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Abstract 
The paper explores several ways to improve the speed and capacity 
of combinational equivalence checking based on Boolean 
satisfiability (SAT). State-of-the-art methods use simulation and 
BDD/SAT sweeping on the input side (i.e. proving equivalence of 
some internal nodes in a topological order), interleaved with 
attempts to run SAT on the output (i.e. proving equivalence of the 
output to constant 0). This paper improves on this method by 
(a) using more intelligent simulation, (b) using CNF-based SAT 
with circuit-based decision heuristics, and (c) interleaving SAT 
with low-effort logic synthesis. Experimental results on public and 
industrial benchmarks demonstrate substantial reductions in 
runtime, compared to the current methods. In several cases, the 
new solver succeeded in solving previously unsolved problems.   

1 Introduction 
Combinational equivalence checking (CEC) plays an important 
role in EDA. Its immediate application is verifying functional 
equivalence of combinational circuits after multi-level logic 
synthesis [6]. In a typical scenario, there are two structurally 
different implementations of the same design, and the problem is to 
prove their functional equivalence. This problem was addressed in 
numerous research publications, in particular [26][21][23][32][31]. 

In a modern CEC flow, the two circuits to be verified are 
transformed into a single circuit called a miter [4] derived by 
combining the pairs of inputs with the same names and feeding the 
pairs of outputs with the same names into EXOR gates, which are 
ORed to produce the single output of the miter. The miter is a 
combinational circuit with the same inputs as the original circuit 
and the is constant 0 if and only if the two original circuits produce 
identical output values under all possible input assignments.  

Sequential equivalence checking (SEC) benefits directly from 
improved CEC in three ways: (1) if a subset of unreachable states 
of the sequential circuit is known, CEC can often prove sequential 
equivalence [16], (2) verifying CEC of sequential circuits unrolled 
for a fixed number of timeframes gives a practical method for 
bounded SEC when other methods fail, and (3) as a preliminary 
step in unbounded SEC [25]. Numerous methods use CEC in 
bounded model checking, for example [22]. 
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CEC has applications in logic synthesis. For example, it can be 
used to compute node flexibilities, such as don’t-cares and 
resubstitutions [28], or canonical function properties, such as 
classical symmetries [42].  

Because of its importance in many practical applications, fast and 
scalable CEC methods are needed. Contrary to common belief, 
CEC is not a “solved problem”. New applications and the increase 
in the sizes of problem instances cause existing CEC methods to 
break down, as to be expected of an co-NP-hard problem. 

The current state-of-the-art in CEC [21] uses an integrated 
approach, starting from an And-Inverter Graph (AIG) 
representation of the logic. Hashing is applied to detect structural 
similarity that may be present in the miter derived from the two 
circuits. Next, simulation is performed to detect possible classes of 
AIG nodes with equal global functions (up to complementation). 
The equivalence of these nodes is checked by constructing BDDs 
or solving SAT under user-controlled resource limits. 
Intermittently, attempts are made to solve SAT for the output of the 
miter under increasing resource limits. The main idea is that the 
more equivalent nodes detected inside the miter, the easier it is to 
prove (solve SAT on) the output. However, proving all equivalent 
internal nodes is unnecessary if the output is easy for SAT. 

In this paper, we improve the above integrated approach to CEC 
with the following contributions: 
1. Use of fast logic synthesis. Preprocessing the miter by AIG 

rewriting was introduced in [3] for verification and developed 
in [29] for logic synthesis. Logic synthesis results in fewer AIG 
nodes, which correlates with faster SAT solving; logic sharing 
discovered during synthesis proves some equivalences between 
the nodes very quickly. In one extreme case, an industrial CEC 
example could not be solved in hours, yet was solved by one 
quick pass of rewriting-based logic synthesis. 

2. Development of “intelligent simulation”. This substantially 
reduces the number of satisfiable SAT calls (thereby improving 
runtime) needed to disprove equivalences of internal AIG 
nodes not distinguished by known simulation techniques. 

3. Use of CNF-based SAT for circuits. Previous work in CEC 
[21] used circuit-based SAT solvers. We modify a CNF-based 
solver [33][12] to use circuit information [37][38] and efficient 
circuit-to-CNF conversion [41] resulting in faster CEC. 

The result is a new CEC package that is substantially faster than 
other similar tools. This claim is supported by extensive 
experiments with diverse applications from academia and industry.  

The paper is organized as follows. Section 2 surveys traditional 
AIGs. Section 3 details the proposed improvements and reviews 
related previous work. Section 4 outlines the use of logic synthesis 
in a modified integrated CEC. Section 5 reports experimental 
results. Section 6 concludes and lists directions for future work. 
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2 Background  
Familiarity with the basics of Boolean functions, Boolean 
networks, and Boolean satisfiability is assumed. 

Definition. And-Inv Graph (AIG) is a Boolean network 
composed of two-input AND-gates and inverters.  

To derive an AIG, the SOPs of the nodes in the network are 
factored [5], the AND and OR gates of the factored forms are 
converted into two-input ANDs and inverters using DeMorgan’s 
rule, and these nodes are added to the AIG manager. 

Definition. The size of an AIG is the number of its AND nodes. 
The number of logic levels is the number of AND nodes on a 
longest path from any primary input to any primary output.  

The inverters are ignored when counting nodes and logic levels. 
In the software implementation, inverters are represented as flipped 
node pointers, similar to the complemented edges in a BDD. 

Figure 1 shows a Boolean function and two of its structurally-
different AIGs. The nodes in the graphs denote AND-gates, the 
bubbles label complemented edges. 
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Figure 1. Two different AIGs for a Boolean function.   

