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Abstract

Consensus is a central problem in fault tolerant distributed computing. A vast number
of (positive and negative) results for consensus in various system models have been
established. In this paper we isolate three features that all these system models share,
and we show that inappropriate modelling choices have led to overcomplicate the ap-
proaches to studying the consensus problem, thus yielding too restrictive solutions for
real systems.

It is hard to question these modelling choices, as they have gained the status of dogmas.
Nevertheless, we propose a simpler and more natural approach that allows us to get
rid of these dogmas, and to handle all types of benign fault, be it static or dynamic,
permanent or transient, in a unified framework.

1 Introduction

Replication is the most natural technique for achieving high availability, i.e., fault tolerance in
distributed systems. The technique has been studied for almost 30 years, both from a practical and
a theoretical perspective. During these years, several systems have been built (e.g., the pioneering
Isis system [4]) and a large number of theoretical results have been published around the paradigm
of replication, namely around the consensus problem. While the goal of “system” work has been
the validation of ideas through the construction of prototypes, the goal of “theoretical” work has
been to provide precise definitions of problems and system models, and to identify the models in
which problems are solvable. Landmark examples of theoretical work is the negative FLP result [9]
(stating that consensus is not solvable deterministically in an asynchronous system with reliable
links, if one process can be faulty) and positive results about the partially synchronous model [8,
13] and the asynchronous model augmented with some oracles such as random oracles [2] or
failure detectors [6]. These different goals (system goals vs. theory goals) sometimes became
antagonistic, with practical work questioning the relevance of theoretical contributions.

In this context, we claim that inappropriate modelling choices have led our community to over-
complicate the approaches to solving consensus, thus yielding too restrictive solutions for real
systems. Moreover, it has become hard to question these modelling choices, as they have gained
the status of dogmas: nevertheless, we suggest a much simpler approach for studying agreement
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problems that enables us to design general solutions and should appear more natural from a prac-
tical perspective.

The rest of the paper is structured as follows. Sections 2, 3 and 4 discuss what we claim to be
the basic dogmas of fault-tolerant distributed computing. In Section 5, we briefly describe a new
computation model and present its main features. Section 6 concludes the paper.

2 Distinguishing synchrony from faults: a first dogma

The FLP negative result naturally led to the definition of system models weaker than the syn-
chronous model, in which consensus is solvable. In this context, it has become commonly accepted
to define system models in terms of two parameters (cf. [12]):

e Degree of synchrony (what synchrony assumptions for processes and links).
o Fault model (what fault assumptions for processes and links).

For example, the computing model in [9] assumes that processes and links are asynchronous
(degree of synchrony), links are reliable (fault model), and one process may crash (fault model).
Hence degree of synchrony and fault model appear to be two independent characteristics of sys-
tem models. This way of defining system types is taken for granted, but nevertheless has major
drawbacks.

Firstly, consider the following three basic assumptions for a link:

1. transmission delay of a message is bounded;
2. transmission delay of a message is finite;
3. transmission delay of a message may be infinite.

Cases 1 and 2 are covered by synchrony assumptions whereas case 3 is covered by the fault
model (message loss). Distinguishing synchrony assumptions from fault assumptions leads us to
break the natural continuum between cases 1, 2 and 3, and tends to overcomplicate the system
model space.

We can best illustrate this as follows: consider some computation in which process ¢ is waiting
for message m sent by p. If p is “too” slow, or if p has crashed, ¢ cannot receive m since it should
time-out before receiving m not to risk being blocked. Slowness of p is related to the synchrony
model; crash of p is related to the fault model. Two different assumptions, same consequence
for ¢q. Similarly, consider the example from the point of view of the link from p to ¢. If the link
behaves asynchronously “too much”, or if it is lossy, g cannot receive m. The first assumption
is related to the synchrony degree, the second to the fault model. Again, we have two different
assumptions with the same consequence for ¢. This artefact directly results from the separation
between synchrony model and fault model.

Secondly, the two parameter classification of system models led our community to concentrate
on conditions for solving consensus with reliable links, while largely ignoring conditions under
which consensus is solvable with unreliable links.” This is an indirect consequence of the way the
FLP result has been stated. Indeed, the FLP paper shows the impossibility of solving consensus

"Except, for example, [8] and [13], which assume that links may be lossy but only for a finite period.
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in an asynchronous system when one process may crash. As crash failure is (already) the most
benign type of process failure in the classical failure classification [11], researchers have sought
to circumvent the FLP impossibility result by increasing synchrony, rather than investigating other
fault models. In particular, links are supposed to be reliable since message losses are usually
handled by the omission fault model, a more severe type of fault than crashes. This leads to
the wrong message that synchrony (synchronous processes and synchronous links) is sufficient to
achieve agreement: as shown in [17], synchrony does not help for solving consensus in the context
of link failures.

