Exploiting Soft Redundancy for Error-Resilient
On-Chip Memory Design

Shuo Wang and Lei Wang
Department of Electrical and Computer Engineering
University of Connecticut
371 Fairfield Road, U-2157
Storrs, CT 06269

{shuo.wang, leiwang}@engr.uconn.edu

ABSTRACT

Memory design is facing the upcoming challenges due to a
combination of technology scaling and higher levels ol inte-
gration and system complexity. In particular, memory cir-
cuits become vulnerable to transient (soft) errors caused by
particle strikes and process spread. In this paper, we pro-
pose a new crror-tolerance technique referred to as the soft
redundancy for on-chip memory design. Program runtime
variations in memory spatial locality cause wasted memory
spaces occupied by the irrclevant data. The proposed soft-
redundancy allocated memory exploits these wasted mem-
ory spaces to achicve efficient memory access and effective
error protection in a coherent manner. Simulation results
on the SPEC CPT2000 benchmarks demonstrate 73.7% av-
erage error protection coverage ratio on the 23 benchmarks;
with average of 52% and 48.3% reduction in memory miss
rate and bandwidth requirement, respectively, as compared
to the existing techniques.

Categories and Subject Descriptors: B.3.4 [Memory
Structures]: Reliability, Testing, and Fault-Tolerance;

C.4 [Performance of Systems]: Fault tolerance

General Terms: Design, Reliability

Keywords: Memory System, Error Tolerance, Cache Space
Utilization

1. INTRODUCTION

Technological scaling has driven the design of integrated
circuits with exploding system complexity and performance
improvement. With the continuing trend towards nanoscale
integration, nanometer devices are approaching their phys-
ical limits, and precise control over feature size and de-
sign uniformity becomes extremely difficult [1]. Design of
high-performance integrated systems is thus compelled to
contend with a wide range of unmanageable performance
spread and reliability degradation introduced by the under-
lying technology challenges.

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without [ee provided that copics are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the (ull citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCAD’ 00, November 5-9, 2006, San Josc, CA.

Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

535

These obstacles to the semiconductor roadmap are partic-
ularly noticeable in memory circuits such as on-chip caches.
Technology scaling reduces the capacitance, supply voltages,
and hence the information-bearing charges at storage nodes.
Consequently, memory circuits become vulnerable to tran-
sient (soft) errors caused by particle strikes. Timing com-
plexity is also a problem that further complicates memory
design. Memory access relies on closely coupled clock wave-
forms to perform latching, gating, dynamic timing, and so-
phisticated cycle borrowing. However, clock skew coupled
with signal delay variations introduces timing-related tran-
sient errors that affect memory robustness. In addition,
minimum-geometry devices that build bulk of memory are
very sensitive to variations in process, supply voltages and
temperature.

The [rustrating design complexity and reliability degrada-
tion press for new capabilities of error tolerance for on-chip
memory design. Traditional approaches include radiation-
hardened memory structures [2], double or triple memory
redundancy [3], and code checking algorithms [4]. Integrat-
ing these techniques into high-performance on-chip memory
presents a significant challenge due to the severe constraints
on arca and timing margins. On a parallel path, rescarch in
cache microarchitecture has been focusing on efficiently uti-
lizing mcmory resources, reducing the bandwidth require-
ment of data fetching, while not inducing too much over-
heads or lowering spatial locality. Sub-blocked caches [5] re-
duce memory traffic by transferring only a single sub-block
on a cache miss. Some alternatives [6], [7] dynamically adapt
the block size to the spatial locality of the program. Other
techniques [8], [9] adopt history based fetching on the gran-
ularity of sub-blocks or words. It should be pointed out that
noue of the above techniques address both memory robust-
ness and access cfficieney.

