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Abstract

The approaches to two-level logic minimization can be
classified into two groups: those that use tautology for ex-
pansion of cubes and those that use the offset. Tautology
based schemes are generally slower and often give some-
what inferior results, because of a limited global picture of
the way in which the cube can be expanded. If the offset
is used, usually the expansion can be done quickly and in a
more global way because it is easier to see effective direc-
tions of expansion. The problem with this approach is that
there are many functions that have a reasonable size onset
and don’tcare set but the offset is unreasonably large. It was
recently shown that for the minimization of such Boolean
functions, a new approach using reduced offsets, provides
the same global picture and can be computed much faster.
In this paper we extend reduced offsets to logic functions
with multi-valued inputs.

1 Introduction

A two-level logic minimization problem is generally posed
as the minimization of a logic function given a sum-of-
products cover of the onset and a representation of the don’t
care set. The objective of minimization is primarily to de-
crease the total number of cubes (product terms) and secon-
darily the total number of literals in the cover. A logic func-
tion can be a function of binary variables or multi-valued
variables. The latter is called a mv-function for simplic-
%Xpe‘}% are primarily concerned with mv-functions in this

In minimizing a two-level function, the number of literals
in each cube is reduced (expansion), either to obtain a cube
with the minimum possible literals or a cube that contains
as many other cubes in the cover as possible. The expanded

cube is then added to the cover and those cubes contained in
the expanded cube are removed. Expansion can be done in

twoways. Let g be the union of the onset and don’t care set.
The expansion for a cube is valid if and only if the expanded
cube is covered by g. The first method uses tautology; the
test if an expanded cube is covered by g is converted to a
tautology test. This method is used by PRESTO [2]. Test-
ing if a function is a tautology takes exponential time in the
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worst case. Also, several tautology tests may be necessary
for each cube. As a result, this method is usually slow.

The other method uses the fact that if the expanded cube
does not intersect the offset 7 then it is covered by ¢g. Al-
though, the computation of the offset is also expensive in
the worst case, this needs to be done only once for the en-
tire minimization. Further, using the offset gives a more
global picture of the expansion space. Using the offset, itis
easy to find the literals that can be removed without affect-
ing any other literals, or the literals that must be retained in
any expanded cube. The offset is used by ESPRESSO [1]
and MINI [4].

The problem with using the offset is that there are mv-

functions which have reasonable size onsets and don’t care
sets but whose offsets are unreasonably large. One such ex-

ample can be formed from the binary-valued Achilles’ heel
function by converting each input variable toa mv-variable.
A mv-Achilles’ heel function with n cubes is shown below:

fo= xUBxBxon Ly x {13y {02 yion
1,2 0,2
+oee 4 X502 x{02) yion

3n-1

where each variable is a 3-valued variable. The don’t care
set for this function is d = @. It can be shown that the min-
imum representation for the offset function has 3™ cubes.
Reduced offsets were found to be very effective for min-
imization of binary valued functions with large offsets [6].
The development of the theorey of reduced offsets was mo-
tivated by applications to the multi-level logic minimiza-
tion problem where two-level binray-valued functions with
large offsets are encountered. Minimization of two-level
mv-functions is important for several reasons. Binary-
valued functions are a special case of mv-functions. There-
fore, the study of multi-valued minimization provides a
broader picture of binary-valued minimization. The prob-
lem of minimizing a multiple outputbinary-valued function

can be treated as that of multi-valued minimization where
all the outputs are considered as a single multi-valued vari-

able [9]. This approach is used by ESPRESSO-MV [1, 8].

Two-level mv-minimization has been found useful for the
optimal encoding of states of a Finitc State Machine [3].

More recently, applications in the mv multi-level domain
have appeared [5, 7].

The importance of mv-minimization in logic synthesis
and the deficiency of offset-based approach in minimizing
mv-functions with large offsets provides the motivation for
extension of the theory of reduced offset to the mv domain.
The minimum representation of the reduced offset is never
larger than that of the offset; yet it can be used in the same
way as the offset during cube expansion. Consequently, the
quality of minimization is maintained. Efficient algorithms
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for computing the reduced offset have been dcveloped. The
key ingredient in the algorithms is that the offset of the mv-
function is never computed.

