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ABSTRACT 
Routing delays dominate other delays in c:iirrent FPGA de- 
signs. \Vc have proposed a novel Globally Asynchronous 
Locally Synchronous (GALS) FPGA architect,ure called the 
GAPLA to deal with this problem. In tlie GAPLA arclii- 
tectiire, The FPGA area is divided into 1oc:ally synchronoiis 
blocks and the communications between them arc through 
asynclironous 1/0 interfaces. automatic design flow is 
developed for the GAPLA architectiire. Starting from be- 
havioral description. a design is partitioned into smaller 
modules arid fit to G.iPLA synchronous blocks. Tlic asyri- 
chronous communications between modules are then sytlie- 
sized. The CAD flow is parameterized in modeling the 
GAPLA architecture. By rriariipulatirig the parameters, we 
could study different factors of t,he designed GAPLA arclii- 
tccturc. Our experimental results show an average of 20% 
performance improvement c:oiild be achieved by the GAPLA 
architecture. 

1. INTRODUCTION 
Routing delays have become a major roadblock for FPGA 

performance arid tlie situation will only be worse when tech- 
nology continues to  scale arid FPGA chips continue to  grow 
large. Long routings not, only increase the wire delay it- 
self, but also riccd to go through more routing switch boxes, 
making tlie situation worse. For example. tlie Xilirix Vir- 
texII ~ ~ 2 ~ 8 0 0 0  FPGA has a c:orner-to-c:orner interc:onnec:t 
delay of around 15ns [ l ] .  Different approaches of solving 
this problem have bccri proposed. [2] arid [3] pipelines the 
long interconnect de1a.y arid [I] proposes a svritliesis flow 
synthesis flow to allow the long interc:onnec:t to run for sev- 
eral clock cycles. In tliosc approaches, interconnects arc 
t,reated as circuit, components instead of conventional wires. 
The interc:onnec:t retiniing registers can be very expensive in 
area which make their FPGA size several times bigger than 
conventional FPGAs. 
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Using asynchronous design is another possible solution. 
Asynchronous design provides average-case performance. In 
terms of interconnect delavs; performance is dictated bv tlie 
average of the interc:onnec:t delays rather than the one with 
worst delay. Hcricc the use of long routings docs not ncccs- 
sarily lead to  a significant performance penalty. \Vc designed 
tlie GAPLA: a novel Globally ;Is,ynclironous Local1.v S,vn- 
chronous Programmable Logic Array architecture. GALS 
systems can be seen as synchronous logic blocks wrapped 
in as,vnchronous I/O interfaces. Interconnects inside each 
block is short and fast ~ which allows the synchronoiis logics 
to  run at, higher speed. Interconnects bet,ween synchronous 
logic blocks have longer delay, but they will riot affect the 
clock speed of the logic blocks arid only corrie into pic- 
ture when there are c:ommiinic:atiois between sync:hronoiis 
blocks. Therefore, performance improvement could be cx- 
pect,ed. 

An automatic design flow for tlie GAPLA architecture has 
also been developed [5]. Starting from a behavioral c:irc:iiit 
description, a design is first partitioned into smaller modules 
where each module can fit int,o one synchronous block (also 
c:alled asyn,ch,ron,ou.s 
as,vnchronous corrirriuriicatioris between modules are gener- 
ated and put into each module. .iftcr that, a coarse-grained 
placer is used to  place tlie modules to  tlie GAPLA chip space 
and c:onnec:tions between islands are routed. Each module is 
then synthesized by calling existing FPG.i tools. The C.iD 
flow is designed a s  an auxiliary tool to  study the GAPLA ar- 

w e .  It is parameterized in modeling the archi 
Therefore, by changing the values of the architectlira1 pa- 
rameters, we could study the effect of these factors. In this 
paper, u-e report the results of our study of the GAPLA 
architecture using the above CAD flow. 

