Studying a GALS FPGA Architecture Using a
Parameterized Automatic Design Flow

Xin Jia; Ranga Vemuri
University of Cincinnati
2600 Clifton Ave.
Cincinnati, OH, 45221

{jiax, ranga}@ccecs.uc.cdu

ABSTRACT

Routing delays dominate other delays in current FPGA de-
signs. We have proposed a novel Globally Asynchronous
Locally Synchronous (GALS) FPGA architecture called the
GAPLA to deal with this problem. In the GAPLA archi-
tecture, The FPGA area is divided into locally synchronous
blocks and the communications between them are through
asynchronous I/O interfaces. An automatic design flow is
developed for the GAPLA architecture. Starting from be-
havioral description, a design is partitioned into smaller
modules and fit to GAPLA synchronous blocks. The asyn-
chronous communications between modules are then sythe-
sized. The CAD flow is parameterized in modeling the
GAPLA architecture. By manipulating the parameters, we
could study different factors of the designed GAPLA archi-
tecture. Our experimental results show an average of 20%
performance improvement could be achieved by the GAPLA
architecture.

1. INTRODUCTION

Routing delays have become a major roadblock for FPGA
performance and the situation will only be worse when tech-
nology continues to scale and FPGA chips continue to grow
large. Long routings not only increase the wire delay it-
sclf, but also need to go through more routing switch boxes,
making the situation worse. For example, the Xilinx Vir-
texI] xc2v8000 FPGA has a corner-to-corner interconnect
delay of around 15ns [1]. Different approaches of solving
this problem have been proposed. [2] and [3] pipelines the
long interconnect delay and [1] proposes a synthesis flow
synthesis flow to allow the long interconnect to run for sev-
eral clock cycles. In those approaches, interconnects are
treated as circuit components instead of conventional wires.
The interconnect retiming registers can be very expensive in
area which make their FPGA size several times bigger than
conventional FPGAs.

*The author is currently with Mentor Graphics Co.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCAD’06, November 5-9, 2006, San Jose, CA

Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

688

Using asynchronous design is another possible solution.
Asynchronous design provides average-case performance. In
terms of interconnect delays, performance is dictated by the
average of the interconnect delays rather than the one with
worst delay. Hence the use of long routings does not neces-
sarily lead to a significant performance penalty. We designed
the GAPLA: a novel Globally Asynchronous Locally Syu-
chronous Programmable Logic Array architecture. GALS
systems can be seen as synchronous logic blocks wrapped
in asynchronous I/0 interfaces. Interconnects inside each
block is short and fast, which allows the synchronous logics
to run at higher speed. Interconnects between synchronous
logic blocks have longer delay, but they will not affect the
clock speed of the logic blocks and ounly come into pic-
ture when there are communications between synchronous
blocks. Therefore, performance improvement could be ex-
pected.

An automatic design flow for the GAPLA architecture has
also been developed [5]. Starting from a behavioral circuit
description, a design is first partitioned into smaller modules
where each module can fit into one synchronous block (also
called asynchronous island). Then the control sequences for
asynchronous communications between modules are gener-
ated and put into each module. After that, a coarse-grained
placer is used to place the modules to the GAPLA chip space
and connections between islands are routed. Each module is
then synthesized by calling existing FPGA tools. The CAD
flow is designed as an auxiliary tool to study the GAPLA ar-
chitecture. It is parameterized in modeling the architecture.
Therefore, by changing the values of the architectural pa-
rameters, we could study the effect of these factors. In this
paper, we report the results of our study of the GAPLA
architecture using the above CAD flow.

