
Cache Miss Clustering for Banked Memory Systems∗

O. Ozturk, G. Chen, M. Kandemir
Computer Science and Engineering Department

Pennsylvania State University
University Park, PA 16802, USA

{ozturk, gchen, kandemir}@cse.psu.edu

M. Karakoy
Department of Computing

Imperial College
London SW7 2AZ, UK

M.Karakoy@imperial.ac.uk

ABSTRACT
One of the previously-proposed techniques for reducing memory en-
ergy consumption is memory banking. The idea is to divide the
memory space into multiple banks and place currently unused (idle)
banks into a low-power operating mode. The prior studies – both
hardware and software domain – in memory energy optimization
via low-power modes do not take the data cache behavior explic-
itly into account. As a consequence, the energy savings achieved
by these techniques can be unpredictable due to dynamic cache be-
havior at runtime. The main contribution of this paper is a compiler
optimization, called the bank-aware cache miss clustering, that in-
creases idle durations of memory banks, and as a result, enables
better exploitation of available low-power capabilities supported by
the memory system. This is because clustering cache misses helps
to cluster cache hits as well, and this in turn increases bank idle-
ness. We implemented our cache miss clustering approach within
a compilation framework and tested it using seven array-intensive
application codes. Our experiments show that cache miss clustering
saves significant memory energy as a result of increased idle periods
of memory banks.

1. INTRODUCTION AND MOTIVATION
One of the energy reduction techniques currently employed by

memory chips is low-power operating modes. A low-power operat-
ing mode in DRAMs is typically implemented by shutting off cer-
tain components within the memory chip. It is typically used in con-
junction with a banked memory system, where the memory banks
that are not used by the current computation can be put into a low-
power mode. Most of the memory energy management schemes via
low-power modes studied in the literature, however, do not take data
cache behavior explicitly into account. In other words, they operate,
in a sense, a cache oblivious fashion. As a consequence, the results
achieved by these techniques can be unpredictable due to dynamic
cache behavior at runtime. In principle, taking data cache behavior
into account can allow a more effective management of available
low-power operation modes, and this can in turn boost energy sav-
ings.

The main goal of the work in this paper is to study a compiler-
directed code restructuring scheme for increasing energy savings

∗This work is supported in part by NSF CAREER #0093082 and a
fund from GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

coming from low-power modes used in banked memories. The pro-
posed scheme employs cache miss clustering, and tries to increase
bank idle times, which allows better use of the low-power operat-
ing modes supported by the underlying memory hardware. More
specifically, cache miss clustering clusters data cache misses and
this helps cluster accesses to main memory (which is banked). This
clustering of accesses also means clustering of memory idle cycles,
which in turn means longer idle periods for banks and thus higher
energy savings. While a variant of cache miss clustering has been
used by the previous research in enhancing memory level paral-
lelism [11], to the best of our knowledge, this paper presents the
first study that uses cache miss clustering for increasing energy ben-
efits in a banked memory system.

We automated our approach within an optimizing compiler built
upon the SUIF infrastructure from Stanford University [6] and per-
formed experiments with a set of embedded applications. Our ex-
tensive experimental analysis indicates that cache miss clustering is
very effective in increasing average length of idle periods for mem-
ory banks. As a result of this increase in the length of idle periods,
memory energy savings achieved through low-power modes are in-
creased significantly. Our experimental results also show that cache
miss clustering reduces execution cycles.

The rest of this paper is organized as follows. Section 2 revises
the banked memory concept and low-power operation modes. Sec-
tion 3 discusses the prior work on energy optimization for memory
banks. Section 4 presents our approach in detail and gives our com-
piler algorithm. Section 5 presents an experimental evaluation of
our approach. Section 6 concludes the paper.

2. POWER MODES OF MEMORY BANKS
In this work, we focus on an RDRAM-like off-chip memory ar-

chitecture [13] where off-chip memory is partitioned into several
banks, each of which can be activated or deactivated independently
from others. In this architecture, when a memory bank is not ac-
tively used, it can be placed into a low-power operating mode. While
in a low-power mode, a bank typically consumes much less energy
than in the active mode. However, a bank in a low power need to
be reactivated before its contents can be accessed, which incurs re-
activation overheads. Typically, a more energy-saving low-power
operating mode has also a higher reactivation overhead. Thus, it is
important to select the most appropriate low-power mode to switch
to when the bank becomes idle.