n d ) .  Then the c:ontrol sequences for 

2. RELATED WORK 
Several as,vnclironous FPGA architectures have beeri pro- 

posed in t,he last, decade [6,  7, 8, 9; 111. Several of these ar- 
chitectures adopt the GALS concept. STACC [7] is loosely 
based on Slitherland's n3ic:ropipeline design. The dock sig- 
nal of the data  array is replaced by tlic handshaking control 
signals of the timing array in a micropipeline like structure. 
PCA [8] is a self-rec:onfigiirable programmable logic: architec 
ture consisting of a laver of logic array arid a laver of built-in- 
facilities. Data communications bctwccn logic blocks is rcal- 
ized by a wormhole message passing mechanism tlirougli the 
biiilt-in-fac:ilities which can be expensive in time. Royal et 
a1 proposes another GALS FPGA architecture [ll] arid tlie 
idea of using GALS architecture to  limit, t,he impact of long 
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Figure 1: Block diagram of GAPLA architecture. 

interconnect wire delay on the total FPGA performanc:e. 
But to our knowledge, no CAD tools ham been proposed 
for those FPGA archit,ect,ures. In [13], an automatic syn- 
thesis flow is proposed for the highly-pipelined asynchronoiis 
FPGA of [9], which is a different asynchronoiis design style 
to  GALS. In [12], an automatic methodology to produce 
GALS system is proposed. But the main focus of [12] is 
t o  aiitomatic:ally generated the GALS system from a higher 
level circuit description, while in our research. tlie GALS 
interface is a built-in feature of the GA4PLA FPGA. Our 
research focuses on finding t,he optimal values for a set of 

3. THE GAPLA ARCHITECTURE 
Figure 1 gives a basic building t,ile of the GAPLA4 arclii- 

tecture called an usynchwnous  islonds. The GAPLA arclii- 
tectiire is a mesh of asynchronoiis islands. Each island con- 
tains a synchronous logic block arid 4 usynchronous wrup- 
pers. Each wrapper cont,ains a local clock generator and 
1/0 port c:ontrollers. The structure of the sync:hronoiis logic: 
block can be any oftlie conventional F P G A  structures. But 
the size of each synchronous logic block must be big enough 
t,o implement reasonable funct,ions. In our design, we adopt 
the Virtex I1 logic: array structure. The 4 dock signals gen- 
erated by tlie clock generators are all distributed into tlie 
synchronous logic block. Logic tiles inside t,he synchronous 
block can freely choose to connect to one of these clock sig- 
nals. The 1ogic:s (:ontrolled by the same clock signal are 
called a clock domuin.  Thus, the size arid shape of each 
clock domain of the GAPLA4 architecture is programmable 
within the limit of a synchronous logic: block. The routing 
resources between asvrichronous islands contain horizontal 
arid vertical routing channels for both data  arid handshak- 
ing control signals. Adjacent, asynclironous islands are also 

d to  enable fast c:ommimic:ations. Please 
refer to  [4] for details oftlie architecture design. 

The execution time of an application mapped on tlie GAPLA4 

F P G A  architecture consists of two parts: computation time 
arid corrirriuriicatiori time. Corriputatiori time is tlie time for 
synchronous logic blocks t,o finish t,he programmed compu- 
tations. Cornrriuriicatiori time is the time consumed by the 
as,vnchronous communications between logic blocks. Tlie 
best performance of the GAPLA architectlire is the best 
tradcoff between communication time and computation tirnc. 
The architectural parameters which affect this tradcoff arc 
as follows. 

1 

2 

3 

4. 

Tlie size of a s,yriclirorious logic block. A large logic 
block means more operations can be put into one clock 
domain, which generally decreases the local clock spccd 
and increases the overall c:ompiitation time. But the 
corrirriuriicatiori time will decrease sirice more corrirriu- 
nicat,ions mill be done synclironous inside a clock do- 
main. 

The number of asynchronous 1/0 ports for each asyn- 
chronoiis island. Increasing the number of I/Os will 
increase tlie area overhead but will lessen tlie I/O cori- 
st,raints during the application part,it,ioning process which 
could improve the logic usage of tlie logic block and 

performance. Since our design of 
llers are very simple arid has srriall 

layout, areas, u-e can afford t,o add more 1/0 ports as 
long as it will benefit t h  stem performance. 

Tlie number of global routing channels. This factor not 
only affect the routability of GAPLA architecture and 
also affect the performance sirice the routing might be 
congested arid need to detour if the routing resource is 
limited which increases corrirriuriicatiori time. 