Definition. Structural hashing (strashing) of an AIG is a 
transformation intended to reduce the AIG size by partially 
canonicizing the AIG structure. When a new AND-gate is added, a 
hash-table is checked for a node with the same fanins (up to 
permutation). Although the resulting AIG is not functionally 
canonical, it does not contain isomorphic subgraphs. 

Structural hashing was originally introduced for netlists of 
arbitrary gates in some early IBM CAD tools [11][37] and was 
extensively used for AIGs in previous work on CEC [20][21].  

Definition. The function of an AIG node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in node n and expressed 
in terms of the leaves, x, of the AIG. 

Definition. A functionally reduced AIG (FRAIG) is one in 
which, for any two n1 and n2, 1 2

( ) ( )n nf x f x≠  and 
1 2
( ) ( )n nf x f x≠ . 

Proving the output of the miter to be constant 0 is called mitering 
in this paper. Transforming an AIG into a functionally reduced 
AIG is called fraiging. In general, fraiging can be performed with a 
fixed resource limits, for example, fraiging may be forced to quit 
proving equivalence of a pair of intermediate nodes when a user-
specified limit on the number of conflicts is reached. In this case, 
the functional reduction of the AIG is not complete. The same 
process of resource-aware detection and merging of functionally 
equivalent nodes in an AIG (up to complementation) using BDDs 
(SAT) is known as BDD sweeping [21] (SAT sweeping [22]).  

Unless stated otherwise, mitering is done by asserting the output 
of the miter to be constant 1 and running a SAT solver on the 

resulting problem. If the solver returns “unsatisfiable”, the miter is 
proved constant 0 and the original circuits are equivalent. If the 
solver returns “satisfiable”, a counter-example is returned. A 
counter-example is an assignment of the primary input variables 
leading to 1 at the output of the miter. It can be used for debugging 
the original circuits verified by running SAT on the miter. 

SAT solvers can be circuit-based or CNF-based. The former 
represent the SAT problem as a circuit composed of simple gates, 
while the latter use conjunctive-normal-form (CNF). The second 
type of solvers is more general and can also be applied to circuits, 
by converting them into CNF form.  

A naïve circuit-to-CNF conversion uses as many variables as 
there are primary inputs and internal nodes. It derives clauses for 
each gate and adds them to the resulting CNF. For example, a two-
input AND, c = ab, leads to (c ⇒ ab) ∧ (ab ⇒ c), or equivalently, 
to the three CNF clauses:  

( c ∨ a) ∧ ( c ∨ b) ∧ ( a ∨ b ∨ c). 
A more efficient circuit-to-CNF conversion [41], when applied to 

an AIG, groups AIG nodes into larger gates as follows: 
(a) whenever possible two-input ANDs are expanded into multi-
input ANDs without area duplication, (b) EXORs, MUXes, and 
trees of MUXes are detected and converted into clauses as single 
nodes. This reduces the number of clauses and variables and 
noticeably improves the performance of the SAT solver.  

The speed of Boolean constraint propagation can be further 
improved by adding certain redundant clauses, as shown in [15]. 
For example, when MUX, m = ca + cb , is translated into CNF, in 
addition to the four required clauses (two for each output phase): 

c ∧ a ⇒ m, c  ∧ b ⇒ m, c ∧ a  ⇒ m , c  ∧ b  ⇒ m , 
two redundant clauses are added:  

a ∧ b ⇒ m, a  ∧ b  ⇒ m . 
As a result, when the input variables of a MUX have equal values, 
the SAT solver uses the additional clauses to imply the value of the 
output directly, without other decisions. For example, if the inputs 
have values a = 1 and b = 1, it will be implied directly that m = 1. 

3 Improvements to integrated CEC 
This section details the improved integrated CEC proposed in this 
paper. Each subsection is preceded by a summary of the relevant 
previous work. 

3.1 Intelligent simulation 

Previous integrated approaches to CEC perform fraiging 
(identifying and merging functionally equivalent nodes) as a way to 
simplify the miter. For large miters,  the runtime of fraiging can 
be prohibitive. Therefore, it is important to reduce to a bare 
minimum the number of SAT calls needed to test the equivalence 
of the intermediate nodes. Typically, simulation is used to detect 
nodes that are not functionally equivalent.  

Previous work [23][22] used random vectors and counter-
examples returned by the SAT solver as simulation vectors. A 
counter-example in this case is an assignment of the primary input 
variables that distinguishes the two nodes under investigation. 
Although counter-examples improve the performance of random 
simulation, there are still a substantial number of satisfiable SAT 
calls needed during fraiging to resolve the remaining node pairs. 

We propose an improvement to simulation, which systematically 
generates useful additional simulation patterns. These are derived 
by focusing on distinguishing nodes that cannot be distinguished 
easily using random patterns and counter-examples alone. 
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Typically, random simulation is done until “saturation”. This 
identifies classes of nodes that appear equivalent under simulation. 
Next, these candidate equivalent nodes are checked by SAT, giving 
preference to node pairs appearing earlier in a topological order. If 
the SAT problem is “unsatisfiable”, the nodes are equivalent and 
can be merged; otherwise, a new counter-example is generated.  