2. RELATED WORK

Several asynchronous FPGA architectures have been pro-
posed in the last decade [6, 7, 8, 9, 11]. Several of these ar-
chitectures adopt the GALS concept. STACC [7] is loosely
based on Sutherland’s Micropipeline design. The clock sig-
nal of the data array is replaced by the handshaking control
signals of the timing array in a micropipeline like structure.
PCA [8] is a self-reconfigurable programmable logic architec-
ture consisting of a layer of logic array and a layer of built-in-
facilities. Data communications between logic blocks is real-
ized by a wormhole message passing mechanism through the
built-in-facilities which can be expensive in time. Royal et
al proposes another GALS FPGA architecture [11] and the
idea of using GALS architecture to limit the impact of long

http://ranga)Qccccs.uc.edu

RM

&

*=
—~ « HS
gl | [o
10 distributi
Clock || 10 port ctrllers ‘:,1;5'““
grouping roupin
P Clock generator groping
hd -
i Ne|els 23 =/*
\,ﬂ“ gl2E Logic glg g\dﬂ‘/
) 8 2z E:
2 2|82 Block HEE =
z1g8|2 ilglg—
g HEEY
—do|o|8 HHEH
— 2|23 LI R
= g T @ @
i lock generator LT
clock | Clock generato Clock
grouping |[«—| VO port etrllers grouping
/O distribution
K
Te | T
L pairs
~ @

RM

RSB { —

ﬁ Asynchronous
~—

Island

i

Figure 1: Block diagram of GAPLA architecture.

interconnect wire delay on the total FPGA performance.
But to our knowledge, no CAD tools have been proposed
for those FPGA architectures. In [13], an automatic syn-
thesis flow is proposed for the highly-pipelined asynchronous
FPGA of [9], which is a different asynchronous design style
to GALS. In [12], an automatic methodology to produce
GALS system is proposed. But the main focus of [12] is
to automatically generated the GALS system from a higher
level circuit description, while in our research, the GALS
interface is a built-in feature of the GAPLA FPGA. Our
research focuses on finding the optimal values for a set of
architectural parameters.

3. THE GAPLA ARCHITECTURE

Figure 1 gives a basic building tile of the GAPLA archi-
tecture called an asynchronous islands. The GAPLA archi-
tecture is a mesh of asynchronous islands. Each island con-
tains a synchronous logic block and 4 asynchronous wrap-
pers. Each wrapper contains a local clock generator and
I/0 port controllers. The structure of the synchronous logic
block can be any of the conventional FPGA structures. But
the size of each synchronous logic block must be big enough
to implement reasonable functions. In our design, we adopt
the Virtex II logic array structure. The 4 clock signals gen-
erated by the clock generators are all distributed into the
synchronous logic block. Logic tiles inside the synchronous
block can freely choose to connect to one of these clock sig-
nals. The logics controlled by the same clock signal are
called a clock domain. Thus, the size and shape of each
clock domain of the GAPLA architecture is programmable
within the limit of a synchronous logic block. The routing
resources between asynchronous islands contain horizontal
and vertical routing channels for both data and handshak-
ing control signals. Adjacent asynchronous islands are also
directly connected to enable fast communications. Please
refer to [4] for details of the architecture design.

RSB <::>
J *->
e

ki

The execution time of an application mapped on the GAPLA

689

FPGA architecture consists of two parts: computation time
and communication time. Computation time is the time for
synchronous logic blocks to finish the programmed compu-
tations. Communication time is the time consumed by the
asynchronous communications between logic blocks. The
best performance of the GAPLA architecture is the best
tradcoff between communication time and computation time.
The architectural parameters which affect this tradeoff are
as follows.

1. The size of a syunchronous logic block. A large logic
block means more operations can be put into one clock
domain, which generally decreases the local clock speed
and increases the overall computation time. But the
communication time will decrease since more comrinu-
nications will be done synchronous inside a clock do-
main.

2. The number of asynchronous I/O ports for each asyn-
chronous island. Increasing the number of I/Os will
increase the area overhead but will lessen the I/0O con-
straints during the application partitioning process which
could improve the logic usage of the logic block and
benefit the system performance. Since our design of
the I/O port controllers are very simple and has small
layout areas, we can afford to add more I/O ports as
long as it will benefit the system performance.

3. The number of global routing channels. This factor not
only affect the routability of GAPLA architecture and
also affect the performance since the routing might be
congested and need to detour if the routing resource is
limited which increases communication time.

4. CAD FLOW

The CAD flow is developed to automatically implement
designs to be the GAPLA FPGA. It is also used to inves-
tigate the architecture design. As mentioned above, perfor-
mance of the GAPLA is affected by three groups of parame-
ters. The CAD flow models the architecture based on them
too. By given these parameters different values, we could
compare the implementation results of a set of benchmarks
and get to know the effect of these parameters.