CAD FLOW 
The CAD flow is developed to  automatically implement 

designs to  be the GAPLA FPGA. It is also used to inves- 
tigate tlie architecture design. As rrieritioried above, perfor- 
mance of t,he GAPLA is affect,ed by three groups of pararne- 
ters. The CAD flow models the architectlire based on them 
too. By given these param ' different values, we c:oiild 
compare the irnplcrncntation results of a set of benchmarks 
and get t,o know t,he effect of these parameters. 

Figure 2 shows a block diagram of the overall CAD design 
flow. The grev boxes are modules we proposed arid white 
boxes arc modules using existing C.iD tools. Partitioning 
is required first if tlie design is bigger than a given asyn- 
chronous island. Controls for asynchronoiis c:ommiinic:ations 
are then added t o  each module to  ensure functional correct- 
ness. Aft,er that ,  each module is synt,hesized and place-and- 
routed using existing FPG.i design tools. Also, all the rnod- 
iiles are fed into a coarse-grained placer and router which 
places each module to  the GAPLA chip space arid finishes 
the global routing bet,ween modules. Finally, a simulation 
model of the design irnplcrncntcd on the G.iPLA architcc- 
ture is formed for performance evaluation. If all the perfor- 
mance constraints are met ~ the design is ac:c:omplished. In 
the following subsections, we briefly explain each functional 
module in the following. 

4.1 Partitioning 
IVlien partitioning a design int,o modules; we try to  rnini- 

mize the c:ommiinic:ation time between partitioned modules. 
Also. partitioning is coritiucteti under two constraints: tlie 
area constraint, where the area of each module must be less 
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Figure 2: Block diagram of CAD flow for GAPLA. 

than the giveri area of a s,vnchronous block; the 1 / 0  cori- 
strairit where the number of input/output ports must be 
less than tlie give number of iriput/output ports per asyn- 
c:hronoiis island. 

To calculate the asynchronous cornrriuriicatiori time, ~ v e  
first build a CDFG representat,ion of the design and edges in 
the CDFG are given c:ommiinic:ation weights. The c:ommiini- 
cation weight of an edge consists of two parts: its "(:onnnii- 
riication frequency" arid its "length" . The corrmiunicatiori 
frequency of an edge is defined as: 

1 i'nitiul ml'ue 

f (e)/n,, i f  e i s  inside a, branch,, m i s  the 
nurn,ber of liranch,e..s { f ( e )  = 

The length of an edge l ( e )  is defined as follows: First, we do 
Possible scheduling to  tlie CDFG, and the 
igricd to node i is denoted as c s ( i ) .  Then: 

1(ez3)  = c.(i) ~ c.(j) 

l ( e )  is used to localize all tlic interconnects. An edge which 
spans more c:ontrol steps may have better chance of mapped 
t o  a long interconnects;. Therefore, it should be more 1ikel.v 
t,o mapped to  asynchronous communication channel. The 
final weight of an edge for the partitioning is a weighted 
combination offactors f ( e )  arid l ( e ) :  

o arid 
is the maximum communication frequency of all edges, 7nin(Z(e)) 
is minimum length of all edges. 

Tlie GAPLA architecture allows multiple 1/0 ports of tlie 
same clock domain to  be active at, t,he same time. In this 

arc user defined coefficient arid ci+p = 1. muz(  f ( e ) )  

case; tlie time overhead for these asynchronous communi- 
cations overlaps; which leads to  performance benefits. Tlie 
part,it,ioning algorit,hm should take advant,age of t,his and 

tern in a way that the overlap among asyri- 
chronous corrirriuriicatioris is maximized. But because parti- 
tioning is done before the actiial system timing information 
is obtained, an estimation method is required. TVc use the 
factor N; tlic number of control steps where data  transmis- 
sioris across partitions are required, t o  represent this. 

Thus; the overall cost function of the partitioning algo- 
rithm is formed as: 

F = N x x , ~ i ( e ~ ~ ) ,  

wliere node i ,  j belong to  d i f f e r e n t  partitions. 

A simulated aririealirig algorithm is used as tlie partitioning 
algorithm. After one iteration of partitioning, each parti- 
tion is synthesized (logic synthesis without doing placement 
and routing) separately. The partitions that  meets t,he area 
and I/O constraints are treated as an individual partition 
in the final result. The partitions that  still violate the area 
and I/O constraints are further partitioned using the above 
algorithm. 