In section 2 we present some definitions. In Section 3
we define the reduction operator for mv-functions. In sec-
tion 4, a unate recursive algorithm is given for computing
the reduced offset for mv-functions. Finally in sections 5
and 6, efficient algorithm for computing the overexpanded
cube is presented and it is applied to obtain an efficient algo-
rithm for computing the reduced offset. In Section 8 some
experimental results are given and in section 9 states some
conclusions are stated.

2 Definitions and Terminology

In this section we provide the basic definitions and notations
related to mv-functions to be used in this paper. They are
similar to those used by Sasao [9] and in [1, 8].

A mv-function with n variables is defined as a mapping

flP}XPzX-“XPn—PB

where P; = {0, 1,..., p; — 1} and p; is the number of val-
ues that the i** variable may take on. B = {0,1,}. The

elements in the domain of the function are called minterms.
The domain is partitioned into the onset, oftsetand the don’t

care set. The set of all minterms thatmap to 0, 1, » are called
the offset, onset and the don’t care set respectively. Any
gxixiterm in the don’t care set is allowed to have a value 0

r 1.
Let X1, X3, ..., X, be the n variables of the function. A
product term of the function is defined as

X151 X5, X, 5

where S; C P; for 1 < ¢ < n. The product term is said to
contain all minterms in S; X S2 X «-+ X Sy,.

X5t is called a literal. If S; = P; then the literal is
called a full literal. If a variable does not appear in a cube,
itis considered to have a full literal and the cube is said not
todepend on the variable. If S; = @ then the literal is called
an empty literal. If a cube has an empty literal, the cube is
called a null cube because it does not contain any minterms.
Aliteral X;%" is said to be orthogonal to another literal X ;7
if S; N T; = O, If two literals of the same variable are not
orthogonal, they intersect.

Let G = X151 x,5... X, 5»
and H = Xi7' X" .. X, T be two cubes. G contains
H (writtenas H C G)lfT CS;forl<i<n. IfG con-
tains A then cube G contains all minterms of cube H. If
cube G contains all minterms of cube H and cube H is not
anullcube then H C G. However, if cube H is a null cube
then it is possible that for some ¢ between 1 and n, T < Ss.
In that case, H ¢ G. The complement of G is obtained by
De Morgan Law and is shown below

G=X51 4+ X5 4... 4 X5~
where -S—,‘ = P,' — 5
The product or intersection of G and H is given by
X Sﬂ”lT[X SNT2 X SnnTu

If the product is a null cube then H and G are orthogonal.
Otherwise, they intersect.

Let cp, €1, -+ +, c;—1 be product terms in the domain of a
completely specified mv-function f such that 3" ¢; = 1
(i.e tautology) and cjc, = @ for j # k. Then

-1
F=_cife;

=0

This decomposition is known as the generalized Shannon
expansion.

A sum-of-products form is weakly-unate in variable X
if there exists a j € P; such that for every cube in the cover,
the literal corresponding to variable X is either a full literal
or it does not contain value j. A sum-of-products is weakly
unate if it is weakly unate in all variables,

A completely specified mv-function f is strongly unate
in variable X; if the elements of P; can be totally ordered
(=) such that changing the value of variable X; from value
J to some value k with j < k, causes the function value to
change from O to 1 if it changcs atall. If f is strongly unate
in all of its variables then f is a strongly unate function.

If f is strongly unate in X; then it is also weakly unate
in X; but the converse is not true.

3 Reduction operator R, and Re-
duced Offset

To facilitate the computation of the reduced offset, the no-
tion of the reduction operator is introduced.

Definition 3.1 Let g be a sum-of-products and p be a cube.
Ry(g) removes every literal from g which is not orthogonal
to some literal in p. R, is called the reduction operator.

Definition 3.2 If g is the offset of afunction and pis a cube,
then Ry(g) is the reduced offset of g for p.

The removal of the literals mentioned in Definition 3.1
amounts to converting them to full literals which has the ef-

fect of enlarging cubes containing them. The larger cubes
usually subsume smaller cubes which can then be dropped.
This is why the minimum representation of the reduced off-
setis never larger than that of the offset. In fact, it is usually
much smaller.

Definition 3.3 Let p and ¢ be two cubes. |Ry(c)| is the
number of (non-full) literals in R p(c).