Note that the idea of encapsulating synchrony degree and fault model in the same module
already appears in the Round-by-Round Failure Detector (for short RRDF) model [10]. Unfortu-
nately, the idea is not followed through to the end in the RRFD model since the notion of fault
model is underhandedly reintroduced via the notion of faulty component. Indeed, the communica-
tion medium is implicitly assumed to be reliable (no anomalous delay, no loss) and when process ¢
receives no message from p, the latter process is systematically blamed for the transmission failure
(p is late or has crashed). This point is related to the second dogma of fault-tolerant distributed
computing, which we discuss in the next section.

3 Distinguishing process failures from link failures: a second
dogma

The second dogma can be summarized as follows: in case of the non reception of a message, put
the responsibility on some “culprit” (link or process). This has several drawbacks as we explain
now.

First it appears that most of the time, the real causes of transmission failures, namely sender
failure, receiver failure, or link failure, are actually unknown: if ¢ does not receive a message
supposed to be sent by p, it is generally impossible to know whether this is because of p (send-
omission), because of ¢ (receive-omission), or because of the (lossy) link from p to ¢. Failure
transmissions are often ascribed to some components in a totally arbitrary manner that may not
correspond to reality.

Second, as soon as a process p is blamed for a failure, p is declared faulty, and from here on,
is allowed by any consensus specification — uniform or not — to have deviant behavior (this is
discussed in more details in Section 4).

Finally, stigmatizing some components in a systematic way may lead to undesirable conclu-
sions: for example, in the send-omission failure model, the entire system is considered faulty even
if only one message from each process is lost.

There is no evidence that knowing the component responsible for the failure actually helps in
the analysis of fault-tolerant systems. Even more, as we show in [7], the notion of faulty component
tends to unnecessarily overloads system analysis with non-operational details. In other words, it
is sufficient that the model just notifies transmission failures (effects) without specifying faulty
components (causes).

Because of this second dogma, the classical models of fault tolerant distributed systems only
handle faults that are static both in space and time, i.e., faults by an unknown but static set of
(so-called faulty) processes (static faults in space) that are considered to be faulty for the whole
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computation (static faults in time). This explains why very few models solve consensus in the
presence of dynamic and transient faults — such as message loss (possibly on all links) or crash-
recovery of processes (possibly of all processes) — or when they do solve consensus, solutions are
very intricate and their analysis overcomplicated. Getting rid of the second dogma gives us hope
of handling any type of benign failure, be it static or dynamic, permanent or transient, in a unified
framework.

In a largely ignored paper, Santoro and Widmayer [17] introduce the Transmission Faults
Model that locates failures without specifying their cause. A transmission failure can represent
as well link failure as process failure. We believe that this is the right approach. Unfortunately, the
Transmission Faults Model is designed only for synchronous systems. This de facto reintroduces
synchrony degree and fault model as two separated system parameters, i.e., the model is still based
on the first dogma.

4 Definition of consensus: a third dogma

As explained above, consensus has been mainly considered in the context of static and permanent
faults. With such fault models, consensus is defined by three conditions, including the following
one:

e Termination: Every correct process eventually decides.

Termination requires processes to eventually decide, but restricts this requirement to correct pro-
cesses (a correct process is a process that is never blamed for any transmission failure). The role
of “correct” is to exempt faulty processes from deciding.

With omission failures, this termination condition allows a process blamed for just one omis-
sion to make no decision, even if it does not crash. Therefore, termination turns out to be a too
weak condition for such a fault model. The same problem arises for any type of transient (be-
nign) failure, e.g., the quite realistic crash-recovery model (with stable storage). For the latter fault
model, Aguilera et al. [1] introduce the notion of good process — which is a process that crashes
a finite number of times and recovers after the last crash — and strengthen termination as follows:

e Termination-cr: Every good process eventually decides.

However, it seems rather disturbing to consider different consensus specifications according to the
fault model.

The same problem arises even if we do not modify the specification. Indeed with termination,
depending on whether message losses are interpreted as send omission failures, receive omission
failures, or as link failures, processes are exempted from making a decision, or must eventually
decide. This shows that the same syntactic condition (termination) may actually correspond to
different semantical requirements, according to the way we ascribe failures to components.

To design specifications whose significance do not depend on the fault model, we have to re-
move any reference to the notion of faulty (or correct) process. This leads us to specify termination
as follows:

e Uniform Termination: Every process eventually decides.

