property on an abstract level, i.e., a
description of the join points constituting the control flow in ques-
tion. An alternative implementation would not use this description
as in the example above, but store it and make it available to the
virtual machine. Execution environments that do not overrise the
factory will override the default implementation. This topic will be
discussed further in section 4.2.

Aspect] defines the pointcut designators target, this and args

to bind values from the dynamic context of a join point and to

make them accessible to the advice. An example is given in line
5, listing 1. These pointcut designators are modeled as subclasses
of Context’. In the default implementation, the getValue method
of these Context subclasses exploit the Java Virtual Machine Tools
Interface (JVMTI) [23] to access local values in the join point’s
context. An optimized implementation is discussed in section 3.2.
Lines 15 to 15 in listing 2 show an example that uses these context
implementations.

The special forms thisJoinPoint, thisJoinPointStaticPart

and thisEnclosingJoinPointStaticPart available in Aspect]
are also mapped to Context implementations. These implementa-

5 Itis also possible to bind values at entry points of a control flow in Aspect].
For these designators a default implementation can be provided similar to
the cflow dynamic property. As for all parts of the meta-model, an optimized
implementation is also possible.



1| public class CflowDynamicProperty

2 extends DynamicProperty {

3

4| private int counter;

5

6| public void increase() {

7 counter++;

s| 7

9

w| /A

11

12| public CflowDynamicProperty

13 (Set<JoinPointSet> joinPointSets) {

14 AdviceUnit increaseAdviceUnit =

15 AspectModelFactory.createAdviceUnit(

16 BEFORE,

17 joinPointSets,

18 AspcetModelFactory.

19 createExplicitInstantiationStrategy(this),

20 CflowDynamicProperty.class.getDeclaredMethod(

21 "increase", new Class[0]),

22 new PrecedenceScheduleMetaData());

23

24 V4

25 }

26

27| public boolean isSatisfied(Object[] contextValues)
{

28 return counter > 0;

29 }

30|}

Listing 3. Implementation of ¢flow in our model.

tions require context values such as the target object or the signature
of the join point, which are used to create an instance of JoinPoint.

3.1.2 Advice Functionality.

The per clause in Aspect] controlls the retrieval of advice instances.
The keyword issingleton in listing 1, line 1, specifies that all
advice are executed on the same advice instance. Line 24 in list-
ing 2 illustrates the use of the SingletonInstantiationStrategy,
whose implementation is sketched in listing 4. The first time an
advice instance is needed, a new instance of the specified class
is created and used for all subsequent advice method executions.
Respective InstantiationStrategy implementations are also pro-
vided for perthis, pertarget, percflow and percflowbelow

public class SingletonInstantiationStrategy
extends InstantiationStrategy {

1
2
3
4| private Class type;

s| private Object singleton;

6

7| public SingletonInstantiationStrategy (Class type) {
8 this.type = type;

of %

11| public Object getAdvicelInstance

12 (Object[] contextValues) {

13 if (singleton == null) {

14 singleton = type.newInstance();
15 }

16 return singleton;

17 }

18| }

Listing 4. Singleton instantiation strategy.

C
:AdviceUnit

B
:AdviceUnit

A
:AdviceUnit

FPrecedenceScheduleMeIaDaI;
L

J
precedes \&dcs\

FPrecedenceScheduleMetaDatJ EPrecedenceScheduleMetaData
. J L J

Figure 6. An example for the PrecedenceScheduleMetaData.

Advice precedence is specified in Aspect] either implicitly by
the order in which advice are defined in an aspect, or explicitly by
declare precedence. To map this feature, we provide the classes
PrecedenceScheduler and PrecedenceScheduleMetaData, which
implement the interfaces Scheduler, respectively ScheduleMetaData
. In listing 2, line 26, the advice unit is initialized with an empty
PrecedenceScheduleMetaData, because it is the only advice unit
and does not precede another one.

For a more sophisticated example consider three before advice
units A, B and C, where A precedes both B and C. The precedence
schedule meta-data of A stores a reference to the precedence sched-
ule meta-data of B and C (figure 6 shows a corresponding object
diagram). When advice unit A and B have to be executed at the
same join point shadow, the PrecedenceScheduler implementation
is passed the schedule meta data of A and B; it returns that A must
be executed before B.

