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ABSTRACT
In this paper, we derive the X-half-perimeter wirelength
(XHPWL) model for X-architecture placement and explore
the effects of three different wire models on X-architecture
placement, including the Manhattan-half-perimeter wirelength
(MHPWL) model, the XHPWL model, and the X-Steiner
wirelength (XStWL) model. For min-cut partitioning place-
ment, we propose a generalized net-weighting method that
can exactly model the wirelength after partitioning by the
net weight. The net-weighting method is general and can
be incorporated into any wire models such as the XHPWL
and XStWL models. For analytical placement, we smooth
the XHPWL function using log-sum-exp functions to facil-
itate analytical placement. Our study shows that both the
XHPWL model and the XStWL model can reduce the X
wirelength. In particular, our results reveal the effective-
ness of the X architecture on wirelength reduction during
placement and thus the importance of the study on the X-
placement algorithms, which is different from the results
given in the previous work that the X-architecture place-
ment might not improve the X-routing wirelength over the
Manhattan-architecture placement.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids [Placement and
Routing]

General Terms
Algorithms, Performance, Design

Keywords
Physical design, placement, X architecture, min cut, parti-
tioning, net weighting, Steiner tree

1. INTRODUCTION

1.1 The X Architecture
As integrated circuit (IC) geometries keep shrinking, in-

terconnect delay has become the dominant factor in deter-
mining circuit performance. To minimize interconnect de-
lay, the X architecture [26] has been introduced as a new
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Figure 1: Example Steiner trees using (a) Manhattan

routing and (b) X routing.

interconnect architecture for the IC’s to reduce interconnect
length and thus improve circuit performance. The X archi-
tecture allows 45- and 135-degree routes, leading to smaller
wirelength and thus smaller delay and power consumption.
Figures 1(a) and (b) show the Steiner trees based on the tra-
ditional Manhattan and X architectures, respectively. It is
obvious that the wirelength of the X-Steiner tree is smaller
than that of the Manhattan-Steiner tree due to the diagonal
routes.

The traditional Manhattan architecture has its obvious
advantages of easier design, but it incurs significant and
needless wirelength over the Euclidean optimum. As re-
ported in [26], the X architecture results in significantly
shorter average wirelength than the Manhattan architecture.
The X architecture’s pervasive uses of diagonal routing can
reduce wirelength. Further, the wirelength reduction make
the circuit design problem easier to solve, resulting in faster
timing closure.

1.2 Previous work
To fully utilize the X architecture, we need to consider

both X-placement and X-routing algorithms. Some X-routing
algorithms have been proposed in the literature [4,13], and
their results show that the wirelength can be reduced effec-
tively using the X architecture. In contrast, not much work
on X-placement is studied in the literature. In [7], both 45-
and 60-degree wiring metrics were explored, using a simu-
lated annealing based placer with a Steiner wirelength opti-
mization objective. The work was based on some simplified
assumption that all cells are of unit size, and only five pins
and higher-degree nets are considered. Further, the simu-
lated annealing method does not scale well and can handle
the problem sizes of only up to 1500 nets.

Based on the partitioning placement framework, Teig and
Ganley [27] patented 45-/135-degree diagonal cutlines (or X
cutlines) to partition the placement region to favor diagonal
wiring. Very recently, Ono and Madden in [20] conducted
a complete study on the patent and proposed a pioneer-
ing min-cut partitioning based placer for the X architecture.



They found that the X cutlines does not lead to better place-
ment results for the X architecture; the resulting wirelength
by using the X cutlines is even worse than that by using
traditional Manhattan cutlines.

1.3 Our Contribution
In this paper, we derive a new X-half-perimeter wirelength

(XHPWL) model for X-architecture placement. We define
the X bounding box as the smallest bounding box formed
by the 0-/45-/90-/135-degree line segments that enclose all
terminals of a net. The XHPWL is the half of the perimeter
length of the X bounding box. We then incorporate this new
wire model into both min-cut partitioning and analytical
placement algorithms.

