
Reduced Offsets for Two-L,evel Multi-Valued Logic Minimization *

Abdul A. Malik t
IBM T. JI. Watson Research Center

Yorktown Heights, N.Y 10598

Robert K. Brayton A. Richard Newton Albert0 L. Sangiovanni-Vincentelli
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

Abstract
The approaches to two-level logic minimization can be
classilied into two groups: those that use tautology for ex-
pansion of cubes and those that use the offset Tautology
based schemes are generally slower and often give: some-
what inferior results, because of a limited global pic:ture of
the way in which the cube can be expanded. If the offset
is used, usually the expansion can be done quickly and in a
more global way because it is easier to see effective direc-
tions of expansion. The problem with this approach is that
there are many functions that have a reasonable size onset
and don’tcare set butthe offset is unreasonably large. It was
recently shown that for the minimization of such Boolean
functions, a new approach using reduced offsets, provides
the same global picture and can be computed much faster.
In this paper we extend reduced offsets to logic functions
with multi-valued inputs.

1 Introduction
A two-level logic minimization problem is generally posed
as the minimization of a logic function given a sum-of-
products cover of the onset and a representation of the don’t
care set. The objective of minimization is primarily to de-
crease the total number of cubes (product terms) and secon-
darily the total number of literals in the cover. A logic func-
tion can be a function of binary variables or multi-valued
variables. The latter is called a mv-function for simplic-

$&er.
We are primarily concerned with mv-functions in this

In minimizing a two-level function, the number 0Pliterals
in each cube is reduced (expansion), either to obtain a cube
with the minimum possible literals or a cube that contains
as many other cubes in the cover as possible. The expanded
cube &then added to the cover and those cubes conltained in
the exuanded cube are removed. Expansion can be done in
two ways. Let g be the union of the onset and don’t care set.
The expansion for a cube is valid if and only if the expanded
cube is covered by g. The tirst method uses tautology; the
test if an expanded cube is covered by g is converted to a
tautology test. This method is used by PRESTO [:2]. Test-
ing if a function is a tautology takes exponential time in the

*‘his project WBS supported in part by National Science Foundation
under -tract number UCB-BSI64ZI and Defense Advanced Research
Projects Agency under contract number NOOO39-87C-0182

t ‘Lhis work was carried out when the author was a doctoral candidate
at University of California at Berkeley.

worst case. Also, several tautology test! may be necessary
for each cube. As a result, this method is usually slow.

The other method uses the fact that if the expanded cube
does not intersect the offset ?j then it is covered by g. Al-
though, the computation of the offset is also expensive in
the worst case, this needs to be done only once for the en-
tire minimization. Further, using the offset gives a more
global picture of the expansion space. Using the offset, it is
easy to find the literals that can be removed without affect-
ing any other literals, or the liter@ that must be retained in
an; xz cube. The offset is used by ESPRESSO [l]

The pmblek with using the offset is that there are mv-
functions which have reasonable size onsets and don’t care
sets but whose offsets are unreasonablv large. One such ex-
ample can be formed from the binary-&h&l Achilles’ heel
function by converting each input variable to a mv-variable.
A mv-Achilles’ heel function with rz cubes is shown below:

where each variable is a 3-valued variable. The don’t care
set for this function is d = 0. It can be shown that the min-
imum representation for the offset fun&on has 3” cubes.

Reduced offsets were found to be very effective for min-
imization of binary valued functions with large offsets [6].
The development of the theorey of reduced offsets was mo-
tivated by applications to the multi-level logic minimiza-
tion problem where two-level binray-valued functions with
large offsets are encountered. Minimization of two-level
mv-functions is important for several reasons, Binary-
valued functions are a special case of mv-functions. There-
fore, the study of multi-valued minimization provides a
broader picture of binary-valued minimization. The prob-
lem of minimizing a multiple outputbinary-valued function
can be treated as-that of multi-valued minimization where
all the oumuts are considered as a single multi-valued vari-
able I91. This aDDroaCh is used bv ESPRESSO-MV Il. 81.
Two&&l mv-&imization has ken found useful forthe
optimal encoding of states of a Finite State Machine C31.
aore recently, applications in the mv multi-level domain
have appeared IS, 71.