In this study, we assume four different operating modes: an ac-
tive mode (the mode during which the memory read/write activity
can occur) and three low-power modes, namely, standby, napping,
and power-down. Current DRAMs [13] support up to six power
modes with a few of them supporting only two modes. We col-
lapse the read, write, and active without read or write modes into a
single mode, called the active mode, in our experimentation. How-
ever, one may choose to vary the number of modes based on the
target DRAM architecture. The energy consumptions and reactiva-
tion overheads for these operating modes are given in Table 1. The
energy values shown in this table have been obtained from the mea-

244

Energy Consumption Reactivation Overhead
Active 3.570nJ 0 cycles

Standby 0.830nJ 2 cycles
Napping 0.320nJ 30 cycles

Power-Down 0.005nJ 9,000 cycles

Table 1: Energy consumptions (per cycle) and reactivation times
for different operating modes. These numbers include both dy-
namic (switching) and static (leakage) components.

sured current values associated with memory modules documented
in memory data sheets (for a 3.3 V, 2.5 nsec cycle time, 8 MB mem-
ory) [14]. The reactivation times (overheads) are also obtained from
data sheets. Based on trends gleaned from data sheets, the energy
values are increased by 30% when module size is doubled.

An important parameter that helps us choose the most suitable
low-power mode is bank inter-access time (BIT), i.e., the time be-
tween successive accesses (requests) to a given memory bank. Ob-
viously, the larger the BIT, a more aggressive low-power mode can
be exploited. Then, the problem of effective power mode utilization
can be defined as one of accurately estimating the BIT and using
this information to select the most suitable low-power mode. This
estimation can be done by software using the compiler [3, 2] or
OS support [7], by hardware using a prediction mechanism attached
to the memory controller [3], or by a combination of both. While
the compiler-based techniques have the advantage of predicting BIT
accurately for a specific class of applications, runtime and hardware
based techniques are able to capture runtime variations in access
patterns (e.g., those due to cache hits/misses) better.

In this paper, we employ a hardware-based BIT prediction mecha-
nism. This prediction mechanism is similar to the mechanisms used
in current memory controllers. Specifically, after 10 cycles of idle-
ness, the corresponding bank is put in the standby mode. Subse-
quently, if the bank is not referenced for another 100 cycles, it is
transitioned into the napping mode. Finally, if the bank is not refer-
enced for a further 1,000,000 cycles, it is put into the power-down
mode. Whenever the bank is referenced, it is brought back into
the active mode, incurring the corresponding reactivation overhead
(based on what mode it was in). It needs to be mentioned however
that our bank-aware cache miss clustering scheme works with soft-
ware based BIT prediction schemes as well. We focus on a single
program environment, and do not consider the existence of a virtual
memory system. Exploring the energy impact of our approach in
the presence of a virtual address translation is part of our planned
further research.

3. RELATED WORK
While there exists a large body of work on memory performance

evaluation [18, 15], banked memory based studies for energy reduc-
tion are relatively new. It has been observed [5, 19, 1] that memory
system is a dominant consumer of the overall system energy, making
this a ripe candidate for software and hardware optimizations, thus
serving as a strong motivation for the research presented in this pa-
per. Lebeck et al [7] have presented OS based strategies for optimiz-
ing energy consumption of a banked memory architecture. The idea
is to perform page allocation in an energy-efficient manner by tak-
ing into account the banked structure of the main memory. Delaluz
et al [3] have discussed architectural and compiler techniques for
low-power operating mode management. They have also discussed
the bank pre-activation strategy used in this study. Fan et al [4] have
shown how to set memory controller policies for the best memory
energy behavior. Delaluz et al [2] have presented an experimental
evaluation of some well-known classical high-level compiler opti-
mizations on memory energy. In contrast to these previous efforts,
the work described in this paper takes into account data cache ex-
plicitly, and restructures the application code to cluster data cache
misses. In this respect, it is different from the previous studies on
banked memory optimization. However, the proposed approach can
co-exist with many of the previously-proposed memory energy opti-
mization techniques. In fact, our point is that, since our approach in-
creases bank idleness, it will increase the effectiveness of any hard-

Figure 1: Overview of our approach.

ware or software based scheme that makes use of low-power op-
erating modes. The only cache miss clustering related studies that
we are aware of are [11] and [12]. The first of these studies uses
a variant of cache miss clustering as a means of improving mem-
ory parallelism in high-performance computing. and the second one
compares it against software prefetching, a well-known latency hid-
ing mechanism. Our cache miss clustering scheme is very different
from these prior papers. First, our approach is bank sensitive and
consequently it is preceded by a code transformation that isolates
the loop iterations that access a given set of memory banks. Clus-
tering misses without considering how the arrays are mapped to the
banks in the memory system would not be very useful in our con-
text. Second, our approach is oriented towards reducing energy con-
sumption rather than improving memory level parallelism in high-
end machines. As a result, our code transformation approach is en-
tirely different from the one in [11, 12], which is based on loop
strip-mining, a loop-level code restructuring technique.

