
Mapping Arbitrary Logic Functions into Synchronous
Embedded Memories For Area Reduction on FPGAs

Gordon R. Chiu, Deshanand P. Singh, Valavan Manohararajah, and Stephen D. Brown
Toronto Technology Center, Altera Corporation

gchiu|dsingh|vmanohar|sbrown at altera.com

ABSTRACT
This work describes a new mapping technique, RAM-MAP,
that identifies parts of circuits that can be efficiently map-
ped into the synchronous embedded memories found on
field programmable gate arrays (FPGAs). Previous tech-
niques developed for mapping into asynchronous embed-
ded memories cannot be used because modern FPGAs do
not have asynchronous embedded memories. After tech-
nology mapping, an area-prediction cost function is used
to guide the selection of logic cones to be placed in em-
bedded memories. Extra logic is added to compensate
for missing asynchronous functionality on the synchronous
memories. Experiments conducted on Altera’s Stratix de-
vice family indicate that this embedded memory mapping
technique can provide an average area reduction of 6.2%
and up to 32.5% on a large set of industrial designs. A
small architecture change that increases the size of the
FPGA fabric by 0.05% can increase the average area re-
duction to 14.1% and up to 59.1% on the same design set.

1. INTRODUCTION
Designs often have a large amount of timing slack. In

these situations, the designers’ greatest concern is using
the smallest possible device that will fit their circuits as
these devices are generally less costly than larger devices.
We present a technique for using unused synchronous mem-
ories to implement portions of logic traditionally imple-
mented with LUTs. This, in combination, with other
area based techniques provides the designer with a tool
to implement their circuit on the smallest possible pro-
grammable device.

Modern FPGAs [1, 2] provide embedded memory blocks
(EMBs) to be used as on-chip memories. While there are
an increasing number of applications that make use of this
on-chip memory, the area devoted to EMBs will be wasted
if an application does not require the memory. A poten-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5–9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

tial solution to this problem is to use the EMBs as a ROM
that is capable of implementing a multi-input multi-output
logic function. Logic that would traditionally be mapped
into logic elements is mapped into unused EMBs instead,
thereby increasing the amount of logic that can be po-
tentially packed into the FPGA. In cases where the area
savings are significant, it may even be possible to select a
smaller device to implement the circuit.

Techniques for mapping combinational logic clusters
into embedded memories have been considered in the lit-
erature [3, 4, 5, 6]. Methods similar to those used during
LUT mapping were used to identify a multi-input multi-
output logic cluster which could be placed in an EMB.
However, a limitation with these methods is that they
cannot be used to map logic into the synchronous em-
bedded memories present in modern FPGAs. A method
that identifies sequential logic clusters is needed, and we
present such a method in this work. In addition, we de-
scribe a technique for handling architectural restrictions of
synchronous memories such as the inability to implement
the asynchronous reset/preset behaviour of synchronous
logic clusters. In these situations, additional circuitry is
added to emulate the functionality expected of an asyn-
chronous reset signal.

2. MEMORIES AND MEMORY MAPPING

Address
Read

Hold

Read
Address
Setup

Read Enable

Address

Data

Figure 1: Asynchronous Memory Timing

Earlier use of switchable asynchronous or synchronous
memories in early commercial FPGAs [7] has largely shifted

to fully synchronous memories [1, 2]. There are several no-
table differences between synchronous memories and their
traditional asynchronous counterparts. Most importantly,
synchronous memories enforce that all read and write op-
erations are synchronized to a clock edge. Contrast this
approach with the asynchronous read operation shown in
Figure 1. The system is required to generate a Read En-
able pulse for each data read. This signal must meet some
strict timing constraints to ensure correct functionality.
For example, the address lines must be stable for a cer-
tain amount of time before the leading edge of the read
enable (Address Setup Time) and remain stable for a cer-
tain amount of time after the falling edge of the enable
signal (Address Hold Time).

Synchronous memories avoid these complications as the
designer only needs to ensure that their address, data and
control signals reach the memory’s registered interface be-
fore the next active clock edge. The synchronous memory
block can then internally generate a read enable strobe
that is guaranteed to meet the asynchronous setup and
hold constraints. Note that there is still a setup and hold
requirement at the registered interface; however, these
constraints are guaranteed to be met by the architecture
if a global clock is utilized. The synchronous design style
greatly reduces the potential for errors due to misalign-
ments in the timing of the asynchronous signals. In addi-
tion, the registered interface greatly reduces the switching
activity of signals entering the internal memory circuitry
and offers a potential for significant power savings. Given
these advantages, synchronous memories have become a
popular building block in modern FPGA fabrics [1, 2].

