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Abstract 
The approaches to two-level logic minimization can be 
classilied into two groups: those that use tautology for ex- 
pansion of cubes and those that use the offset Tautology 
based schemes are generally slower and often give: some- 
what inferior results, because of a limited global pic:ture of 
the way in which the cube can be expanded. If the offset 
is used, usually the expansion can be done quickly and in a 
more global way because it is easier to see effective direc- 
tions of expansion. The problem with this approach is that 
there are many functions that have a reasonable size onset 
and don’tcare set butthe offset is unreasonably large. It was 
recently shown that for the minimization of such Boolean 
functions, a new approach using reduced offsets, provides 
the same global picture and can be computed much faster. 
In this paper we extend reduced offsets to logic functions 
with multi-valued inputs. 

1 Introduction 
A two-level logic minimization problem is generally posed 
as the minimization of a logic function given a sum-of- 
products cover of the onset and a representation of the don’t 
care set. The objective of minimization is primarily to de- 
crease the total number of cubes (product terms) and secon- 
darily the total number of literals in the cover. A logic func- 
tion can be a function of binary variables or multi-valued 
variables. The latter is called a mv-function for simplic- 

$&er. 
We are primarily concerned with mv-functions in this 

In minimizing a two-level function, the number 0Pliterals 
in each cube is reduced (expansion), either to obtain a cube 
with the minimum possible literals or a cube that contains 
as many other cubes in the cover as possible. The expanded 
cube &then added to the cover and those cubes conltained in 
the exuanded cube are removed. Expansion can be done in 
two ways. Let g be the union of the onset and don’t care set. 
The expansion for a cube is valid if and only if the expanded 
cube is covered by g. The tirst method uses tautology; the 
test if an expanded cube is covered by g is converted to a 
tautology test. This method is used by PRESTO [:2]. Test- 
ing if a function is a tautology takes exponential time in the 
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worst case. Also, several tautology test! may be necessary 
for each cube. As a result, this method is usually slow. 

The other method uses the fact that if the expanded cube 
does not intersect the offset ?j then it is covered by g. Al- 
though, the computation of the offset is also expensive in 
the worst case, this needs to be done only once for the en- 
tire minimization. Further, using the offset gives a more 
global picture of the expansion space. Using the offset, it is 
easy to find the literals that can be removed without affect- 
ing any other literals, or the liter@ that must be retained in 
an; xz cube. The offset is used by ESPRESSO [l] 

The pmblek with using the offset is that there are mv- 
functions which have reasonable size onsets and don’t care 
sets but whose offsets are unreasonablv large. One such ex- 
ample can be formed from the binary-&h&l Achilles’ heel 
function by converting each input variable to a mv-variable. 
A mv-Achilles’ heel function with rz cubes is shown below: 

where each variable is a 3-valued variable. The don’t care 
set for this function is d = 0. It can be shown that the min- 
imum representation for the offset fun&on has 3” cubes. 

Reduced offsets were found to be very effective for min- 
imization of binary valued functions with large offsets [6]. 
The development of the theorey of reduced offsets was mo- 
tivated by applications to the multi-level logic minimiza- 
tion problem where two-level binray-valued functions with 
large offsets are encountered. Minimization of two-level 
mv-functions is important for several reasons, Binary- 
valued functions are a special case of mv-functions. There- 
fore, the study of multi-valued minimization provides a 
broader picture of binary-valued minimization. The prob- 
lem of minimizing a multiple outputbinary-valued function 
can be treated as-that of multi-valued minimization where 
all the oumuts are considered as a single multi-valued vari- 
able I91. This aDDroaCh is used bv ESPRESSO-MV Il. 81. 
Two&&l mv-&imization has ken found useful forthe 
optimal encoding of states of a Finite State Machine C31. 
aore recently, applications in the mv multi-level domain 
have appeared IS, 71. 