Figure 2 shows a block diagram of the overall CAD design
flow. The grey boxes are modules we proposed and white
boxes are modules using existing CAD tools. Partitioning
is required first if the design is bigger than a given asyn-
chronous island. Controls for asynchronous communications
are then added to each module to ensure functional correct-
ness. After that, each module is synthesized and place-and-
routed using existing FPGA design tools. Also, all the mod-
ules are fed into a coarse-grained placer and router which
places each module to the GAPLA chip space and finishes
the global routing between modules. Finally, a simulation
model of the design implemented on the GAPLA architec-
ture is formed for performance evaluation. If all the perfor-
mance constraints are met, the design is accomplished. In
the following subsections, we briefly explain each functional
module in the following.

4.1 Partitioning

When partitioning a design into modules, we try to mini-
mize the communication time between partitioned modules.
Also, partitioning is conducted under two constraints: the
area constraint where the area of each module must be less

Behavioral
description

I S

Partitioning
(if needed)

_1

Adding module
communication
control

> AR e

Inter-island S
communications—" .

Logic &Aphysical
synthesis for
Each module

K . T
——Area constraints met™-..
< >

~~..._for each module? .

Module PnR

Inter-island \ ~9
interconnections Intra-islana
‘synthesis inf

PR

Performance
evaluation

Input trace

-gonstraints met’

N

Figure 2: Block diagram of CAD flow for GAPLA.

than the given area of a synchronous block; the I/O con-
straint where the number of input/output ports must be
less than the give number of input/output ports per asyn-
chronous island.

To calculate the asynchronous communication time, we
first build a CDFG representation of the design and edges in
the CDFG are given communication weights. The communi-
cation weight of an edge consists of two parts: its “commu-
nication frequency” and its “length”. The communication
frequency of an edge is defined as:

1 initial value
f(e)/m ifeisinsideabranch, misthe
number of branches

fle) xn ifeisinsidealoop, nisthe loop count

fle) =

The length of an edge [(e) is defined as follows: First, we do
an As-Soon-As-Possible scheduling to the CDFG, and the
control step assigned to node i is denoted as es(¢). Then:

Ueiy) = es) — es(i)

1(e) is used to localize all the interconnects. An edge which
spans more control steps may have better chance of mapped
to a long interconnects. Therefore, it should be more likely
to mapped to asynchronous communication channel. The
final weight of an cdge for the partitioning is a weighted
combination of factors f(e) and I(e):

fle) min, (I(e))
e () 0

« and 3 are user defined coefficient and a+3 = 1. max(f(e))

+ 8=

w(e) = a*

is the maximum communication frequency of all edges, min(l(e))

is minimum length of all edges.
The GAPLA architecture allows multiple I/O ports of the
same clock domain to be active at the same time. In this

case, the time overhead for these asynchronous communi-
cations overlaps, which leads to performance benefits. The
partitioning algorithm should take advantage of this and
partitions the system in a way that the overlap among asyn-
chronous communications is maximized. But because parti-
tioning is done before the actual system timing information
is obtained, an estimation method is required. We use the
factor NV, the number of control steps where data transmis-
sions across partitions are required, to represent this.

Thus, the overall cost function of the partitioning algo-
rithm is formed as:

F=Nx Zw(ei]‘)7

where node i, j belong to dif ferent partitions.

A simulated annealing algorithm is used as the partitioning
algorithm. After one iteration of partitioning, each parti-
tion is synthesized (logic synthesis without doing placement
and routing) separately. The partitions that meets the area
and I/O constraints are treated as an individual partition
in the final result. The partitions that still violate the area
and I/O constraints are further partitioned using the above
algorithm.

4.2 Asynchronous Communication Control

To add asynchronous communications, we need to provide
a proper sequence of control values for the control signals of
the corresponding asynchronous I/0 port coutrollers. The
asynchronous handshaking process is automatically man-
aged by the built-in asynchronous FSMs inside the I/O port
controllers based on these signals. Therefore, we need to
know at what cycle an asynchronous communication should
take place. To gather this information, operations inside
cach module are scheduled first.