2.1 Limitation on Memory Mapping
As modern FPGAs do not have asynchronous embed-

ded memories, previously described techniques in the lit-
erature [3, 4, 5, 6] are not applicable. The forced use of
synchronous embedded memories further restricts the set
of permissible logic cones that can be mapped into a mem-
ory: each path through the cone of logic must have one
and only one register. It is not apparent how to modify
the previously described techniques to enforce selection of
cones that meet this constraint. The problem of mapping
logic into synchronous embedded memories has not been
previously considered in the literature.

3. PRELIMINARIES AND PROBLEM
We use the following definitions for this paper. A cir-

cuit is represented by a directed graph G(V, E) where the
vertices V represent combinational (4-LUT) or register
nodes, and the edges E represent dependencies between
the nodes. A node may be combinational or sequential
(register with one input). Given a node v, a cone rooted
at v is a sub-network containing v and some of its prede-
cessors. We define a cone rooted at a set of nodes W to be
a subnetwork containing each node in W along with nodes
that are predecessors of at least one node in W . Given a
cone C rooted at a node v, we can we define the support
set of v to be the set of inputs, M , to the largest cone
rooted at v which contains no register nodes (other than
possibly v). It is noted that the largest such cone is unique
for any given v. A fanout-free cone is a cone in which no

node in the cone (except the root) drives a node not in the
cone. The maximum fanout-free cone (MFFC) for a node
is the fanout-free cone rooted at the node containing the
largest number of nodes.

If the delay within circuit components and the delay of
connections between circuit components are known, tim-
ing analysis can be used to establish the slack [8] of every
connection. The slack of a connection is defined to be
the amount of delay that can be added to the connection
before it becomes critical. A connection is critical if the
delay of a path it belongs to exceeds the path-length con-
straint set by the user. Timing analysis also establishes a
slack ratio for each connection. The slack ratio is a value
between 0 and 1 which indicates the relative importance
of each connection to overall circuit timing. Connections
that have a significant effect on circuit timing have slack
ratios closer to 0 while connections that have negligible
effect on circuit timing have slack ratios closer to 1.

In the absence of timing constraints, the relationship
between slack ratio and slack is given by:

slack ratio(c) =
slack(c)−minslack

Tmax

where minslack refers to the worst case connection slack
in the circuit and Tmax refers to the maximum delay of
any register-to-register path. Connections that have a sig-
nificant effect on circuit timing have slack ratios closer to
0 while connections that have negligible effect on circuit
timing have slack ratios closer to 1. A precise definition of
slack ratios, in the presence of multiple timing constraints,
is beyond the scope of this paper. However, from an op-
timization perspective, slack ratios provide the most ac-
curate criticality information as the formulation accounts
for multi-cycle clocks, inverted clocks and clock skew.

One of the most powerful delay optimization techniques
is sequential retiming [9, 10]. This technique moves reg-
isters across combinational circuit elements to reduce the
length of timing-critical paths. We define implicit retiming
to be the sequential retiming implicitly performed when re-
structuring a cone of logic to be compatible with an EMB
which requires registers on all inputs.

We make the assumption that the maximum number
of available EMBs on a chip is fixed. Assuming the chip
has N available EMBs, we wish to find a mapping of the
circuit into n synchronous EMBs and m logic elements
such that n ≤ N and m is minimized.

The width of an EMB is defined as the width (number
of bits) of each data word of the EMB. The depth of an
EMB is defined as the number of address bits required.
Thus an EMB has 2d words, each word w bits in length.

3.1 Target Architecture Assumptions
We consider two different classifications of FPGA mem-

ory architectures for the purposes of this study. Specifi-
cally, the two classes differ in the amount of functionality
available on the embedded memory block. The embedded
memory blocks in the first architecture class, archno aclr ,
have no asynchronous clear functionality on the output of
the memory block; most modern commercially available
FPGAs [1, 2] fall in this category.