It might seem naive to model aspects at this level of granularity
risking poor performance. However, the meta-model was designed
to preserve all the concepts that have been present in the source
code in a way independent from the weaver implementation. In our
architecture, the implementation of the meta-model by components
of the virtual machine is responsible for performing optimizations
to the model, as discussed in the following subsection and in section
4.

The Aspect] compiler presented here as well as the correspond-
ing execution environment implementation discussed in the fol-
lowing subsection have been integrated in a modified version of
the AJDT, called the AJDT-EM (EM stands for Execution Model).
Documentation about the AJDT-EM can be found in [24], installa-
tion and usage instructions are available at [25].

3.2 Default Weaver for the Meta-Model

The factory for our meta-model provides the deploy operation for
aspects. When an aspect is deployed by invoking this operation,
the execution environment must take care that the aspect is active
during the subsequent execution. As the default implementation
of such an execution environment, we provide a Java agent as an
extension to a standard Java 5 virtual machine (JVM). The default
weaver implementation is also discussed in [26, 27].

The agent uses the bytecode instrumentation package to inter-
cept class loading: When a class is loaded by the virtual machine,
the agent processes the class data and stores meta-information
about the class to be used for join point shadow search and weav-
ing. Upon aspect deployment, the agent performs bytecode weav-
ing similar to existing aspect weavers and uses the Class Redefi-
nition facility (also part of the bytecode instrumentation package)
of JVMs to replace the old bytecode of classes with the bytecode
where the aspect is woven in. When a class is loaded the contained
join point shadows are matched against the join point shadow sets
of the aspects currently deployed. When a shadow is matched all
corrsponding advice units are deployed.

Upon aspect deployment, join point shadow search is per-
formed. The JoinPointShadowSets of all JoinPointSets associ-



ated with the advice units in the aspect are evaluated. The result of
the evaluation is a set of join point shadow meta-objects. The latter
store information about advice units applying to the correspond-
ing shadow: the AdviceMethod, the ScheduleMetaData and the
InstantiationStrategy of the AdviceUnit as well as the Contexts
and the DynamicPropertys of the matched JoinPointSet. After all
advice units are processed in this way, bytecode is generated for
all affected join point shadows and the Class Redefinition facility
is used to replace the bytecode of affected methods in the virtual
machine.

The code that is generated by the weaver for checking the dy-
namic properties and executing the advice method is called advice
dispatch block. The execution order of the advice dispatch blocks
is determined by the scheduler based on the ScheduleMetaData Ob-
jects of the corresponding advice units. Figure 7 shows (a) an ad-
vice order structure and (b) how it is mapped onto a sequence of
advice dispatch blocks.
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Figure 7. Instruction sequence generated for ordered advice units.

A dispatch block for before and after advice consists of code
to:

1. invoke the method isSatisfied on each of the dynamic prop-
erties,

2. (for non-static advice methods) invoke getAdviceInstance on
the instantiation strategy,

3. invoke getValue on all context values,

4. invoke the advice method.

Each call to isSatisfied on a dynamic property is followed
by a conditional jump (if the call returns false) behind the last
instruction of the advice dispatch block. In this case, the execution
continues with the next advice dispatch block.

In order to support proceed, the dispatch block for around
advice is slightly different. Instead of generating code for invoking
the advice method (item 4 in the structure of dispatch blocks for
before and after advice), the default weaver copies the around
advice method’s implementation into the advice dispatch block.

Inlining of around advice can not be performed when the
proceed occurs in an anonymous nested type in the around ad-
vice as observed in [19, 2]. There, an implementation based on
closures is described that can be used in all situations. A similar
implementation in the default weaver is subject to future work.

The inlined code is modified in two ways. First, local variables
are re-numbered to avoid interference with local variables of the
method containing the join point shadow or other inlined around
advice. Second, return instructions are replaced by instructions that
jump behind the inlined advice method’s code to ensure that the

execution continues with the next advice dispatch block after the
inlined advice method.

Our Aspect] compiler produces bytecode for around advice
methods in a way to facilitate the necessary rewrites. A proceed

is represented as an invocation to a static method with the same
signature as the around advice’s method. This method will never
be called, though. Whenever such a call is discovered, the weaver
replaces it with a “jump to subroutine” (jsr) to the first advice
dispatch block of the next AdviceOrderElement. Before this, the
current program counter is stored to enable resuming execution
immediately behind the jsr instruction. Correspondingly, a ret
instruction is inserted right behind the last advice dispatch block
of an AdviceOrderElement for returning to the jsr.