Our new simulation patterns are derived as follows. Given the 
simulation vector representing the counter-example, all distance-1 
patterns from it are obtained by flipping one bit in this vector. Only 
the bits in the structural support of the logic cones of the current 
node pair are flipped. Other bits can be selected at random. Next, 
the distance-1 patterns are simulated to check if they resolve other 
pairs not resolved by the counter-example. We collect the distance-
1 patterns which resolved additional pairs, generate a new set of 
distance-1 patterns, and simulate them. This is continued as long as 
new candidate pairs are resolved. When the intelligent simulation 
saturates, a new SAT call is made. The process goes on until the 
candidate node pairs are exhausted or a resource limit is reached. 
The pseudo-code is shown in Figure 2. 

ffrraaiiggiinnggWWiitthhIInntteelllliiggeennttSSiimmuullaattiioonn((  mmiitteerr,,  bbaacckkttrraacckk__lliimmiitt,,  ttiimmee__lliimmiitt  ))  
{{  
          ////  SSttaarrtt  wwiitthh  aa  ffiixxeedd  aammoouunntt  ooff  rraannddoomm  ssiimmuullaattiioonn  
          rruunnRRaannddoommSSiimmuullaattiioonn((  mmiitteerr  ));;  
          ccllaasssseess  ==  ddeetteeccttNNooddeeEEqquuiivvaalleenncceeCCllaasssseessUUnnddeerrSSiimmuullaattiioonn((  mmiitteerr  ));;  
 

          ////  CCoonnttiinnuuee  rraannddoomm  ssiimmuullaattiioonn  ttiillll  ssaattuurraattiioonn  
          ddoo  {{    
                          ccllaasssseess__oolldd  ==  ccllaasssseess;;    
                          ccllaasssseess  ==  rruunnRRaannddoommSSiimmuullaattiioonn((  mmiitteerr,,  ccllaasssseess__oolldd  ));;    
          }}  wwhhiillee  ((  ccllaasssseess  !!==  ccllaasssseess__oolldd  ));;      ////  ccllaasssseess  aarree  rreeffiinneedd    
 

          ////  AAlltteerrnnaattee  SSAATT  ssoollvviinngg  aanndd  iinntteelllliiggeenntt  ssiimmuullaattiioonn  
          wwhhiillee  ((  ccllaasssseess  !!==  eemmppttyy  &&&&  ttiimmee  <<  ttiimmee__lliimmiitt  ))  {{  
                            ppaaiirr  ==  ppooppFFiirrssttPPaaiirrUUssiinnggTTooppoollooggiiccaallOOrrddeerr((  ccllaasssseess  ));;    
                            mmiitteerr__tteemmpp  ==  ggeenneerraatteeTTeemmppoorraarryyMMiitteerr((  mmiitteerr,,  ppaaiirr  ));;  
                            iiff  ((  aappppllyySSaatt((  mmiitteerr__tteemmpp,,  bbaacckkttrraacckk__lliimmiitt  ))  ====  UUNNSSAATT  ))  {{                    
                                            mmiitteerr  ==  mmeerrggeePPaaiirr((  mmiitteerr,,  ppaaiirr  ));;  ////  mmeerrggee  eeqquuaall  nnooddeess  
                                            ccoonnttiinnuuee;;  
                            }}  
                            iiff  ((  !!cchheecckkIIssMMiitteerrSSoollvveedd((  mmiitteerr__tteemmpp  ))  ))    ////  lliimmiitt  rreeaacchheedd  
                                            ccoonnttiinnuuee;;  
 

                            ////  NNooddeess  aarree  ddiiffffeerreenntt  aanndd  aa  ccoouunntteerr--eexxaammppllee  iiss  ggeenneerraatteedd  
                            ppaatttteerrnn  ==  ggeettCCoouunntteerrEExxaammppllee((  mmiitteerr__tteemmpp  ));;  
                            ddiisstt11__ppaatttteerrnnss  ==  ggeenneerraatteeDDiissttaannccee11PPaatttteerrnnss((  ppaatttteerrnn  ));;  
 

                            ////  PPeeffoorrmm  ssiimmuullaattiioonn  uussiinngg  ddiissttaannccee--11  ppaatttteerrnnss  ttiillll  ssaattuurraattiioonn  
                            ddoo  {{  
                                            ccllaasssseessOOlldd  ==  ccllaasssseess;;  
                                            ccllaasssseess  ==  rruunnSSiimmuullaattiioonn((  mmiitteerr,,  ccllaasssseess__oolldd,,  ddiisstt11__ppaatttteerrnnss  ));;  
                                            ppaatttteerrnnss  ==  ggeettSSuucccceessssffuullPPaatttteerrnnss((  ccllaasssseess,,  ddiisstt11__ppaatttteerrnnss  ));;  
                                            ddiisstt11__ppaatttteerrnnss  ==  ggeenneerraatteeDDiissttaannccee11PPaatttteerrnnss((  ppaatttteerrnnss  ));;    
                              }}  wwhhiillee  ((  ccllaasssseess  !!==  ccllaasssseess__oolldd  ));;  ////  ccllaasssseess  aarree  rreeffiinneedd  
              }}    
}}        

Figure 2. Detecting and merging candidate equivalence classes 
using intelligent simulation and SAT. 

Intelligent simulation has been shown to substantially reduce 
runtime for those benchmarks, whose fraiging is dominated by 
satisfiable SAT runs. In such cases, the number of satisfiable runs 
decreases roughly two times, compared to using only random 
simulation and counter-examples. 

The reason why distance-1 simulation works on practical 
benchmarks is not known, but we speculate as follows. Consider a 
class of n potentially equivalent nodes. Then there are n(n-1)/2 
pairs to be resolved. Suppose the counterexample splits the class 
into two parts of size n/2. There still remains to resolve n(n-2)/4 

pairs. We speculate that the counterexample is “close” to resolving 
the other pairs in the class since all functions in any potential 
equivalence class have significant overlap of their onsets and 
offsets. For example, many realistic functions would have a small 
number of large cubes covering their onsets or offsets. Therefore, 
two functions that have a significant overlap of onsets and offsets 
would tend to have cubes that are distance-1 apart, since larger 
distance cubes would be easier to resolve by random simulation.  