4. COMPILER APPROACH
Figure 1 shows our two step approach to restructuring code to

cluster data cache misses. The first part, which is explained in Sec-
tion 4.3, clusters array references (load/store operations) based on
the memory banks they access. The idea can be summarized as de-
composing a loop nest into multiple smaller loop nests such that
each of the resulting smaller nests accesses the same set of banks
throughout its execution. The second part, which is explained in
Section 4.4, handles these small loop nests generated by the first
part one by one, and it transforms the loop nest such that the data
cache misses are clustered. Our approach operates under the as-
sumption of cache line alignment, which means each array starts at
the beginning of a new cache line. Many compilers have directives
that enforce this type of cache line alignments. Also, we assume
that before our approach is invoked, array-to-bank assignment has
already been performed. Our approach takes the size of a cache
bank as parameter. Changing the size of cache bank requires re-
compilation of the application in order to maximize the benefit that
can be achieved by cache miss clustering. This may be a problem
for an application the needs to run without modification on multiple
systems with different configurations. However, for embedded sys-
tems where the software are usually co-designed with the hardware,
this is not a serious drawback.

4.1 Motivational Example
Figure 2 illustrates an example to motivate cache miss clustering.

For ease of illustration, we consider a single bank in this example.
In (a), we give the original loop nest we want to optimize. Part (b)
shows the order of memory accesses. Each circle indicates an array
element and the arrows capture the traversal order of array elements.
We also highlight the cache line boundaries to show how the execu-
tion transitions from one cache line to another, assuming a cache
line holds three elements. Part (c) of the figure illustrates the idle
and active periods caused by the access pattern in part (b). We note
that we incur a single cache miss in every three accesses. Assum-
ing a cache hit latency of Th cycles, the length of each idle period
is 2Th cycles. Our cache miss clustering strategy (to be explained
shortly) transforms the original loop nest in (a) to the one shown in
part (d). Part (e) illustrates the resulting data access pattern and part
(f) shows the active and idle periods for the transformed loop nest.
The important point here is that the new access pattern clusters the
two cache misses together and this in turn increases the length of
each idle period from 2Th cycles to 4Th cycles. This new pattern
is clearly better than the original one from the perspective of energy

245

for i = 0 to 3
for j = 0 to 5

...A[i, j]...
(a)

Original loop nest.

(b) Order of memory accesses for the original loop nest.
Each shaded block represents a cache line.

(c) Bank state variation during the execution of the original loop nest. The length of
each idle period is 2Th cycles, where Th is cache hit latency.

for i = 0 to 1
for j = 0 to 5

...A[i, j]...

...A[i + 2, j]...

(d) Transformed loop
nest. (e) Order of memory accesses for the transformed loop

nest. Each shaded block represents a cache line.

(f) Bank state variation during the execution of the transformed loop nest.The length of
each idle period is 4Th cycles, where Th is cache hit latency.

Figure 2: An example motivating cache miss clustering.

saving. This is because we now have longer idle periods and can po-
tentially use a more aggressive low-power operating mode for this
bank.

4.2 Notation
For ease of discussion, let us first define some notations we use

in the rest of this paper. Note that this paper focuses on array-based,
loop-intensive programs, e.g., embedded multi-media applications.
Such a program is typically composed of a set of loop nests; each
loop nest accesses a set of arrays. We use the abstract form below to
represent an array based loop-intensive program P that consists of l
loop nests:

P = 〈N1,N2, ...,Nl〉,
where Ni (i = 1, 2, ..., l) is the ith loop nest of program P . Further,
we use Xi to represent the set of arrays accessed by loop nest Ni,
and X to represent the set of arrays accessed by program P . Based
on these definitions, we have

X =

l�

i=1

Xi.

A loop nest Ni of the following form:

Ni: for j1 = l1 to u1 step d1

for j2 = l2 to u2 step d2

......
for jk = lk to uk step dk

Body

can be represented in an abstract form as:

Ni : for �I ∈ [�Li, �Ui] step �d 〈s1(�I), s2(�I), ..., sm(�I)〉,
where �I is the iteration vector (i.e., a vector that contains the loop
iterators in the nest from top to bottom), �L = (l1, l2, ..., lk)T and

�U = (u1, u2, ..., uk)T are the lower and upper bound vectors, �d =

(d1, d2, ..., dk)T is the loop step vector (step �d can be omitted if
all its elements are 1), and sj(�I) (j = 1, 2, ..., m) is the jth array
reference in the body of loop nest Ni (for ease of discussion, we
omit non-array references). When this loop nest is executed, �I takes
values from �L to �U in the lexicographic order. The array element
accessed by sj(�I) can be represented as X[fj(�I)], where X (X ∈
Xi) is the name of the array. Also, function fj maps iteration vector
�I to a vector of subscripts for array X. In this paper, we assume that
fj is an affine function of �I.