ACM SIGACT News 56 March 2007 Vol. 38, No. 1



Such a condition is much simpler, but it is generally considered unacceptable, with the argument
that we cannot require from a crashed process or from a process that continuously crashes and
recovers to decide. We shall come back to this issue in the next section: basically, we show that
this is actually an artefact resulting from the confusion between an algorithm devised for some
computational model and its physical implementation in some specific system.

5 Aniconoclastic new model: the ‘“Heard-Of”’ model

In [7] we propose a new computational model, called Heard-Of (HO for short) that is free of
the three dogmas we have stated above, and so allows us to avoid the problems that they induce.
We give here only a brief overview of the model, and refer to [7] for a complete presentation.
Basically, in the HO model, (1) synchrony degree and fault model are encapsulated in the same
abstract structure, and (2) the notion of faulty component (process or link) has totally disappeared.
The HO model merely notifies transmission failures without specifying by whom nor why such
failures occur. As a result, the conditions for solving agreement problems (1) do not to refer
anymore to synchrony assumptions or to failure assumptions (dogma 1), and (2) handle process
failures and link failures in the same way (dogma 2). The liveness condition for consensus is
expressed using the uniform termination property of Section 4, which applies to any process, be
it correct or faulty (dogma 3). The HO model is inspired by (1) the asynchronous round model
defined by Dwork, Lynch and Stockmeyer [8], extended by Gafni [10], and by (2) the work of
Santoro and Widmayer [17].

In the HO model, computation consists of asynchronous communication-closed rounds (a mes-
sage sent but not received in round 7 is lost). Consider a set II of processes. At each round, any
process first sends a message to all (send phase), then receives a subset of the messages sent at this
round (receive phase), and finally does some local computation (transition phase). We denote by
HO(p,r) the set of processes that p hears of at round r, i.e., the processes (including itself) from
which p receives a message at round r.

An HO model is defined by a predicate — over the collections of sets (HO(p, 7)) 11 0 —
that holds for all computations. For example, an HO model could be defined by the predicate:

drqg >0, Vp,q € I1° - HO(p,r9) = HO(q,0),

which ensures the existence of some round 7 in which all processes hear of the same set of pro-
cesses.

In this way, the model just describes transmission faults at each round without specifying the
causes (omission or slowness), and without assigning the responsibility of these faults to some
components (process, channel). These are the key features that allow us to handle any benign
fault, be it static or dynamic, permanent or transient, in a unified framework.

As shown in [7], the HO formalism enables us to express well-known consensus algorithms
(e.g., the Rotating Coordinator algorithm [6] or the Paxos algorithm [13]) in a quite concise and
elegant way, and so to extract the algorithmic schemes on which they are based. This not only
gives some new insights into these consensus algorithms, but also allows us to design new ones
that are quite interesting in practice since they are correct under very realistic conditions. The
consensus Algorithm 1 given below best exemplifies the latter claim. In Algorithm 1 the send
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phase corresponds to line 5, and the receive phase takes place between line 5 and line 6. When the
receive phase terminates, the predicate on the HO’s is guaranteed to hold. The local computation
phase starts at line 7. In [7], we show that safety properties — namely integrity and agreement — are
never violated, and that uniform termination is guaranteed by the following predicate:

3ro > 0, I, || > 2n/3: (Vp : HO(p,ro) =1ly) A (Vp, Ir, > 19 : |[HO(p,7p)| > 2n/3) (1)

The predicate ensures (i) the existence of some “uniform” round (in the sense that all the heard-of
sets are equal) with sufficiently large heard-of sets, and (ii) for each process p, the existence of
some round 7, > 7o in which |HO(p,7,)| > 2n/3 holds. Note that this predicate allows rounds
without any constraint on the HO’s, e.g., rounds in which no messages are received.

Algorithm 1 A simple consensus algorithm in the HO model (n is the number of processes).
1: Initialization:

20 Tpi= { vy, is the initial value of p }
3: Round 7:
4. Send Phase:
5: send (z, ) to all processes
6:  Transition Phase:
7: if |[HO(p,r)| > 2n/3 then
8: if the values received, except at most [”T_l], are equal to = then
9: Tp =T
10: else
11: x, := smallest = received
12: if more than 2n/3 values received are equal to T then
13: DECIDE(T)

The HO model has several features that distinguish it from existing models, and make it more
realistic and better from a practical perspective. In particular the HO model can adapt to transient
and dynamic faults. For example, liveness in Algorithm 1 just requires the existence of a “good”
sequence of (at most) n + 1 rounds, possibly non consecutive: one uniform round ry in which
every process hears of the same subset of processes, and for each process p, a subsequent round
r, at which p hears more than 2n/3 processes. In the other rounds, any transient faults from
any component, i.e., dynamic fault, can occur.® Note that the communication predicate (1) above
is much finer than the usual termination conditions given in the literature, which all stipulate that
some condition must eventually hold forever (see [8], or consensus with the failure detector ¢S [6],
or Paxos with reliable channels and the leader oracle 2 [5]).