The importance of mv-minimization in logic synthesis 
and the deficiency of offset-based approach in minimizing 
mv-functions with large offsets provides the motivation for 
extension of the theory of reduced offset to the mv domain. 
The minimum representation of the reduced offset is never 
larger than that of the offset; yet it can be used in the same 
way as the offset during cube expansion. Consequently, the 
quality of minimization is maintained. Efficient algorithms 
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for computing the reduced offset have been develo 
P 

The 
key ingredient in the algorithms is that the offset o the mv- 
function is never computed. 

In section 2 we present some definitions. In Section 3 
we define the reduction operator for mv-functions. In sec- 
tion 4, a unate recursive algorithm is given for computing 
the reduced offset for mv-functions. Finally in sections 5 
and 6, efficient algorithm for computing the overexpanded 
cube is presented and it is applied to obtain an efficient algo- 
rithm for computing the reduced offset. In Section 8 some 
experimental results are given and in section 9 states some 
conclusions are stated. 

2 Definitions and Terminology 

In this section we provide the basic definitions and notations 
related to mv-functions to be used in this paper. They are 
similar to those used by Sasao 191 and in [ 1.83. 

A mv-function with n variables is defined as a mapping 

f:PlxP2x---xP,-+B 

WherePi = (O,l,...,pi- 1) and pi is the number of WI- 
ues that the alh variable may take on. B = (0, 1, *). The 
elements in the domain of the function are called minterrns 
The domain is partitioned into the onset, offset and the don’t 
care set. The set of all minterms that map to 0, 1, * are called 
the offset, onset and the don’) care set respectively. Any 
g term m the don t care set is allowed to have a value 0 

Lt Xl, x2, . . . , X, be then variables of the function. A 
product term of the function is defined as 

XISl x2s2 . . . x,s= 

where Si C_ Pi for 1 < i 2 n. The product term is said to 
containaIlminterms~S~ x S2 x ... x S,. 

Xi” is called a literal. If Si = Pi then the literal is 
called afull literal. If a variabIe does not appear in a cube, 
it is considered to have a full literal and the cube is said not 
to depend on the variable. If Si = 8 then the literal is called 
an empty literal. If a cube has an empty literal, the cube is 
called a null cube because it does not contain any minterms. 
A literal Xi” is said to be orthogonal to another literal Xi*’ 
if Si n ‘Ti = 8. If two liter& of the same variable are not 
orthogonal, they intersect. 

Let G JpX2S’. . . xnSn 
andH = X,*5!12=.. ; T, be two cubes. G contains 
H (writtenas H C G) if TrC Si for 1 C i < n. IfG con- 
tains H then cube G coma& all minteiins%f cube H. If 
cube G contains all minterms of cube H and cube H is not 
a null cube then H C G. However, if cube H is a null cube 
then it is possible that for some i between 1 and n, x p Si. 
In that case, H p G. The complement of G is obtained by 
De Morgan Law and is shown below 

&@+$2+...+x$. 

where??i = Pi - Si 
The product or intersection of G and H is given by 

x1Smix2S2nT2. . . xnS,flT,. . 

If the product is a null cube then H and G are orthogonal. 
Otherwise, they intersect. 

Letc@c*,-** , CI- 1 be product terms in the domain of a 
completely specified mv-function f such that Cf,k ci = 1 
(i.e tautology) and cjck = 8 for j # k. Then 

f =ECjfcj 
i=O 

This decomposition is known as the generalized Shannon 
expansion. 

A sum-of-products form is weakly-unate in variable Xi 
if there exists a j E Pi such that for every cube in the cover, 
the literal corresponding to variable Xi is either a full literal 
or it does not contain value j . A sum-of-products is weakly 
unate if it is weakly unate in all variables. 

A completely specified mv-function f is strongly mate 
in variable Xi if the elements of Pi can be totally ordered 
(4) such that changing the value of variable Xi from value 
j-to some value k with j 5 k, causes the function value to 
change from 0 to 1 if it changes at all. If f is strongly unate 
in all of its variables then f is a strongly unate function. 