For the min-cut partitioning placement, we propose a gen-
eralized net-weighting method that can exactly model the
wirelength after partitioning by the net weight. The net-
weighting method is general and can be incorporated into
any wire models. We apply the XHPWL model and the X-
Steiner wirelength (XStWL) model for X-architecture min-
cut placement based on the net-weighting method. Experi-
mental results show that the total X-Steiner wirelength can
be reduced by 1% and 5% on average for the XHPWL and
the XStWL models, respectively.

For the analytical placement, we first use log-sum-exp
functions to smooth the XHPWL function so that analyti-
cal solvers can minimize XHPWL effectively and efficiently.
Our experimental results show that the analytical placer
incorporated with the XHPWL model can reduce the X-
Steiner wirelength by 3% on average.

It should be noted that our X-architecture min-cut parti-
tioning and analytical placers are the first effective placers
to reduce the X-Steiner wirelength. The work in [20] does
not obtain smaller X-Steiner wirelength, compared with the
traditional Manhattan partitioning placement. As a result,
they concluded that the X-architecture placement does not
lead to smaller X-Steiner wirelength. Based on the new wire
models, in contrast, our min-cut and analytical placers can
effectively obtain smaller X-Steiner wirelength and show the
promise of the X architecture, as it should be.

We also perform X-routing by constructing X-Steiner trees
to explore the effect of our X-placement on the final rout-
ing solutions. Without X-placement, our experimental re-
sults show that X-routing reduces only 8% wirelength, com-
pared with the traditional Manhattan routing. With X-
placement, the X-routing can reduce the wirelength by 11%
and 12% for analytical and min-cut partitioning placement,
respectively. The results reveal the effectiveness of the X
architecture on wirelength reduction during placement and
thus the importance of the study on the X-placement al-
gorithms, which is different from the results given in the
previous work [20] that the X-architecture placement might
not improve the X-routing wirelength over the traditional
Manhattan-architecture placement.

This paper is organized as follows. Section 2 introduces
our new XHPWL model. The XHPWL model is applied to
min-cut partitioning and analytical placement algorithms
in Section 3 and Section 4, respectively. The experimen-
tal results are given in Section 5, and Section 6 gives the
conclusion.

2. X-HALF-PERIMETER WIRELENGTH
(XHPWL) MODEL

Traditional placement for the Manhattan architecture is
based on the minimization of the Manhattan-half-perimeter
wirelength (MHPWL for short, or traditionally called HPWL).
An example Manhattan bounding box of a four-terminal net
is shown in Figure 2(a). The MHPWL is the half of the
perimeter length of the Manhattan bounding box, and the

Figure 2: The Manhattan bounding box and the X

bounding box.

MHPWL of a net e can be computed by the following equa-
tion:

MHPWL(e) = max
vi,vj∈e

|xi − xj | + max
vi,vj∈e

|yi − yj |, (1)

where vi is a terminal of the net, and (xi, yi) is the coordi-
nate of vi.

The MHPWL does not consider the 45-/135-degree routes
of the X architecture. We thus propose a new X-half-perimeter
wirelength (XHPWL) model for the X architecture. We
define the X bounding box as the smallest bounding box
formed by 0-/45-/90-/135-degree line segments. Figure 2(b)
gives an example X bounding box of the four terminals. The
X bounding box has the following properties:

Property 1. The size of the X bounding box is always
smaller than or equal to that of the Manhattan bounding box.

Property 2. Every optimal X-Steiner tree (with the min-
imum wirelength) must be within its X bounding box.