In this paper, we propose a new error-tolerance technique,
referred to as the soft redundancy, for on-chip memory de-
sign. We observe that program runtime variations in mem-
ory gpatial locality cause many irrelevant data being fetched
into the memory and thus waste memory spaces. By freeing
these memory spaces, the program creates transient (soft)
memory redundancy that can be exploited for tolerance of
transient errors. Through adaptively balancing cache re-
sources among dilferent computing tasks, the proposed tech-
nique is capable of achicving cfficient memory access and
effective error protection in a coherent manner. To assist
the implementation of our technique, we develop a design
methodology that enables optimal tradeoffs between hard-

mailto:leiwang}@engr.uconn.edu

i ag| Index |Offset

Mode History Table Tags Data

1 2°bQ0)2°b01 0y | (01| (007 (01N
_/
error=chgcKing
Y

&
1

Data

hit/miss Cancellation
Figure 1: Microarchitecture of soft-redundancy al-
located memory.

ware overheads and error tolerance. Simulation results on
the SPEC CPU2000 benchmarks [12] demonstrate 73.7% av-
erage error protection coverage ratio on the 23 benchmarks,
with average of 52% and 48.3% reduction in memory mniss
rate and bandwidth requirement, respectively, as compared
to the existing techniques.

In section 2, we develop the soft-redundancy allocated
memory microarchitecture for ellective error protection. In
section 3, we formulate a design methodology for optimis-
ing the performance of soft redundancy allocation. Section
4 presents a statistical analysis on the error tolerance and
comparison to the existing techniques. In section 5, we eval-
uate the performance ol the proposed technique.

2. SOFT-REDUNDANCY ALLOCATED
MEMORY

In most processor architectures, the size of cache lines is
fixed, while the spatial locality varies during runtime under
diffcrent programs. There arc always some irrclevant data
being fetched in the cache lines, wasting memory spaces.

In this section, we discuss the soft-redundancy allocated
memory that achieves efficient memory utilization and cffec-
tive error protection. The proposed technique aims at free-
ing the cache line spaces taken by the irrclevant data. The
released spaces provide soft (transient) redundancy that is
hidden in the cache lines due to variations in memory spa-
tial locality. Thus, instead of fetching the entire cache lines
containing many irrelevant data, the proposed technique se-
lectively fetches useful data to the sublines within a cache
line. The unused sublines are utilized to store a redundant
copy of the uscful data, thereby providing cffective error
protection.

2.1 Soft Redundancy Allocation

Figure 1 shows an example of memory microarchitecture
employing the proposed soft redundancy allocation. Each
cache line is divided into multiple sublines (e.g., four sub-
lines in Figure 1 for the purpose of demonstration). A his-

536

Mode and History Table Data

Initial 1 00 01 (N
Q0 01 10 1
l aiss happens in subline #01,
riggering a refetch

1 01 00 1) o (@)
error—checking l I

1 10 01 (107 1) (10 oy (3

Q 11 10 00) 1) (10 (11 4)
no—checking l :ZZ

Q 10 11 00) 1) (10 (11 (5)

1 11 10 (117 (11) (6)
error—checking l ZZ

1 10 11 (107 (117) (107 (11 7
Figure 2: An example of soft redundancy allocation.

tory table is introduced to record subline access status. Note
that the granularity. i.c., the subline size, is a key parameter
that affects several performance metrics, such as the distri-
bution of soft redundancy, the coverage of error protection,
and the miss rate of memory access. A general solution on
determining the subline size and the corresponding history
table is given in section 3.

In the example shown in Figure 1, the history table uses
four bits per cache line to keep track of the two most recently
replaced sublines. For example, the value 460001 shown in
the history table indicates that the two sublines 2/600 and
2’501 are fetched most recently due to cache misses. In the
following memory accesses, a miss occurring in the subline
2’600 will not change the history table; whereas a miss in
the subline 2001 will update the history table to 4'601_00.
If a miss occurs in any other sublines, c.g., subline 2'610
or 2’011, the history table will be updated to 4’51000 or
4’51100, respectively.

An example of memory access sequence using the soft re-
dundancy allocation is shown in I'igure 2. Each cache line
can be operated in one of the two allocation modes, error-
checking and no-checking, The mode switch is controlled by
the information stored in the history table. The detailed
operation and soft redundancy allocation is explained below
in reference to the steps in Figure 2.

Initially. the cache line is in the error-checking mode. The
flag bit is set to “17 indicating this mode. The history table
stores “00-01” for two default sublines “00” and “01”. Note
that the default sublines can be chosen arbitrarily. Assume
that the first miss in this cache line triggers the fetch of data
to replace those in subline “01”7 (step 2 in Fig 2). Since the
subline “01” is already in the history table, the allocation
mode will remain at error-checking, but the content of his-
tory table will be updated to “01-00”, indicating that subline
“017 is the most recently replaced subline. The cache will
only fetch data to subline “01”, not the entire cache line.
Meanwhile, an unused space, e.g., subline “117, is assigned
to save a redundant copy of the new data in subline “017”.