The second architecture class, archaclr , is identical to
the first architecture but adds asynchronous clear func-

tionality to the outputs of the embedded memory blocks
in the FPGA fabric. That is, when the asynchronous clear
is active, the outputs of the embedded memory block im-
mediately clear to a zero or preset value. This adds a
small number of transistors per output of the embedded
memory block and is estimated to increase the area of the
embedded memory block by approximately 0.05%.

4. THE RAM-MAP TECHNIQUE
The RAM-MAP technique consists of several steps. First,

a seed node is selected from the circuit. A cone of nodes
is then grown from the seed node using a cost function to
achieve greater area reduction. If the cost function indi-
cates that mapping the cone will result in an area decrease,
the cone of logic is replaced by an equivalent EMB and, if
necessary, asynchronous fix-up logic. The process is then
repeated until all possible seed nodes are exhausted or all
available EMBs are used.

It is difficult to discuss the selection of sequential logic
cones for mapping without an understanding of the method
through which the cones are mapped into EMBs. Thus,
the stages of the RAM-MAP technique are presented in
reverse order. Given a set of nodes X which satisfy cer-
tain constraints, section 4.1 presents a method for deriving
an EMB Y which is equivalent to the cone X. Section 4.3
describes the cost function used to evaluate a set of nodes.
Section 4.4 describes a heuristic for selecting sets of nodes
that satisfy the constraints and whose mapping will result
in a significant area reduction.

4.1 Mapping Sequential Logic
Let X be a cloud of sequential logic. Let M and N be

the inputs to and outputs from the cloud. The set N is the
set of nodes n such that n ∈ X and n drives a node not in
X. The set M is the set of all nodes m such that m /∈ X
and m drives a node in X. Note that the above conditions
imply the constraint that every node in X must be in the
fanout-free cone rooted at the set of nodes N . Thus X
is a subset of the maximum fanout-free cone rooted at
the set of nodes N . Let R be the set of register nodes
within the cone X. Let us assume each path from each of
the inputs (M) to the outputs (N) traverses at least one
register, and all registers share the same control signal set
(clock, clock enable, synchronous clears, etc). For now,
a simplifying assumption is made: no asynchronous clear
or reset signals are used. The cone X can be seen as a
multi-input, multi-output, state machine whose state is
encoded in the set of registers R. If we can implement
an equivalent state machine Y using EMBs, and connect
those nodes driven by N to Y , the cone of sequential logic
X can be entirely removed.

Figure 2 is an example showing the restructuring of
an arbitrary cone of sequential logic into one compatible
for mapping. Let F be all registers in the cone whose
inputs are, directly or indirectly, from another register in
the cone. More formally, F is the set of all registers f ∈ R
such that the support set of f , SS(f) contains a register in
R; that is, SS(f)∩R �= ∅. We note that we can restructure
the cone to ensure each path through the cone traverses
exactly one register node. We force the input to each of
the registers in F to leave the cone and re-enter the cone.

In the example in Figure 2, additional cone inputs and
outputs F1 and F2 are created.

We can transform this newly restructured cone into an
EMB Y of width w and depth d where the inputs are
driven by the original inputs and the new feedback inputs
(M∪F) and the outputs are driven by the original outputs
and the new feedback outputs (N ∪ F). Note that each
path through Y traverses exactly one register node. The
F feedback signals are both outputs of and inputs to Y
and represent the state of state machine encoded into |F |
bits.

We note that the register nodes on each path through Y
can be implicitly retimed to the inputs of Y . An embedded
memory block can be used to implement any Y derived
in this fashion provided the number of bits required does
not exceed the capacity of the memory. The requirement
that inputs be registered is inherently satisfied. Figure 3
shows the implicit retiming of the restructured cone into
an EMB.

4.2 Compensating for Asynchronous Resets
Many synchronous circuits use asynchronous reset sig-

nals. It is expected that for the majority of sequential logic
cones selected for mapping, registers in the cone will have
asynchronous reset signals. We assume that each cone of
logic X has a maximum of one unique asynchronous clear
signal, s.

One major architectural constraint regarding target ar-
chitecture class archno aclr , which includes most modern
FPGAs, is due to the lack of asynchronous clear signals
on EMBs. When applied to the input register, the asyn-
chronous clear signal immediately clears the input regis-
ters. However, the output of the memory does not show
the effect of the asynchronous clear until the next rising
clock edge. Thus, the asynchronous clear of the EMB can-
not implement the required asynchronous reset function-
ality of the register. As a result, for this architecture, we
need to add additional logic outside the EMB, in the form
of additional logic elements, to give the correct behaviour
upon asynchronous reset: one register per asynchronous
clear signal s and one combinational node per output of
the EMB, as seen in Figure 4.

