
An artifact-centric framework for software development skillsAn artifact-centric framework for software development skills

Jack Downey, NORAH POWER

Publication datePublication date

01-01-2007

Published inPublished in

SIGMIS CPR '07 Proceedings of the 2007 ACM SIGMIS CPR conference on Computer personnel research:
The global information technology workforce;pp. 186-195

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Downey, J. and POWER, N. (2007) ‘An artifact-centric framework for software development skills’, available:
https://hdl.handle.net/10344/2381 [accessed 23 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

An Artifact-centric Framework for Software Development
Skills

Jack Downey
University of Limerick

Castletroy
Co. Limerick, Ireland

+353 61 213072

jack.downey at ul.ie

Norah Power
University of Limerick

Castletroy
Co. Limerick, Ireland

+353 61 202769

norah.power at ul.ie

ABSTRACT
While the specific knowledge, skills and abilities needed to
develop software can be determined, it is much more difficult to
decide what skill set is required for any given software
development role. This paper suggests that progress may be made
if, instead of trying to relate knowledge, skills or abilities to
individual roles, efforts are made to understand what knowledge,
skills and abilities are required to create and use the artifacts
associated with software development. To this end, a framework
incorporating two relationships is presented: The first relates
software development artifacts to organizational functions, while
the second relates knowledge, skills and abilities to different
phases of an artifact’s lifecycle. This framework leads to a new
taxonomy of skills.

Categories and Subject Descriptors
K.7.1 [Occupations]:

General Terms
Human Factors, Theory

Keywords
Irish Telecommunications Software, Knowledge, Skills, Abilities,
Software Artifacts, Grounded Theory

1. INTRODUCTION
The question of what knowledge, skills and abilities (KSAs) are
needed to develop software is an important one and the answer is
not simple. Because professional software development is a
complex task, many different skills are needed, skills that are not
necessarily possessed by a single individual.

Because of its inherent complexity, software development is an
activity that is normally carried out by teams of workers who are
assigned to different roles in the team, such as analyst, architect,

programmer, or tester [1]. Employers engaged in software
development generally recruit and hire personnel to fill specific
software development roles and expect them to have the skills
needed to fill those roles. But this is problematic for a number of
reasons.

Role-names differ from one organization to another, making it
hard to identify similarities and differences. Role fragmentation
has led to considerable overlap between roles, so the same skill
may belong to different roles, and roles are not necessarily
distinguishable by their associated skills. In general, it is not easy
to determine which set of skills is needed to fulfill any particular
software development role.

Researchers have tried to focus on specific roles in tackling this
problem, but this approach has highlighted the gap between
research and practice in software development. For example, the
term 'requirements engineer' occurs repeatedly in the research
literature of software requirements engineering [2], yet few if any
software development organizations employ anyone called a
requirements engineer. Instead, the skills associated with
requirements engineering may be found in various roles such as
systems analyst, business analyst, system architect, product
manager or analyst/programmer.

In many organizations, requirements engineering is done by
systems analysts. Downey [3] analyzed the difference between
the roles of the systems architect and the systems analyst and
found many similarities. The assignment of role names seems to
depend more on the industry than on the responsibilities of the
role or the skills employed.

Previous efforts to identify software-related skills have tended to
avoid rather than deal with problems with role identification. For
instance, the British Office for National Statistics places team
leaders, systems architects, software developers and testers under
the same heading – standard occupational classification code
2132 [4]. Similarly, Irish studies (that make use of the British
codes) offer recommendations for the Information and
Communications Technology (ICT) sector as a whole [5, 6].

Professional bodies have also avoided role distinctions. The Irish
Computer Society [7] is promoting the use of the Skills
Framework for an Information Age [8]. This framework provides
a list of seventy-eight skills and asks practitioners to assess
themselves on each one. They can then plan their development by
improving existing skills or by gaining new ones. However, what

constitutes an ideal skills profile for a particular role is not
discussed.

This paper presents an alternative approach, based on the idea that
software development is concerned with the production of various
artifacts, including the software itself. The remainder of the paper
is organized as follows: Section 2 describes the research that led
to the development of this framework. Section 3 summarizes the
types of artifacts that are used. Section 4 deals with artifact
dynamics. Section 5 relates artifacts to development functions and
then Section 6 relates artifacts to knowledge, skills and abilities.
Finally Section 7 summarizes the artifact-centric framework.

2. Research Approach
This research study set out to investigate the skills required to
develop software in the telecommunications domain. The research
design is fully described in Downey [9] and is only briefly
summarized here. Individual members of project teams in four
different telecommunications software companies were
interviewed and the resulting data were analyzed qualitatively
using a grounded theory approach. As a result, it was found that
software development roles differ widely between companies
(even between projects) and they also overlap significantly with
other roles. It was concluded that software development roles
cannot be defined in a generally applicable manner.

Further analysis of the data showed that the activities and the
artifacts of the software development process were largely the
same across each of the companies studied. Because the
companies follow variations of the familiar ‘V’ model [10], it was
clear that the study of project phases would simply explore well
covered territory. However, changing the focus to the artifacts
associated with the development process proved to be much more
informative, leading to a conceptual framework where artifacts
are central.

 Artifacts have been studied in the software literature before. For
instance, Cluts [11] describes artifacts as the means of relating
people and activity systems. Artifacts also hold the history of
those relationships within them. Maurizio, Stamelos and Tsoukias
[12] are concerned with the attributes of software artifacts,
arguing that these can be measured and these measurements used
to support the decision-making process. A particular type of
artifact, called a ‘boundary object’ is the focus for Mambrey and
Robinson’s [13] study. Such objects “inhabit several intersecting
social worlds and satisfy the informational requirements of each”
(p.119). As will be seen, most of the artifacts identified in this
study are boundary objects, providing interfaces between the
development team and other departments within the organization,
or between the organization and external entities.