Obviously, this heuristic does not work for random functions, for 
which the probability of finding a distinguishing pattern is the same 
for any minterm.  

3.2 Interleaving input and output SAT runs 

It is important to balance fraiging (solving intermediate node 
equivalence) with mitering (solving output node equivalence) by 
using interdependent resource limits [21]. If a proper balance is not 
achieved, the SAT solver may spend too much time mitering, 
which would be easier after some fraiging. At the other extreme, 
the solver may spend too much time fraiging while the mitering 
problem may be easy to solve without it. Some degree of 
integration of fraiging and mitering was achieved in [21] by using 
the same SAT solver for both procedures. This saves the runtime 
for setting up the solver and shares learned-clause information 
across all the SAT calls.  

Synchronization of fraiging and mitering can be taken one step 
further. For this, during mitering we can count the number of 
conflicts, in which each variable has been involved. This 
information will be used as follows. In the next round of fraiging, 
we can first try to resolve potential equivalence classes involving 
variables, which participated in many conflicts during mitering. 
New equivalences proved while fraiging will simplify the miter in 
the critical areas, which may speed up mitering. 

This improvement is currently not implemented. We plan to 
investigate it as part of the future work. 

3.3 Using CNF-based solvers for circuits  

Traditionally, circuit-based solvers have been preferred when 
working with verification problems for circuits [4][21][23] because 
of their fast constraint propagation and good circuit-based variable 
ordering heuristics, perfected in ATPG research [1].  

In recent years, CNF-based solvers [31][12] have improved 
significantly in performance by using new methods for clause-
database management (two-literal watching), improving conflict 
analysis (non-chronological backtracking), and finding better 
variable ordering heuristics (activity-based decisions).  

However, circuit-based solvers still have the advantage of 
making better decisions because of circuit structure information, 
which is not available to the CNF-based solvers. On the other hand, 
circuit-based solvers cannot efficiently record information obtained 
by conflict-based learning. This motivated hybrid solvers, such as 
[17][19], which rely on circuits to represent the SAT problem and 
on CNF to store learned clauses.  

In this work, we follow the approach proposed in [37][38] and 
enhance the CNF-based solver with circuit based information. The 
resulting solver has the following strengths: 

• It uses the most recent advances in efficient CNF-based SAT 
solving, such as conflict-clause minimization [14]. 

• It uses efficient circuit-to-CNF translation [41], which 
decreases the number of variables and clauses (compared to 
the brute-force translation of each AND2 into three clauses), 
improves implicativity [35] (measured as the average number 
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of implications between subsequent decisions), and reduces 
memory footprint.  

• Circuit-based decision heuristics are added to a CNF-based 
solver by augmenting it with the APIs described below. 

The first API allows a CNF-based solver to work on a subset of 
variables. This is particularly important if the miter is large while a 
cone to be solved during fraiging is small. An unconstrained CNF-
based solver may waste some time making decisions and 
generating implications outside of the relevant cone. A simple 
implementation of this idea traverses the relevant cone and marks 
all the SAT variables in it. The CNF-based solver can be modified 
to decide and propagate implications only for the marked variables. 

The second API augments the CNF-based solver with variable 
ordering procedures based on the notion of justification frontier, or 
J-frontier [1][37][38]. At any time during the solving process, the 
J-frontier is the set of currently unassigned variables, each of which 
has at least one fanin/fanout variable that is currently assigned. In 
the context of a CNF-based solver, default decisions based on 
variable activity [12], are modified to choose the most active 
variable among those currently on the J-frontier. 

Implementation of this heuristic requires providing the CNF-
based solver with structural information about the circuit (the set of 
fanin/fanout variables for each variable) and updating the internal 
representation of the J-frontier each time a new variable is assigned 
and unassigned during solving. Our current implementation (which 
is not optimized) spends approximately 40% of SAT solver runtime 
for supporting the J-frontier. Nevertheless, the capability of the 
solver to make circuit-based decisions typically leads to runtime 
improvements, compared to using the same solver with only 
activity-based decisions. The improvements are benchmark 
dependent and can be either negligible or an order of magnitude. 

It is possible that J-frontier heuristic is important for large 
unsatisfiable benchmarks because the complete Boolean space 
exploration for them is hard to efficiently do using activity-based 
decisions alone. Such decisions tend to make decisions in distant 
parts of the search space, leading to larger conflict clauses. In 
contrast, incorporating circuit-based decisions tends to make the 
SAT search more focused, resulting in smaller conflict clauses and 
hence faster coverage of the search space.  

A more efficient implementation of the J-frontier in a CNF-based 
solver can use a variable stack for storing currently unassigned 
variables. Variables are removed from the stack or added to it, as 
they are assigned/unassigned during SAT solving. To make a 
decision, the first k variables in the stack can be traversed to choose 
the one with the highest activity. Another way of simulating the 
J-frontier in a CNF-based solver uses multiplicative activity 
weights, which are higher for SAT variables that are closer to the 
root of the miter to be checked [12].  

3.4 Using logic synthesis in CEC 

We have observed that preprocessing of the miter with logic 
synthesis often leads to a reduction in the runtime of CEC. Logic 
synthesis makes the AIG representation of the miter more compact 
by removing redundancies and detecting shared logic. This reduces 
the number of CNF variable and clauses, which in turn makes SAT 
solving more efficient.  

For application to CEC, we use a fast AIG rewriting method, 
which was proposed for quick circuit compression in [3]. We 
developed it further in [29] as an alternative logic synthesis flow, 
and showed it to be comparable to or better than traditional logic 
synthesis.  