The usefulness of the offset r in expanding a cube p stems
from the fact that it is very easy to check whether a given
expansion p' of pis valid. The test is based on the fact that p’
is a valid expansion if and only if p’ is orthogonal to ». The
ease in testing for orthogonality is due to the use of a sum-
of-products representation for r. The reduced offset can be
used for expansion of cubes in the same way as the offset
because it is also provided in the sum-of-products form and
the following theorem holds:

Theorem 3.1 Let ¥ = (f,d,r) be an incompletely spec-
ified mv-function. Let p be a cube and r, be the reduced
offset for it. Let p’ be a non-null cube such thatp C p'.
Then p' is orthogonal to r iff it is orthogonal tor .
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4 Unate Recursive Algorithm for the
Reduced Offset for a Cube

The reduced offset as defined earlier is produced by the re-
duction operator acting on the offset. However, this defini-
tion is not useful to compute the reduced offset because it
requires knowing the offset. The algorithm presented here
does not require computation of the offset. The algorithm
for computing the reduced offset given here is based on the
unate recursive paradigm.

The unate recursive paradigm has been used successfully
for several logic operations including complementation of
a function [1, 8). Unate sums-of-products have many nice
properties that make operating on them easier than on non-
unate sums-of-products. In a unate recursive paradigm, a
non-unate cover or sum-of-products is broken down into
its unate cofactors using the generalized Shannon expan-
sion recursively. The operation is then applied to the unate
cofactors rather than the original sum-of-products and the
results are merged together. Obtaining the Shannon expan-
sion takes exponential time in the worst case. Therefore
the worst case time complexity of the algorithms based on
Unate Recursive Paradigm is exponential in the number
of variables. However, the experience with ESPRESSO
shows that such algorithms work well in practice.

There are two notions of unateness for mv-functions:
strongly unate and weakly unate. In this secton, the defi-

nition for strongly unate sum-of-products will be pr&.ented
first. Following that, a unate recursive algorithm for the re-
duced offset will be developed. The algorithm will use the
strongly unate sums-of-products.

Definition 4.1 Let U be a sum-of-products and X, be a
variable inU. Let Wi, = {S C Pi|X}{ is aliteralin U'}.
If the elements of Wy can be completely ordered via C then
U is strongly unate in Xi. If U is strongly unate in every
variable then U is a strongly unate sum-of-products.

The following theorems facilitate getting strongly unate
sum-of-products representation for strongly unate func-
tions.

Theorem 4.1 Let U be a strongly unate sum-of-products.
Then U represents a strongly unate function.

Theorem 4.2 Let g be a sum-of-products representation
jor a strongly unate function. Then there exists a strongly
unate sum-of-producis U that represents the same function.
Also, U can be obtained from g.

4.1 Recursive Shannon Cofactoring

Let p be a cube and F = (f,d,r) be a function. Let the
reduced offset for p be denoted by r,. By definition r, =
R,(7) where g = f U d. From the generalized Shannon
expansion defined in section 2,

g=Lg. + Rgp
where L = X7, R = X7+, X; is a non-strongly unate
variableing, ;U S, = P;sothat L+ R = 1l,and S; N

S, = 0. The complementation and cofactoring operations
commute. Hence,

7= Lgr+ Rgr
Applying the reduction operator on both sides of the equa-
tion, we get

rp = Rp(9) = Rp(LFL) + Rp(RYR)
To proceed further, the following theorem is required.
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Theorem 4.3 Let g be a sum-of-products and ¢ be a cube.
Then Ry(c3e) = Rp(c)Ry(T2).
Therefore,
p = Rp(?) = Rp(L)R,(7z) + Ry(R)R,(7E)
If either g or g1 is not a strongly unate sum-of-products,
Ry(71) or Ry(gr) can be obtained by the recursive appli-
cation of the above equation.

During recursive application of the above equation, g is
not f U d after the first time it is cofactored. Instead, it is
the result of cofactoring f U d with respect to some cube c.
If L and R are single literal cubes of variable X; and c has
aliteral M = X7~ then it is not necessary that L + R = 1.
Allghat is required is that L + R = M. This is explained
in [8].

If gr or g1 is strongly unate, it is possible to obtain
R,(gr) or Ry(g;) as described below:

4.2 Applying the Reduction Operator to
Strongly Unate Sums-of-Products

Theorem 4.4 states how R,(U) can be computed for a
strongly unate sum-of-products U , without first computing

Theorem 4.4 Let U be a strongly unate sum-of-products
and p be a cube. Let V be obtained from U by removing
those cubes that don't contain p. Then

R,T)=V

Theorem 4.4 will not hold if U is not a strongly unate
sum-of-products even if it represents a strongly unate func-
tion. It will also not hold if U is weakly but not strongly
unate. This affirms the need to obtain strongly-unate sums-
of-products for application of Theorem 4.4.