Remains the issue of uniform termination which, as explained in Section 4, does not exempt
any process from making a decision. Such a strong liveness requirement may seem unreasonable
in two respects. First, it may make Consensus needlessly unsolvable in the sense that the resulting

8Specifically, this means that the send of line 5 can be implemented using the unreliable IP-multicast primitive, an
option that is problematic when using failure detectors, which require reliable links.
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Consensus specification might be unsolvable under some communication predicate P whereas
the classical Consensus problem is solvable under P. In [7], we show that this objection does
not hold. Secondly, one may wonder whether an algorithm in which all processes decide can be
implemented in real systems with crash failures. The answer is positive as we now explain. The
fundamental point here is to distinguish an algorithm — a logical entity — from the physical system
on which the algorithm is running. Of course, a process that has crashed takes no step, and so
can make no decision. However, such a process is then mute, and so is no more heard by any
other process. Consequently, what actually happens to crashed processes has no impact on the
rest of the computation. Thus there is no problem when running an HO Consensus algorithm on
a physical system where processes may crash: the capability of making a decision provided by
the HO algorithm is just not implemented by the processes that have crashed. In other words, the
implementation of an HO algorithm solving uniform termination in a physical system with crash
failures only solves termination.

Hence we can safely remove any reference to faulty components in the Consensus specification.
This yields a uniform specification in the sense that its semantics does not depend anymore on the
fault model. With such a clean specification, a process is no more unreasonably exempted from
making a decision just because it was once accused of a fault during the computation — maybe
incorrectly. As a matter of fact, this specification of the Consensus problem already appears in
several fundamental papers dealing with benign faults [15, 3, 13].

Related Work: At first sight, the HO model may seem close to the RRFD model introduced by
Gafni [10]. However, these two models only share the idea of capturing synchrony degree and
failure model with the same abstraction — see our first dogma — but basically differ with regard
to the second and third dogmas. Indeed, the RRFD modules only suspect processes — and more
specifically, only the senders — never links. On the contrary, a central idea of the HO model is to
remove the notion of “culprit” (the component responsible of the fault). Ignoring culprits allows
us to get rid of the typical system model assumptions such as “channels are reliable”, “processes
crash and do not recover” (crash-stop model), “processes crash but may later recover” (crash-
recovery model), etc., and shows that solving consensus does not require to overload the system
analysis with such details. In this regard, the HO model is inspired by Santoro and Widmayer [17].
Unfortunately, the idea of ignoring culprits is not completely followed through to the end in [17]
since the authors assume at each round only one posssible source for all transmission faults, i.e.,
one process that is responsible for originating the transmission faults of a round. Moreover, they
still consider synchrony, an assumption that does not appear in the HO model.

It should also be noted that the unification provided by the HO model must be seen from the
perspective of constructing solutions to consensus that span the whole class of benign faults. This
differs from other work on system models with the goal of providing unified proof of impossibility
of consensus protocols, or of deriving proof of bounds on consensus, e.g., [14, 16].

6 Discussion

In the context of solving agreement problems, system models have been defined in a way that led
our community to consider irrelevant details. This has obscured a technically difficult domain,
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making it appear unnecessarily harder than needed. The new HO model avoids the pitfalls that we
have highlighted. For example, it unifies all benign faults in a quite natural way. It also makes the
handling of the crash-recovery model — and more generally dynamic and transient faults — much
simpler, avoiding the complexity that appears for example in [1].

The HO model also leads to a more natural expression of conditions for liveness. Previous
approaches, e.g., the partially synchronous model [8] or the failure detector approach [6] require
conditions to hold eventually forever. This is non intuitive from a pragmatic point of view. In
contrast, the conditions for liveness in the HO model do not have this this problem, and appear
very intuitive. This may contribute to demystify the consensus problem.

An issue not addressed here is how to ensure an HO predicate. Ongoing work has shown that
the liveness condition for Algorithm 1 is easy to ensure, assuming a system that alternates between
good and bad periods, a very realistic assumption: During a bad period, any benign failure can
occur; during a good period, at least 2n/3 processes can communicate timely.

To summarize, we believe that fault tolerant distributed computing can become much simpler
than what inappropriate modelling choices have allowed it to be in the past.
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