We use an As-Soon-As-Possible (ASAP) algorithmn to sched-
ule each module in order to get the best performance. Be-

cause of the architecture design, the inter-module asynchronous

communications block both the sender’s and receiver’s oper-
ations. Thus, deadlock situation could occur after schedul-
ing. Deadlock occurs when two or more communicating pro-
cesses waiting for cach other’s data in order to continue ex-
ecuting. It can be solved by constructing Communication
Dependency Graph (CDG) [14]. A CDG contains all the
communication nodes of the system. And a directed arch
between two communication nodes in a CDG iff there is a
sequential dependency between the two nodes in any of the
processes of the system. The dependencies of communica-
tion nodes in the constructed CDG are enforced in all the
processes of the system by adding dummy control edges to
the processes. After adding these edges, an ASAP schedul-
ing algorithm is used to schedule each process and deadlock
is avoided.

The outputs of the scheduling are cycle-accurate descrip-
tions for each module. After scheduling, we know exactly at
what cycle data needs to be sent to or received from other
modules. Therefore, the control signals for the asynchronous
communications can be added accordingly.

4.3 Module Placement and Routing

The placer will place each module to an asynchronous
island. The optimization goal during placement is to mini-
mize the total communication cost between modules. Since
each communication edge carries a communication weight

as explained before, the goal of the placer is thus to:

min(z fleij) x Dij)

where node 4, j belongs to different modules. D;; is the dis-
tance between the clock domains where node i, j are placed.

Since the affect of global routing on the system perfor-
mance is greatly reduced, a simple and fast line-search based
router [15] is used to route the asynchronous communica-
tions to the global routing channels of GAPLA FPGA. The
inter-module routing resources are represented by two matri-
ces Horizontal Routing Sources (HRS) and Vertical Routing
Sources (VRS). The two matrices can be initialized at run
time to model different configurations of the GAPLA archi-
tecture. Nets are picked up once at a time from the netlist
and routed. For multiple-terminal nets, the two terminals
with the longest Manhattan distance are routed first.

4.4 Performance Simulation

Simulation is used to estimate the performance of the de-
sign implemented on GAPLA architecture. From the syn-
thesis results of each module, the information about the
clock frequency for each module is obtained. From the mod-
ule placer and router, the information about the placement
position of each module and the interconnect delays between
modules are obtained. These information together with the
cycle-accurate VHDL descriptions of each module is fed into
our VHDL simulation model of the GAPLA. The GAPLA
simulation model contains the models for the pausible local
clock generators, the I/O port controllers, and the inter-
island routing channels. The local clock generators are pro-
grammed to the corresponding clock frequencies of the mod-
ules. The modules are wrapped by the asynchronous inter-
faces and connected through the routing channels, compos-
ing a simulation model of the circuit implementation. Input
traces are then read to the model and the performance can
be observed.

5. ARCHITECTURE PARAMETERS
5.1 Studying Methodology

To study these parameters, we need to implement a set
of benchmarks on different configurations of them. Our
benchmark set consists of 12 synthetic benchmarks gen-
crated by TGFF [10]. TGFF gencrates Directed Acyclic
Graphs (DAGs) with different number of nodes and connec-
tivity intensities. We then assign each node an arithmetic
operation and generate a VHDL description code from each
graph as a benchmark. Thus, all the benchmarks are com-
putation intensive ones with few or no control flow which are
the cases for most FPGA applications. To exclude the fac-
tor of multipliers, only addition and subtraction operations
are assigned. Table 1 gives the statistics for the benchmark
set and their implementation results on a Virtex IT FPGA.

It is time forbidden to study the three parameters at the
same time. Therefore, the parameters are determined one
by one. The size of a logic block is studied first since it is
the single most important parameters for the GAPLA archi-
tecture. To do that, the number of I/Os per clock domain
and the routing capacitics between modules are assumed to
be infinite. Thus, the I/O constraints during partitioning
process are lifted and the routing process is not necessary
since the routing distance can be estimated as the Manhat-
tan distance between terminals. After the size of a logic

691

pet

Figure 3: Average Performance improvements on
the benchmark set for different logic block sizes.