If f is strongly unate in Xi then it is also weakly unate 
in Xi but the converse is not true. 

3 Reduction operator Izp and Re- 
duced Offset 

To facilitate the computation of the reduced offset, the no- 
tion of the reduction operator is introduced. 

DeiWtion 3.1 Let g be a sum-of-products andp be a cube. 
Rr(g) removes every literalfrom g which is not orthogonal 
to some literal in p. R, is called the reduction operator. 

Definition 3.2 If g is the offset of afunction andpis a cube, 
then RP (g) is the reduced oflset of g for p. 

The removal of the literals mentioned in Definition 3.1 
amounts to converting them to full literals which has the ef- 
fect of enlarging cubes containing them. The larger cubes 
usually subsume smaller cubes which can then be dropped. 
This is why the minimum representation of the reduced off- 
set is never larger than that of the offset. In fact, it is usually 
much smaller. 

Definition 3.3 Let p and ,c be two cubes. 1 Rp(c)I is the 
number of (non-full) literah in RJc). 

The usefulness of the offset T in expanding a cube p stems 
from the fact that it is very easy to check whether a given 
expansion p’ of p is valid. The test is based on the fact that p’ 
is a valid expansion if and only if p’ is orthogonal to r. The 
ease in testing for orthogonal&y is due to the use of a sum- 
of-products representation for P. The reduced offset can be 
used for expansion of cubes in the same way as the offset 
because it is also provided in the sum-of-products form and 
the following theorem holds: 

Theorem 3.1 Let 3 = (f, d, r) be an incompletely spec- 
ifted mv-function. Let p be a cube and rr be the reduced 
oflsetfor it. Let p’ be a non-null cube such that p c p’. 
Then p’ is orthogonal to r iff it is orthogonal to r p. 
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4 Unate Recursive Algorithm for the 
Reduced Offset for a Cube 

The reduced offset as defined earlier is produced by the re- 
duction operator acting on the offset. However, this defini- 
tion is not useful to compute the reduced offset because it 
requires knowing the offset. The algorithm presented here 
does not require computation of the offset. The algorithm 
for computing the reduced offset given here is based oa the 
unate recursive paradigm. 

The unate recursive paradigm has been used successfully 
for several logic operations including complementation of 
a function Cl, 81. Unate sums-of-products have many nice 
properties that make operating on them easier than on non- 
unate sums-of-products. In a unate recursive paradigm, a 
non-unate cover or sum-of-products is broken down into 
its unate cofactors using the generalized Shannon expan- 
sion recursively. The operation is then applied to the unate 
cofactors rather than the original sum-of-products and the 
results are merged together. Obtaining the Shannon e.xpan- 
sion takes exponential time in the worst case. Therefore 
the worst case time complexity of the algorithms based on 
Unate Recursive Paradigm is exponential in the number 
of variables. However, the experience with ESPRESSO 
shows that such algorithms work well in practice. 

There are two notions of unateness for mv-functions: 
strongly unate and weakly unate. In this section, the defi- 
nition for strongly unate sum-of-products will be presented 
first. Following that, a unate recursive algorithm for the re- 
duced offset will be developed. The algorithm will use the 
strongly unate sums-of-products. 

Definition 4.1 Let U be a sum-of-products and Xk be a 
variable in U. Let wk = (S s PilX,S is a literalin U). 
If the elemenls of wk can be completely or&red via I& then 
u is strong~ u?me in xk . If U is strongly Nate in every 
variable then U is a strongly unate sum-of-products,, 

The following theorems facilitate getting strongly unate 
sum-of-products representation for strongly unate func- 
tions. 
Theorem 4.1 Let U be a strongly unate sum-of-products. 
Then U represents a strongly unate function. 

Theorem 4.2 Let g be a sum-of-products representation 
for a strongIy unate function. Then there exists a strongly 
unate sum-of-products U that represents the same function. 
Also, U can be obtainedfrom g. 