Agsume the next miss causes the replacement of subline

Table 1: Algorithm of history based soft redundancy
allocation.

DOWHILE initiation
subline division
history_table initiation
allocalion_mode initiation
con fidence_cownler initiation
ENDDOWHILE

DOWHILE a miss occurs
IF the to-be-refetched subline hit history_table

IF confidence_counter!'=CONFIDENCE_MAX
con fidence_counter + +

ENDIF

ELSE
IF confidence_counter! =0

con fidence_counter — —

ENDIF

ENDIF

update hislory_table

IF confidence_counter==CONFIDENCE_ITHRESHOLD
allocation_mode switches
ENDIF
ENDDOWHILE

DOWHILE rctetch
CASE(allocation_mode)
crror_checking;:
assign redundancy pairs
no_checking;:
cancel redundancy pairs
ENDCASE
ENDDOWHILE

“107 (step 3). Since this subline is not listed in the his-
tory table, the history table will be updated to “10-017.
Since this is the first time of a miss whose entry is not in
the history table, the allocation mode will remain at error-
checking mode. New data is fetched into subline “10” and
a redundant copy is stored at an unused subline determined
by Table 2.

Next, assume the subline “11”7 is to be replaced because
of a new miss (step 4). The history table is thus changed
to “11-107. Since this is the second time of a miss whose
entry is not in the history table, statistically we can conclude
that the program is becoming less predictable with respect
to the memory spatial locality during this period. Thus,
the allocation mode will be switched to no-checking. The
entire cache line will be fetched and no subline will have a
redundant copy.

If the subsequent miss occurs in subline “107 (step 5), the
program will still fetch the entire cache line and update the
history table to “10-117. But because subline “10” is already
in the history table, the hit in the history table establishes
some confidence in the location where the program is most
likely to access.

The allocation mode will switch back to error-checking
provided the next miss is also a hit in the history table. For
example, a miss in subline “11”7 leads to update of history
table to “11-107 (step 6), and this is the second consecutive
hit in the history table. Considering this event as an evi-
dence of sufficient memory spatial locality, we can assume
the subsequent memory accesses are likely to be directed to
those sublines recorded in the history table. Thus, new data

537

Table 2: An example of predefined subline pairs for
redundancy.

Subline numbers in history table Subline pairs

“00” and “01~

E.’lo??).‘ (14017
*and €107 E

*and €117

7 and €107

7 and €117

7 and €117

will be fetched to subline “11”7 only and a copy of the new
data is stored according to Table 2.

In a similar way, a replacement of subline “10” does not
change the allocation mode (step 7). It will update the
history table to “10-11" and save a redundant copy of subline
GClO?: .

The above example demonstrates the main idea of the
proposed soft redundancy allocation. By monitoring real-
time access patterns recorded in the history table, we can
keep track of the locations (sublines) in a cache line that
arc accessed more frequently by a program. Since these
sublines are accessed very often, we assign redundant sub-
lines to them for the purpose of error tolerance. Omn the
other hands, the sublines that are accessed less frequently
are most likely the ones storing irrelevant data due to the
non-idealities of spatial locality. We can then [ree these
sublines and use them as soft redundancy for the frequently
accessed sublines. Hence, the proposed technique is sell-
adaptive to runtime varying spatial locality and is able to
exploit transient (soft) redundancy [or error protection.

Table 1 shows the general procedure for updating the his-
tory table and directing the mode transition. The allocation
mode decides whether to allocate redundant space [or error
protection or to fetch the entire cache line for performance.
1 the cache line is in the error-checking mode, each subline
listed in the history table will have a redundant copy in the
same cache line. On the other hand, if the cache line is in
the no-checking mode, the entire cache line will be fetched
without making any redundant copy. The allocation mode
switches when enough confidence has been established.

2.2 Error Protection

When the program reads data in the cache lines currently
in the error-checking mode, errors could be detected by com-
paring the data with the redundant copy.

In traditional cache microarchitecture, memory hit/miss
is generated by comparing the desired tag address with the
tag address of the cache line. A hit is generated if the two
tag addresses are matched. What is different in the proposed
technique is an additional comparison between the two data
copies in the same cache line. Mismatches between the two
copies indicate errors hence result in cancelation of memory
access. A memory miss is generated as a result. There is
a possible situation that when redundant copy is corrupted
while the original data is correct, a misjudgement on the
correctness ol the data would occur, thereby introducing an
additional miss with performance penalty. However, since
the probability is relatively low, the performance penalty is
negligible.