 

AIG rewriting 
Rewriting is a sequence of fast local transformations of the AIG 

representation of combinational logic. Rewriting alternates DAG-
aware Boolean restructuring and algebraic tree-balancing, which 
reduces the number of AIG nodes by sharing common logic. The 
following are the advantages of the AIG rewriting, compared to the 
traditional logic synthesis: 

• While still being heuristic and suboptimal, AIG rewriting 
requires no hand-tuning or trial-and-error of scripts because it 
monotonically reduces the number of AIG nodes. 

• Improvements in the logic complexity, measured by the 
number of AIG nodes and levels, are in good correspondence 
with the complexity of resulting SAT problems generated 
from the AIG using efficient circuit-to-CNF conversion. 

• AIG rewriting is much simpler than traditional synthesis. A 
robust implementation used in this paper took a few weeks of 
one person’s time to implement. 

• It is orders of magnitude faster than the traditional flow in its 
most rugged and robust versions, while the quality is 
comparable or better when measured by the delay and area of 
the network after technology mapping. 

It should be noted that AIG rewriting is local; however, rewriting 
is very fast and can be applied to the miter many times. For 
example, performing 10 rewriting passes over a typical AIG is still 
at least an order of magnitude faster than running the resource-
aware implementation of the traditional flow in MVSIS [34] and 2-
3 orders of magnitude faster than the traditional flow in SIS [35]. 
By applying rewriting many times, the scope of changes is no 
longer local. The result is that the cumulative effect of several 
rewriting passes is often superior to traditional synthesis. 

Rewriting works by exhaustively enumerating all four-input logic 
cones of each AIG node in the topological order. A Boolean 
function of each such cone is computed and checked against a 
number of pre-computed non-redundant AIGs for this function, 
while accounting for possible logic sharing with other logic cones. 
If the current representation can be replaced by the stored one 
without increasing the total number of AIG nodes, the 
transformation is accepted and processing moves to the next node.  

For a detailed description of the algorithm and its experimental 
comparison against the traditional logic synthesis, the reader is 
referred to [3] and [29]. 

4 Modified integrated approach  
The following describes the CEC framework based on rewriting, 
mitering, and fraiging – all performed with balanced resource 
limits, controlled by the user. The original integrated approach [21] 
performed only fraiging and mitering. The pseudo-code of the 
resulting algorithm is shown in Figure 3. 

Our CEC procedure takes a problem in the form of a miter and a 
set of resource limits indicating how many iterations of integrated 
solving to perform (iter_limit), what are the limits for the 
intermediate steps (mitering_limit, rewriting_limit, fraiging_limit), 
and how these limits change over time (mitering_increase, 
rewriting_increase, fraigng_increase).  

An iteration of CEC begins by mitering with a fixed resource 
limit (typically, 1000 conflicts). The reason for beginning the first 
iteration with mitering rather than other steps, is that some 
seemingly difficult problems can be solved quickly by SAT alone.  

Mitering involves converting the current AIG structure into CNF, 
as described in Section 2, and running a CNF-based solver [12]. In 
our current implementation, circuit-based decisions are only used 

839



in fraiging but not in mitering. Moreover, CNF is re-created from 
scratch in each iteration of the loop. These limitations will be 
addressed in the future. 

 
iinntteeggrraatteeddCCEECC((  mmiitteerr,,  rreessoouurrccee__lliimmiittss  ))  
{{  
          ssttaattuuss  ==  uunnddeecciiddeedd;;  
          ffoorr  ((  iitteerr  ==  11;;    iitteerr  <<==  iitteerr__lliimmiitt;;  iitteerr++++  ))  {{  
 

                  ////  TTrryy  mmiitteerriinngg    
                  ssttaattuuss  ==  ddooMMiitteerriinngg((  mmiitteerr,,  mmiitteerriinngg__lliimmiitt  ++  iitteerr**mmiitteerriinngg__iinnccrreeaassee  ));;  
                  iiff  ((  ssttaattuuss  !!==  uunnddeecciiddeedd  ))      bbrreeaakk;;  
 

                  ////  TTrryy  rreewwrriittiinngg  
                  ssttaattuuss  ==  ddooRReewwrriittiinngg((mmiitteerr,,  rreewwrriittiinngg__lliimmiitt++iitteerr**rreewwrriittiinngg__iinnccrreeaassee  ));;  
                  iiff  ((  ssttaattuuss  !!==  uunnddeecciiddeedd  ))      bbrreeaakk;;  
 

                  ////  TTrryy  ffrraaiiggiinngg  
                  ssttaattuuss  ==  ddooFFrraaiiggiinngg((  mmiitteerr,,  ffrraaiiggiinngg__lliimmiitt  ++  iitteerr**ffrraaiiggiinngg__iinnccrreeaassee  ));;  
                  iiff  ((  ssttaattuuss  !!==  uunnddeecciiddeedd  ))      bbrreeaakk;;  
          }}  
          iiff  ((  ssttaattuuss  !!==  uunnddeecciiddeedd  ))      
                  ssttaattuuss  ==  ddooMMiitteerriinngg((  mmiitteerr,,  ffiinnaall__mmiitteerriinngg__lliimmiitt  ));;  
          iiff  ((  ssttaattuuss  ====  ssaattiissffiiaabbllee  ))  
                  mmiitteerr-->>ccoouunntteerr__eexxaammppllee  ==  ggeenneerraatteeCCoouunntteerrEExxaammppllee((  mmiitteerr  ));;  
          rreettuurrnn  ssttaattuuss;;  
}}        

Figure 3. Pseudo-code of the integrated CEC. 
If the miter is not solved after the application of brute-force SAT, 

then rewriting and fraiging are attempted. Each of these 
transformations may actually solve the miter: rewriting may have 
simplified the miter to a constant, or fraiging with the given 
resource limit may have succeeded in proving that the output of the 
miter is equivalent to a constant. If the miter is not solved after 
these steps, the next iteration is performed with the increased 
resource limits.  