The importance of mv-minimization in logic synthesis
and the deficiency of offset-based approach in minimizing
mv-functions with large offsets provides the motivation for
extension of the theory of reduced offset to the mv domain.
The minimum representation of the reduced offset is never
larger than that of the offset; yet it can be used in the same
way as the offset during cube expansion. Consequently, the
quality of minimization is maintained. Efficient algorithms

Paper 17.2

290

27th ACM/IEEE Design Automation Conference@

0 1990 IEiEE 0738-l 00X190/0006/0290 $1 .OO

http://crossmark.crossref.org/dialog/?doi=10.1145%2F123186.123279&domain=pdf&date_stamp=1991-01-03

for computing the reduced offset have been develo
P

The
key ingredient in the algorithms is that the offset o the mv-
function is never computed.

In section 2 we present some definitions. In Section 3
we define the reduction operator for mv-functions. In sec-
tion 4, a unate recursive algorithm is given for computing
the reduced offset for mv-functions. Finally in sections 5
and 6, efficient algorithm for computing the overexpanded
cube is presented and it is applied to obtain an efficient algo-
rithm for computing the reduced offset. In Section 8 some
experimental results are given and in section 9 states some
conclusions are stated.

2 Definitions and Terminology

In this section we provide the basic definitions and notations
related to mv-functions to be used in this paper. They are
similar to those used by Sasao 191 and in [1.83.

A mv-function with n variables is defined as a mapping

f:PlxP2x---xP,-+B

WherePi = (O,l,...,pi- 1) and pi is the number of WI-
ues that the alh variable may take on. B = (0, 1, *). The
elements in the domain of the function are called minterrns
The domain is partitioned into the onset, offset and the don’t
care set. The set of all minterms that map to 0, 1, * are called
the offset, onset and the don’) care set respectively. Any
g term m the don t care set is allowed to have a value 0

Lt Xl, x2, . . . , X, be then variables of the function. A
product term of the function is defined as

XISl x2s2 . . . x,s=

where Si C_ Pi for 1 < i 2 n. The product term is said to
containaIlminterms~S~ x S2 x ... x S,.

Xi” is called a literal. If Si = Pi then the literal is
called afull literal. If a variabIe does not appear in a cube,
it is considered to have a full literal and the cube is said not
to depend on the variable. If Si = 8 then the literal is called
an empty literal. If a cube has an empty literal, the cube is
called a null cube because it does not contain any minterms.
A literal Xi” is said to be orthogonal to another literal Xi*’
if Si n ‘Ti = 8. If two liter& of the same variable are not
orthogonal, they intersect.

Let G JpX2S’. . . xnSn
andH = X,*5!12=.. ; T, be two cubes. G contains
H (writtenas H C G) if TrC Si for 1 C i < n. IfG con-
tains H then cube G coma& all minteiins%f cube H. If
cube G contains all minterms of cube H and cube H is not
a null cube then H C G. However, if cube H is a null cube
then it is possible that for some i between 1 and n, x p Si.
In that case, H p G. The complement of G is obtained by
De Morgan Law and is shown below

&@+$2+...+x$.

where??i = Pi - Si
The product or intersection of G and H is given by

x1Smix2S2nT2. . . xnS,flT,. .

If the product is a null cube then H and G are orthogonal.
Otherwise, they intersect.

Letc@c*,-** , CI- 1 be product terms in the domain of a
completely specified mv-function f such that Cf,k ci = 1
(i.e tautology) and cjck = 8 for j # k. Then

f =ECjfcj
i=O

This decomposition is known as the generalized Shannon
expansion.

A sum-of-products form is weakly-unate in variable Xi
if there exists a j E Pi such that for every cube in the cover,
the literal corresponding to variable Xi is either a full literal
or it does not contain value j . A sum-of-products is weakly
unate if it is weakly unate in all variables.