To compute the perimeter length of the X bounding box,
we can use the procedure shown in Figure 3. We first derive
the Manhattan bounding box, then remove the dotted line
segments as shown in Figure 3(b), introduce the oblique line
segments (see Figure 3(c)), and finally form the resulting X
bounding box (see Figure 3(d)). As a result, the XHPWL
of a net e can be computed by the following equation:

XHPWL(e) (2)

= MHPWL − dotted line length in Figure 3(b)

2
+

oblique line length in Figure 3(c)

2

=
�√

2 − 1
��

max
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�
−
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2

2
− 1

��
max

vi,vj∈e
|(xi + yi) − (xj + yj)|+

max
vi,vj∈e

|(xi − yi) − (xj − yj)|
�

,

where vi is a terminal of the net and (xi, yi) is the coordinate
of vi. Based on the triangle inequality, the total length of the
added oblique line segments in Figure 3(c) is always smaller
than that of the removed line segments in Figure 3(b). Thus
we have

XHPWL(e) ≤ MHPWL(e). (3)

In the following sections, we will show how to apply the
XHPWL model to min-cut partitioning and analytical place-
ment.



Figure 3: The procedure of computing the perimeter

length of the X bounding box.

3. X-ARCHITECTURE MIN-CUT
PARTITIONING PLACEMENT

Min-cut partitioning placement is usually based on recur-
sive bisection [2,9,21] or quadrisection [25]. In the following,
we first introduce the min-cut partitioning placement frame-
work, and then propose a generalized net-weighting method
for min-cut partitioning to incorporate the XHPWL model
and the X-Steiner wirelength (XStWL) model into the min-
cut partitioning placement algorithm.

3.1 Min-Cut Partitioning Placement
Framework

Partitioning placement recursively divides a placement re-
gion into several subregions, cut a netlist into sub-netlists,
and assign the sub-netlists into regions. Min-cut placers par-
tition the netlist based on the KL [17] or FM [12] heuristic,
or some other extensions [3,16].

Traditional Manhattan partitioning placers partition the
placement region either vertically or horizontally to mini-
mize the total wirelength. Through the min-cut partition-
ing, the partitioning placer minimizes the cut size of each
cutline, and the total wirelength is minimized indirectly.
(See Figure 4(a) for the traditional Manhattan cutlines.)

For the X-architecture placement, Teig and Ganley pro-
posed X cutlines, 45-degree and 135-degree cutlines, to min-
imize the total X-Steiner wirelength [27]. (See Figure 4(b)
for the X cutlines.) However, the study in [20] shows that
using only X cutlines or combining X cutlines with Man-
hattan cutlines for min-cut partitioning placement cannot
obtain shorter X-Steiner wirelengths.

3.2 Terminal Propagation and Weighted
Net-Cut

In addition to the cutline selection, another important
technique used in partitioning placers is “terminal propa-
gation.” When a certain placement region is divided into
multiple subregions, some of the cells may be strongly con-
nected to other cells (terminals) outside the region. These
terminals might significantly affect the wirelength. To con-
sider the connection to the cells in other subregions, a pos-
sible remedy is to propagate the terminal into the nearest

Figure 4: The Manhattan and X cutlines.

subregion and create a fixed node with a zero area in the
partitioning graph [18].

Selvakkumaran and Karypis first observed the inaccuracy
of the traditional terminal propagation by using the same
strength for all terminals to guide the partitioning [23, 24].
To fix the problem, they classified several cases according
to the terminal positions and correlate the net weights to
the wirelengths after partitioning. The weighted net-cut
objective for min-cut partitioning is more accurate for MH-
PWL minimization. Recently, Chen et al. proposed a uni-
fied method to assign net weights to minimize MHPWL [8],
and Roy et al. extended the method in [8] to minimize
the Manhattan-Steiner wirelength for min-cut partitioning
placement [22]. All the aforementioned net-weighting meth-
ods focus on minimizing the Manhattan wirelength. To min-
imize the wirelength for the X architecture, we propose a
generalized net-weighting method, which can be incorpo-
rated into any wire models.

3.3 Generalized Net Weighting
We give our generalized net weighting as follows. A circuit

is modeled as a hypergraph. Each node in the hypergraph
corresponds to a cell inside the region, with the node weight
being set to the area of the corresponding cell. A two- or
multi-terminal net corresponds to one or two hyperedges.
The hyperedge weight is set to the value of the wirelength
contribution if the hyperedge is cut.