Table 1: Implementation results on the Virtex II
FPGA
Nodes | Area | Clock | Worst wire | Excc. Time
(CLBs) | (ns) dly(ns) (ns)
exl 150 280 7.625 4.537 99.1
ex2 400 760 9.682 6.617 203.32
ex3 500 972 11.7 8.473 386
ex4 500 856 6.51 4.023 266.9
exd 800 1530 12.98 10.25 467.3
ex6 1000 2000 15.82 12.4 395.5
ex7 | 1500 2887 17.29 14.47 1072
ex8 1800 3264 14.78 12.12 1257
ex9 | 2000 3836 16.43 14.19 1610
ex10 | 2500 4492 17.02 14.20 1634
ex11 | 3000 5820 20.14 17.15 2296
ex12 | 4000 7537 19.39 17.05 3491

block is chosen, the number of I/Os per clock domain can
be determined by looking into the partitioning results since,
as explained before, the number of I/Os per clock domain
could be fairly large without incurring huge area overhead.
After that, the global routing capacities is determined by
running the router on the after-placement benchmarks with
the first two parameters fixed on the GAPLA FPGA. The
experimental results are explained in the following Subsec-
tions.

5.2 Size of a Synchronous Logic Block

For cvery benchmark, 6 different sizes for a logic block
are tried. They are 36, 64, 100, 144, 256, 400 (in terms of
CLBs). The performance improvement of all the 12 bench-
marks are summarized in Figure 4. The average perfor-
mance improvement for all 12 benchmarks is given in Fig-
ure 3. From the results, the GAPLA FPGA with logic block
size 256 CLBs delivers the biggest performance improvement
on average for all the 12 benchmarks. Thus, the size of a
logic block is chosen to be 256 CLBs. The results also show
that GAPLA FPGA could not give sound performance im-
provement for small applications like ex1 to ex4. If only the
last 8 benchmarks are considered, the average performance
improvements could be more than 28%. The Average per-
formance improvement for the last 8 benchmarks are also
shown in Figure 3.

5.3 1/0s Per Asynchronous Island

50 -
40
.
WL ¢ i
3 LA -
= ¥ % ¥
= EINE ¢ ’ 7
5o AN ANE] ’ 7l
- .
o AN AN 5 .
: A EE AN " ¢ ¢
& 3 AN AN ARE g g1
0o . ' [A|81:27 i 7 i
o] 1 il / i M1 . 2 L 4
: / NE AN NN AN AN
50 HTE ¢ NP / i AN g ’ ’ N
o V1 7 i Ak oz 7 ¢’ X
. 1 a2 i SiI%H he 1 SR
H iNg ¥ i v ’ W . X 7 W #
¥ Wihe b 7 ¢ e HINEE JZMAINY C z ¢’ i
o SINE S L N zEulNE ML INR N £ 5 £INE
o, T A : ’ b MY 2 AN g Em ’ AN -
SN '/“/f' ! L4 P ¢ x . % i X)//’ Vi & vk
W iPef L7 s o b I i 2 ,/ ¢ 7 4{”: ¢ ’ N
SIN: 0 LT b Zle N g SiNE
2INE 2 / 2Ny 2 2 2 7 1 o8
- | 7 Y f' ," é i 7 W n o L W o N
= AN - N AN ANE AN URE / AN
{/: - o)/ 7Y 7 g 53 W
AR o N Al e N 1 5 5 0
i Sh }3 . .!’ 5\ 4 :/ /' /2 } 7 o Nk L

-
2
L
e
o

7 3 e

—
i

Fenchmarks

[A400CLEs MESRCLE: 8144000 £ 100CLE= Be4ClEs B 32CLE75|

Figure 4: The effect of logic block size on performance of the GAPLA FPGA.