A completely specified mv-function f is strongly mate
in variable Xi if the elements of Pi can be totally ordered
(4) such that changing the value of variable Xi from value
j-to some value k with j 5 k, causes the function value to
change from 0 to 1 if it changes at all. If f is strongly unate
in all of its variables then f is a strongly unate function.

If f is strongly unate in Xi then it is also weakly unate
in Xi but the converse is not true.

3 Reduction operator Izp and Re-
duced Offset

To facilitate the computation of the reduced offset, the no-
tion of the reduction operator is introduced.

DeiWtion 3.1 Let g be a sum-of-products andp be a cube.
Rr(g) removes every literalfrom g which is not orthogonal
to some literal in p. R, is called the reduction operator.

Definition 3.2 If g is the offset of afunction andpis a cube,
then RP (g) is the reduced oflset of g for p.

The removal of the literals mentioned in Definition 3.1
amounts to converting them to full literals which has the ef-
fect of enlarging cubes containing them. The larger cubes
usually subsume smaller cubes which can then be dropped.
This is why the minimum representation of the reduced off-
set is never larger than that of the offset. In fact, it is usually
much smaller.

Definition 3.3 Let p and ,c be two cubes. 1 Rp(c)I is the
number of (non-full) literah in RJc).

The usefulness of the offset T in expanding a cube p stems
from the fact that it is very easy to check whether a given
expansion p’ of p is valid. The test is based on the fact that p’
is a valid expansion if and only if p’ is orthogonal to r. The
ease in testing for orthogonal&y is due to the use of a sum-
of-products representation for P. The reduced offset can be
used for expansion of cubes in the same way as the offset
because it is also provided in the sum-of-products form and
the following theorem holds:

Theorem 3.1 Let 3 = (f, d, r) be an incompletely spec-
ifted mv-function. Let p be a cube and rr be the reduced
oflsetfor it. Let p’ be a non-null cube such that p c p’.
Then p’ is orthogonal to r iff it is orthogonal to r p.

Paper 17.2

291

4 Unate Recursive Algorithm for the
Reduced Offset for a Cube

The reduced offset as defined earlier is produced by the re-
duction operator acting on the offset. However, this defini-
tion is not useful to compute the reduced offset because it
requires knowing the offset. The algorithm presented here
does not require computation of the offset. The algorithm
for computing the reduced offset given here is based oa the
unate recursive paradigm.

The unate recursive paradigm has been used successfully
for several logic operations including complementation of
a function Cl, 81. Unate sums-of-products have many nice
properties that make operating on them easier than on non-
unate sums-of-products. In a unate recursive paradigm, a
non-unate cover or sum-of-products is broken down into
its unate cofactors using the generalized Shannon expan-
sion recursively. The operation is then applied to the unate
cofactors rather than the original sum-of-products and the
results are merged together. Obtaining the Shannon e.xpan-
sion takes exponential time in the worst case. Therefore
the worst case time complexity of the algorithms based on
Unate Recursive Paradigm is exponential in the number
of variables. However, the experience with ESPRESSO
shows that such algorithms work well in practice.

There are two notions of unateness for mv-functions:
strongly unate and weakly unate. In this section, the defi-
nition for strongly unate sum-of-products will be presented
first. Following that, a unate recursive algorithm for the re-
duced offset will be developed. The algorithm will use the
strongly unate sums-of-products.

Definition 4.1 Let U be a sum-of-products and Xk be a
variable in U. Let wk = (S s PilX,S is a literalin U).
If the elemenls of wk can be completely or&red via I& then
u is strong~ u?me in xk . If U is strongly Nate in every
variable then U is a strongly unate sum-of-products,,

The following theorems facilitate getting strongly unate
sum-of-products representation for strongly unate func-
tions.
Theorem 4.1 Let U be a strongly unate sum-of-products.
Then U represents a strongly unate function.

Theorem 4.2 Let g be a sum-of-products representation
for a strongIy unate function. Then there exists a strongly
unate sum-of-products U that represents the same function.
Also, U can be obtainedfrom g.