We consider a region to be divided into subregions 1 and
2. Let c1 and c2 be the centers of the two subregions. A net
has multiple terminals {v1, v2, ..., vm, t1, t2, ..., tn}, where
v1, v2, ..., vm are connected to the movable cells inside the
region and t1, t2, ..., tn are fixed terminals outside the region.
Let w1 be the wirelength when all cells are in subregion 1,
w2 be the wirelength when all cells are in subregion 2, and
w12 be the wirelength when cells are in both subregions. We
assume that all cells are placed at the center of the assigned
region. See Figure 5 for an illustration of a net with three
terminals. We have

w1 = wirelength({c1, t1, t2, ..., tn}), (4)

w2 = wirelength({c2, t1, t2, ..., tn}), and (5)

w12 = wirelength({c1, c2, t1, t2, ..., tn}), (6)

where wirelength({p1, p2, ..., pn}) is the wirelength of the
point set {p1, p2, ..., pn} based on the given wire model.

We create a hypergraph G which has two fixed pseudo
nodes to represent the two subregions and movable nodes
to represent the movable cells. For a net, we introduce two
hyperedges e1 and e2: e1 connects all movable nodes and
the fixed pseudo node corresponding to the subregion that
results in a smaller wirelength; e2 connects between all mov-
able nodes. We then assign the weight of the hyperedges as

weight(e1) = |w2 − w1|, (7)

weight(e2) = w12 − max(w1, w2). (8)



If the net has only one movable cell, we do not need to add
e2 since it is impossible to obtain the case with cells in both
regions. w12 is usually larger or equal to max(w1, w2) since
separating cells into both regions often results in a larger
wirelength. However, if w12 < max(w1, w2), we may make
weight(e2) = 0 to avoid negative edge weights for which
some hypergraph partitioners cannot handle.

Partitioning the resulting hypergraph gives the partition
to which the cell belongs. Let ncut be the cut size of the
corresponding hyperedge. We have the following theorem:

Theorem 1. With the generalized net weighting, the wire-
length is given by min(w1, w2) + ncut for a single net.

Proof. There are three possible partitioning results for a
single net: (1) all nodes connected to the net are in the parti-
tion corresponding to the subregion resulting in the smallest
wirelength (i.e. min(w1, w2)), (2) all nodes connected to the
net are in the other partition, and (3) nodes connected to
the net are in the two different partitions. Without loss
of generality, we use Figures 5(d), (e), and (f) to represent
the respective cases (1), (2), and (3), and the three par-
titioning results correspond to the configurations shown in
Figures 5(a), (b), and (c), respectively.

For easier explanation, we consider a 3-terminal net with
one fixed terminal and two movable cells. (Note that the
following claims still hold for other cases.) We compute the
three wirelength values, w1, w2, and w12, according to the
aforementioned equations. In this case, we assume w1 < w2,
so e1 connects the fixed node corresponding to subregion 1.
In Figure 5(a), the two cells are at the left side, and the
resulting wirelength is w1. w2 gives the wirelength when
the two cells are both at the other side (i.e., the right side
for the example shown in Figure 5(b)). Similarly, w12 gives
the wirelength when the two cells are at different sides (see
Figure 5(c)). For the case of Figure 5(d), no hyperedge in the
resulting hypergraph is cut. Therefore, its cut size ncut = 0.
In Figure 5(e), e1 is cut, and the cut size is given by ncut =
weight(e1) = |w2 − w1| = w2 − w1. In Figure 5(f), both e1

and e2 are cut, and thus the cut size ncut = weight(e1) +
weight(e2) = (w12 −w2)+ (w2−w1) = w12 −w1. For all the
three cases, we conclude that the corresponding wirelength
is given by min(w1, w2) + ncut (w1 + 0, w1 + (w2 −w1), and
w1+(w12−w1) for the three cases, respectively). The claims
are similar for the cases with different terminal numbers.

Further, we have the following theorem:

Theorem 2. The generalized net weight exactly maps the
wirelength (based on the given wire model) to the min-cut
cost.