Table 2: The actual I/0 requirements with logic size

Table 3: Resynthesis results under I/O constraints
for benchmarks violating these constraints

8 input ports and 8 output ports per wrapper

case | part. | commu. cost | exec. time | Perf. Impv.
ex8 14 366 983.4 -2.16
ex10 20 761.35 1408 -2.55
ex11 24 801.5 1611 -1.13
ex12 37 1841 2882 -7.42

256 CLBs
case | Max num. | Max num. | Avg. num. | Avg. num.
in port out port in port out port
/partition | /partition
ex]1 8 14 6.5 11.62
ex2 30 27 17.49 16.19
ex3 27 26 20.66 19.43
ex4 19 20 12.92 14.77
(6 & 23 22 15.16 18.89
ex6 28 31 23.33 19.79
ex7 27 27 18.66 16.05
ex8 35 30 21.17 22.92
ex9 29 31 23.92 20.33
ex10 40 35 24.08 25.01
exll 32 38 25.33 26.91
ex12 41 40 25.75 23.21
for all 41 40 19.58 19.59
cases

As mentioned before, the arca of a I/O port controller is
relatively small. Therefore, a reasonably large number of
I/Os can be integrated. In the last subsection, the size of
a logic block is chosen as 256 CLBs and during the experi-
ments, the number of 1/0s per clock domain are considered
to be always sufficient. The actual I/O requirements for the
benchmark set with logic block size 256 CLBs are summa-
rized in Table 2.

For the results, the average number of 1/Os required per

692

10 input ports and 10 output ports per wrapper
ex12 | 31] 1554 | 2719 | -1.34

asynchronous island is around 20 and maximum is around
40. Because there are 4 asynchronous wrappers per island,
the number should be divided by 4 to get the I/O require-
ment per asynchronous wrapper. We tried two configura-
tions: 8 input ports, 8 output ports per wrapper and 10
input ports, 10 output ports per wrapper. In the first case,
four benchmark implementations violate the I/O constraints
(ex8, ex10, ex11, ex12). In the second case, only once bench-
mark implementation violates the I/O constraints (ex12).
These benchmarks are re-synthesized under the I/O con-
straints and the results are given in Tabel 3. The perfor-
mance improvements are compared with the implementa-
tion results in GAPLA with logic block size 256 CLBs and
without the 1/O constraints.

From the results, there are very small differences between
the two configurations. Therefore, we choose the first con-
figuration, i.e., 8 input ports and 8 output ports per asyu-
chronous wrapper. As for the data wires, we give an aver-

Table 4: Performance evaluation after routing

16 18 20 24 28 32

PI | PI. | PI. | PI. | PI. | PL
exl] | -04 | -04 | -04|-04]-04]-04
ex2 | -10 | -10 | -10 | -10 | -10 | -10
ex3 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6
ex4 8.1 8.1 8.1 8.1 8.1 8.1
exd |34.4 | 344|344 | 344 | 344 | 344
ex6 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5
ex7 | 39.2 392392392392] 39.2
ex8 | 21.0 | 21.0 |21.0 | 21.0 | 21.0 | 21.0
ex9 - - 33.5 | 338 | 371 | 37.1
ex10 - 11.3 | 11.6 | 12.6 | 13.8 | 13.8
ex1l | 26.6 | 27.5 | 29.3 | 29.3 | 29.3 | 29.3
ex12 - - 13.0 | 15.6 | 16.5 | 16.5
Avg. - - 17.8 | 18.1 | 18.6 | 18.6

age of 16 data wires per communication channel as in our
benchmarks. Therefore, the total number of data wires per
asynchronous wrapper comes to 236.

5.4 Routings Between Asynchronous Islands

Previous experiments assume that the global asynchronous
routing channels are sufficient and therefore each net can use
the shorted connection route. In this Subsection, we study
the impact of asynchronous routing channels on the perfor-
mance of the GAPLA FPGA architecture. The first two
sets of architectural parameters are fixed, namely 256CLBs
per logic block and cach asynchronous wrapper contains 8
input ports and 8 output ports and 256 data wires. After
routing, the asynchronous communication time is more ac-
curate based on the actual routing path. The experiments
arc conducted for different routing configurations (in terms
of number of asynchronous communication channels). The
experimental results are given in Table 4. In the table, “P.I”
represents the performance improvements compared to the
synchronous implementation on a Virtex II FPGA. The en-
tries marked with “-” mean that the routing is incomplete
under the corresponding configuration.