4.1 Recursive Shannon Cofactoring
Let p be a cube and 3 = (f, d, r) be a function. Let the
reduced offset for p be ¬ed by rp, By definition rp =
R&) where g = f u d. From the generalized Shannon
expansion defined in section 2,

T= LjjL+RgR
whereL = XF,R = X;sr, Xi is a non-strongly unate
variabIe in g, Si U S, = Pi so that L + R = 1, and Sr fl
S, = 0. The complementation and cofactoring operations
commute. Hence,

q=LgL+RjjE
Applying the reduction operator on both sides of the equa-
tion, we get

TP = R&71= Rp(LE) + RpWE)
To proceed further, the following theorem is required.

Theorem 4.3 I;er g be a sum-of-products and c be a cube.
Then RJcz) := Rp(c)Rp@).

Therefore,

rp = Rp(3 = Rp(L.)Rp(E) + RpCR)Rp(Ei7
If either gR or gL is not a strongly Unate sum-of-products,

Rp(gI,) or Rp(gR) can be obtained by the recursive appli-
cation of the above equation.

During recursive application of the above equation, g is
not f U d after the first time it is cofactored. Instead, it is
the result of cofactoring f u d with respect to some cube c.
If L and R are single literal cubes of variable Xi and c has
a literal M = T,Frn then it is not necessary that L + R = 1.
gi8y is reqmred is that L + R = M. This is explained

If SR or gL is strongly unate, it is possible to obtain
Rp(TjR) or Rp(gL) as described below:

4.2 Applying the Reduction Operator to
Strongly Unate Sums-of-Products

Theorem 4.4 states how R@) can be computed for a
strongly unate sum-of-products U, without first computing
77.
Theorem 4.4 Let U be a strongly unate sum-of-products
and p be a cube. Let V be obtained from U by removing
those cubes that don’t contain p. Then

R,(q = r

Theorem 4.4 will not hold if U is not a strongly unate
sum-of-products even if it represents a strongly unate func-
tion, It will also not hold if U is weakly but not strongly
unate. This affirms the need to obtain strongly-unate sums-
of-products for application of Theorem 4.4.

4.3 Merging
It was mentioned above that Rp(g) can be obtained by
the following equation if g is not a strongly unate sum-of-
products:

RP(~) = RPWRP(E~ + JW)%(~)

where L = X7 and R = X7 for some non-strongly unate
variable Xi.

Onc..eR&E) andR,(gR) areobtained,R&) canbeob-
tamed by the above equation. If there are n cubes in Rp(c)
and m in R, (go) then this simple approach will give RP(?J)
with n + m cubes. However, it may be possible to combine
some cubes in R&L&,(~) with some in Rp(R)RP(z)
to obtain a smaller representation for R,,(q)). The basic idea
is as follows:

1. Suppose R,(L) = 1. men %WWid = RpGT.d.
Let Q be a cube in Rp(R)Rp(yR), Then it is possible
that q is contained within some cube in RP(L) Rp(ijL) .
In that case, q can be dropped. In fact, Q can be
dropped even if it is contained in Rp(L)~(~h) but
not necessarily in a single cube in Rp(L) Rp (&-) .
However, testing for containment in R,(L) Rp (TV) is
usually very expensive and is therefore not done. Sim-
ilarly, cubes can be dropped from R,(&) if R,(R) =

Paper 17.2

292

Ugorithm 1 I* **

nput: A cofa_ctor h of g = f u d and a mv-cube p.
htput: R,(h).

:omputerosl (h, p) (
If (h is a strongly unate sum-of-products) (

Obtain V by removing those cubes from h
that don2 contain p.
Return(V)

) Else (
Choose a non-strongly unate variable X in h.
Let M = Xs be a literal inc.
Choose R = Xsr and L = Xs’ such that
R+L=M.
Obtain cofactors hr; and hu.
t L = computelosl (h L , p)
tu = compute/osl(hu, p)
t = mer e(p, X, L, R, tL, tu)
Return() 4

-1

2. Let cl be a cube in Rp(L)Rr(gL) and cz be in
RP(R) Rr(Fu) such that they differ only in variable
Xi. Let cr have literal Xfl and c2 have literal XF. cr
and c2 can be merged into c with literal X~lusz with
all other literals in c the same as in cl or ~2.