Proof. Let wirelengthi be the wirelength of net i, w1,i

(w2,i) be the wirelength of net i when its cells are all at the
side closer to subregion 1 (2), and ncut,i be the cut size of
net i. By Theorem 1, we have

min
��

wirelengthi

�
= min

��
(min(w1,i, w2,i) + ncut,i)

�
=

�
min(w1,i, w2,i) + min

��
ncut,i

�
. (9)

Since
�

min(w1,i, w2,i) is a constant, minimizing the wire-
length of a net is equivalent to minimizing the cut size of the
net, as long as the wire model and the external terminals are
given. Therefore, the generalized net weight exactly maps
the wirelength to the min-cut cost.

All cells are at the right subregion.
wirelength( {c2, t1} ) = w2.

Cells are at the both subregions. 
wirelength( {c1, c2, t1} ) = w12.

All cells are at the left subregion.
wirelength( {c1, t1} ) = w1.

ncut = 0

ncut = weight(e1)
= |w2 – w1| = w2 – w1

ncut = weight(e1) + weight(e2)
= |w2 – w1| + (w12 – max(w1, w2))
= w12 – min(w1, w2) = w12 – w1

e1 e2

e2
e1

e1

e2

t1

t1

t1

c2

c2

Fixed terminal
Movable cell Movable node

Fixed pseudo node
Region center Partition

c1

c2c1

c2c1

Figure 5: An example of determining a net weight. (a),

(b), and (c) are three possible partitioning results. (d),

(e), and (f) are corresponding partitioning hypergraphs.

3.4 X-Steiner Wirelength Minimization
Unlike the method of using X cutlines to minimize the

total X-Steiner wirelength, we seek for more accurate wire
models to propagate terminals and assign net weights. There
are two models that can be used in the generalized net-
weighting method to minimize the total X-Steiner wirelength
for min-cut partitioning placement:

1. the XHPWL model and

2. the X-Steiner wirelength (XStWL) model.

For the XHPWL model, we can use Equation 2 as the
wirelength function to evaluate w1, w2, and w12 for each net
and assign net weights according to the method described
in Section 3.3. For the XStWL model, we need to con-
struct X-Steiner trees to evaluate w1, w2, and w12 for each
net. Due to the Steiner-tree construction, using the XStWL
model will take more running time than using the XHPWL
one. However, the XStWL model is more accurate than the
XHPWL model, so we can expect that the placement using
XStWL will result in smaller X wirelengths than using XH-
PWL. The experimental results to be presented in Section 5
confirm this observation.

4. X-ARCHITECTURE ANALYTICAL
PLACEMENT

In this section, we introduce the analytical placement
framework and explain the method for incorporating the
XHPWL model into the analytical placement. Then, we de-
tail the difference between using the XHPWL model and the
MHPWL one.



4.1 Analytical Placement Framework
We apply the force-directed technique for the analytical

placement. The interconnection between cells provides wire
forces to pull cells together and minimize the total wire-
length. Considering the wire forces alone, however, can-
not always obtain legal placement due to large amounts of
overlaps. Consequently, we need to add spreading forces to
remove the overlaps between cells.

The analytical placement is usually solved in an iterative
fashion. The placement process minimizes the total wire-
length and gradually adds more spreading forces until cells
evenly spread to the whole chip.

A smoothed wirelength function is necessary to effectively
optimize the wirelength using analytical solvers. Based on
the traditional Manhattan placement, several smooth MH-
PWL approximation functions are proposed, such as the
quadratic wirelength [11,18], the Lp-norm wirelength [6,15],
and the log-sum-exp (LSE) wirelength [5, 10, 14, 19]. The
LSE wirelength function for MHPWL,

MHPWL-LSE(e) = (10)

γ
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log
�
vi∈e
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,

proposed in [19], achieves the best results among the three
smooth MHPWL functions [6]. When γ is small, the MHPWL-
LSE wirelength is close to the MHPWL [19].

For X-architecture analytical placement, we need to mini-
mize the total X wirelength, instead of the total Manhattan
wirelength. Thus we shall change the wire model from MH-
PWL to XHPWL.