Although the register on the asynchronous clear signal
can be shared with subsequent mappings, the combina-
tional nodes for each output cannot. This additional logic
reduces the expected area gains. Often, this compensation
logic has a larger area than the replaced cone, rendering
the operation counter-productive. The cost function for
area reduction is modified to account for this, as described
in 4.3. In addition, the delay increases with the addition
of the extra combinational logic.

a0

clk

o2

o1

reset

EMB

aclr

EMB
aclr

a1

a0

clk

reset

a1
o2

o1

Figure 4: Memory with Asynchronous Reset, and
Equivalent Implementation

F2

F1

F2

F1

Figure 2: Restructuring a Sequential Logic Cloud

F2

F1

EMB

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

Figure 3: Implicit Retiming into an Embedded Memory Block

For FPGAs of the architecture class archaclr , no addi-
tional asynchronous fix-up circuitry is required.

4.3 Area Reduction Cost Function
Given a cone of sequential logic X, a cost function is

used to guide the growing of the cone. The cost function
consists of a weighted sum of two components: the Area
Reduction Cost, proportional to the predicted change in
the number of logic elements, and the Memory Use Cost,
proportional to the number of bits of memory required
to implement the cone. The area reduction cost is given
as: c(X) = −k − j + a where k is the predicted number
of logic elements removed, j is the predicted reduction
in logic elements due to collapsing, and a is the number
of logic elements added to correct the asynchronous reset
behaviour. If an asynchronous reset is used, the number
of logic elements required a = d, the number of outputs of
the new EMB. If no asynchronous reset is used, a = 0. A
logic element can be removed if both its combinational and
register nodes can be removed. If each node is either in X
or unused, the logic element is predicted to be removed.
A combinational-only logic element can be collapsed if it
has fan-out of one and can be merged into the output. It
is expected that some added compensation nodes can be
collapsed in this manner. The memory use cost is the size
of the EMB in bits, w2d, where d and w are defined in
section 4.1. A large penalty is assigned if the required size
is larger than the size of all available EMBs.

4.4 Cone Growth Heuristic
Our heuristic for growing the cones to be mapped pro-

ceeds in two phases. In the first, a set of nodes on the
output of register nodes is selected for mapping. Second,
nodes from the input of the register nodes are added to
the set and implicitly retimed. We refer to the first stage
as selection and to the second as expansion. Figure 5 gives
an overview of the cone grow heuristic, and Figure 6 shows
an example cone selection and expansion.

4.4.1 Node Set Selection
At the beginning of each iteration of the heuristic, a

seed node c is selected from all nodes in the circuit who
have not participated in a mapping. A simple greedy
heuristic is then used to grow the cone from the seed node.
The set of all registers compatible with each register in the
support set of c (those that share all control signals) is de-
termined. The live set, LiveSet(c), is the union of the
compatible register set with all nodes whose support set is
a subset of the compatible register set. Thus LiveSet(c)
is the set of possible nodes to add which still satisfy the
register compatibility constraint. If the live set is empty
the iteration of mapping fails and is repeated with a new
seed node.

From the live set, nodes are greedily selected and added
to the set of nodes to be mapped. The process of adding
a node to the set may cause multiple nodes to be added.
The input nodes are recursively added up to and including
the support set. This ensures that the cone to be mapped
remains connected. Each candidate node in turn is test-
added to the set, expanded through the node set expansion
heuristic, and then evaluated by the cost function. The
candidate node resulting in the lowest cost is added to the
set. The iteration is terminated when adding each node
results in a higher cost. Figures 6(a) and 6(b) show an
example of the selection process. A candidate node, and
all nodes up to its support set, are added to the set.