4.1 Recursive Shannon Cofactoring 
Let p be a cube and 3 = (f, d, r) be a function. Let the 
reduced offset for p be &noted by rp, By definition rp = 
R&) where g = f u d. From the generalized Shannon 
expansion defined in section 2, 

T= LjjL+RgR 
whereL = XF,R = X;sr, Xi is a non-strongly unate 
variabIe in g, Si U S, = Pi so that L + R = 1, and Sr fl 
S, = 0. The complementation and cofactoring operations 
commute. Hence, 

q=LgL+RjjE 
Applying the reduction operator on both sides of the equa- 
tion, we get 

TP = R&71= Rp(LE) + RpWE) 
To proceed further, the following theorem is required. 

Theorem 4.3 I;er g be a sum-of-products and c be a cube. 
Then RJcz) := Rp(c)Rp@). 

Therefore, 

rp = Rp(3 = Rp(L.)Rp(E) + RpCR)Rp(Ei7 
If either gR or gL is not a strongly Unate sum-of-products, 

Rp(gI,) or Rp(gR) can be obtained by the recursive appli- 
cation of the above equation. 

During recursive application of the above equation, g is 
not f U d after the first time it is cofactored. Instead, it is 
the result of cofactoring f u d with respect to some cube c. 
If L and R are single literal cubes of variable Xi and c has 
a literal M = T,Frn then it is not necessary that L + R = 1. 
gi8y is reqmred is that L + R = M. This is explained 

If SR or gL is strongly unate, it is possible to obtain 
Rp(TjR) or Rp(gL) as described below: 

4.2 Applying the Reduction Operator to 
Strongly Unate Sums-of-Products 

Theorem 4.4 states how R@) can be computed for a 
strongly unate sum-of-products U, without first computing 
77. 
Theorem 4.4 Let U be a strongly unate sum-of-products 
and p be a cube. Let V be obtained from U by removing 
those cubes that don’t contain p. Then 

R,(q = r 

Theorem 4.4 will not hold if U is not a strongly unate 
sum-of-products even if it represents a strongly unate func- 
tion, It will also not hold if U is weakly but not strongly 
unate. This affirms the need to obtain strongly-unate sums- 
of-products for application of Theorem 4.4. 

4.3 Merging 
It was mentioned above that Rp(g) can be obtained by 
the following equation if g is not a strongly unate sum-of- 
products: 

RP(~) = RPWRP(E~ + JW)%(~) 

where L = X7 and R = X7 for some non-strongly unate 
variable Xi. 

Onc..eR&E) andR,(gR) areobtained,R&) canbeob- 
tamed by the above equation. If there are n cubes in Rp(c) 
and m in R, (go) then this simple approach will give RP( ?J) 
with n + m cubes. However, it may be possible to combine 
some cubes in R&L&,(~) with some in Rp(R)RP(z) 
to obtain a smaller representation for R,,(q)). The basic idea 
is as follows: 

1. Suppose R,(L) = 1. men %WWid = RpGT.d. 
Let Q be a cube in Rp( R)Rp(yR), Then it is possible 
that q is contained within some cube in RP( L) Rp(ijL) . 
In that case, q can be dropped. In fact, Q can be 
dropped even if it is contained in Rp(L)~(~h) but 
not necessarily in a single cube in Rp( L) Rp (&-) . 
However, testing for containment in R,(L) Rp (TV) is 
usually very expensive and is therefore not done. Sim- 
ilarly, cubes can be dropped from R,(&) if R,(R) = 
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Ugorithm 1 I* ****************************************** 

nput: A cofa_ctor h of g = f u d and a mv-cube p. 
htput: R,(h). 