The results show that if the global asynchronous rout-
ing structure has less than 20 channels, some of the bench-
marks can not be successfully routed. After that, all the
benchmarks can be routed. And increasing the number of
asynchronous tracks only has slight impact on the system
performance (less than 1 percent on average). And increas-
ing the number of global asynchronous routing channels will
greatly increase the area overhead of the GAPLA architec-
ture, therefore, we choose 20 channels for the global rout-
ing structure. We also assume that, on average, each asyn-
chronous channel has 16 bits of data wires. Therefore, the
total number of global data wires is 320.

5.5 Area Overhead

Haven chosen the parameters, we estimated the area over-
head of the GAPLA architecture by implementing the build-
ing components of the architecture in silicon. The areca over-
head is estimated to be at 19.9%. (Detailed estimation is
not shown due to page limitation.)

6. CONCLUSIONS

In this paper, we studied three sets of critical architec-
tural parameters of the GAPLA FGPA, namely the size

693

of each synchronous logic block, the number of I/Os per
asynchronous island, and the number of routing channels
between island, using the parameterized CAD tools. From
the experimental results, the following values are chosen for
these parameters: 256CLBs per logic block, 8 input ports, 8
output ports, 256 data wires per asynchronous wrapper, and
20 global routing channels and 320 global data wires. The
area overhead of the GAPLA architecture using this con-
figuration is around 19.9%. The average performance im-
provement for all the benchmarks is 17.8%. If only the large
benchmarks, which are suitable for the GAPLA FPGA, are
cousidered, the average performance improvement on the
last 8 benchmarks is 25.4%.

7. REFERENCES

[1] Jason Cong, Y. Fan, et al. Architecture and synthesis
for multi-cycle communications. In Proc. Int. Symp.
Physical Design, Apr. 2003.

Williamn Tsu, Andre Dehon, et al. High-speed,
hierarchical synchronous reconfigurable array. In Proc.
Int. Symp. Field Programmable Gate Arrays, 1999.

~

Akshay Sharma, Katherine Compton, et al. Exploration
of pipelined FPGA interconnect structures. In Proc.
Int. Symp. Field Programmable Gate Arrays, 2004.

Xin Jia, Ranga Vemuri. A novel asynchronous FPGA

architecture design and its performanc evaluation. .

Proc. Int. Workshop Field Programmable Logic and

Applications, 2005.

Xin Jia, Ranga Vemuri. CAD tools for a globally

asynchronous locally synchronous FPGA architecture. .

Proc. 19th Int. Conf. VLSI Design, India, 2006.

S. Hauck, S. Burns, G.Borriello, C. Ebeling. A FPGA

for implementing asynchronous circuits. In JEEE

Design & Test of Computers Vol. 11, No. 3, Fall 1994.

Robert Payne. Self-timed FPGA systems. In Int.

Workshop Field Programmable Logic and Applications

1995.

R. Konishi, I. Hideyuki, et al. PCA-1: a fully

asynchronous self-reconfigurable LSI. In Int. Symp.

Asynchronous Circuits and Systerns Mar. 2001.

John Teifel, Rajit Manohar. Highly pipelined

asynchronous FPGAs. In Proc. Int.Symp. Field

Programmable Gate Arrays Feb. 2004.

[10] R.P.Dick, D.L.Rhodes, W.Wolf. TGFF:task graphs for
free. In Proc. Int. Workshop Hardware/Software
Codesign Mar. 1998.

[11] Andrew Royal, Peter Cheung. Golbally asynchronous
locally synchronous FPGA architectures. In Int.
Workshop Field Programmable Logic and Applications
2003.

[12] A. Girault, C. Menier. Automatic production of
globally asynchronous locally synchronous systems. In
Proc. EMSOFT, 2002.

[13] Song Peng, et al. Automated synthesis for
asynchronous FPGAs. In Proc. FCCM, 2005.

[14] D. Filo, D. C. Ku, N. Coelho, and G. Micheli.
Interface optimization for concurrent systems under
timing constraints. IEEE Trans. VLSI, 1(3), Sept. 1993.

[15] D. Hightower. A solution to line-routing problem on

the continous plane. . Proc. Design Automation Conf.,

1969.

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