4.2 Asynchronous Communication Control 
To add asynchronous communications, we need to  provide 

a proper sequence of control values for tlic control signals of 
tlie corresponding asynchronous 1 / 0  port controllers. Tlie 
asynchronoiis handshaking process is aiitomatic:ally man- 
aged by the built-in asynchronous FSMs inside the 1/0 port 
controllers based or1 these signals. Therefore, we need t o  
know at  what c,vcle an asyrichrorious corrirriuriicatiori should 
take place. To gather this information, operations inside 
each module are scheduled first. 

We use ari As-Soon-As-Possible (ASAP) algoritlirri to  sched- 
ule each module in order t o  get the best performance. Be- 
cause of t,he archit,ect,ure design, t,he inter-module asynchronous 
communications block both tlic sender's and receiver's opcr- 
ations. Thus. deadlock situation could occur after scliedul- 
ing. Deadlock o(:(:iirs when two or more c:ommiinic:ating pro- 
cesses waiting for each other's data  in order to continue cx- 
ecut,ing. It can be solved by const,ructing Communicat,ion 
Deperidericv Graph (CDG) [14]. A CDG contains all tlie 
c:ommiinic:ation nodes of the sy . And a directed arch 
between two corrmiunicatiori no n a CDG iff there is a 
sequent,ial dependency bet,ween the two nodes in any of the 

m. The dependencies of c:ommiinic:a- 
tiori nodes iri the constructed CDG are enforced in all tlie 
processes of the system by adding durnrny control edges to  
the processes. A4fter adding these edges, an ASA4P schedul- 
ing algorithm is used to  schedule each process and deadlock 
is avoided. 

The outputs of the scheduling are cycle-accurate descrip- 
tions for each modiile. After scheduling, we know exactly a t  
what c:yc:le data needs to  be sent to  or received from other 
modules. Therefore, the control signals for the asynchronous 
communications can be added accordingly. 

4.3 Module Placement and Routing 
The placer will place each module t,o an asynchronous 

island. The optimization goal during placement is to  mini- 
mize tlie total corrirriuriicatiori cost between modules;. Sirice 
each communicat,ion edge carries a communicat,ion weight, 
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as explained before, the goal of the placer is thus to: 

ex11 
ex12 

where node i, j belongs to different modules. D,, is the dis- 
t,ance between t,he clock domains where node i ,  j are placed. 

Since the affect of global routing on the system perfor- 
riiarice is great1.v reduced. a simple arid fast line-search based 
router [15] is used to  route the asynchronous communica- 
t,ions t,o the global routing channels of GAPLA FPGA. The 
inter-module routing resoiirc:es are represented by two matri- 
ces Horixorital Routing Sources (HRS) arid Vertical Routing 
Sources (VRS). The two matrices can be initialized at  run 
time to model different configurations of the GAPLA arch-  

lire. Nets are picked up onc:e a t  a time from the netlist 
arid routed. For rnultiple-terrriirial riets, the  two terrriirials 
with the longest hIanhattan distance are routed first. 

3000 5820 20.14 17.15 2296 
4000 7537 19.39 17.05 3491 

4.4 Performance Simulation 
Simulation is used to  estimate the performanc:e of the de- 

sign irnplcmcntcd on G.$PLA architecture. From the syri- 
t,hesis results of each module, the information about the 
clock frequency for each module is obtained. From the mod- 
ule placer arid router, tlie iriforrriatiori about tlie placerrient 
position of each module and the interconnect delays bet,ween 
modules are obtained. These information toget,her with the 
c:yc:le-ac:c:iirate VHDL descriptions of each module is fed into 
our VHDL simulation model of the G.$PLA. The GAPLA 
simulation model contains t,he models for t,he pausible local 
clock generators, the 1/0 port controllers, and the inter- 
island routing chaririels. The local clock generators are pro- 
grarnrncd to the corresponding clock frequencies of the mod- 
ules. The modules are wrapped by the asynchronous inter- 

d through the routing channels, c:ompos- 
irig a sirnulation model of tlie circuit irriplerrieritatiori. Input 
t,races are t,hen read t,o t,he model and t,he performance can 
be observed. 