:omputerosl (h, p) ( 
If (h is a strongly unate sum-of-products) ( 

Obtain V by removing those cubes from h 
that don2 contain p. 
Return(V) 

) Else ( 
Choose a non-strongly unate variable X in h. 
Let M = Xs be a literal inc. 
Choose R = Xsr and L = Xs’ such that 
R+L=M. 
Obtain cofactors hr; and hu. 
t L = computelosl (h L , p) 
tu = compute/osl(hu, p) 
t = mer e(p, X, L, R, tL, tu) 
Return( ) 4 

-1 

2. Let cl be a cube in Rp(L)Rr(gL) and cz be in 
RP( R) Rr(Fu) such that they differ only in variable 
Xi. Let cr have literal Xfl and c2 have literal XF. cr 
and c2 can be merged into c with literal X~lusz with 
all other literals in c the same as in cl or ~2. 

Subroutine computeros 10 shown in Algorithm 1 con- 
tains pseudo-code for computing the reduced offset. It 
makes use of subroutine merge0 which is shown in Al- 
gorithm 2. 

A problem with Algorithm 1 is that every unate cofactor 
of g = f U d is used in compateros 10 which may be very 
time consuming if g has a very large number of unate co- 
factors. The algorithm can be improved with the use of the 
overexpanded cube so that many cofactors need not even 
be computed. 

5 Overexpanded Cube 

The overexpanded cube yr, of a mv-cube p is the smallest 
cube that contains all vahd expansions of p. The overex- 
panded cube is of interest because it will be used to improve 
Algorithm 1. Two algorithms for the overexpanded cube 
are well known. One of them uses the offset which is of no 
use here. The other uses tautology. A new algorithm was 
discovered during the course of this research which is more 
effecient than the one based on tautology. The key to this 
algorithm is in the relationship between the overexpanded 
cube and the reduced offset. 

Theorem 5.1 Let p be a non-null mv-cube and qr be its 
overexpanded cube. Let rr be the reduced offsetfor p such 
that each variable has at most one single literal cube in rr . 
Let I$, be the sum of single literal cubes in r-r. Then 

qr = T 

Theorem 5.1 reduces the problem of finding the overex- 
panded cube to that of identifying the single literal cubes in 

Llgorithm 2 I* *************t**************************** 

nput: Cube p, splittin variable X, partitionin 
b&es L and R, tt = ii r(?jL) andtu = R,(gu f . 
Iutput: P,, = R&j). 

wrgefp, X, L R. tl, W ( 
tL = Rr 

\ 
L)tL 

tR = Rp R)tR 
For each cube qt in TV ( 

For each cube qr in tn ( 
if(qt and qr differ only in X) ( 

L-et Xs’ and Xs’ be literalsof X in qt 
and qr respectively. 
Mahe Xs W’ the literal of X in qt and 
remme qt from tR. 

VfRp(L) = 1) 
Remove every Cube from tu that is contained 
in a cube in tL.. 

IffRp(R) = 1) 
Remove every cube from tL that is contained 
inacube intR. 

Rettun(tL + tR) 
t 

-I 

the reduced offset. However, the single literal cubes must 
be deduced without computing the reduced offset. 

To see how the single literal cubes come about in the re- 
duced offset, consider Algorithm 1 described in section 4 
for the reduced offset. The recursive application of Shan- 
non expansion in the algorithm amounts to decomposing 
g = f u d into strongly unate cofactors such that 

g = Cc& 
where Vi is a strongly unate sum-of-products which is a 
cofactor of g with respect to CU~C ci, ci cj = 8 if i # j and 
CCi = 1. It is known from the unate recursive algorithm 
for complementation [ I,81 that 

For a given mv-cube p, applying the reduction operator R, 
on both sides gives 

J&(T) = ~Rp(ci)Rp(~i) 
From Theorem 4.4 E1p (Vi) = 7. Therefore 

It is clear from the above equation that rp has a single lit- 
eral cube c if and only if for some i , %( ci)F has the single 
literal cube c. This can happen in one of the following three 
ways: 

1. Rr(ei) = 1 andcispresentinr. 

2. Rp(ci) =candE= 1. 

3. Rp(ci) = aandbispresent~suchthata,bandcare 
all single literal cubes in the same variable and c = a b. 
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ilprithm 3 
I* *******al********************************** 

nput: p, overexpanded cube qP so fm, cofactor h 
) 
f 

g = f U d. and cofactort$cube c such that h = ge. 
utput: Up&ted overexpa d cube qt, for p. 