4.4.2 Node Set Expansion
Given a set X to be mapped (with register nodes R),

during the expansion phase we add nodes from the in-
puts of R into our mapping set. When mapping is per-
formed, the registers are implicitly retimed across these
added nodes. Only nodes that are in the fanout-free cone
rooted at the register nodes R and not in the LiveSet
are eligible for inclusion. At the time of node-set expan-
sion, w, the number of outputs of the set X is known.
We can calculate the maximum number of inputs d such

Candidate Node

Existing Cone New Cone New Cone

(a) (b) (c)

Figure 6: Example Cone Selection and Expansion

1 C ← Circuit
2 for c ∈ C
3 if LiveSet(c) �= {∅}
4 eSet← InputAndSupport(c)
5 set← Select(eSet,LiveSet(c))
6 (mapSet,mapCost)← Expand(set)
7 if mapCost < 0
8 PerformMapping(mapSet)
9 end if
10 end if
11 end for
12
13 function Select(X, L)
14 bestSet← X
15 (set, bestCost)← Expand(X)
16 for x ∈ L
17 X ′ ← X ∪ {x} ∪ InputAndSupport(x)
18 (set, cost)← Expand(X ′)
19 if cost < bestCost
20 bestSet← X ′
21 bestCost← cost
22 end if
23 end for
24 bestSet← Select(bestSet,L− bestSet)
25 return bestSet
26 end function
27
28 function Expand(X)
29 bestSet← X
30 bestCost← Cost(X)
31 for x ∈MFFC(X) ∩ Inputs(X)
32 X ′ ← X ∪ {x}
33 if Cost(X ′) < Cost(X)
34 bestSet← X ′

35 bestCost← Cost(X ′)
36 end if
37 end for
38 (bestSet, bestcost)← Expand(bestSet)
39 return (bestSet, bestcost)
40 end function

Figure 5: An overview of the Cone Grow Heuristic.

that the resulting d-input, w-output function will fit into
the largest available EMB. The problem is similar to find-
ing the maximum-volume d-feasible cut of the maximum
fanout free cone rooted at the registers R. An algorithm
for finding this cut was presented in [11], but would not
to be appropriate due to our specialized cost function.

For our implementation, we employ a simple greedy
heuristic to perform the node set expansion. We test-add

each node to the set, and evaluate it by the cost function.
The node resulting in the lowest cost is added to the set.
The process is repeated until a local minima is reached.
Figures 6(b) and 6(c) show an example of the expansion
process. Nodes on the inputs of the registers are added to
the cone to be mapped.

4.4.3 Performance Considerations
EMBs are considerably slower than combinational lookup

tables, so it is expected that, without modification, the
RAM-MAP technique will significantly reduce the maxi-
mum frequency of operation of the circuit. The technique
can be modified to prevent the selection of critical com-
binational nodes. We first perform a timing analysis step
using a statistical delay model described in [12]. The ex-
pected slack (ES) of a cone of logic after mapping to mem-
ory can then be estimated using the minimum expected
slack of all outputs:

ES = min
o∈outputs

(slacko + LUTDelayo −memoryDelay)

where slacko is the slack at an output of the cone, LUTDelayo

is the delay of the shortest path from the output to a reg-
ister in the cone, and memoryDelay is the expected combi-
national delay of the EMB and asynchronous fix-up logic.
The expected slack ratio (ESR) is then calculated from
the expected slack and the concept of slack ratio threshold
(SRT) is employed. The SRT defines a threshold below
which the expected slack ratio should not fall. If the ex-
pected slack ratio is below the threshold, the operation is
deemed to significantly and adversely affect timing and is
not performed. If the expected slack ratio remains above
the threshold, the operation is performed as normal. Thus,
when selecting nodes, a candidate node which causes the
cone to have an ESR < SRT is rejected.

Due to the implicit retiming, the combinational logic
delay on the input of the EMB cannot increase. Thus
any node is acceptable for inclusion during the expansion
process.

4.5 Implementation Efficiency
The implementation of our algorithm includes several

optimizations that do not reduce the worst-case runtime,
but still significantly speed up the technique.

Dynamic programming is utilized in the expansion phase
of the technique. A solution cache is indexed on two char-
acteristics of the cone: the set of registers of the cone X to
be expanded as well as the allowable increase in number of

inputs (calculated from the maximum memory size, and
the current number of outputs). Two cones sharing these
characteristics can use the same solution from the cache.

Branch pruning is frequently employed when perform-
ing the greedy cone selection and expansion heuristics.
One example is the removal of nodes from the LiveSet.
When the node resulting in the largest area reduction is
added to the cone, the nodes consistently resulting in large
area increases are removed from future consideration for
inclusion with this cone. This pruning does not signifi-
cantly affect the quality of the final solution.