4.3 Merging

It was mentioned above that R,(g) can be obtained by
the following equation if g is not a strongly unate sum-of-
products:

Rp(§) = Rp(L)Rp(9L) + Rp(R)Ry(7R)

where L = X' and R = Xr for some non-strongly unate
variable X;.

Once R,(gz) and R, (gr) are obtained, R,(g) can be ob-
tained by the above equation. If there are n cubes in R,(gT)
and m in R,(gx) then this simple approach will give B,(g)
with n + m cubes. However, it may be possible to combine
some cubes in R,(L)R,(gT) with some in R(R)R,(7%)
to obtain a smaller representation for R,(g). The basic idea
is as follows:

1. Suppose Ry(L) = 1. Then Ry(L)Ry(T1) = Ry(7y)-
Let ¢ be a cube in R,( R)R,(7x). Then it is possible
that ¢ is contained within some cube in R,(L) R, (7).
In that case, ¢ can be dropped. In fact, ¢ can be
dropped even if it is contained in Ry(L)R,(g) but
not necessarily in a single cube in R,(L)R,(g;)-
However, testing for containment in Rp(L) R, (7 ) is
usually very expensive and is therefore not done. Sim-
ilarly, cubes can be dropped from R,(g, ) if Rp(R) =
1.



Algorithm 1
ek
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Input: A cofactor h of g = f U d and a mv-cube p.
Output: R,(h).

computerosl(h, p) {

If (h is a strongly unate sum-of-products) {
ObtainV by removing those cubes from h
that don’t contain p.
Return(V)

} Else {
Choose a non-strongly unate variable X in h.
Let M = X5 bea literalinec.

Choose R= X5" and L = X5' such that
R+L=M.

Obtain cofactors hr and hg.

tr = computerosl(hr, p)

tr = compute_rosl(hr, p)

t = merge(p, X, L, R, 11, 1R)

Return(l)

2. Let ¢y be a cube in R,(L)Ry(Fy) and c; be in
Rp(R)Rp(7g) such that they differ only in variable

X;. Let ¢; have literal X' and c; have literal X3, ¢,

and ¢, can be merged into ¢ with literal X51V5? with
all other literals in c the same as in ¢; or c,.

Subroutine compute_ros1() shown in Algorithm 1 con-
tains pseudo-code for computing the reduced offset. It
makes use of subroutine merge() which is shown in Al-
gorithm 2.

A problem with Algorithm 1 is that every unate cofactor
of g = fUdis used in compute_ros1() which may be very
time consuming if g has a very large number of unate co-
factors. The algorithm can be improved with the use of the
overexpanded cube so that many cofactors need not even
be computed.

5 Overexpanded Cube

The overexpanded cube ¢, of a mv-cube p is the smallest
cube that contains all valid expansions of p. The overex-
panded cube is of interest because it will be used to improve
Algorithm 1. Two algorithms for the overexpanded cube

are well known. One of them uses the offset which is of no
use here. The other uses tautology. A new algorithm was

discovered during the course of this research which is more
effecient than the one based on tautology. The key to this
algorithm is in the relationship between the overexpanded
cube and the reduced offset.

Theorem 5.1 Let p be a non-null my-cube and g, be its
overexpanded cube. Let vy, be the reduced offset for p such
that each variable has at most one single literal cube inrp.
Let r,, be the sum of single literal cubes inrp,. Then

—
qp"rp

Theorem 5.1 reduces the problem of finding the overex-
panded cube to that of identifying the single literal cubes in

Algorithm 2

a0k 3 3 3k 3k 3 3¢ 20 3 A 3 3k 3 2 ok ok e e o 2l ok sk 2 ok 96 3 o o a3k ko o 0k o A o o K ok e o g Kk ok
Input: Cube p, splitting variable X, partitionin

cubes L and R, t; = R,(g.) andtr = Ry(TR).
Output: rp = Ry().

merge(p, X, L, R, 1),13) {

tr = Rp(L)tL

trR=R, R)tr

For each cube q intr {

For each cube q, intg {
if (q1 and q, differ onlyin X ) {

Let X5' and X5 be literals of X in q;
and q, re.gpectively.
Make X5'V5" the literal of X in q; and
remove g, fromtg.