ind~~I(p. qp , h, cl ( 
If (h is a strongly unate sum-of-products) ( 

jindLx3nate(p, c, qp, h) 
) Else ( /* h is not strongIy unate */ 

Choose a non-strongly unate variable X in h: 
partitioning cubes R and /, 

I 1)find-M~. q, CR hd 
5 UJind~ctp, q, CL, hd 

indscunatetp, c, q , h) ( 
FormVfromhB; 
don’t contain p. 

removing those cubes that 

IfdR,(c)I = 0) ( 
For each variable Xj ( 

x,? j = largest single literal cube Of Xj in 7. 

1 
qp = qp * x,F 

} Else ( /TJRp(c)j = 1 *I 

Xi”j’ = Rp(cj) 
xyj = largest single literal cube Of Xj in r. 

qp * (XT+ X]F) 

Using the above conditions to detect single literal cubes 
in rp will require looking at only those cofactors of g for 
which Rp( ci) is either 1 or a single literal cube. Rp( ci) = 1 
ifandonlyif(R,(ci)l = 0. R,(c~)i~asing1e1iteral~~bcif 
and only if I R,(Q) 1 = 1. The single literal cube in that case 
is Rp(ci). In order to use the above conditions, it is neces- 
sary to have an efficient way to test whether Vi is a single 
literal cube. This test can certainly be made by looking at 
Vi. However, the following theorem provides a method to 
make this test that does not require complementing Vi. 

Theorem 5.2 Let V = 

pi = x;:; xz”,; . . . x,s:’ . 

FL1 pi where 

Let Sj = US;‘. Then XF 
id 

is the largest single literal cube of variable Xj in 17, 

Subroutine fincLocl() shown in Algorithm 3 computes 
the overexpanded cube. It is a recursive algorithm. For the 
firstcalltofind-ocl(),qp= l,c= landh=g==fud. 

Llgorithm 4 
t* *****************a************************ 

irput:g= f Udandamv-cubepE g. 
3utput: The reduced offset rp for p. 
ind_rosl [g, pj ( 

.gs=Alcl (P” qp , g. 1) 
?f(P = qp) ( 

RetuMip) 
) Else { 

Obtain cofactor g,r of g with resJ)ect to pp. 
Rettun(compute~os1 (gQP , 1, P)) 

t ) 

6 Using the Overexpanded Cube to 
find the Reduced Offset 

The relation between the overexpanded cube and the re- 
duced offset is also the key to speeding up the computation 
of the reduced offset. It follows from Theorem 5.1 that 

rp = G-l- tp 

where t, consists of cubes which have more than one literal 
each. 

Any cube c in tP can be dropped if it is contained in q or 
equivalently if it 1s orthogonal to qp . Therefore tp consists 
of cubes in r,, that are not orthogonal to qr. The following 
Theorem is helpful in eliminating such cubes. 

Theorem 6.1 Let p be a cube, qp be its overexpanded cube, 
andr, be the reduced offsetfor it. Let g = f U d. Then 

rP = G+ RPGzlg 

Once the overexpanded cube qP is known, all that is 
needed to obtain rP is Rp(~qp). As a result of cofactor- 
ing g with respect to qP, some product terms may drop out 
and some literals may become full literals. Consequently, 
it is usually much faster to compute RP(gJ than comput- 
ing Rp@). In the special case where the cube p is a prime 
cube, the computation of the reduced offset can be greatly 
simplified: 

Theorem 6.2 Let p be a cube in the onset f of an incom- 
pletely specifredfunction T = (f, d, r) and qp be its over- 
expanded cube. If p = qp then p is a prime cube and its 
reduced offset rp = r. 