4.3 Clustering Memory Bank Accesses
In this section, we discuss a method for isolating memory refer-

ences (loads and stores) to a specific set of banks at a given time. We
start by making an important definition, namely, the bank-invariant
loop nest. Given a loop nest N ∗ of the form:

N ∗ : for �I ∈ [�L, �U] 〈s1(�I), s2(�I), ..., sm(�I)〉,
we say that it is a bank-invariant loop nest if the following constraint
is satisfied for all 1 ≤ j ≤ m:

∀�I1, �I2 ∈ [�L, �U] : b(Xj [fj(�I1)]) = b(Xj [fj(�I2)]), (1)

where Xj is the array accessed by array reference sj , fj is the map-
ping function that maps an iteration vector of the loop nest to a sub-
script vector of array Xj , and function b(x) gives the ID of the mem-
ory bank that stores array element x. In other words, the memory
bank accessed by a given array reference (load/store operation) sj

does not change throughout the execution of N ∗.
We cluster memory bank accesses by splitting a given loop nest

N , which may not be bank-invariant, into a set of bank-invariant
loop nests N1,N2, ...,Nm such that [�Li, �Ui] ⊆ [�L, �U] ([�Li, �Ui]
is the iteration space of nest Ni) and that the result of executing
these bank-invariant loop nests is equivalent to that of executing the
original loop nest N . Let us assume that the bank size is B and loop
nest N uses a arrays, the capacity of data cache is C, the data cache
uses a W -way associative mapping and LRU replacement policy,
and the size of each cache line is equal to that of each array element.
One can show that if B ≤ C/W , a ≤ W , clustering memory bank
accesses does not increase the number of cache misses.

Our compiler algorithm for clustering memory bank accesses is
given in Figure 3. Figure 4 illustrates the idea behind forming bank-
invariant loop nests using an example. Part (a) of this figure gives
the code of a loop nest N that accesses arrays X and Y . The bank
layout of arrays X and Y are given in part (b). We can see that, due
to the limited capacity of a bank, each array has to be stored in two
banks: banks B1 and B2 for array X, and banks B3 and B4 for array
Y . Consequently, during the execution of loop nest N , depending
on the current value of iteration vector (i, j)T, the array reference
s1 may access either bank B1 or bank B2, and s2 may access either
bank B3 or bank B4. Applying our bank memory access clustering
algorithm given in Figure 3 to loop nest N , we obtain four bank
invariant loop nests N1, N2, N3, and N4, as shown in Figure 4(c).
We note that the banks accessed by array references s1 and s2 do
not change in a bank-invariant loop nest. One of the side benefits
of clustering bank memory accesses is that it can be expected to
improve cache locality as well since, at any given time frame, the
memory accesses are localized in a small set of memory banks. We
will return this issue in our discussion of experimental results.

4.4 Clustering Data Cache Misses
Our compiler algorithm for clustering data cache misses is given

in Figure 5. This algorithm takes a bank invariant loop nest and
cache miss clustering factor c as input, generates a new loop nest
in which data cache misses are clustered. Clustering factor deter-
mines the number of cache misses that we want to cluster together.

246

Input:
loop nest N ;

Output:
bank-invariant loop nest set S = {N1, N2, ...,Nm};

S = {N};
for i = 1 to m {

// assume si(�I) accesses array element X[f(�I)]
if(array X is stored in k banks and k > 1) {

for each loop nest cNi ∈ S {
split Ni into k loop nests Ni,1,Ni,2, ...,Ni,k

such that si accesses only one bank within Ni,j ;
S′ = S′ ∪ {Ni,1,Ni,2, ...,Ni,k};

}
}
S = S′;

}

Figure 3: Algorithm for splitting loop nest N into m bank-
invariant loop nests (N1,N2, ...,Nm).

N : for i = 0 to 99
for j = 0 to 99

s1: ...X[i, j]...
// access B1 , B2

s2: ...Y [j, i]...
// access B3 , B4

(a) Original loop nest N . (b) Bank layout of arrays X and Y , assuming that
each bank can hold up to 5000 array elements.

N1: for i = 0 to 49
for j = 0 to 49
s1: ...X[i, j]... // access B1
s2: ...Y [j, i]... // access B3

N2: for i = 0 to 49
for j = 50 to 99
s1: ...X[i, j]... // access B1
s2: ...Y [j, i]... // access B4

N3: for i = 50 to 99
for j = 0 to 49
s1: ...X[i, j]... // access B2
s2: ...Y [j, i]... // access B3

N4: for i = 50 to 99
for j = 50 to 99
s1: ...X[i, j]... // access B2
s2: ...Y [j, i]... // access B4

(c) Bank-invariant loop nests obtained by applying bank-based memory access
clustering to loop nest N .

Figure 4: Splitting loop nest N into a set of bank-invariant loop
nests: N1, N2, N3, and N4.

We can cluster more cache misses by using a larger clustering fac-
tor. However, increasing the clustering factor also increases the size
of program code. Further, a very large clustering factor can also
increase the number of cache misses. Figure 6 illustrates how our
cache miss clustering algorithm works using an example where we
cluster cache misses in the loop:

N : for i = 0 to 59 〈s1 : X[f1(i)], s2 : Y [f2(i)]〉
with a clustering factor of c = 3. In this figure, we can observe that,
we split the iteration space of loop N into three sections: [0, 19],
[20, 39], and [40, 59]. Since the values of the iteration vectors from
the different sections are far from each other, and the array element
accessed by each array reference is determined by the value of the
iteration vector, the addresses of the data elements accessed by the
iterations that belong to the different sections tend to be far from
each other. Therefore, data reuses are not likely to happen between
two loop iterations from the different sections. As an example, array
reference s1(i) executed in the iteration space section [20, 39] is not
likely to reuse any data brought to the cache by s1(i) executed in the
iteration space section [0, 19]. Our cache miss clustering algorithm
is based on this observation. As shown in Figure 6, we achieve our
goal by clustering the array references that are originally executed
in the different sections of the iteration space since these array refer-
ences are likely to incur cache misses together. And, this clustering
generates long active periods and, consequently, longer idle periods
for memory banks.