}
}

}

If (Rp(L) =1 . .
Remove every cube from tg that is contained
inacubeinty.

If(R,(R) = 1) _ _
Remove every cube from i, that is contained
inacubeintp.

Return(ty + tg)

the reduced offset. However, the single literal cubes must
be deduced without computing the reduced offset.

To see how the single literal cubes come about in the re-
duced offset, consider Algorithm 1 described in section 4
for the reduced offset. The recursive application of Shan-
non expansion in the algorithm amounts to decomposing
g = [ U d into strongly unate cofactors such that

g= Z C; U i
where U; is a strongly unate sum-of-products which is a
cofactor of g with respect tocube ¢, c;¢; = 0 ifi # jand

Y. ci = 1. It is known from the unate recursive algorithm
for complementation [1, 8] that

=2 al:
For a given mv-cube p, applying the reduction operator R,
on both sides gives

Ry(@) = Y Rolei) Ry(T)
From Theorem 4.4 R,(U;) = V. Therefore
rp = Rp(7) = Z Ry(ci)V;

Itis clear from the above equation that r, has a single lit-

eral cube c if and only if for some i, Rp(c;)V; has the single

wg;,'g! cube ¢. This can happen in one of the following three

1. Rp(ci) = 1 andcispresent in V;.
2. Ry(c;) =candV; = 1.

3. R,(e:;) = a and b is present V; such that ¢, b and ¢ are
all single literal cubes in the same variableand ¢ = a b.
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Input p, overexpanded cube qy so far, cofactor h
zg f Ud, and cofactorin cube ¢ suchthath = g..
utput: Updated overexpanded cube g, for p.

ﬁnd_ocl(p, gp. h, ) {
If (h is a strongly unate sum-of-products) {
ﬁnd_oc_unate(p, ¢, qp, h
} Else { 1* h is not strongly unate */
Choose a non-strongly unate variable X in h.
Form single literal partitioning cubes R and L
of variable

(R, écR)l < 1) findoc(p, q,c R, hr)
If(\Rp(c L)| < 1) find_oc(p,q,cL, hr)

}}

ﬁnd.oc_unaze(p, ¢, q
FormV 5& removmg those cubes that
don't contam P.

If(IRp(c)l = 0) {
For each variable X; {

X 7 = largest single literal cube of X ; in V.
) 9p = qp * XS'
} Else { /* lRp(c)I =1%
X i = Rp(c;)
largest smgle literal cube of X; inV.,
= ‘Ip*(Xj +X}g’)

Using the above conditions to detect single literal cubes
in rp, will require looking at only those cofactors of g for
which R,(¢;) iseither 1 or a single literal cube. Rp(c;) = 1
ifand only if | Rp(c;)| = 0. Rp(c;) is a single literal cube if
and onlyif [Rp(¢;)| = 1. The single literal cube in that case
is Rp(c;). In order to use the above conditions, it is neces-
sary to have an efficient way to test whether V; is a single
literal cube. This test can certainly be made by looking at

V ;. However, the following theorem provides a method to
make this test that does not require complementing V;.

Theorem 5.2 Let V = 1P where

pi = X;U X35 . XS¥. Let S = | JSP. Then X5
i=0

is the largest single literal cube of variable X ; in V.

Subroutine find_oc1() shown in Algorithm 3 computes
the overexpanded cube. It is a recursive algorithm. For the
firstcallto findocl(), g, = l,c=landh=g == fUd.
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Algorithm 4
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Inpwt: g = fUdandamv-cube p C g.

Output The reduced offset v, for p.

find_rosl(g, pj {

ffnd-ocl (P. gp. 9. 1)

If {p= ‘Ip) {
Return(y, ap )

} Else {
Obtain cofactor g,, of g with respect to q,.
Return(compute_rosi(g,,, 1. p))

) }

6 Using the Overexpanded Cube to
find the Reduced Offset

The relation between the overexpanded cube and the re-
duced offset is also the key to speeding up the computation
of the reduced offset. It follows from Theorem 5.1 that

s =qpt+1p

where ¢, consists of cubes which have more than one literal

each.
Any cube c in tp can be dropped if it is contained in gp or

equivalently if it is orthogonal to q,. Therefore £, consists
of cubes in rp, that are not orthogonal to q,. The following
Theorem is helpful in eliminating such cubes.