In the end, if the miter is not solved after a user-specified number 
of iterations, one last attempt is made to solve it with a larger 
resource limit. Also, whenever the miter is found satisfiable, a 
counter-example is generated and returned. 

Experiments using a large selection of benchmarks from different 
applications domains, including verification [8], logic synthesis 
[28] and software synthesis [40], have shown that the proposed 
integrated CEC is faster and more rugged than the integration of 
any two methods, such as only fraiging and mitering [21]. This can 
be explained as follows.  

Rewriting efficiently detects logic sharing and thereby quickly 
finds and merges numerous pairs of functionally equivalent nodes, 
which would take longer to be proved by fraiging. For example, 
two different tree-decompositions of a three-input AND, (ab)c and 
a(bc), are trivial to merge by rewriting but would require an 
expensive, even if relatively fast, SAT call during fraiging. On the 
other hand, if fraiging is not performed, local rewriting will quickly 
saturate and fail to substantially reduce the miter. Finally, rewriting 
and fraiging, used with matching resource limits, provide both local 
and global views of node equivalences, which facilitate quicker 
reduction of the miter, leading to proving it or finding a disproving 
counter-example. 

5 Experimental results  
The proposed modifications to CEC were implemented in ABC [2], 
a public-domain synthesis and verification system. The new 
equivalence checker was tested on numerous benchmarks from 
industrial as well as academic sources [8][40]. The correctness of 
the results reported on unsatisfiable miters was verified by running 

external public-domain SAT solvers, whenever possible. The 
counter-examples for satisfiable miters were verified by simulating 
them through the miters and ensuring that the output becomes 1. 

5.1 Performance on IWLS benchmarks  

The first experiment reports the performance of the proposed 
checker on bounded sequential synthesis problems generated from 
IWLS benchmarks. The original benchmarks were compared 
against ones synthesized using fast AIG-based logic synthesis [29] 
followed by an integrated mapping/retiming for FPGAs [30]. The 
miters were produced by unrolling the product machine for a given 
number of timeframes and comparing the POs at all time frames. 
The number of time frames was selected individually for each 
benchmark to create a miter taking about one minute to solve.  

Table 1. IWLS benchmark statistics and runtime comparison. 
AIG statistics Runtime, sec Benchmark

Fr PIs AND2 Lev prove prove-r prove -j sat 
ac97_ctrl 20 1680 66681 120 20.52 48.08 25.86 -
aes_core 5 1295 85100 64 42.30 45.88  64.58 -
des_area 8 1920 79242 194 52.37 71.31 290.39 -
des_perf 15 3510 113322 130 66.53 155.21  89.12 36.19
ethernet 15 1470 66098 239 36.23 70.12  41.57 -
i2c 20 380 36144 213 26.34 41.24  61.75 -
mem_ctrl 20 2300 81271 159 48.87 110.73  80.71 -
sasc 50 800 66096 370 21.40 22.77  81.76 -
simple_spi 50 800 90790 479 16.46 19.45  13.13 981.31
spi 10 470 58788 201 50.91 80.11  92.28 -
ss_pcm 80 1520 55739 453 28.24 50.67 150.86 -
systemcaes 15 3900 223480 434 58.15 35.08  54.85 6.37
systemcdes 15 1980 79641 270 67.90 96.48 474.54 -
usb_funct 10 1280 106051 118 93.04 150.85 131.92 -
usb_phy 50 750 33543 364 25.67 38.13  59.57 -
vga_lcd 3 267 88784 35 10.59 123.49  10.68 15.16
wb_conmax 4 4520 163548 60 49.37 60.77  74.05 -
wb_dma 20 4340 91034 128 39.46 63.80  44.49 -
Ratio  1.00 2.12 2.34 > 42.00
 
The miters were generated in ABC using the following script: 

read <input_file>; resyn2; sfpga; miter -c; frames -i -F <num>; 
orpos; write_blif <output_file.blif>, where resyn2 is the logic 
synthesis script performing 10 iterations of AIG rewriting, sfpga 
runs integrated mapping/retiming for FPGAs using 5-input LUTs, 
miter -c derives the product machine from the original and 
synthesized benchmark, frames -i -F <num> creates initialized 
unrolled timeframes of the product machine, orpos derives 
Boolean OR of the POs of all frames, resulting in a single-output 
combinational miter. Finally, the miter is written into the output 
file. The resulting miters are publicly available in BLIF and 
BENCH formats [43]. 

Table 1 lists the statistics of the miters and the results of running 
our equivalence checker with the proposed improvements. Table 1 
helps document the relative contributions of the separate 
improvements. Column “Benchmark” lists the IWLS benchmarks 
used to derive the miters. Columns “Fr”, “PIs”, “AND2”, and 
“Lev” show the number of timeframes used to unroll the product 
machine, as well as the number of PIs, AIG nodes, and AIG levels 
after unrolling. 