The proposed technique could detect multiple errors that
occur in any bits. This is a significant improvement over the

existing error-control techniques that are only eflective for
single-bit or double-bit errors. Statistical analysis in section
1 demonstrates about 10X improvement in error detection
capability over the existing techniques.

3. DESIGN OPTIMIZATION

In this section, we present an algorithm to determine the
optimal configuration of the proposed soft-redundancy allo-
cated memory microarchitecture.

Consider a general case where each cache line contains m
words divided into n sublines. Here we assume the mini-
mum size of a subline is a single word. Each cache line also
integrates one flag bit for the allocation mode and a history
table with 5 log, n bits to record the most recently replaced
sublines. The capacity of the history table should be large
enough to store the I1Ds of at most half of the total sublines
in each cache line.

If the subline listed in the history table is hit or missed
consecutively for certain times, the allocation mode will
switch between the no-checking mode and crror-checking
mode. Assume that the mode will switch alter ¢ times.
Thus, the parameter ¢ defines the confidence level in mode
switch. In the no-checking mode, the entire cache line will
be fetched and no redundant copy will be made. In the
error-checking mode, cach subline listed in the history table
has a redundant copy in the same cache line. When the
program accesses a word in a subline listed in the history
table, the second copy is compared with in order to detect
possible errors in the original data.

The subline number 7 is a key parameters in the proposed
technique. The value of n needs to satisfy the following
condition

t
n=2,

(1)
where ¢ € [1,2, ..., 1log, m], and m is the number of words in
each cache line. Thus, 7y, = 2 and neyee = M.

The confidence level ¢ also affects the performance of the
proposed technique. It can be chosen from a range given by

(2)

4 e Nanax
Ce[lz,, 2 }

It is necessary to determine the optimal values of these
two paramecters by considering the tradeoffs between er-
ror protection and design overheads. The timing overheads
of the proposed technique can be minimized by executing
the required operations (e.g., data comparison and redun-
dant data copying) in parallel with non-critical operations,
thereby keeping the operations off the critical timing path.
In the following, we will focus on the hardware overheads in
this optimization analysis.

A large subline number n provides more {lexibility in ex-
ploiting the soft redundancy and hence leads to better error
protection. But on the other hand, it increases the hardware
complexity, especially the size of history table.

The confidence level ¢ affects the mode switch frequency
and thus the coverage of error protection. In the proposed
technique, the sublines are not under the error protection all
the time. When a cache line is in the no-checking mode, the
data in that cache line is not protected. The error protection
coverage ratio, denoted as R, can be calculated by

AC[Ae'r"r'm'7ch,eck7',ng
]\/[Aerro’r'fchecking + A"[Anofchecking ’

R, = (3)

538

Table 3: Algorithm for determining the optimal pa-
rameters - (Niopt, Copt)

parameter_selection(«. 8. linc_size, cache_size, assoc, Nope, Copt)

input:
« (weight of error protection coverage ratio consideration)
3 (weight of hardware cost consideration)
linc_size (cache line size in words)
cache_s (cache size in words)
assoc (associativity)
output:
Topt (Optimized subline number)
Copt (Optimized switch confidence)

Do, using linc_sizc, cache_size, assoc
calculate possible values of (n.c)
FOR cach possible (n.c)

AA

erro h

Crin,e) =k (”1%

error—checking
ing | MA

HP T MA

no—checking

+ 82 4 log, ¢+ 2)

find Ryaw of Rp(n,c)
find Cyae of Cpn, e

J’i\’,p(n., c) = %

=5 Cp (il

Crin,c) = m
ENDFOR

find (Topt, Copr) to maximize |:

End

where 4“’[‘4’rl()7(‘ll(3 king and AIA(f'r“r'o'r'f(:h,(fck:i'n,g arc the num-
bers of memory accesses when the cache line is in the no-
checking mode and error-checking mode, respectively. Ob-
viously, the switch frequency of allocation mode determines
the error protection coverage ratio. As R, is determined
by both paramcters n and ¢, we can express it as an ex-
plicit function of n and ¢ as Ry(n, ¢). It is very difficult to
represent the Ry (n, ¢) in a closed-form expression. However,
numerical values can be obtained by averaging over different
progranis subject to various memory access patterns.