5. EXPERIMENTAL RESULTS
Altera’s Stratix [13] chips were used as the target for the

logic mapping experiment. The chip is comprised of I/O
elements (IOEs), logic array blocks (LABs), digital signal
processing blocks (DSPs) and embedded memory blocks
(M512, M4K and M-RAM). A LAB in a Stratix device
contains 10 logic elements (LEs). The Stratix LE contains
a four-input lookup table (4-LUT), a register and some
logic that facilitates the creation of arithmetic circuits.

The chip is composed of three types of embedded mem-
ory blocks: the 512-bit M512, the 4096-bit M4K, and the
512-Kbit M-RAM block. Each of these blocks is syn-
chronous, requiring registered address, data, and control
signal inputs, and optionally registered outputs. Addi-
tionally, the M-RAM does not support memory initializa-
tion and cannot be used for logic mapping. The chip does
not have an asynchronous clear available on the embedded
memory blocks, and classifies into the archno aclr architec-
ture class.

Each type of embedded memory block can be used in
multiple width and depth configurations. For example,
the 512-bit M512 can be used in a 512-address by 1-bit
word configuration (9 address inputs and 1 data output),
a 256×2 configuration (8 inputs and 2 outputs), and others
up to and including 32× 16 (5 inputs and 16 outputs).

5.1 Results for the archno aclr Architecture
In our experiments, all steps of the FPGA CAD flow

were performed by a modified version of Quartus II v5.0.
After technology mapping but prior to placement, the flow
was modified to perform the RAM-MAP EMB mapping
technique.

We study the benefits of applying the EMB mapping
technique on 87 industrial circuits. Quartus was run twice,
first with RAM-MAP turned off, and then with it turned
on. For each circuit, the device chosen was the smallest
Stratix-family device that could fit the circuit (with RAM-
MAP off). The number of logic elements observed at the
end of each run is used to compute the area reduction
observed as a result of applying the technique. Note that
as these circuits are industrial, a number of them already
utilize the embedded memories. For some of the circuits,
very few memories are available for use by RAM-MAP.

Figure 7 presents the area reduction observed for each
circuit as a result of applying the RAM-MAP technique
with an slack ratio threshold of −∞ (all operations are
accepted). A mean area reduction of 6.2% was observed.
No circuits were observed to increase in area as a result of
applying the technique because the cost function is able

to predict the resulting area with perfect accuracy (and
rejects area-increasing mappings). On average, the area
reduction per used M4K is 4.59 logic elements and 2.28
logic elements per used M512.

5.2 Results for the archaclr Architecture
It is clear that the need to compensate for asynchronous

clears diminishes the area reduction available from RAM-
MAP when using the archno aclr architecture class, which
includes Altera’s Stratix device. If an asynchronous clear
were available on the EMB, it is expected that the area
reduction should increase. We can quantify this prediction
by repeating the experiment, but assuming the Stratix ar-
chitecture is modified (as per section 3.1) to be of class
archaclr . The flow is identical, except we do not create
asynchronous clear compensation logic elements and ad-
just our cost-function accordingly.

Figure 7 presents the area reduction observed for each
circuit as a result of applying the RAM-MAP technique,
assuming an architecture of class archaclr , with an SRT
of −∞ (all operations are accepted). A mean area re-
duction of 14.1% was observed. The area reduction and
performance degradation are higher due to logic cones
whose mapping was previously undesirable (due to the
asynchronous clear cost) now being mapped.

5.3 Impact on Performance
The primary goal of the EMB mapping technique is to

decrease area. EMBs are much slower than conventional
combinational lookup tables, and the constrained physical
location of EMBs blocks on the chip introduces additional
placement and routing constraints. It is therefore expected
that mapping logic into EMBs will reduce the performance
of the circuit. In obtaining the area reduction indicated
above for the archno aclr architecture, with a slack ratio
threshold of −∞ (all operations are accepted), the tech-
nique decreases the maximum frequency of operation of
the circuit by 18.2% (mean).

This performance degradation is large, and thus this
technique is not applicable to all designs. However, for
those designs with large amounts of timing slack, the de-
signer’s greatest concern is using the smallest possible de-
vice that will fit their circuit as this device is generally less
costly than larger devices. This technique may help the
designer utilize a smaller device than otherwise possible.