The default weaver presented here conforms to the meta-model.
But in our implementation, we already treat some of the Aspect]-
instantiations of the meta-model specially, thereby showing how
a meta-model implementation benefits from the AO concepts be-
ing first-class. This implementation provides optimized implemen-
tations for two kinds of context values: those that are locally avail-
able at the join point, and those that can be evaluated at weaving
time.

An example of the first kind is the Target context: The weaver
simply generates instructions that load it from the call frame instead
of generating a call to the Target objects getValue method. An ex-
ample of the second kind is the join point signature (e.g., exposed as
part of thisJoinPointStaticPart in Aspect]): A string constant
and an instruction for loading it are generated by the weaver.

With these optimizations, the default implementation of the
meta-model is comparable to conventional aspect weaving in terms
of the runtime performance. Advanced optimizations are also pos-
sible as will be discussed in the following section.

4. Alternative Instantiations of the Architecture

In this section, we evaluate the proposed architecture in terms of
its flexibility in supporting variability with respect to both, differ-
ent instantiations of the meta-model (i.e., compilers and language
features) and different implementations of the meta-model (i.e., ex-
ecution environments).

4.1 Different Instantiations of the Meta-Model

Currently, there is a variety of aspect-oriented programming lan-
guages offering additional features to Aspect] [28]. We will dis-
cuss how some advanced features can be realized as instantiations
of our meta-model; more discussion of mapping languages to the
meta-model can be found in [27, 26].

To start with, several languages support dynamic scoping of as-
pects, e.g., an aspect can be active only within certain threads or
only for certain base objects. Examples are the languages CaesarJ
[29, 30] and JAsCo [13, 14]. In our meta-model, the scope of an
aspect can be mapped to a dynamic property: When an aspect is de-
ployed with a specific scope, the aspect is copied and all join point
sets of its copied advice units get an additional dynamic property
implementing checks for the scope. Afterwards, the copied aspect
is deployed.

Aspect-oriented languages also differ with respect to their point-
cut languages. We have observed that, for the most part, the join
point shadows, i.e., the statically resolvable part, is identical; dif-
ferences exist in the dynamic properties that can be specified. Sev-
eral languages allow to define pointcuts in terms of the execution
history beyond the abilities of the c£low pointcut designator of As-
pect]. The respective pointcut languages provide expressions to de-
scribe “interesting” sequences of join points, e.g., by means of reg-
ular expressions [11, 31, 32] or linear temporal logic [12]. When
such a sequence is detected at runtime, the pointcut matches.



Join point sequences can be realized as dynamic properties in
our meta-model, in a similar way as the cflow realization dis-
cussed in subsection 3.1. AdviceUnits are generated and deployed
that get notified at the join points participating in the sequence.
Internally, the advice units keep track of the already encountered
join points, e.g., by updating an automaton. When the dynamic
property’s isSatisfied method is called, it checks the automaton’s
state.

Another dimension of variability concerns advice ordering. In
section 3.1, we discussed how the proposed approach enables to
determine the order of advice execution at a given join point us-
ing aspect precedence. More advanced strategies can be realized
as well. For example, ScheduleMetaData objects can also specify
conditional inter-advice dependencies, such as, if advice a and b
but not ¢ apply then execute a before b; if, however, a, b and c ap-
ply then the order is b before ¢ before a. Given such specifications,
constraint solving techniques, e.g., discussed in [33], could be used
to determine the advice’ order.

4.2 Different Implementations of the Meta-Model

We already discussed optimizations that can be performed by the
weaver, e.g., for the Target context. Besides generating more ef-
ficient code for accessing context values, alternative weaver im-
plementations may also be able to evaluate dynamic properties
statically. For instance, in contrast to our default implementation,
the within and withincode dynamic properties could be statically
evaluated.

There are other kinds of optimizations which are only possi-
ble within a virtual machine. In previous work [20], we have im-
plemented virtual machine techniques that speed up dynamic as-
pect deployment. The idea is to treat join point shadows similar
to method calls and use well established speculative optimization
techniques for virtual methods [34, 35]. The idea of these tech-
niques is to perform no virtual method dispatch when the just-
in-time compiler (JIT) can determine the concrete type of the re-
ceiver object. This determination is based on the assumption that
certain properties of the application, e.g., the type hierarchy, will
not change. The virtual machine can detect changes to these prop-
erties, class loading for example, and efficiently replace the non-
virtual method dispatch with a full virtual method dispatch [36].