Subroutine computeros 10 shown in Algorithm 1 con-
tains pseudo-code for computing the reduced offset. It
makes use of subroutine merge0 which is shown in Al-
gorithm 2.

A problem with Algorithm 1 is that every unate cofactor
of g = f U d is used in compateros 10 which may be very
time consuming if g has a very large number of unate co-
factors. The algorithm can be improved with the use of the
overexpanded cube so that many cofactors need not even
be computed.

5 Overexpanded Cube

The overexpanded cube yr, of a mv-cube p is the smallest
cube that contains all vahd expansions of p. The overex-
panded cube is of interest because it will be used to improve
Algorithm 1. Two algorithms for the overexpanded cube
are well known. One of them uses the offset which is of no
use here. The other uses tautology. A new algorithm was
discovered during the course of this research which is more
effecient than the one based on tautology. The key to this
algorithm is in the relationship between the overexpanded
cube and the reduced offset.

Theorem 5.1 Let p be a non-null mv-cube and qr be its
overexpanded cube. Let rr be the reduced offsetfor p such
that each variable has at most one single literal cube in rr .
Let I$, be the sum of single literal cubes in r-r. Then

qr = T

Theorem 5.1 reduces the problem of finding the overex-
panded cube to that of identifying the single literal cubes in

Llgorithm 2 I* *************t****************************

nput: Cube p, splittin variable X, partitionin
b&es L and R, tt = ii r(?jL) andtu = R,(gu f .
Iutput: P,, = R&j).

wrgefp, X, L R. tl, W (
tL = Rr

\
L)tL

tR = Rp R)tR
For each cube qt in TV (

For each cube qr in tn (
if(qt and qr differ only in X) (

L-et Xs’ and Xs’ be literalsof X in qt
and qr respectively.
Mahe Xs W’ the literal of X in qt and
remme qt from tR.

VfRp(L) = 1)
Remove every Cube from tu that is contained
in a cube in tL..

IffRp(R) = 1)
Remove every cube from tL that is contained
inacube intR.

Rettun(tL + tR)
t

-I

the reduced offset. However, the single literal cubes must
be deduced without computing the reduced offset.

To see how the single literal cubes come about in the re-
duced offset, consider Algorithm 1 described in section 4
for the reduced offset. The recursive application of Shan-
non expansion in the algorithm amounts to decomposing
g = f u d into strongly unate cofactors such that

g = Cc&
where Vi is a strongly unate sum-of-products which is a
cofactor of g with respect to CU~C ci, ci cj = 8 if i # j and
CCi = 1. It is known from the unate recursive algorithm
for complementation [I,81 that

For a given mv-cube p, applying the reduction operator R,
on both sides gives

J&(T) = ~Rp(ci)Rp(~i)
From Theorem 4.4 E1p (Vi) = 7. Therefore

It is clear from the above equation that rp has a single lit-
eral cube c if and only if for some i , %(ci)F has the single
literal cube c. This can happen in one of the following three
ways:

1. Rr(ei) = 1 andcispresentinr.

2. Rp(ci) =candE= 1.

3. Rp(ci) = aandbispresent~suchthata,bandcare
all single literal cubes in the same variable and c = a b.

Paper 17.2

293

ilprithm 3
I* *******al**********************************

nput: p, overexpanded cube qP so fm, cofactor h
)
f

g = f U d. and cofactort$cube c such that h = ge.
utput: Up&ted overexpa d cube qt, for p.

ind~~I(p. qp , h, cl (
If (h is a strongly unate sum-of-products) (

jindLx3nate(p, c, qp, h)
) Else (/* h is not strongIy unate */

Choose a non-strongly unate variable X in h:
partitioning cubes R and /,

I 1)find-M~. q, CR hd
5 UJind~ctp, q, CL, hd

indscunatetp, c, q , h) (
FormVfromhB;
don’t contain p.

removing those cubes that

IfdR,(c)I = 0) (
For each variable Xj (

x,? j = largest single literal cube Of Xj in 7.