With the addition of the archaclr architecture modifica-
tion, the reduction in the maximum frequency of operation
is 34.5% (mean). This increase in reduction is due to the
increased number of mappings that take place. Note that
these performance degradations are measured after place-
ment, routing and final signoff timing analysis.

The slack ratio threshold can be appropriately chosen
to reduce the performance penalty at the cost of less area
reduction. Figure 8 shows the performance versus area
trade-off for 7 values of the slack ratio threshold. Each
point represents the average area reduction versus the av-
erage performance reduction of the entire benchmark of
87 circuits, run with a different slack ratio threshold pa-
rameter. Because the RAM-MAP technique is performed
prior to placement and it is difficult to predict the post-
placement delay [14], it is very difficult to both predict
and control the performance reduction.

0%

10%

20%

30%

40%

50%

60%
A

re
a

R
ed

u
ct

io
n

(p
er

ce
n
t

o
f
o
ri
g
in

a
l
ci

rc
u
it
)

Circuits

RAM-MAP for archaclr

RAM-MAP for archno aclr

Figure 7: Area Reduction on 87 Industrial Circuits

-20%

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

0% 1% 2% 3% 4% 5% 6% 7%

P
er

fo
rm

a
n
ce

(p
er

ce
n
t

ch
a
n
g
e)

Area Reduction (percent of original circuit)

SRT=0.625

SRT=0.500

SRT=0.375

SRT=0.250

SRT=0.125

SRT=0.000

SRT=−∞

Figure 8: Performance vs. Area Trade-off

6. ADVANCED TECHNIQUES
This section presents two techniques for further increas-

ing area reduction from the RAM-MAP technique.

6.1 Negative-Edge Clocked Memory
One of the limitations of the RAM-MAP technique de-

scribed above is that all cones to be mapped must contain
registers. Every path from input to output in the cone
must traverse at least one register, because every EMB
requires registered inputs. If purely asynchronous EMBs
were available, it would be possible to map a cone of com-
binational logic between registers into memory.

It is occasionally possible to implement an asynchronous
EMB using a synchronous EMB [15]. This is accomplished
by clocking the synchronous EMB with an inverted clock.
Stringent conditions must hold in order to be able to per-
form this mapping. First, all registers reachable by travers-
ing the fan-in or fan-out network of the mapped cone must
have compatible control signals. Secondly, two EMBs used
in this manner cannot fan-in or fan-out to each other. It is
important to note that fix-up logic still needs to be added,
if the registers on the fan-in of the mapped cone have asyn-
chronous clears. This is because the results of an asyn-
chronous clear activated after the falling edge of the clock
will not propagate through the memory to the inputs of
the next level of registers.

Figure 9 shows an example of mapping a cone of logic
into a negative-edge clocked memory element. A brief de-
scription of the algorithm follows. First, all sets of registers
with compatible control sets are identified, and each set is
given a unique identifier. In the example figure, the set
identifier is noted on the register. Second, the fan-in and
fan-out networks of each register are recursively traversed
and annotated with the identifier for the register, as seen
in Figure 9(a). All combinational nodes with only one
annotation are bounded by compatible registers and are
mappable. Next, regions of connected mappable nodes are
identified, as seen in Figure 9(b). A subset of each region
is selected for mapping by a cost function. In the exam-
ple, the entire region is selected for mapping; this may be
neither desirable (due to asynchronous fix-up logic) nor
feasible (due to the maximum size of EMBs). Finally, the
selected cone of logic is replaced by an equivalent syn-
chronous EMB, with an inverted clock signal, as seen in
Figure 9(c).

As a proof of concept, an implementation of this tech-
nique with a simple greedy heuristic to select cones can
achieve a reduction in area of 1.1% (up to 7.2%) on top of
any reductions realized through the RAM-MAP technique
reported in Section 5. A better algorithm for increased
area reduction is an area of future research.

6.2 State Machine Re-Encoding
The mapping method we described identifies a cone of

sequential logic which is turned into a finite state machine
and then placed in an EMB. Standard textbook methods
of state machine reduction [16] can be used to reduce the
number of states thereby reducing both the EMB size as
well as any logic needed to emulate an asynchronous re-
set. Area reduction can be realized if the number of bits
required to encode the state machine is reduced. Since
the signals carrying the state machine encoding appear at
both the inputs and outputs of an EMB, both the number
of RAM inputs and outputs can be reduced, reducing the
need for asynchronous fix-up logic.