The hardware overheads of the proposed technique include
history tables, additional comparators and control bits. Each
cachc line employs (§ log, n) bits to maintain the access his-
tory. At the switch confidence level ¢, each cache line needs
(log, ¢ + 1) bits for mode transition control and one bit for
allocation mode indication. Each comparator for error de-
tection is a ”"f” bit comparator, where m is the number of
words in cach cache line. Since cach comparator is shared
by two arbitrarily assigned sublines and each cache line has
n sublines, the number ol comparator bits is % X & =8m.
TFor a cache with k£ cache lines where each line contains m
words and is divided into n sublines with switch conlidence
level of ¢, the hardware overhead Ch(n,c) is the total size
of the history tables, the comparators, and the control bits,
expressed as

nlog,n

Cn(n,c) =k (5 + 8m +log, ¢+ 2) . (4)

To derive a general solution applicable to different pro-
grams with different memory access patterns, we normalize
the hardware overhead by its maximum value C,q.. and the

error protection coverage ratio by Ry, i-€.,

Ch(n,c) = % (5)
Bo(n.c) = % 6)

The optimal soft redundancy allocation is the one that
achieves the best tradeofl between error protection coverage
ratio and hardware overheads. This can be expressed as the
following optimization problem

3(”01”7 COPt) 6(7'1,, C): 'S't'ﬂ (7)

(Bp(ropt: cop))® | (Bpln.e))* |
(Oh (nopt s Cr)pt))la (Oll (TL, C)ﬁ '

where « and 3 are the weight factors for error protection
coverage ratio and hardware overheads, respectively. By
changing the values of « and 5, we can adjust the design
priority between error protection and hardware overheads.
Table 3 summarizes the proposed algorithm in determin-
ing the optimal configuration of soft redundancy allocation.

(8)

4. STATISTICAL ANALYSIS OF
ERROR TOLERANCE

In this section, we perform a statistical analysis to quan-
tify the crror tolerance of the proposed soft-redundancy al-
located memory.

Traditionally, soft errors in memory systems are modeled
as single-bit upsets (SBU). As the feature size of semicon-
ductor process being scaled into the nanometer domain,
a single partial strike may potentially destroy the states
of multiple memory bits, resulting in multiple-bit upsets
(MBU). Thus, we need to evaluate the crror protection for
both SBU and MBU.

We comparce our technique with the parity checking code
and single-error-correction double-error-detection Hamining
code. Parity checking code is considered as the most effec-
tive technique for detecting SBU, whercas Hamming code
provides error detection for up to two bits of errors. In our
estimation model; each soft crror can causc a single-bit error
or a double-bit error with the probabilities of Ps and P,
respectively. The corresponding values are estimated as

Py =3, (9)
P, =810 (10)

where 3 is the soft error rate (SER). Based on the obser-
vation in [10], the probability of SBU is selected as two or-
ders of magnitude larger than that of MBU. In addition,
we model the soft errors as independently and identically
distributed events, i.e., a memory entry may have multiple
errors caused by multiple soft error events.

For SBU dominant scenarios, the probabilities of unde-
tected errors (PUE) are denoted by Pue_s_sr and Pue_s_par
for the proposed technique and the parity checking code,
respectively. The PUE can be derived as

n
Hu,e_s_s’l' - Z OVLLIJ.S,_/(I - Hg—”')niﬂ (ll)
i=1
/2
Pue_s_pur - Z CiZle(l - Ps)n7211 (12)
i=1

(n+)w and P, = Pf denotes the probabil-

ity of a single-bit error that the proposed technique cannot
detect. This occurs rarcly only when the same bits of the
original data and the redundant copy are both corrupted.
On the other hand, the undetectable errors in parity check-
ing schemes occur when the number of corrupted bits are
even. Numerical results from (11) and (12) demonstrate
10X improvement in detection of SBU crrors over the par-
ity checking.