Theorem 6.1 Let p be a cube, g, be its overexpanded cube,
andry, be the reduced offset for it. Let g = f Ud. Then

rp =0 + Rp(75,)

Once the overexpanded cube ¢, is known, all that is
needed to obtain rp is Bp(g,,). As a result of cofactor-
ing g with respect to ¢, some product terms may drop out
and some literals may become full literals. Consequently,
it is usually much faster to compute R,(g, ) than comput-

ing R,(g). In the special case where the cube p is a prime
cube, the computation of the reduced offset can be greatly
simplified:

Theorem 6.2 Let p be a cube in the onset f of an incom-
pletely specified function F = (f,d, r) and q, be its over-
expanded cube. If p = q, then p is a prime cube and its
reduced offsetrp = 7.

Subroutine find_ros1() shown in Algorithm 4 can now
be used to obtain the reduced offset. find_rosl() makes
use of compute_ros1() in Algorithm 1.

7 Storing the Cofactoring Tree

If the first call to subroutine compute_ros1() in Algorithm
1is made withk = ¢ = f U d, rather than with h = ¢, as
may be done from subroutine find_ros1(), then the process
of recursive Shannon cofactoring will be the same regard-
less to what p is. This is because no information specific to
p is used until unate cofactors are reached. This makes it



Algorithm 5
%ok
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Input: root of the cofactor tree and a mv-cube
pC fud.
Output: The reduced offset r, for p.
ﬁnd.rosZ{root. ) {

q —_
ﬁpnd_OCZ(root, gp, 1, g)
If(p = qp) {
Return(q,)
} Else {
Return(compute_ros2(root, p, qp))

possible to do the recursive Shannon cofactoring only once
and reuse it for computing any reduced offsets. Subrou-
tine find_oc1() shown in Algorithm 3 can be modified in
the same way. Since recursive Shannon cofactoring is only
done once, this results in some saving of CPU time.

A rooted binary tree called the cofactor tree is used to
store the recursive Shannon cofactoring. The root of the
tree corresponds to ¢ = f U d. Each node in the tree corre-
sponds to a cofactor i of ¢ with respect to some cofactoring
cube ¢. Each node has two children. The left child repre-
sents cofactor bz of h with respect to L. Similarly, the right
child represents cofactor hg of h with respect to R. L and
R are single literal cubes in the same variable X such that
if M is the literal of X inc, then L + R = M. The cofac-
toring cubes corresponding to the left and right children are
¢ L and ¢ R respectively, A parameter called level is asso-

ciated with each node. The level of the root node is 1. The
level of any other node is one more than that of its parent. A

parameter maz _level isused to control the size of the tree.
If a node whose level is the max-level is encountered then it
becomes a leaf node, If a node represents a strongly unate
sum-of-products then it becomes a leaf node also. A flag
at each leaf node indicates whether it represents a strongly
unate cofactor.

Subroutine compute_ros1() in Algorithm 1 can now be
modified to use the cofactor tree. It would be necessary, for
the firstcall, that h = g = fud. However, itis still possible
to take advantage of the overexpanded cube to reduce the
amount of computation.

Theorem 7.1 Let h be a cofactor of ¢ = f U d and ¢ be
the cofactoring cube. Let p be a cube such thatp C g and
gp be its overexpanded cube. Let M be the literal of some
variable X in c. Let L and R be single literal cubes in X
suchthat L+ R= M. Then

RP(F'IP) = LRP((mq,) + RRP(-(-}—"}—)-Q,)'

Subroutine find.ros2() shown in Algorithm 5 can now
be used to obtain the reduced offset. find_ros2() makes
use of compute_ros2() which is shown in Algorithm 6.
computeros2() makes use of Theorem 7.1 to cofactor
V' with respect to g, before complementing. The cofac-
toring generally results in converting some literals in V
to full literals. As a result, it usually takes less CPU
time to do the complementation after cofactoring. When
compute_ros2() reaches a leaf node that does not rep-
resent a strongly unate sum-of-products, it switches over

Algorithm 6
03k 5 o 3 ok o6 e ok ke o ok o ok ok 3 3K 3 ok o ok 3k ok o8 o8 o 3k ok ok 3k ok ok ok o ok oK ok ok vk ok ok ok ok

Input: A node n in cofactor tree representing h,
a mv-cube p and its overexpanded cube qy.