Similarly, these techniques are used in [20] for deploying as-
pects. The assumption when compiling a join point shadow is that
the set of deployed aspects will not change. At the event of aspect
deployment, the code of join point shadows is replaced. By using
these techniques an efficient implementation of the deployment for
the meta-model can be provided.

The evaluation in [20] measured the time for deploying an
aspect affecting all calls to public application methods. Deploying
this aspect on the SPEC JVMO98 benchmark applications [37] with
the VM integrated deployment only took 3 ms on average. Other
implementations of dynamic deployment averagely took between
229 ms and 3360 ms in the same scenario.

In the Steamloom virtual machine [7], we have experimented
with optimized implementations of control flow checks [9] and of
advice instance retrieval [10].

For the optimized control flow check, an identifier is assigned to
each cflow pointcut designator defined in the application. Instead
of weaving in instructions that execute the control flow check, the
weaver flags the place where the check has to be executed and
inserts the cflow’s identifier as a reference to the first-class entity.
When the JIT compiler encounters a place where a control flow
check is to be executed, it can access the cflow’s full definition
because it is a first-class entity. This allows the JIT compiler to
check whether the control flow is always true or always false in

the currently compiled context. In [9], this optimization as well as
others are described in more detail.

In [9] we present a worst case evaluation of the effect of cflow
pointcut designators on single operations. We measured how much
the performance of method calls degrades for methods that (a) con-
stitute the control flow referred to by c£low and (b) only contains a
check of the current control flow. The integrated cflow implemen-
tation imposed an overhead of 166% for case (a) and 67% for case
(b). The performance loss of other investigated implementations
ranged from 498%?5 to 7370% for case (a) and from 687% to 4240%
for case (b) in single-threaded applications. For multi-threaded ap-
plications our implementation exposed the same performance as in
the single-threaded case while the other implementations expose a
performance loss of at least 1856 % (case (a)) and 2108% (case
(b).

When using this optimization in a meta-model implementa-
tion, the optimized control flow check implementation can use the
control flow based DynamicProperty implementations as first-class
representations of the check. When the JIT compiles an advice dis-
patch block that contains such a check, it can use the associated
join point sets to determine if the check will, e.g., always succeed
and omit instructions calling the dynamic property’s isSatisfied
method. If the check can not be omitted, the JIT can generate code
for a more efficient check that is executed instead of the call to the
default implementation of isSatisfied, as has been shown in [9].

In other work, the object model of the virtual machine has been
modified to store a table of advice instances to realize optimized
access to them [10]. This way, the lookup costs are reduced. The
extended virtual machine provides a special bytecode instruction
for loading the instance from its storage location in the extended
object layout.

The enhanced object model for virtual machines to support per
instance aspects can play its strength for pertarget aspects. In the
approach with advice instance tables, the performance of executing
an advice from a pertarget aspect is at least circa one order of
magnitude faster than in other investigated approaches [10].

While all these optimizations are promising, they currently lack
a common interface to make them available to a wide range of
language implementations. The meta-model presented in this paper
can act as such an interface.

5. Related Work

The Nu project [5] also aims at providing an interface between
compilers and execution environments. For this purpose, two new
instructions are provided in the intermediate language (e.g., the
bytecode) for associating and disassociating a pattern of join points
with a delegate. The model of this approach is less differentiated
and less complete than our meta-model. For example, dynamic
properties of join points such as cflow can not be expressed [38].

In [39], a meta-model to capture the semantics of features in
aspect-oriented languages is defined. The meta-model is imple-
mented as an interpreter in the Smalltalk language, called metaspin,
whereby each computational step is represented as a closure and
can be a join point. The aspect sand-box project [40] follows similar
goals. The semantics of aspect-oriented languages are expressed as
interpreters in the Scheme language. Similar to our approach, both
aforementioned approaches represent aspect-oriented concepts as
first-class entities. However, these approaches only target language
design and the connection to optimized implementations are not
considered.