5. ARCHITECTURE PARAMETERS 

5.1 Studying Methodology 
To study these parameters, we need to  implement a set 

of bericlirriarks on different corifiguratioris of thern. Our 
benc:hmark set consists of 1 2  synthetic: benchmarks gen- 
erated by TGFF [lo]. TGFF generates Directed .$cyclic 
Graphs (DAGS) with different number of nodes and connec- 
tivity intensities. We then assign each node an arithmetic: 
operatiori arid generate a VHDL description code from each 
graph as a benchmark. Thus, all the benchmarks arc corm 
put,ation intensive ones wit,h few or no control flow which are 
the cases for most FPGA applications. To exc:liide the fa(:- 
tor of multipliers. only additiori arid subtractiori operations 
are assigned. Table 1 gives the statistics for the benchmark 
set arid their irnplcrncntation results on a \'irtcx I1 FPG.$. 

It is time forbidden to  study the three parameters a t  the 
same time. Therefore, tlie parameters are deterrriiried orie 
by one. The size of a logic block is studied first since it is 
the single most important parameters for the GAPLA archi- 
tecture. To do that ;  tlie riurriber of I/Os per clock dorriairi 
arid the routing capacities between modules are assumed to 
be infinite. Thus, the 1/0 constraint,s during part,it,ioning 

'Y 
sirice tlie routing tiistarice can be estimated as the hlariliat- 
t,an distance between terminals. After the size of a logic 

are lifted and the routing proc 

I I 
Figure 3: 
the benchmark set for different logic block sizes. 

Average Performance improvements on 

Table 1: Implementation results on the Virtex I1 
FPGA 

ex9 I 2000 1 3836 I 16.13 I 11.19 I 1610 
ex10 I 2500 1 4192 I 17.02 I 11.20 I 1634 

block is chosen, t,he number of I/Os per clock domain can 
be determined by looking into the partitioning results since, 
as explained before, tlie riurriber of I/Os per clock dorriairi 
could be fairly large without incurring huge area overhead. 
A4fter t,hat, t,he global routing capacities is determined by 
running the router on the after-placement benchmarks with 
tlie first two parameters fixed ori tlie GAPLA FPGA. Tlie 
experimental results are explained in tlie following Subsec- 
tions. 

5.2 Size of a Synchronous Logic Block 
For every benchmark, 6 different sizes for a logic block 

are tried. They are 36, 64, 100, 144, 256, 400 (in t,erms of 
CLBs). The performancx improvement of all the 1 2  bench- 
marks are surnrnarized in Figure 4. Tlie average perfor- 
mance improvement for all 12 benchmarks is given in Fig- 
ure 3. From the results, the GAPLA FPGA with logic block 
size 256 CLBs delivers the biggest performance improvement 
or1 average for all the 12 benclirnarks. Thus, the size of a 
logic block is chosen to  be 256 CLBs. The results also show 
that GAPLA FPGA could not give sound performance i n -  
proverrierit for srriall applications like ex1 to  ex4. If orilv tlie 
last 8 benchmarks are considered, t,he average performance 
improvements could be more t,han 28%. The Average per- 
formance improvement for the last 8 benchmarks are also 
sliowri in Figure 3. 

5.3 I/Os Per Asynchronous Island 
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Figure 4: The effect of logic block size on performance of the GAPLA FPGA. 

for all 
cases 

41 40 19.58 19.59 

As rricritioricd before; the area of a I/O port controller is 
relatively small. Therefore, a reasonably large number of 
I/Os can be integrated. In the last subsection, the size of 
a logic block is clioseri as 256 CLBs arid during the experi- 
ments, the riurnhcr of I/Os per clock domain arc considered 
t,o be always sufficient,. The actual 1/0 requirement,s for the 
benchmark set with logic: block size 256 CLBs are siimma- 
rized in Table 2. 