1
qp = qp * x,F

} Else (/TJRp(c)j = 1 *I

Xi”j’ = Rp(cj)
xyj = largest single literal cube Of Xj in r.

qp * (XT+ X]F)

Using the above conditions to detect single literal cubes
in rp will require looking at only those cofactors of g for
which Rp(ci) is either 1 or a single literal cube. Rp(ci) = 1
ifandonlyif(R,(ci)l = 0. R,(c~)i~asing1e1iteral~~bcif
and only if I R,(Q) 1 = 1. The single literal cube in that case
is Rp(ci). In order to use the above conditions, it is neces-
sary to have an efficient way to test whether Vi is a single
literal cube. This test can certainly be made by looking at
Vi. However, the following theorem provides a method to
make this test that does not require complementing Vi.

Theorem 5.2 Let V =

pi = x;:; xz”,; . . . x,s:’ .

FL1 pi where

Let Sj = US;‘. Then XF
id

is the largest single literal cube of variable Xj in 17,

Subroutine fincLocl() shown in Algorithm 3 computes
the overexpanded cube. It is a recursive algorithm. For the
firstcalltofind-ocl(),qp= l,c= landh=g==fud.

Llgorithm 4
t* *****************a************************

irput:g= f Udandamv-cubepE g.
3utput: The reduced offset rp for p.
ind_rosl [g, pj (

.gs=Alcl (P” qp , g. 1)
?f(P = qp) (

RetuMip)
) Else {

Obtain cofactor g,r of g with resJ)ect to pp.
Rettun(compute~os1 (gQP , 1, P))

t)

6 Using the Overexpanded Cube to
find the Reduced Offset

The relation between the overexpanded cube and the re-
duced offset is also the key to speeding up the computation
of the reduced offset. It follows from Theorem 5.1 that

rp = G-l- tp

where t, consists of cubes which have more than one literal
each.

Any cube c in tP can be dropped if it is contained in q or
equivalently if it 1s orthogonal to qp . Therefore tp consists
of cubes in r,, that are not orthogonal to qr. The following
Theorem is helpful in eliminating such cubes.

Theorem 6.1 Let p be a cube, qp be its overexpanded cube,
andr, be the reduced offsetfor it. Let g = f U d. Then

rP = G+ RPGzlg

Once the overexpanded cube qP is known, all that is
needed to obtain rP is Rp(~qp). As a result of cofactor-
ing g with respect to qP, some product terms may drop out
and some literals may become full literals. Consequently,
it is usually much faster to compute RP(gJ than comput-
ing Rp@). In the special case where the cube p is a prime
cube, the computation of the reduced offset can be greatly
simplified:

Theorem 6.2 Let p be a cube in the onset f of an incom-
pletely specifredfunction T = (f, d, r) and qp be its over-
expanded cube. If p = qp then p is a prime cube and its
reduced offset rp = r.

Subroutine find~osl() shown in Algorithm 4 can now
be used to obtain the reduced offset. .find-rosl() makes
use of cornputerosl() in Algorithm 1.

7 Storing the Cofactoring Tree

If the first call to subroutine cornpute>ros 10 in Algorithm
lismadewithh=g=fUd,ratherthanwithh=g,pas
may be done from subroutine findros 10, then the process
of recursive Shannon cofactoring will be the same regard-
less to what p is. This is because no information specific to
p is used until unatc cofactors are reached. This makes it

Paper 17.2

294

Qlgorithm 5 It* **

rnpur: root of the cofactor tree and a mv-cube
pC fUd.
Output: The reduced ofSset rp for p.

Andzos2(root, p) (

jkz~2(root. qp. 1, g)
rf(P = qp) {

RetwnGp)
} Else {
_ Return(compute-ros2(root, p, qp))

3)
4

possible to do the recursive Shannon cofactoring only once
and reuse it for computing any reduced offsets. Subrou-
tine find-ocl() shown in Algorithm 3 can be modified in
the same way. Since recursive Shannon cofactoring is only
done once, this results in some saving of CPU time.