4.2 Smoothing the XHPWL Function
To facilitate XHPWL optimization, we use log-sum-exp

(LSE) functions to smooth the XHPWL function in Equa-
tion 2. The smoothed XHPWL function is shown in the
following:

XHPWL-LSE(e) = (11)
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This function has similar property to the MHPWL-LSE
function: when γ is sufficiently small, the XHPWL-LSE
wirelength is close to the XHPWL.

Comparing the HPWL-LSE function and the XHPWL-
LSE function, the XHPWL-LSE function needs to compute

four more terms, log
�

exp
�

xi+yi
γ
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, log
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exp
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−xi−yi
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,

log
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, and log
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�
. This is the

main reason why the placement using the XHPWL-LSE

function takes more running time than that using the MHPWL-
LSE one. However, since the wire-force evaluation is only
a small part of the analytical placement process, the total
runtime overhead is typically not too much. In Section 5.3,
we will show that XHPWL-LSE incurs only 12% more CPU
time on average.

4.3 Wire Forces of the XHPWL Model
The wire-force direction is given by the gradient direction

of the wirelength function. Thus, for a terminal vj of a net
e at the coordinate (xj , yj), its gradient along the x- and
y-directions can be computed by the following equations:

∂XHPWL-LSE(e)
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= (12)
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and

∂XHPWL-LSE(e)
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The wire forces are along the gradient directions toward the
interior of the bounding box.

To illustrate the different effects of using the MHPWL
and the XHPWL models, we use the following simple ex-
ample. Considering four terminals, A, B, C, and D, of a
net in Figure 6(a), the Manhattan bounding box is shown
in the dashed lines. The wire forces using the MHPWL-LSE
function are shown using arrows. It should be noted that
the terminal B does not have any wire force since moving
the terminal B cannot reduce the size of the Manhattan
bounding box.

Using the XHPWL-LSE function, we have the bounding
box and the wire forces shown in Figure 6(b). Compared
with Figure 6(a), the terminal B does have a non-zero wire
force, and the wire-force directions of the terminals C and
D also change due to the XHPWL-LSE function. This is
the reason why the XHPWL-LSE function can effectively



reduce the size of the X bounding box and obtain smaller
total X wirelengths for the X-architecture placement.

Figure 6: The wire-force directions of different bounding

boxes.

5. EXPERIMENTAL RESULTS
We applied different wire models for both min-cut par-

titioning [9] and analytical placers [10]. For the min-cut
partitioning placer, we have three wire models, MHPWL,
XHPWL, and XStWL. For the analytical placer, we have
two wire models, MHPWL and XHPWL. We do not use
the XStWL model for analytical placement since there ex-
ists no publicly available method to minimize the X-Steiner
wirelength currently. All experiments were performed on
an AMD Opteron 2.6GHz machine. For both the min-cut
partitioning and the analytical placers, they consist of three
major stages: (1) global placement, (2) legalization, and
(3) detailed placement. Our main purpose is to compare
the effects of using the wire models. Therefore, we keep
the global placement and the legalization stages, and dis-
able the detailed placement for fair comparisons since the
detailed placement is based on the MHPWL model.

The benchmarks we used, “IBM version 2.0”, are the same
as those used in [20]. There are totally 8 circuits in this
benchmark suite which is widely used in academia [1].

5.1 Comparisons with Traditional Placers
We first show that our placers are comparable to other

recent academic placement tools, including Feng Shui 5.1 [2],
Capo 10.2 [21], APlace 2.0 [15], and mPL6 [5]. Table 1 shows
the Manhattan-half-perimeter wirelengths (MHPWLs) for
all placers. In this table, we also report the MHPWLs of
our placers using different placement algorithms and wire
models. The results show that our placers are comparable
to other recent placers. Note that it is reasonable that the
MHPWL’s for our placers increase by using the XHPWL
and XStWL models since the objective functions of XHPWL
and XStWL do not optimize the MHPWL’s directly.