An important issue regarding our implementation is about data
dependences. Note that both bank-based clustering and cache miss
clustering modify the original execution order of loop iterations.
Therefore, their legality depends on the data dependences in the loop
nest. In our current implementation, we do not apply them to a loop
nest if they violate any data dependence relationship in the nest.

Input:
bank-invariant loop nest N :
N : for �I ∈ [�L, �U] 〈s1(�I), ..., sm(�I)〉

where �L = (l1, l2, ..., ln)T and �U = (u1, u2, ..., un)T

c: cache miss clustering factor.
Output:

the code for transformed loop nest.

r = (u1 − l1) mod c;
if(r �= 0) {

// peeling the first r iterations from the outer most loop.
�δ = (r − 1, 0, 0, ..., 0)T;
// generate code for the first r iterations.
emit “for �I ∈ [�L, �L + �δ] 〈s1(�I), ..., sm(�I)〉”;

}
�δ = ((u1 − l1 − r)/c, 0, 0, ..., 0)T;
// compute the new loop bounds
�L′ = (l1 + r, l2, l3, ..., ln)T;
�U ′ = (l1 + r + �(u1 − l1)/c� − 1, u2, u3, ..., un)T;
// generate the loop control structure for the transformed loop nest
emit “for �I ∈ [�L′, �U ′]〈”;
// generate the body for the transformed loop nest
for i = 1 to m

emit “si(�I), si(�I + �δ), si(�I + 2�δ), ..., si(�I + (c − 1)�δ)”;
emit “〉”

Figure 5: Cache miss clustering algorithm.

N : for i = 0 to 59 〈
s1 : X[f1(i)];
s2 : Y [f2(i)];

〉
⇒

N]: for i = 0 to 19 〈
s′
1 : X[f1(i)];

s′′
1 : X[f1(i + 20)];

s′′′
1 : X[f1(i + 40)];

s′
2 : Y [f2(i)];

s′′
2 : Y [f2(i + 20)];

s′′′
2 : Y [f2(i + 40)];

〉
(a) Original loop nest. (b) Transformed loop nest.

(c) Mapping between the array references in the original and transformed loop nests.

Figure 6: An example showing how our approach clusters cache
misses (clustering factor c = 3).

4.5 A Complete Example
In this section, we present a complete example showing how the

two steps of our approach explained in Sections 4.3 and 4.4 work
together. Figure 7(a) shows the code for a loop nest N that accesses
array A[0.99][0.99]. For the sake of explanation, let us assume that
each memory bank can store up to 500 array elements. Therefore,
array A can be stored in two banks Bi and Bi+1 (see Figure 7(b)).
We further assume that the size of a cache line is equal to that of
an array element, the cache miss latency is Tm cycles, and per iter-
ation execution time, excluding the delay due to cache misses, for
loop nest N is T cycles. Figure 7(c) shows the state variations for
bank Bi during the execution of loop nest N . We can observe that
loop nest N incurs a data cache miss every T + Tm cycles, and the
length of bank idle period between two successive cache misses is T
cycles. By applying memory bank access clustering to loop nest N ,
we obtain two bank-invariant loop nests N1 (accessing only bank
Bi) and N2 (accessing only bank Bi+1), as shown in Figure 7(d).
By applying cache miss clustering with a clustering factor of c = 2
to the loop nest N1 and N2, we obtain loop nests N ′

1 and N ′
2 in Fig-

ure 7(e). Figure 7(f) shows the state variations for bank Bi during
the execution of N ′

1. In this figure, we observe that loop nests N ′
1

and N ′
2 incur two clustered cache misses every 2(T + Tm) cycles,

and the bank idle period between two successive cache misses is
2T cycles. To sum up, clustering cache misses increases the length
of idle period so that we have more opportunities to put memory

247

N : for i = 0 to 99
for j = 0 to 99 {
x = A[i, j];
... use x...
}

(a) A loop nest accessing array A. (b) Memory layout for array A.

(c) State variation for bank Bi during the execution of the loop nest in (a).

N1: for i = 0 to 49
for j = 0 to 99 {

x = A[i][j];
... use x...

}
N2: for i = 50 to 99

for j = 0 to 99 {
x = A[i][j];
... use x...

}

N ′
1: for i = 0 to 24

for j = 0 to 99 {
x1 = A[i][j];
x2 = A[i + 25][j];
... use x1, x2...