The Reflex project [41, 42] aims at providing an extensible ker-
nel for aspect-oriented programming based on behavioral reflection

6We leave the results for the stack-walking implementation out of this
discussion, as the performance at c£1ow checks is probibitively bad.



by means of a Java embedded language. This kernel has some sim-
ilarities with the meta-model proposed in this paper. What we call
an advice unit, is a link in their terminology; join point shadow
sets are called hooksets and Dynamic properties are called activa-
tion condition in Reflex and are also first-class objects. However,
in the proposed way of using Reflex, i.e., by means of the Reflex
kernel language [41], activation conditions have to be specified as
blocks of code which hinders re-use. What is more important, Re-
flex covers only the meta-model part of our proposed architecture.
Questions related to exploiting the reflective aspect definitions in
the execution environment, including different implementations of
aspect deployment, e.g., transactional aspect deployment, are not
considered.

The AspectBench Compiler (abc) [43, 19] offers a workbench
for implementing compilers for aspect-oriented languages. It pro-
vides an extensible parser based on the Polyglot framework. Fur-
thermore, interfaces for shadow types and shadow matcher are pro-
vided, which are used for join point shadow search and weaving.
Bytecode analyzes and optimizations of the Soot framework are
also part of the workbench. Language extensions implement the
ShadowType and ShadowMatch interfaces for new kinds of pointcut
designators and extend the parser such that it creates instances of
these classes when it encounters a pointcut definition. These ob-
jects are passed as first-class entities to the weaver which generates
an intermediate code. The analyzes and optimizations provided by
Soot work on this intermediate code and can, thus, be reused by
language extensions.

The abc model is less flexible than our meta-model, e.g., with
regard to instantiation strategies, as the methods for loading the
receiver object for advice calls are hard-coded for the per clauses
defined in the Aspect] language. Also, as the compiler weaves
the aspects into the bytecode, the concepts are not first-class in
the execution environment, preventing it from making additional
optimizations that are not possible to perform at compile time.

The ajc compiler from the Aspect] distribution [44] is split
into a front-end which parses the Aspect] code and generates pure
Java bytecode from it and a back-end which weaves in the aspects.
In the first step, aspects and advice are transformed into classes
and methods. Non-java constructs such as pointcut declarations are
stored as Java bytecode attributes. In a second step, the back-end of
the compiler reads these attributes and performs the weaving [2].
Thus, similarly to abc, pointcut declarations are passed as first-
class entities to the weaver but lose this state after weaving, i.e.,
before the execution. Also, the interface between the front-end and
the back-end is not officially documented and also not extensible.

6. Summary and Future Work

In this paper, we presented an architecture for implementations of
aspect-oriented programming languages. Central to this architec-
ture is a meta-model of aspect-oriented language features that de-
couples the definition of language features from their implementa-
tion in a virtual machine.

The meta-model is generic in a sense that a wide variety of
current aspect-oriented language concepts can be mapped onto
it. This mapping can be expressed in a way that abstracts from
optimized implementation issues. This enables language designers
to concentrate exclusively on the semantics of language features
and yet profit from optimization techniques implemented in virtual
machines that adhere to the architecture.

The proposed architecture requires that the front-end of a lan-
guage implementation, i.e., the compiler, produces code that cre-
ates runtime objects which define the aspects according to the meta-
model. The back-end, i.e., the execution environment, recognizes
these runtime objects and weaves the program accordingly. Since
aspect-oriented concepts are expressed as first-class entities via the

runtime objects, execution environments are enabled to make so-
phisticated optimizations.

The architecture is flexible in the sense that compilers and
execution environments adhering to it can be flexibly exchanged.
Optimizations that are made in special execution environments
adhering to the architecture can be be exploited by programming
languages also adhering to the architecture. More information and
downloads can be found at the project’s home page [25].

In future work, we will target three different areas. One area
is to improve the default implementation of the model. Currently
not all join point shadows provided by Aspect] are supported,
namely, exception handlers as well as different variants of object
initialization (e.g., preinitialization). Support for these join
point shadows and an implementation of around and proceed
based on closures will be provided in future versions of the default
weaver.

A second area of future work will target other concrete instanti-
ations of the architecture as discussed in section 4. On the one side,
we will provide virtual machine optimizations presented in eatlier
work, as a special implementation of the meta-model. This will
include a comprehensive performance evaluation and comparison.
On the other side, other aspect-oriented languages will be mapped
to the meta-model and respective compilers will be implemented.
In this process, the meta-model might need to be refined.

Finally, we we will increase the expressiveness of our model.
In concrete we will research possibilities to also capture structural
crosscutting in the model. Further, we will investigate support for
more advanced join point models and more expressive pointcut
languages, e.g., similar to Prolog queries.
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