For the result,s, the average number of I/Os required per 

Table 3: Resynthesis results under 1 / 0  constraints 
for benchmarks violating these constraints 

8 iriuut ports arid 8 outuut uorts per wrauucr 
case I part. I (:ommu. c:ost I exec:. time I Perf. Impv. 
ex8 I 14 I 366 -2.16 

I I I I 

ex12 I 37 I 1841 I 2882 I -7.42 
10 input ports and 10 output ports per wrapper 

ex12 I 31 I 1554 I 2719 I -1.34 

asynchronoiis island is around 20 and maximum is around 
40. Because there are 4 asyriclirorious wrappers per island, 
the riurnhcr should be divided by 4 to  get the I/O rcyuirc- 
ment per asynchronous wrapper. We t,ried two configura- 
tions: 8 input ports, 8 oiitpiit ports per wrapper and 10 
input ports, 10 output ports per wrapper. Iri the first case, 
four benchmark irnplerneIit,atioIis violate the 1/0 const,raints 
(cx8, cxl0, cx l l ,  cx12). Iri the second case, only oric bench- 
mark implementation violates the 1/0 constraints (ex12). 
These benchrnarks are re-svritliesized under the 1/0 cori- 
straints and the results are given in Tabel 3. The perfor- 
mance improvements are (:ompared with the implementa- 
tiori results in GAPLA with logic block size 256 CLBs arid 
without the I/O constraints. 

R o m  t,he result,s, there are very small differences between 
the two c:onfigiirations. Therefore, we choose the first (:om 
figuration, i.e., 8 input ports arid 8 output ports per asvri- 
chronous wrapper. As for the dat,a mires; we give an aver- 
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Table 4: Performance evaluation after routing 

ex12 I - I - I 13.0 I 15.6 I 16.5 I 16.5 
Avn. I - I - I 17.8 1 18.1 1 18.6 I 18.6 

age of 16 data wires per communicat,ion channel as in our 
benc:hmarks. Therefore, the total number of data  wires per 
asynchronous wrapper comes t o  256. 

5.4 Routings Between Asynchronous Islands 
Previous experiments assume that  the global asynchronous 

routing channels are sufficient and therefore each net can use 
the shorted connection route. In this Subsection, ~ v e  study 
the impact of asynchronous routing channels on the pcrfor- 
mance of the GAPLA FPGA architecture. The first two 
sets of arc:hitec:tiiral parameters are fixed, namely 256CLBs 
per logic block and each asynchronous wrapper contains 8 
input ports arid 8 output ports arid 256 data  wires. After 
routing, the asynchronoiis c:ommiinic:ation time is more a(:- 
curat,e based on the actual routing pat,h. The experiments 
arc conducted for different routing configurations (in tcrrns 
of riurriber of as,yriclirorious corrirriuriicatiori channels). Tlie 
experimental results are given in Table 4. In the table, ”P.1” 
represents the performance improvcmcnts cornpared to the 
synchronous implementation on a \‘irt,ex I1 FPGA4. Tlie en- 
tries marked with ”-” mean that  tlie routing is incomplete 
under the corresponding c:onfigiiration. 

The results show that if the global 
ing structure has less t,han 20 channels, some of t,he bench- 
marks can not he siic:c:essfiilly routed. After that ,  all the 
benc:hmarks (:an be routed. And increasing the number of 
asynchronous tracks only has slight impact on the system 
performance (less than 1 percent on average). A4nd increas- 
ing the number of global asynchronoiis routing diannels will 
greatlv increase tlie area overliead of tlie GAPLA arcliitec- 
t,ure, t,herefore, we choose 20 channels for the global rout- 
ing struct,ure. We also assume that,, on average, each asyn- 
c:hronoiis channel has 16 bits of data wires. Therefore, the 
total nurnhcr of global data wires is 320. 

5.5 Area Overhead 
Haven chosen tlie parameters, we estimated the area over- 

head of t,he GAPLA architecture by implementing the build- 
ing components of the architecture in silicon. The area ovcr- 
head is estimated to  be at 19.9%. (Detailed estimation is 
riot shown due to  page limitation.) 

6. CONCLUSIONS 

of each s,vnchronous logic block, the number of I/Os per 
as,vnchronous island; arid tlie number of routing channels 
between island, using t,he parameterized CA4D tools. From 
the experimental results, the following values arc chosen for 
these parameters: 256CLBs per logic block, 8 input ports, 8 
output ports, 256 data  mires per asynchronous u-rapper, and 
20 global routing channels arid 320 global data wires. The 
area overhead of the GAPLA architecture using this (:om 
figuration is around 19.9%. Tlie average performance irri- 
provement for all the benchmarks is 17.8%. If only the large 
benchmarks, which arc suitable for the GAPLA FPGA; arc 
considered, tlie average performance improvement on tlie 
last 8 benchmarks is 25.4%. 
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