}
N ′

2: for i = 50 to 74
for j = 0 to 99 {

x1 = A[i][j];
x2 = A[i + 25][j];
... use x1, x2...

}
(d) After clustering memory bank
accesses.

(e) After clustering cache misses.

(f) State variation for bank Bi during the execution of the optimized loop nest in (e).

Figure 7: An example demonstrating the two steps of our ap-
proach.

banks into the low-power mode; it also reduces the number of times
that a bank needs to be re-activated, and thus reduces the overall
re-activation overheads.

5. EXPERIMENTAL EVALUATION

5.1 Setup
To evaluate our bank-aware cache miss clustering scheme, we au-

tomated our approach within an open-source compiler infrastructure
called SUIF [6], and made a series of simulation-based experiments
using SimpleScalar [17]. SUIF is built a series of compiler phases
and our approach has been implemented as a separate phase. The
additional increase in compilation times due to the addition of our
phase was about 27% on average, as compared to the case without
our phase. In our experiments, we assume the embedded system
consists of a 400MHz processor, 8KB 4-way data cache, and eight
main memory bank. The access latencies of the data cache and the
main memory are 2 and 110 cycles, respectively. However, we also
performed experiments with different values for off-chip memory
access latency.

The important characteristics of the benchmark codes that we
used to measure the energy benefits of our cache miss clustering
approach are given in Table 2. fourier and flt are Fourier trans-
form and digital filtering routines, respectively. adi and cholesky
are ADI and cholesky decomposition codes; hydro2d is an array-
dominated code from the Spec Benchmark Suite; and tis and tsf
are from the Perfect Club Benchmarks. The third column in Table 2
gives the total dataset size manipulated by the corresponding code.
Finally, the last two columns give the energy consumption and ex-
ecution cycles with the baseline scheme (explained below). While
our code restructuring increased the executable sizes by about 14%
on the average, the increase in instruction cache misses was very
small (less than 0.4%). In any case, in these benchmark codes, the
data memory behavior is much more dominant than the instruction
memory behavior. The data cache misses of these benchmark codes

Benchmark Number Input Baseline Baseline
Name of Lines Size Energy Cycles

adi 56 78MB 19.3mJ 3.92M
cholesky 34 61MB 61.1mJ 7.10M
hydro2d 52 44MB 76.3mJ 6.59M

flt 85 51MB 328.1mJ 11.57M
fourier 167 57MB 411.7mJ 8.90M

tis 485 56MB 511.0mJ 12.04M
tsf 1986 60MB 620.4mJ 16.71M

Table 2: Our benchmarks and their important characteristics.

varied between 8.8% and 21.4%. The default clustering factor (see
Section 4.4) used in our experiments is 8. The energy consumption
results presented below capture all the energy consumption due to
data accesses. This includes the energy consumed in the data cache,
the off-chip memory and the interconnects.

We conducted experiments with five different schemes:
Baseline: This scheme does not perform any energy and perfor-

mance optimizations, and used as a base case against which the
other schemes can be normalized and compared. Its memory en-
ergy or performance numbers are given in the last two columns of
Table 2.

LOOP: This represents a conventional loop restructuring scheme
for optimizing cache locality. It basically employs two types of op-
timizations: loop permutation (i.e., interchanging the order of two
loops to ensure units stride access with the innermost loop after the
transformation) and loop tiling (i.e., generating the blocked version
of a loop for improving cache locality). While this scheme does not
specifically target energy, the performance improvements it brings
can translate to energy savings since the number of accesses to the
main memory is reduced. The specific locality optimization tech-
niques used in this scheme are adapted from [9, 8, 10].

CMC: This is the scheme proposed and discussed in this paper.
As mentioned earlier, it energy benefits come from both increased
bank idleness (as a result of clustering) and improved data locality.

PRI: This is a previously-proposed scheme [16] to energy opti-
mization for banked memories. It tries to cluster memory accesses
to a small set of banks at a given time and this improves what is
called bank locality. It needs to be noted that this approach works in
a cache independent fashion. That is, it does not take cache behavior
explicitly into account.

The important point to emphasize here is that all the schemes
listed above, including the baseline scheme (which does not em-
ploy any code/ data optimization) make use of the same underlying
hardware-based low-power management scheme explained in Sec-
tion 2. Therefore, the differences between the different schemes
can be attributed to the duration of the bank idle periods (BIT val-
ues) they generate. It is also important to note that we compare our
scheme (CMC) to two previously proposed schemes: a data locality
oriented one (LOOP, adapted from [9, 8, 10]) and a memory energy
oriented one (PRI, adapted from [16]).

5.2 Results
We first present in Figure 8 the CDF (cumulative distribution

function) for the bank inter-access times (BIT) for original appli-
cations when all eight banks are considered together. Specifically,
an (x,y) point on any curve in this plot indicates that x% of the total
bank idle periods are between y cycles or less. We see from this plot
that there are many short idle periods, which are potential candidates
for optimization.