Output: Rp(h).

compute_ros2(n, p, gp) {
If(ndleaf = TRUE){

h = n.cofactor

If (n.is_unate = TRUE) &w
Obtain V by removing those cubes from h that
don’t contain p. _
Obtain W by cofactoring V withrespect 10 qp.
Return(\W)

} Else {
Obtain cofactor hy, of h with respect to q,.
compute ros2(hy,, n.cofactor cube, p)

}
} Else {
If (n.L_cube is not orthogonal to qp)
tr = compute_ros2(n.Lchild, p, qp)
Elsetr, =0
If (n.R_cube is not orthogonal to ¢ )
tr = compute_ros2(n.Rchild, p, qp)

Elsetp =0
t= merfe(p, n.variable, L, R, tr,tR)
Return(t)

to compute.rosl(). find_ros2() uses find_oc2() (not
shown) to obtain the overexpanded cube. find_oc2() is
similar to find_ocl() except that it operates on the cofactor
tree and switches to find_oc1() when a leaf node is reached
that represents a cofactor which is not a strongly unate sum-
of-products. Subroutine merge() used in Algorithm 6 is
shown in Algorithm 2.

8 Experimental Results

Reduced offsets have been implemented in ESPRESSO-
MYV. They are used instead of the exact offset for cube ex-
pansion. The program was run on some industry PLAs and
multi-valued examples from the ESPRESSO bench-mark
set. The following table contains some representative ex-
amples and shows that the quality of the results is unaf-

fected when reduced offsets are used instead of the exact
offset. The first column labeled Initial shows the number of
product terms initially in the function. The column labeled

ESPRESSO shows the number of product terms obtained

when ESPRESSO-MY isused. The last column labeled RO
shows the number of product terms when simplification is

done using the reduced offsets. For these examples, the off-
sets are not very large and therefore there is no appreciable
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speed up when reduced offsets are used.

[[Mnigal T ESPRESSO [ RO |
H 135 | 107 107 H
137|136 136

75 T 73
H 234|212 T2
32 T7 T7
108 | 55 55
32 20 20

The comparison was also made for mv-Achilles’ heel
functions in which each variable X; is a 3-valued variable.
The functions have onsets:

f= szl 2} Xg‘o_z}x{o .1}
=1

and no don’t care sets. The results are shown in the table
below. n is the number of product terms in the mv-Achilles’

heel function, C-size is the number of cubes in the offset.

Ctime is the CPU time taken by ESPRESSO to compute the
offset. Esp is the time taken by original Espresso-MV to do
the mirimization. RO is the time taken by the reduced offset
based Espresso-MV to do the minimization. All times are

in seconds on a VAX 8800. The size of the reduced offset
for each cube in each Achilles’ heel function was 3 product
terms.

I n ] C-size
H 2 9
4 51

N 6 729
8 2187

1 -
115 -
20 -
25 -
30 -
35 -
40 -

In addition, we encountered an industrial PLA example
which could not be simplified with Espresso-MYV even after

50 hours of CPUJ time on a VAX 8800, The reduced offset
based Espresso-MV minimized the function in 781,70 sec-

onds, of which only 112.75 seconds were spent for reduced
offset related computations. The function had 198 inputs,
237 outputs and 749 product terms. The minimized PLA
had 469 product terms. This is 37% reduction in area.

9 Conclusion

In this paper, we presented an alternative to computing
the offset while minimizing two-level mv-functions. This
is particularly useful for functions which have such large
offsets that their computation requires unreasonably large
amounts of CPU time and memory. Such functions occa-
sionally occur as real world PLAs but we feel they may

become more common lﬁs multi-valued minimization finds
more applications in multi-level optimization. Such appli-

cations have already begun to appear {5, 7].

. The use of mv reduced offsets is recommended for func-
tions that have reasonable size onsets and don’t care sets
but very large offsets. However, many functions have rea-

sonable size offsets as well. For such functions the reduced
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off'sets are not recommended because computing several re-
duced offsets instead of a single offset may be more ex-
pensive. Although the quality of results will be the same.
Espresso-MV with reduced offset ought to be viewed as
a special purpose tool, useful for mv-functions with large
offsets. A suggested method for doing mv- mlmmlzatxon
is to first run the original Espresso-MV with the ”-t” op-
tion. This option shows each step in minimization as it oc-
curs. If Espresso-MV takes too long to compute the offset
or runs out of memory while computing the offset, then the
Espresso-MV with the reduced offset should be used. Also,
in applications where extreme robustness is desired, the use
of reduced offset can be recommended.
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