The remaining columns show the runtime of different CEC 
options reported on a 1.6GHz laptop with 1Gb of RAM. Column 
“prove” shows the runtime of the new checker with the proposed 
improvements. Dash means that a solver timed out after 1800 
seconds. Column “prove –r” shows the runtime when AIG 
rewriting is not performed as an intermediate step in the integrated 
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procedure of Figure 3. Column “prove -j” shows the runtime when 
fraiging (which internally runs a modified version of MiniSat-1.12 
[12]) is performed with default activity-based variable ordering 
heuristics, instead of the proposed J-frontier heuristic of Section 
3.3. Finally, column “sat” shows the runtime of MiniSat-1.14 [14] 
on the CNF derived from the miter using efficient circuit-to-CNF 
conversion [41]. This uses the default activity-based variable 
ordering heuristics. The runtime listed as 1800.00 indicates that the 
status of the miter was undecided after 30 minutes. 

Table 2 provides additional details on solving the combinational 
miters. Columns “Orig” and “IterN” show the sizes of the original 
miters as well as the sizes of the miters after N successive iterations 
of solving. All miters used could be solved in four iterations. Dash 
in the column indicating AIG size means that the miter was already 
solved in the previous iteration. The following resource limits were 
used for iteration N:  

• mitering - at most 1000*2N conflicts  
• AIG rewriting - three iterations  
• fraiging - at most 2*8N conflicts at a node. 
The second section of Table 2 shows the runtimes of the three 

main components of CEC summed over the iterations. Columns 
“Miter”, “Synth”, and “Fraig” show the runtime for mitering, AIG 
rewriting, and fraiging, respectively. The ratios of runtimes are 
with respect to the total runtime (column “prove” in Table 1).  

Table 2. AIG size reduction details and breakdown of runtime. 
AIG size (AND2) Runtime, sec Benchmark 

Orig Iter1 Iter2 Iter3 Miter Synth Fraig
ac97_ctrl 66681 14487 - - 0.87 6.30 13.20
aes_core 85100 57472 4286 - 2.23 19.30 20.58
des_area 79242 49295 32250 - 1.69 14.39 36.10
des_perf 113322 35896 18008 - 20.71 19.74 25.80
ethernet 66098 20458 - - 0.98 6.63 28.44
i2c 36144 21873 10058 7586 1.20 4.24 20.83
mem_ctrl 81271 37874 4336 - 2.04 11.89 34.75
sasc 66096 49663 2676 - 0.97 9.84 10.41
simple_spi 90790 3370 - - 0.85 9.43 5.98
spi 58788 38812 - - 2.18 8.16 40.47
ss_pcm 55739 41997 - - 1.25 8.02 18.76
systemcaes 223480 54250 - - 5.59 42.32 9.65
systemcdes 79641 59216 29355 - 1.56 18.02 47.09
usb_funct 106051 60228 14587 - 6.68 16.02 71.10
usb_phy 33543 25179 8921 3389 1.45 4.98 19.16
Vga_lcd 88784 11673 6821 - 1.04 7.19 2.23
wb_conmax 163548 52858 - - 2.21 25.24 11.60
wb_dma 91034 91034 34858 - 1.34 10.42 27.40
Ratio 1.00 0.51 0.12 0.02 0.06 0.36 0.58

 
The conclusion from Table 1 is that the integrated CEC flow 

works better than a comparable flow without AIG rewriting or with 
activity-based variable ordering. Table 2 shows that the AIG size is 
quickly reduced during solving taking at most 4 iterations in the 
given examples. It also shows that fraiging is the slowest part of the 
flow, which justifies intelligent simulation and J-frontier variable 
ordering, and motivates further research to reduce its runtime. In 
other benchmark types, we observed even larger ratios of fraiging 
and smaller ratios of rewriting. 

5.2 Comparison with CSAT  

In this experiment, the proposed checker is compared with the 
circuit-based SAT solver and equivalence checker CSAT 
[23][24][10]. Since CSAT does not use logic synthesis, for fairness 
of comparison, the miters were preprocessed with three iterations 
of AIG rewriting (script rwsat in ABC).  

Table 3 lists benchmark names followed by the miter statistics 
after preprocessing. Columns “AND2” and “Lev” show AIG nodes 
and levels, respectively. The next section lists the runtime of 
preprocessing (column “Prepro”), the runtime of the proposed 
checker (column “Prove -r”), and that of CSAT. The runtime of 
CSAT is reported on a 2GHz CPU under Linux while all other 
runtimes are on the 1.6GHz Windows laptop.  
Table 3. Runtimes of equivalence checking with different options. 

AIG after prepro Runtime, sec Benchmark 
AND2 Lev Prepro Prove -r CSAT 

ac97_ctrl 27147 99 23.56 12.30 13 
aes_core 71074 54 17.83  23.24 21 
des_area 55213 157 12.87  42.10 44 
des_perf 38875 86 20.28  44.08 37 
ethernet 36566 187 7.90   25.51 19 
i2c 25358 281 3.77   19.55 17 
mem_ctrl 57407 120 13.75  42.44 33 
sasc 51776 316 9.97    9.92 19 
simple_spi 71229 555 15.52   5.32 14 
spi 46142 179 9.40   40.72 64 
ss_pcm 50619 446 9.17   22.86 38 
systemcaes 161470 293 70.98   2.34 136 
systemcdes 63955 216 15.23  48.91 87 
usb_funct 73882 114 18.02  75.99 47 
usb_phy 26626 340 4.05   20.63 15 
vga_lcd 63345 39 13.96 146.30 1004 
wb_conmax 58860 52 27.27 24.29 11 
wb_dma 53104 88 13.33 30.13 17 
Ratio   1.00 4.62

 
In summary, the proposed solver is comparable to CSAT on most 

benchmarks but more rugged on the larger ones. On average it is 
4.62 times faster. When the two outlier cases (systemcaes, vga_lcd) 
are not considered, an average improvement over CSAT is 1.14.  