The graph in Figure 9 gives the normalized energy consumptions
for our benchmarks with four different schemes described above.
Our first observation is that the LOOP scheme generates some en-
ergy savings (16.1% on an average). This is a direct result of (1)
optimizing data cache behavior and (2) increasing memory idleness.
When we look at the result of CMC (our approach) and PRI, we see
that they are competitive. While in some benchmarks PRI outper-
forms CMC, in others the latter generates better energy savings than
the former. The average energy savings brought by PRI and CMC
are 25.4% and 27.3%, respectively. These results clearly indicate

248

Figure 8: CDF for memory bank
inter-access times (accumulated over all
banks).

Figure 9: Normalized energy consump-
tions with respect to the baseline scheme.

Figure 10: CDF for bank inter-access idle
times (accumulated over all banks) when
our approach is used.

Figure 11: Normalized execution cycles
with respected to the baseline scheme.

Figure 12: Distribution of energy savings across banks. Left: cholesky Right:
fourier.

that CMC is very effective in reducing energy consumption. Finally,
the last bar, for each benchmark code, in Figure 9 gives the energy
consumption with the CMC+PRI scheme (when we combine CMC
and PRI). One can see that this combined approach achieves about
37.7% when averaged over all the seven codes evaluated. These re-
sults also imply that by miss clustering one can achieve much better
results than the conventional code optimizations. To explain where
the energy benefits are coming from, we give in Figure 10 the CDF
curves for the codes restructured using the CMC scheme. When we
compare these curves to the corresponding ones given in Figure 8,
we see that our approach increases the length of the bank idle times
significantly. These in turn translate to memory energy savings.

It needs to be mentioned at this point that, while both PRI and
CMC are very effective in saving energy consumption, they save
energy in different ways, as has been discussed earlier. The PRI
scheme tries to increase the idleness of each bank in the system in-
dependently. As a result, while it may get significant benefits with
some benchmarks, it may be unsuccessful with the others. In con-
trast, our approach works at the data cache level. Therefore, its
savings are expected to be distributed across the different banks
uniformly, under the assumption that the banks are accessed uni-
formly. The graphs in Figure 12 give the distribution of energy
savings across the eight memory banks for two of our benchmarks,
namely, cholesky and fourier. One can see from these re-
sults that the savings with our scheme are uniform across the banks,
whereas the variance with the PRI scheme can be very large in some
cases. The remaining benchmarks also exhibit similar patterns.

We next look at the performance results given in Figure 11. As
expected the LOOP scheme achieves best execution time improve-
ments across all versions, since it is performance oriented. However,
the results with the CMC scheme are also very good. Specifically,
the execution cycle improvements brought by LOOP and CMC are
25.6% and 21.9%, respectively. This is because our miss clustering
approach captures cache locality as well, in addition to bank idle-
ness. That is, clustering data accesses first based on the set of banks
they refer enhances data locality at the cache level. Consequently,
the results it generates are not very far from those obtained through

the LOOP scheme. Our last observation from these results is that the
PRI version does not improve execution time significantly (3.6% im-
provement on an average, and increasing original execution times in
some cases). The main reason for this poor performance behavior is
the fact that this scheme does not consider data locality at all. There-
fore, while its results are good from the energy saving perspective,
they are not impressive as far as performance is considered. Over-
all, when we consider the results given in Figures 9 and 11 together,
we can say that considering bank idleness and locality together is a
must, if we are to improve both energy and performance.

We next present the results with varying data cache capacities (all
are 4-way associative as in the default configuration). The default
cache capacity used in our experiments so far was 16KB. The re-
sults with the different cache capacities are given in Figure 13 for
the benchmark cholesky. The trends observed with the remaining
benchmarks were similar; so, we do not present them. One can see
from this graph that the PRI scheme is not very sensitive to the data
cache capacity used. This is because it operates in a cache oblivious
way. However, since a different cache capacity changes the hit/miss
behavior, it changes the absolute savings obtained by PRI. In com-
parison, the effectiveness of CMC and LOOP is reduced with the
increased cache capacity. This is expected because the results are
given as normalized with respect to the baseline approach without
any code optimization, and the behavior of this optimization im-
proves significantly as we increase data cache capacity. In fact, in
the extreme case, a very large cache capacity can make any data
locality optimization useless. However, we also note that CMC is
affected less than LOOP when we increase cache capacity. This is
mainly because its energy savings do not come entirely from local-
ity improvement but also from increasing bank idle times through
miss clustering. We observed similar trends when we fix the cache
capacity at its default value and change the cache associativity. That
is, with increased associativity, we saw that the PRI scheme does not
exhibit a significant variance. Also, the effectiveness of CMC and
LOOP is reduced with the increased associativity. Our next set of
experiments study the impact of the off-chip access latency on our
results (obtained using the CMC scheme) and are presented in Fig-

249

Figure 13: Normalized energy consump-
tions with varying data cache capacities
(cholesky).