5.2 Total Steiner Wirelength Comparisons
We use the total Steiner wirelength to evaluate the quality

of the placement. Compared with the half-perimeter wire-
length, the Steiner wirelength is much closer to the routed
wirelength. The results are shown in Table 2. The left
part reports the total Manhattan-Steiner wirelengths while
the right part reports the total X-Steiner ones. The aver-
age values are normalized to the respective placement al-
gorithms using the MHPWL model. We observe that the
average total Manhattan-Steiner wirelengths do not change
much when different wire models are used. For the total X-
Steiner wirelength, to show the effect of different wire mod-
els, we depict the normalized X-Steiner wirelengths for the
min-cut partitioning placers and analytical placers in Fig-
ure 7. Compared with the MHPWL model, the X-Steiner

Figure 7: Normalized Total X-Steiner Wirelengths

wirelengths are reduced by 1% and 5% for min-cut parti-
tioning placement using the XHPWL model and the XStWL
model, respectively. For analytical placement, the X-Steiner
wirelength is reduced by 3% on average, compared with the
MHPWL model. Figure 8 shows the resulting placement of
ibm01 using our analytical placer with the XHPWL model.

5.3 CPU Time Comparison
Table 3 gives the total CPU times for different algorithms

and wire models. Since it needs more computation efforts
for the XHPWL model than the MHPWL model, the XH-
PWL model incurs average runtime overheads of about 8%
and 15% for min-cut partitioning and analytical algorithms,
respectively. The average runtime overhead for the XStWL
model is the highest, 22%, due to the Steiner-tree construc-
tion.

Figure 8: The resulting placement of ibm01 using our

analytical placer with the XHPWL model.



Table 1: The resulting Manhattan-half-perimeter wirelengths (MHPWLs) from different placement algorithms and

wire models. The results show that our placer is comparable to other recent works. Our placer has both min-cut

partitioning and analytical modes. Three wire models (MHPWL, XHPWL, and XStWL) for our min-cut partitioning

placer and two wire models (MHPWL and XHPWL) for our analytical placers are available. The average values are

normalized to our results using the same placement algorithm with the MHPWL model. Note that it is reasonable

that the MHPWLs for our placers increase by using the XHPWL and XStWL models since the objective functions of

XHPWL and XStWL do not optimize the MHPWLs directly.
Total Manhattan Half-Perimeter Wirelength (MHPWL) (× e8)

Algorithm Min-Cut Partitioning Analytical
Placer Ours Feng Shui 5.1 Capo 10.2 Ours APlace 2.0 mPL6

Wire Model MHPWL XHPWL XStWL MHPWL MHPWL MHPWL XHPWL MHPWL MHPWL
ibm01 0.52 0.55 0.57 0.54 0.55 0.50 0.52 0.48 0.49
ibm02 1.54 1.58 1.65 1.54 1.50 1.38 1.39 1.34 1.44
ibm07 3.48 3.56 3.66 3.28 3.48 3.11 3.32 3.08 3.04
ibm08 3.68 3.78 3.94 3.75 3.78 3.36 3.42 3.26 3.31
ibm09 3.18 3.21 3.30 3.14 3.13 2.79 2.86 2.79 2.80
ibm10 6.06 6.20 6.34 5.77 5.93 5.34 5.58 5.18 5.28
ibm11 4.67 4.83 4.96 4.73 4.64 4.18 4.33 4.25 4.22
ibm12 8.07 8.24 8.56 7.78 7.99 7.14 7.32 7.15 7.05

Average 1.00 1.03 1.06 0.99 1.00 1.00 1.03 0.99 1.00

Table 2: Comparison of the resulting total Manhattan-Steiner wirelengths and total X-Steiner wirelengths based

on different placement algorithms and different wire models. The average values are normalized to the respective

placement algorithms using the MHPWL model.
Total Manhattan-Steiner Wirelength (× e8) Total X-Steiner Wirelength (× e8)