5.3 Role of intelligent simulation 

The runtime of the above unsatisfiable examples is dominated by 
unsatisfiable SAT calls during fraiging. This is in general true 
about miters constructed from two copies of a circuit. To show the 
contribution of intelligent simulation we need benchmarks, for 
which fraiging is dominated by satisfiable SAT calls. Such test-
cases occur when a single copy of the netlist has to be fraiged, for 
example, during lossless logic synthesis [9].  

Table 4. Speedup in fraiging due to intelligent simulation. 

AIG statistics 
Without dist-1 

patterns  
With dist-1 

patterns File 
Fra-
mes 

AND2 Lev
UN 
SAT 
calls 

SAT 
calls 

SAT 
time 

SAT 
calls 

SAT 
time 

pj1 1 16285 156 237 200 0.12 118 0.10
s444 100 15500 614 978 910 6.93 429 3.86
b14 10 60690 371 1462 600 17.70 270 9.97
b17 5 130492 317 2632 3782 162.63 2550 106.81
ratio  1.00 1.00 0.55 0.65

 
Table 4 shows the results of fraiging of four networks: PicoJava 

circuit pj1, the unrolled ISCAS circuit s444, and two unrolled ITC 
circuits, b14 and b17.  The first section shows the AIG statistics: 
the number of frames (column “Frames”), the number of AIG 
nodes (column “AND2”) and the number of AIG levels (column 
“Lev”). The next column shows the number of unsatisfiable SAT 
calls. The next column shows the number of satisfiable SAT calls 
and the total runtime used for SAT in two cases: without and with 
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distance-1 patterns used for simulation. In both cases, random 
simulation and counter-examples are used. 

In summary, Table 4 shows several non-miter circuits, for which 
the number of satisfiable SAT calls is comparable to the number of 
unsatisfiable SAT calls during fraiging. Intelligent simulation 
makes some of the satisfiable SAT calls unnecessary, which tends 
to reduce the SAT solver runtime. The additional runtime for 
intelligent simulation is relatively small. 

5.4 Performance on industrial benchmarks  

Table 5 reports running the equivalence checker on a set of 
unsatisfiable industrial benchmarks. Column “File name” lists the 
names of the benchmarks. Column “AND2” lists the number of 
AIG nodes in the miter after structural hashing. The remaining 
columns show the runtimes of different CEC options reported on a 
1.6GHz laptop with 1Gb of RAM. Dash means that a solver timed 
out after 1800 seconds. The notation used is the same as in Table 1. 
Table 5. Runtimes of equivalence checking with different options. 

File Equivalence checking runtime, sec 
name 

AND2 
prove prove -r prove -j sat 

Ex01 20631 19.80 58.94 79.72 - 
Ex02 27574 36.59 333.94 142.98 - 
Ex03 29745 46.16 149.18 178.25 - 
Ex04 30178 36.26 152.25 942.53 - 
Ex05 31869 49.99 189.98 - - 
Ex06 35141 103.03 324.29 1663.56 - 
Ex07 10619 39.62 39.29 40.97 7.54 
Ex08 36234 80.70 355.30 - - 
Ex09 9731 11.41 26.14 32.67 0.92 
Ex00 36145 36.43 106.97 31.82 1711.21 
Ex11 35978 95.20 2112.96 340.45 - 
Ex12 40989 108.45 2123.06 416.39 - 
Ex13 38093 105.61 2024.00 1287.46 - 
Ex14 44098 53.85 185.54 64.03 0.68 
Ex15 43302 3.65 177.21 3.70 0.31 
Ex16 47078 56.90 355.40 288.60 5.40 
Ratio  1.00 9.77 > 9.00 > 25.28 

We also experimented with these benchmarks using other CNF-
based solvers: ZChaff [30] and CSAT [23][24]. The former on 
average performed worse, compared to MiniSat (column “sat”). 
The latter on average performed better than MiniSat but still about 
an order of magnitude worse then the proposed equivalence 
checker (column “prove”). The improvement of CSAT over 
MiniSat-1.14 is probably due to using circuit-based variable 
decision heuristics.  

Table 5 shows that the proposed improvements (the use of J-
frontier and interleaving SAT solving with fast logic synthesis) are 
important to achieve robustness on a variety of benchmarks. The 
fact that some easy test cases (such as ex07, ex09, etc) can be 
solved faster using a SAT solver directly motivates trying for an 
even tighter integration between fraiging and mitering outlined in 
Section 3.2. 

We observed improvements similar to those reported in Tables 1 
and 5 on several other classes of benchmarks, including hard 
satisfiable benchmarks generated in software synthesis [40].  

6 Conclusions and future work 
We described several enhancements to CEC, which substantially 
reduce its runtime on hard industrial problems. The enhancements 
are based on:  

• better simulation, which substantially reduces the number of 
satisfiable SAT calls; 

• leveraging the advances in CNF-based SAT for circuit-based 
CEC problems through an efficient circuit-to-CNF conversion 
[41] and circuit decision heuristics (such as J-frontier [1]); 
these heuristics are particularly efficient for hard unsatisfiable 
problems and may lead to abandoning the need for circuit-
based SAT solving in the future; 

• performing logic synthesis on circuits before or during CEC 
tends to dramatically reduce subsequent SAT solver runtimes.  

A public-domain equivalence checker based on these ideas was 
implemented in ABC [2] and tested on a wide variety of academic 
and industrial benchmarks.  

As part of future work, we plan to implement interleaving of 
SAT runs suggested in Section 3.2 and experiment with different 
ways of realizing J-frontier, as described in Section 3.3. Other 
aspects of future work include developing CEC methods for miters 
with few or no internal equivalences and extending the proposed 
integrated approach to work for word-level verification problems. 
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