Figure 14: Normalized energy consump-
tions with varying off-chip latency values
(cholesky).

Figure 15: Influence of the clustering fac-
tor on energy consumption and execution
cycles.

ure 14 for cholesky. The default value for off-chip memory ac-
cess latency was 110 cycles. We see from Figure 14 that the energy
results are not very sensitive to the variations in the off-chip access
latency, though we abserve a declining trend in normalized energy
consumption with increased latency values. However, as expected,
the execution cycle savings achieved by our approach reduces more
– as compared to the reduction in energy savings – when we reduce
the off-chip access latency. We still observe however that, even with
an off-chip access latency of 60 cycles, our approach improves ex-
ecution cycles by 5.56% for this benchmark (on an average 7.27%,
when considering all the benchmarks.

Recall that an important parameter in our approach is the clus-
tering factor as defined in Section 4.4. As mentioned earlier, the
default value for this parameter used in our experiments so far was
8. We also performed experiments with different values of this pa-
rameter. The results are given in Figure 15. In this plot, we give
the normalized energy consumption and the normalized execution
cycles when averaged over all the benchmarks in our experimental
suite. We only present the average results since the results with the
different benchmarks are very similar to each other. We observe an
interesting trend from this results: both energy consumption and ex-
ecution cycles are first decreasing as we increase the value of the
clustering factor, but beyond a point, they are showing an increas-
ing trend. This can be explained as follows. As mentioned earlier,
increasing the value of the clustering factor is good from the view-
point of clustering cache misses. In a sense, the larger its value,
the better miss clustering we have. However, this increase also in-
creases the gap (in terms of the intervening accesses) between the
two successive accesses to a given cache line. As a result, when the
clustering factor becomes large enough, this can cause extra cache
misses, which increase both execution cycles and memory energy
consumption.

6. CONCLUDING REMARKS
This paper proposes a cache conscious memory energy reduction

scheme based on the concept of cache miss clustering. The idea is to
cluster data cache misses and thus cluster banked memory accesses
and idle periods. This increase in idle periods then allows better
energy management via low-power operation modes and eventually
leads to better energy savings. Our experimental analysis shows that
our approach is effective in reducing both energy consumption and
execution cycles, and, more effective than the previously-proposed
schemes. Our results also indicate that the energy savings achieved
by our approach are consistent across different cache sizes, cache
associativities, and off-chip access latencies.

7. REFERENCES
[1] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and

A. Vandecappelle. Custom Memory Management Methodology –
Exploration of Memory Organization for Embedded Multimedia
System Design, Kluwer Academic Publishers, June 1998.

[2] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Energy-oriented compiler optimizations for partitioned memory
architectures. In Proc. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 2000.

[3] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. DRAM energy management using software and
hardware directed power mode control. In Proc. the 7th International
Conference on High Performance Computer Architecture, Monterrey,
Mexico, January 2001.

[4] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller policies for
DRAM power management. In Proc. the International Symposium on
Low Power Electronics and Design, 2001.

[5] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J.-A. M. Anderson.
Quantifying the energy consumption of a pocket computer and a Java
virtual machine. In Proc. SIGMETRICS, pages 252–263, 2000.

[6] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, E. Bugnion, and M. S. Lam. Maximizing multiprocessor
performance with the SUIF compiler. IEEE Computer, December
1996.

[7] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page
allocation. In Proc. Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2000.

[8] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis,
Computer Science Department, Cornell University, Ithaca, NY, 1993.

[9] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with
loop transformations. ACM Transactions on Programming Languages
and Systems, 1996.

[10] M. O’Boyle and P. Knijnenburg. Integrating loop and data
transformations for global optimisation. In Proc. International
Conference on Parallel Architectures and Compilation Techniques,
1998.

[11] V. S. Pai and S. V. Adve. Code transformations to improve memory
parallelism. In Proc. the 32nd International Symposium on
Microarchitecture, 1999.

[12] V. S. Pai and S. V. Adve. Comparing and combining read miss
clustering and software prefetching. In Proc. the International
Symposium on Parallel Architectures and Compilation Techniques,
2001.

[13] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., 1999.
[14] Rambus Inc. http://www.rambus.com/.
[15] M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting dual

data-memory banks in digital signal processors. In Proc.
International Conference on Architectural Support for Programming
languages and Operating Systems, 1996.

[16] U. Sezer, G. Chen, M. Kandemir, H. Saputra, and M. J. Irwin.
Exploiting bank locality in multi-bank memories. In Proc.
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, 2003.

[17] SimpleScalar LLC. http://www.simplescalar.com/
[18] A. Sudarsanam and S. Malik. Simultaneous reference allocation in

code generation for dual data memory banks ASIPs. ACM
Transactions on Design Automation of Electronic Systems 5, 2000,
pp. 242–264.

[19] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using
SimplePower. In Proc. the International Symposium on Computer
Architecture, 2000.

250

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