A rooted binary tree called the cofactor tree is used to
store the recursive Shannon cofactoring. The root of the
tree corresponds to g = f U d. Each node in the tree corre-
sponds to a cofactor h of g with respect to some cofactoring
cube c. Each node has two children. The left child repre-
sents cofactor hl; of h with respect to L. Similarly, the right
child represents cofactor hR of h with respect to R. L and
R are single literal cubes in the same variable X such that
ifMistheliteralofXinc,thenL+R= M.Thecofac-
toring cubes corresponding to the left and right children are
c L and c R respectively. A parameter called level is asso-
ciated with each node. The level of the root node is 1. The
level of any other node is one more than that of its parent. A
parameter maxJeveZ is used to control the size of the tree.
If a node whose level is the max-level is encountered then it
becomes a leaf node. If a node represents a strongIy unate
sum-of-products then it becomes a leaf node also. A flag
at each leaf node indicates whether it represents a strongly
unate cofactor.

Subroutine cornputeros 10 in Algorithm 1 can now be
modified to use the cofactor tree. It would be necesw, for
the first call, that h = g = fud. However, it is still possible
to take advantage of the overexpanded cube to reduce the
amount of computation.

Theorem 7.1 Let h be a cofactor of g = f U d and c be
the cofactoring cube. Let p be a cube such that p 5 g and
q,, be its overexpnuied cube. Let M be the literal of some
variable X in c. Let L and R be single literal cubes in X
suchthatL+ R= M. Then

Subroutine findrosZ() shown in Algorithm 5 can now
be used to obtain the reduced offset. find_ros2() makes
use of comptltexos2() which is shown in Algorithm 6.
computeros2() makes use of Theorem 7.1 to cofactor
V with respect to qp before complementing. The cofac-
toring generally results in converting some literals in V
to full literals. As a result, it usually takes less CPU
time to do the complementation after cofactoring. When
conzputeros2() reaches a leaf node that does not rep-
resent a strongly unate sum-of-products, it switches over

~1 orithm 6
f ;* **

nput: A no& n in cofactor tree representing h.
I mv-cube p and its overexpanded cube qp.
?utput: R,(q.

:ompute_roB(n, p, qp) (
If(n.leaf = TRUE) (

h = n.cofactor
If (n.is-unate = TRUE)

Obtain V bv removina t se cubes from h that
don’t contain p. -

w

Obtain W by cofactoring V with respect to qp.
Return(m)

’ Egbt!ain cofactor h,, of h with respect to q P’
n.cofactor_cube, p)

1
computelos2(h,, ,

} Eke (
Zf(n.L-cube is not orthogonal to qp)

tL = computeJos2(n.L_child, p, qp)
=0

Ff%xube is not orthogonal to qp)
tR = computelos2@.RxhiId, p, qD)

Else t8 = 0 -
~1

t = mer e(p, n.variable. L, R, tL, tR)
Return() f

to compterosl(). find,rosZ() uses find-oc2() (IlOt

shown) to obtain the overexpanded cube. findoc2() is
similar to findacl() except that it operates on the cofactor
tree and switches to find-40 when a leaf node is reached
that represents a cofactor which is not a strongly unate sum-
of-products. Subroutine merge0 used in Algorithm 6 is
shown in Algorithm 2.

8 Experimental Results

Reduced offsets have been implemented in ESPRESSO-
MV. They are used instead of the exact offset for cube ex-
pansion. The program was run on some industry PLAs and
multi-valued examples Tom the ESPRESSO bench-mark
set.. The following table contains some representative ex-
amples and shows that the quality of the results is unaf-
fected when reduced offsets are used instead of the exact
offset. The first column MeledZnitialshows the number of
product terms initially in the function. The column labeled
ESPRESSO shows the number of product terms obtained
when ESPRESSO-MV is used. The last col$mn label@ RO
shows the number of product terms when s~mplificauon is
done using the reduced offsets. For these examples, the off-
sets are not very large and therefore there is no appreciable

Paper 17.2

295

speed up when reduced offsets are used,

The comparison was also made for mv-Achilles’ heel
functions in which each variable Xi is a 3-valued variable.
The functions have onsets:

and no don‘t care sets. The results are shown in the table
below. n is the number of product terms in the mv-Ac.hilles’
heel function. C-size is tlie number of cubes in the offset.
Crime is the CPU time taken bv ESPRESSO to commute the
offset. Esp is the time taken bi original Espresso-fir to do
the minimization. RO is the time taken by the reduced offset
based Espresso&IV to do the minimization. All times are
in seconds on a VAX 880@ The size of @e reduced offset
for each cube in each Achdles’ heel funchon was 3 product
tHNlS.