An implementation of this technique can achieve a re-
duction in area of up to 1.2%, primarily on circuits where
feedback structures are common. On average across the
circuit set, a reduction of 0.1% is realized. These results

a

b

b

b

a

b

b

a, b

b

a. b

b

c

b, c

a

b

b

b

a

b

b
b

b

b

c

a

b

b

b

a

b

b

a, b

a. b

c

b, c

EMB

(a) (b) (c)

Figure 9: Mapping into Negative-Edge Clocked Memory Elements

are on top of those reported in Section 5.

7. CONCLUSION
In this paper, we describe a new mapping technique.

The RAM-MAP technique maps combinational and se-
quential logic into unused embedded memory blocks to
reduce the number of logic elements required to imple-
ment the circuit. The technique is also able to satisfy two
constraints of the target architecture’s embedded mem-
ory blocks. Extra logic is added to compensate for the
lack of asynchronous clear on EMBs. Special consider-
ations are made when selecting and manipulating cones
to ensure cones can be mapped into the input-registered,
synchronous EMBs. On a set of 87 industrial circuits, the
RAM-MAP technique is able to reduce on average by 6.2%
and up to 34.4% the number of logic elements required to
implement the circuit on our target architecture, Stratix.
With a small change to the architecture that increases
overall FPGA size by 0.05%, the potential area reduction
is increased on average to 14.1% and up to 59.1%.

8. REFERENCES

[1] Altera Corporation, Altera Product Catalog, May
2005.

[2] Xilinx Corporation, Virtex Series FPGAs Product
Matrix, May 2005.

[3] S. J. E. Wilton, “Smap: Heterogeneous technology
mapping for area reduction in FPGAs with
embedded memory arrays,” Proceedings of
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, February 1998.

[4] S. J. E. Wilton, “Heterogeneous technology mapping
for area reduction in FPGAs with embedded
memory arrays,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, pp. 56–68, January 2000.

[5] J. Cong and S. Xu, “Technology mapping for
FPGAs with embedded memory blocks,”
Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays,
pp. 179–188, February 1998.

[6] M. Kumar, J. Bobba, V. Kamakoti, “MemMap:
Technology Mapping Algorithm for Area Reduction
in FPGAs with Embedded Memory Arrays Using

Reconvergence Analysis,” Design, Automation and
Test in Europe Conference and Exhibition Volume II
(DATE’04), pp. 922–929, 2004.

[7] F. Heile and A. Leaver, “Hybrid product term and
LUT based architectures using embedded memory
blocks,” International Symposium on Field
Programmable Gate Arrays (FPGA), 1999.

[8] R. Hitchcock, G. Smith, and D. Cheng, “Timing
analysis of computer-hardware,” IBM Journal of
Research and Development, pp. 100–105, January
1983.

[9] C. Leiserson, F. Rose, and J. Saxe, Optimizing
Synchronous Circuitry, 1983.

[10] C. Leiserson and J. Saxe, Retiming Synchronous
Circuitry, 1991.

[11] J. Cong and Y. Ding, “Flowmap: An optimal
technology mapping algorithm for delay
optimization in lookup-table based FPGA designs,”
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 13, pp. 1–12,
January 1994.

[12] D. Singh, V. Manohararajah, and S. Brown,
“Two-stage physical synthesis for FPGAs,” Custom
Integrated Circuits Conference (CICC), September
2005. To appear.

[13] Altera Corporation, Stratix Device Handbook
(Complete Two-Volume Set), July 2005.

[14] V. Manohararajah, G. Chiu, D. Singh, and
S. Brown, “Difficulty of Predicting Interconnect
Delay in a Timing Driven FPGA CAD Flow,”
Proceedings of the 2006 International Workshop on
System Level Interconnect Prediction, pp. 3–8,
March 2006.

[15] Altera Corporation, Application Note 210:
Converting Memory from Asynchronous to
Synchronous for Stratix and Stratix GX Designs,
November 2002.

[16] Z. Kohavi, Switching and Finite Automata Theory.
McGraw-Hill Publishing Company, 2nd ed., 1978.