Subroutine find~osl() shown in Algorithm 4 can now 
be used to obtain the reduced offset. .find-rosl() makes 
use of cornputerosl() in Algorithm 1. 

7 Storing the Cofactoring Tree 

If the first call to subroutine cornpute>ros 10 in Algorithm 
lismadewithh=g=fUd,ratherthanwithh=g,pas 
may be done from subroutine findros 10, then the process 
of recursive Shannon cofactoring will be the same regard- 
less to what p is. This is because no information specific to 
p is used until unatc cofactors are reached. This makes it 
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Qlgorithm 5 It* ****************************************** 

rnpur: root of the cofactor tree and a mv-cube 
pC fUd. 
Output: The reduced ofSset rp for p. 

Andzos2(root, p) ( 

jkz~2(root. qp. 1, g) 
rf(P = qp) { 

RetwnGp) 
} Else { 
_ Return(compute-ros2(root, p, qp)) 

3 ) 
4 

possible to do the recursive Shannon cofactoring only once 
and reuse it for computing any reduced offsets. Subrou- 
tine find-ocl() shown in Algorithm 3 can be modified in 
the same way. Since recursive Shannon cofactoring is only 
done once, this results in some saving of CPU time. 

A rooted binary tree called the cofactor tree is used to 
store the recursive Shannon cofactoring. The root of the 
tree corresponds to g = f U d. Each node in the tree corre- 
sponds to a cofactor h of g with respect to some cofactoring 
cube c. Each node has two children. The left child repre- 
sents cofactor hl; of h with respect to L. Similarly, the right 
child represents cofactor hR of h with respect to R. L and 
R are single literal cubes in the same variable X such that 
ifMistheliteralofXinc,thenL+R= M.Thecofac- 
toring cubes corresponding to the left and right children are 
c L and c R respectively. A parameter called level is asso- 
ciated with each node. The level of the root node is 1. The 
level of any other node is one more than that of its parent. A 
parameter maxJeveZ is used to control the size of the tree. 
If a node whose level is the max-level is encountered then it 
becomes a leaf node. If a node represents a strongIy unate 
sum-of-products then it becomes a leaf node also. A flag 
at each leaf node indicates whether it represents a strongly 
unate cofactor. 

Subroutine cornputeros 10 in Algorithm 1 can now be 
modified to use the cofactor tree. It would be necesw, for 
the first call, that h = g = fud. However, it is still possible 
to take advantage of the overexpanded cube to reduce the 
amount of computation. 

Theorem 7.1 Let h be a cofactor of g = f U d and c be 
the cofactoring cube. Let p be a cube such that p 5 g and 
q,, be its overexpnuied cube. Let M be the literal of some 
variable X in c. Let L and R be single literal cubes in X 
suchthatL+ R= M. Then 

Subroutine findrosZ() shown in Algorithm 5 can now 
be used to obtain the reduced offset. find_ros2() makes 
use of comptltexos2() which is shown in Algorithm 6. 
computeros2() makes use of Theorem 7.1 to cofactor 
V with respect to qp before complementing. The cofac- 
toring generally results in converting some literals in V 
to full literals. As a result, it usually takes less CPU 
time to do the complementation after cofactoring. When 
conzputeros2() reaches a leaf node that does not rep- 
resent a strongly unate sum-of-products, it switches over 

~1 orithm 6 
f ;* ****************************************** 

nput: A no& n in cofactor tree representing h. 
I mv-cube p and its overexpanded cube qp. 
?utput: R,(q. 