In addition, we encountered an industrial PLA e.xampZe
which could not be simplified with Espresso-MV even after
50 hours of CPU time on a VAX 88
based Espresso&IV minimized the PO

The reduced offset
u&tion in 78 1.70 sec-

onds, of which only 112.75 seconds were spent for reduced
offset related computations. The function had 198 inputs,
237 outputs and 749 product terms. The minimized PLA
had 469 product terms. This is 37% reduction in area.

9 Conclusion
In this paper, we presented an alternative to computing
the offset while minimizing two-level mv-functions. This
is particularly useful for functions which have such large
offsets that their computation requires unreasonably large
amounts of CPU time and memory. Such functions oeca-
sionally occur as reztl world PLAs but we feel they may
becomk more common

8
multi-valued minimization finds

more auolications in m u-level outimization. Such aouli-
cations’fiave already begun to app&r [5,7]. 1 x

The use of mv reduced offsets is recommended for func-
tions that have reasonable size onsets and don’t care sets
but very large offsets. However, many functions have rea-
sonable size offsets as well. For such functions the reduced

offsets are not recommendrd because computing several re-
duced offsets instead of a single offset may be more ex-
pensive. Although the quality of results -will be the same.
Espresso-MV with reduced offset ought to be viewed as
a special purpose tool, useful for mv-furctions with large
offsets. A suggested method for doing mv-minimization
is to first run the original Espresso-MV with the “-5 op-
tion . This option shows each step in minimization as it oc-
curs. If Espresso-MV takes too long to compute the offset
or runs out of memory while computing the offset, then the
Espresso&IV with the reduced offset should be used. Also,
in applications where extreme robustness is desired, the use
of reduced offset can be recommended.

References
[II

PI

[31

14.43

151

[61

r.71

Bl

191

R. Brayton, G. Hachtel,
C. McMullen, and A. Sangiovanni-Vincenti. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

D. W. Brown. A State-Machine Synthesizer - SMS.
In Proceedings of 18th Design Automation Conference,
pages 301-304, Nashvill, June 1981.

G. DeMicheli, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Optimal State Assignment of Finite State
Machines. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, CAD-
4(3):269-284, July 1985.

S. J. Hong, R. G. Cain, and D. L. Ostapko. m
A Heuristic Approach for Logic Minimization. IBM
Journal of Research and Development, 18~443458,
September 1974.

B. Lin and A. Newton. Restructuring State Machines
and State Assignment: Relationship to Minimizing
Logic Across Latch Boundaries. In Proceedings of 2nd
MCNCInternational WorkshoponLogic Synthesis,Re-
search Triangle Park, North Carolina, May 1989.

A. A. Ma.&, R. Brayton, A. R. Newton, and
A. Sangiovanni-Vincentelli. A Modified Approach to
mo-Level Minimization. In Proceedings of Interna-
tional Conference on Computer-Aided Design, pages
106-109, Santa Clara, November 1988.

S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli.
Encoding Symbolic Inputs for Multi-Level Logic Im-
plementation. In Proceedings of 2nd MCNC Interna-
tional Workshop onLogic Synthesis, Research Triangle
Park, North Carolina, May 1989.

R. L. Rudell. Multiple-Valued Logic Minimization for
PLA Synthesis. Technical Report M86/65, Electron-
ics Research Laboratory, College of Engineering, Uni-
versity of California at Berkeley, Berkeley, CA 94720,
1986.

T. Sasao. An Application of Multiple-Valued Logic to
a Design of Programmable Logic Arrays. In Proceed-
ings of 8th International Symposium on Multiple Val-
ued Logic. 1978.

Paper 17.2

296