For crrors duc to MBU, the probabilitics of undctected
errors (PUE) are denoted as Pye_m_sr and Pye 1 pom for the
proposed technique and the Hamming code, respectively.
The PUE can be derived as

where C, =

Pucamsr = Z C‘VLIPTLVI_’T(‘L - -P'm_'r)nii,- (13)
i—1

Pu,e_ln_hwm - Z O‘:Lprln(l - pm)nii (14)
=2

where P, = P2 denotes the probability of a double-bit er-
ror (the dominant MBU) that the proposed technique can-
not detect. Similar to the SBU cases, this happens rarely
only when the same two bits are corrupted in both the origi-
nal data and the redundant copy. On the other hand, the un-
detectable errors in Hamming code checking schemes occur
when more than one double-bits are corrupted. Numerical
results from (13) and (11) demonstrate 10X improvement
in detection of MBU errors over the Hamming code.

In addition to the improvement in error detection, a high
error protection coverage ratio £2;, (defined in (3)) as shown
in the next section makes the proposed technique a superior
golution for error tolerance.

5. EVALUATION AND DISCUSSION

In this section, we evaluate the error tolerance of the pro-
posed soft-redundancy allocated memory microarchitecture.
We also compare the memory access performance and band-
width requirement with the traditional cache systems.

Our simulation results were obtained from a simulator
based on the trace-driven simulator Dinero 1V [11]. The
cache model in this simulator is modified to support the
proposed soft redundancy microarchitecture. The proposed
technique is evaluated in a direct mapped cache whose total
size is 32K B and each line is 32B. The number of sublines is
selected to be 8, and switch confidence value is set to 2. All
the simulations were ruuning on the SPEC CPU2000 [12]
trace files collected from the Stream-Based Trace Compres-
sion (SBC) [13], where trace {iles of 23 benchmarks are avail-
able.

In section 4, we have shown that the proposed technique
achieves an improved error detection capability. Many ex-
isting works [11]—[16] on soft errors usually assume certain
conditions or target specific architectures. Instead of simu-
lating soft errors directly, we evaluate the error protection
ratio R, as delined in (3). Table 4 shows the results ol error
protection ratio of the 23 workloads selected for simulation.
These results are obtained {rom (3) using statistical results
reported by the simulator. The average error protection ra-
tio of all the 23 benchmarks is 73.7%. In some benchmarks,
e.g.. art, mcf, and applu, nearly all the memory accesses
are protected by our mechanism. In addition, the proposed
technique induces very small hardware overheads. The ex-

Table 4: Error protection coverage ratio.
[Workloads | Coverage | Workloads | Coverage |

1.ammp 81.8% 13.1ucas 99.8%
2.applu 99.9% 14.mcf 100.0%
3.apsi 97.4% 15.mesa 21.4%
4.art 100.0% 16.mgrid 99.7%
5.crafty 54.1% 17.parscr 58.1%
6.con 33.5% 18.perlbmk 31.4%
7.cquake 78.3% 19.sixtrack 75.8%
8.fma3d 84.9% 20.swim 99.7%
9.galgel 99.8% 21.twolf 56.0%
10.gap 45.2% 22.vortex 31.3%
11.gcc 91.2% 23.wupwisc 94.7%
12.gzip 58.3% Average 73.7%

5 10 15 20
\Workioad Index
(a}

Reduction of bandwidth requirement{%} Reduction of miss rat

&80+
40
20
G i,
G 5 10 15 20
Warkioad Index
b}

Figure 3: Simulation results. (a) Reduction of miss
rate as compared to the sub-blocked cache. (b) Re-
duction of bandwidth requirement as compared to
the traditional cache.

tra hardware includes just 15 bits per cache line and a 32-bit
comparator for each redundancy subline pair.

It is expected that the proposed technique will possibly in-
troduce higher miss rates caused by the wrong prediction of
soft redundancy. But on the other hand, the proposed tech-
nique only fetches useful data when possible,; thereby reduc-
ing the memory bandwidth requirement. As proved in many
sub-blocked cache designs [5] which feature a similar cache
structure, the reduction in bandwidth requirement can offset
the increase in miss rate, leading to an overall performance
improvement. In comparison with the sub-blocked cache de-
sign with the same sub-block number, our technique achieves
an average of 52% reduction in miss rate (see Fig. 3(a)). The
bandwidth requirement in term of total fetched words is also
significantly reduced, averaging at 48.3% as compared to the
tradition cache (see Fig. 3(b)).