Algorithm Min-Cut Partitioning Analytical Min-Cut Partitioning Analytical
Wire Model MHPWL XHPWL XStWL MHPWL XHPWL MHPWL XHPWL XStWL MHPWL XHPWL

ibm01 0.62 0.62 0.62 0.57 0.58 0.57 0.57 0.55 0.53 0.52
ibm02 1.81 1.84 1.80 1.61 1.59 1.68 1.68 1.60 1.50 1.45
ibm07 3.89 3.95 3.88 3.66 3.76 3.60 3.56 3.42 3.35 3.32
ibm08 4.35 4.41 4.31 3.99 3.99 4.02 3.98 3.81 3.66 3.57
ibm09 3.61 3.63 3.53 3.25 3.29 3.32 3.28 3.12 2.98 2.90
ibm10 6.80 6.92 6.77 6.29 6.23 6.27 6.24 5.97 5.81 5.55
ibm11 5.12 5.26 5.18 4.74 4.74 4.72 4.71 4.52 4.32 4.16
ibm12 9.06 9.19 9.09 8.48 8.49 8.35 8.25 7.98 7.78 7.50

Average 1.00 1.01 1.00 1.00 1.01 1.00 0.99 0.95 1.00 0.97

Table 3: Comparison of the CPU times for different placement algorithms and wire models. The average values are

normalized to the respective placement algorithms using the MHPWL model.
Total CPU Time (sec)

Algorithm Min-Cut Partitioning Analytical
Wire Model MHPWL XHPWL XStWL MHPWL XHPWL

ibm01 33 36 41 29 46
ibm02 65 81 98 81 84
ibm07 200 206 244 350 380
ibm08 239 254 299 350 367
ibm09 209 213 227 398 386
ibm10 380 382 406 538 596
ibm11 304 321 347 634 865
ibm12 366 402 452 644 648

Average 1.00 1.08 1.22 1.00 1.15

Table 4: The normalized wirelength under different placement and routing architectures. The average values are

normalized to the respective placement algorithms.
Normalized Wirelength

Algorithm Min-Cut Partitioning Analytical
Placement M-Arch M-Arch X-Arch M-Arch M-Arch X-Arch
Routing M-Arch X-Arch X-Arch M-Arch X-Arch X-Arch
ibm01 1.00 0.92 0.89 1.00 0.93 0.90
ibm02 1.00 0.93 0.89 1.00 0.93 0.91
ibm07 1.00 0.92 0.88 1.00 0.91 0.88
ibm08 1.00 0.92 0.88 1.00 0.92 0.89
ibm09 1.00 0.92 0.88 1.00 0.92 0.88
ibm10 1.00 0.92 0.88 1.00 0.92 0.89
ibm11 1.00 0.92 0.87 1.00 0.91 0.88
ibm12 1.00 0.92 0.88 1.00 0.92 0.88

Average 1.00 0.92 0.88 1.00 0.92 0.89



5.4 Wirelength Using Different Architectures
We summarize in Table 4 the wirelength reductions us-

ing the Manhattan architecture and the X architecture for
placement and routing. All results are normalized to those
using the “traditional” Manhattan-architecture placement
and routing. Without our X-architecture placement, the X-
architecture routing alone reduces the wirelength by only
8% on average. With our X-architecture placement, the
X-architecture routing can reduce the wirelength by 12%
and 11% on average for min-cut partitioning and analytical
placement algorithms, respectively.

The results reveal the effectiveness of the X architecture
on wirelength reduction during placement, which is different
from the results given in the previous work [20] that the
X-architecture placement does not improve the X-routing
wirelength over the Manhattan-architecture placement.

6. CONCLUSIONS
We have proposed the XHPWL model that can be used

in both min-cut partitioning and analytical placement for
the X architecture. We have also studied the XHPWL and
the XStWL models for min-cut partitioning placement and
the XHPWL model for analytical placement. Experimental
results have shown that using the XHPWL or the XStWL
model in placement can lead to shorter X-Steiner wirelengths
than traditional Manhattan placement. Without X-placement,
X-routing alone would reduce less wirelength than X-routing
with X-placement. The results reveal the effectiveness of
the X architecture on wirelength reduction during placement
and thus the importance of the study on the X-placement
algorithms.
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