:ompute_roB(n, p, qp) ( 
If(n.leaf = TRUE) ( 

h = n.cofactor 
If (n.is-unate = TRUE) 

Obtain V bv removina t se cubes from h that 
don’t contain p. - 

w 

Obtain W by cofactoring V with respect to qp. 
Return(m) 

’ Egbt!ain cofactor h,, of h with respect to q P’ 
n.cofactor_cube, p) 

1 
computelos2(h,, , 

} Eke ( 
Zf(n.L-cube is not orthogonal to qp) 

tL = computeJos2(n.L_child, p, qp) 
=0 

Ff%xube is not orthogonal to qp) 
tR = computelos2@.RxhiId, p, qD) 

Else t8 = 0 - 
~1 

t = mer e(p, n.variable. L, R, tL, tR) 
Return( ) f 

to compterosl(). find,rosZ() uses find-oc2() (IlOt 

shown) to obtain the overexpanded cube. findoc2() is 
similar to findacl() except that it operates on the cofactor 
tree and switches to find-40 when a leaf node is reached 
that represents a cofactor which is not a strongly unate sum- 
of-products. Subroutine merge0 used in Algorithm 6 is 
shown in Algorithm 2. 

8 Experimental Results 

Reduced offsets have been implemented in ESPRESSO- 
MV. They are used instead of the exact offset for cube ex- 
pansion. The program was run on some industry PLAs and 
multi-valued examples Tom the ESPRESSO bench-mark 
set.. The following table contains some representative ex- 
amples and shows that the quality of the results is unaf- 
fected when reduced offsets are used instead of the exact 
offset. The first column MeledZnitialshows the number of 
product terms initially in the function. The column labeled 
ESPRESSO shows the number of product terms obtained 
when ESPRESSO-MV is used. The last col$mn label@ RO 
shows the number of product terms when s~mplificauon is 
done using the reduced offsets. For these examples, the off- 
sets are not very large and therefore there is no appreciable 
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speed up when reduced offsets are used, 

The comparison was also made for mv-Achilles’ heel 
functions in which each variable Xi is a 3-valued variable. 
The functions have onsets: 

and no don‘t care sets. The results are shown in the table 
below. n is the number of product terms in the mv-Ac.hilles’ 
heel function. C-size is tlie number of cubes in the offset. 
Crime is the CPU time taken bv ESPRESSO to commute the 
offset. Esp is the time taken bi original Espresso-fir to do 
the minimization. RO is the time taken by the reduced offset 
based Espresso&IV to do the minimization. All times are 
in seconds on a VAX 880@ The size of @e reduced offset 
for each cube in each Achdles’ heel funchon was 3 product 
tHNlS. 

In addition, we encountered an industrial PLA e.xampZe 
which could not be simplified with Espresso-MV even after 
50 hours of CPU time on a VAX 88 
based Espresso&IV minimized the PO 

The reduced offset 
u&tion in 78 1.70 sec- 

onds, of which only 112.75 seconds were spent for reduced 
offset related computations. The function had 198 inputs, 
237 outputs and 749 product terms. The minimized PLA 
had 469 product terms. This is 37% reduction in area. 

9 Conclusion 
In this paper, we presented an alternative to computing 
the offset while minimizing two-level mv-functions. This 
is particularly useful for functions which have such large 
offsets that their computation requires unreasonably large 
amounts of CPU time and memory. Such functions oeca- 
sionally occur as reztl world PLAs but we feel they may 
becomk more common 

8 
multi-valued minimization finds 

more auolications in m u-level outimization. Such aouli- 
cations’fiave already begun to app&r [5,7]. 1 x 

The use of mv reduced offsets is recommended for func- 
tions that have reasonable size onsets and don’t care sets 
but very large offsets. However, many functions have rea- 
sonable size offsets as well. For such functions the reduced 

offsets are not recommendrd because computing several re- 
duced offsets instead of a single offset may be more ex- 
pensive. Although the quality of results -will be the same. 
Espresso-MV with reduced offset ought to be viewed as 
a special purpose tool, useful for mv-furctions with large 
offsets. A suggested method for doing mv-minimization 
is to first run the original Espresso-MV with the “-5 op- 
tion . This option shows each step in minimization as it oc- 
curs. If Espresso-MV takes too long to compute the offset 
or runs out of memory while computing the offset, then the 
Espresso&IV with the reduced offset should be used. Also, 
in applications where extreme robustness is desired, the use 
of reduced offset can be recommended. 
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