Additional power consumption results from the error con-
trol operations such as duplicating data and error checking,.
Our future work will be directed to the tradeolls between
error tolerance and power consumption. Also note that the
elliciency of the history-based redundancy allocation deter-
mines the error tolerance, performance, and bandwidth re-
quirement. Future work will study on how to efficiently
exploit solt redundancy in applications that have different

memmory access spatial locality along with caches that have
different cache line sizes. Further improvement of the pro-
posed error-control technique could be a combination of the
soft redundancy and crror checking codes, thereby providing
error checking to cover all the data and meanwhile improv-
ing error detection.

6. CONCLUSIONS

This paper presents a new error-control technique referred
to as the soft redundancy for efficient memory access and ef-
fective error protection. Statistical analysis reveals about
10X improvement in error detection over the existing error-
control techniques. Simulation results demonstrate 73.7%
average error protection ratio on the 23 benchmarks, with
average of 52% and 48.3% reduction in memory miss rate
and bandwidth requirement, respectively, as compared to
the existing techniques. lfuture work is being directed to-
wards cxploiting soft redundancy with thread information
for multithreaded computing.

Acknowledgment

This research was supported in part by the University ol
Connecticut Faculty Research Grant 446751.

7. REFERENCES

[1] The International Technology Roadmap for Semiconductors,
2003 at hetp://public.itrs.net/Files /20051 T RS /Home2003 . him.

[2] H. L. Hughes and J. M. Benedetto, “Radiation effects and
hardening of MOS technology: devices and circuits,” IEEE
Prans. on Nuclear Science, vol. 50, pp. 500-521, 2003.

[3] K. Chakraborty, ct. al., “A physical design tool for built-in
scli-repairable RAMs,” IEEE rans. on VLSI, vol. 9, pp.
352-364, 2001.

[4] M. Biberstein and L. Etzion “Optimal codes for single-crror
correction, double-adjacent-crror detection,” IEEE Trans. on
Information Theory, vol. 46 . pp. 2188-2193. Scpt. 2000.

[5] R. Fellman, ct. al., ¥Design and evaluation of an architecture for
a digital signalprocessor for instrumentation applications,”
IEEE Transaction on Acoustics, Speech, and Signal
Processing. vol. 38, pp. 537-546, 1990.

6] A. Veidenbaum, ct. al., “Adapting Cache Line Size to
Application Behavior,” Proc. 1CS, 1999.

[7] C. Zhang, ctl. al., “Encrgy Benefits of a Configurable Line Size
Cache for Embedded Systems,” Proc. International Symp. on
VLSI, pp. 87-91, 2003.

8] K. Inouc, ct. al., “Dynamically Variable Line-Size Cache
Exploiting High On-Chip Memory Bandwidth of Merged
DRAM/Logic LSIs,” Proc. HPCA. pp. 218-222, 1999,

[9] P. Pujara, A. Aggarwal, “Incrcasing the cache cfficiency by
climinating noise,” IEEE High-Performance Computer
Architecture, pp. 145-154, 2006.

[10] F. Wrobcl, ct. al., “Simulation of nucleon-induced nuclear
reactions in a simplificd SRAM structure: scaling cffects on
SEU and MBU cross scctions,” IEEE Transactions on Nuclear
Science, pp. 48(6):1946-1952, 2001.

[11] J. Edler and M. D. Hill, “Dincro IV Trace-Driven Uniprocessor
Cache Simulator,” at
http:/ /woww.cs.wisc.edu/rimarkhitl/Dinerol V /.

[12] SPEC CPU2000 at http://www.spec.org/cpu/.

[13] A. Milenkovic and M. Milenkovic, “Exploiting Streams in
Instruction and Data Address Trace Compression,” Proc. IEEE
Annual Workshop on Workload Characterization, pp. 99-107,
2003.

[14] S. S. Mukherjece, J. Emer, S. K. Reinhardt, “Lhe soft error
problem: an architectural perspective,” Proc. Intl. Symp.
High-Performance Computer Architecture, pp. 243-247, 2005.

[15] N. Scifert, X. Zhu, and L. W. Masscngill, “Impact of scaling on
soft-crror rates in commercial microprocessors,” IEEE Trans.
Nuclear Science, vol 49, pp. 3100-3106, 2002.

[16] P. Hazucha, T. Karnik, “Characterization of soft crrors caused
by single event upscets in CMOS processes,” TEEE Trans. on
Dependable and Sccure Computing, vol 1, pp. 128-143, 2004.

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