Artifacts are used throughout a development project to embody
stakeholder knowledge and contribute to the development
process. No one member of the development team is involved in
the creation of all the artifacts. Some are produced by other team
members; some originate in other departments within the

company and more are externally sourced – customer requests,
for instance.

3. Artifacts used in telecommunications
software development
Appendix 1 shows the full set of artifacts identified in this study
of telecommunication projects and how they relate to one another.
While that diagram is complex and extremely detailed, when the
work is looked at from an organizational point of view, four
distinct phases of work can be identified:

1. Definition. At the beginning of the project, much
work is done to identify what exactly is being
demanded by the marketplace. The culmination of this
work is what is being termed here the engineering
requirements document. This specifies the requirements
in a testable and measurable format.

2. Selection. The products being developed by these
companies can evolve in a variety of ways. Decisions
must be made to choose the features that yield
maximum revenue and provide the most customer
satisfaction. As well as being commercially feasible,
they must also be technically possible. All the factors
influencing these decisions appear in feasibility reports.
These reports contain input from sales and marketing
people as well as technical contributions from the
programming team. Once a feature is deemed feasible,
it is placed on a product roadmap and scheduled to be
developed as part of a release.

3. Management. Once a project release has been defined
and the approval given to develop a set of features, the
construction of the project is guided by the project plan.
This consists of a schedule and a work breakdown
structure. Some companies include mitigation and
contingency plans to cope with identified risks. It
should be noted that the definition and selection
activities are carried out before the project officially
exists.

4. Construction. The remainder of the project artifacts
relate to the task of producing and installing the finished
product. It must be emphasised that a commercial
software product involves user manuals and training
materials as well as working software.

Having identified four phases to development, a more abstract
picture of the artifacts and their interaction is possible. Figure 1
outlines how the four principal artifacts relate to one another. The
engineering requirements document is the result of the Definition
phase; the feasibility report is the result of the selection phase; the
project plan is the principal Management artifact and the installed
product is the main outcome of the Construction phase.

Figure 1. The Principal Artifacts

A noticeable feature of these key artifacts is the way so many
different roles are associated with them. The project plan, for
instance, is created by the project manager and receives input –
such as time and headcount estimates - from architects,
programmers, testers, technical writers and customer support
personnel. It is also reviewed by the product manager. In effect,
the artifact acts as a communications medium, allowing
collaboration between parties, as well as supporting the decision-
making process. In other words, the artifact functions as a
boundary object, marking the interface between different
organizational functions.

3.1 Artifact Dynamics
Artifacts represent milestones achieved during the project.
However, they need to be created in a particular order. For
instance, in the development projects described during the
interviews, the feasibility study cannot take place until the
requirements are understood and the construction effort cannot
proceed without a project plan. Thus one major artifact depends
on its predecessors, suggesting that development proceeds in a
linear fashion. However, for each artifact, a cycle of activity
needs to take place:

1. A trigger event occurs. This could be an external
stimulus or the review of another artifact.

2. The goals for the triggered artifact must be defined.
This process involves gathering the necessary
information – other artifacts, for instance – and may
trigger the creation of intermediate artifacts (such as
prototype systems) to assist in the definition process.

3. The concept to be contained in the new artifact must be
synthesized.

4. This concept must be articulated by producing an
artifact.

This cycle resembles Kurt Lewin’s experiential learning model
[14]. The steps taken to learn something new from experience -
where learning is defined “as a change in cognitive structure
(knowledge)” [15, p.66] - involve having an experience, reflecting
upon that experience, devising a course of action based on these
reflections and then testing this course of action. The result of this
experiment is analyzed in order to refine understanding, i.e. it
triggers another learning cycle.

Figure 2. Artifact Dynamics

Similarly, the construction of an artifact involves some initial
trigger; say a request from a customer for a new feature.
Reflecting on the request, the practitioner may notice that several
other customers have asked for similar functionality. S/he may
also notice that the request is already on the product roadmap. In
this case, the marketing requirements artifact already exists, so the
course of action is to forward the requirements to the customer. If
the customer finds these requirements lacking in some way, this
triggers a possible revision of the marketing requirements.
Alternatively, if the request has not been seen before, analysis of
the request can result in a variety of actions.

If the request is clearly understood, then the practitioner will be
able to design a new marketing requirements artifact by
paraphrasing the original request. If the request is obviously
unacceptable – i.e. it goes against the product strategy – a
response to its originator must be framed, ideally pointing out
how the product strategy will solve the problem in a different
manner.

If the overall request looks interesting, but contains ambiguous
elements, this will trigger a series of clarifying actions, such as
producing a prototype and presenting it to the customer for
feedback:

In terms of KSAs then, this cycle requires practitioners to:

• Evaluate the trigger event. This could involve simply
recognising a trigger, such as a news story that in some
way affects the company, or a scheduled review of a
planned artifact, such as a design document.

• Gather information and build up the knowledge
necessary to understand what is required of the target

artifact. Sufficient information may be available from
existing artifacts, but it might be necessary to create
intermediate artifacts - such as prototypes - to obtain
clarification.

• Design the artifact. This requires the creative, high-level
skills needed to devise new concepts. Also required
here are the decision-making and negotiation skills
mainly associated with management but are required
when investigating alternative courses of action. For
instance, detailed analysis of a particular requirement
may show that the initial estimates were too optimistic.
In this case, the design part of the cycle will have to
conceive a solution to satisfy the requirements as well
as calculating revised schedule estimates. The update to
the project plan is triggered by a report from the
programmer.

• Produce the artifact. These KSAs supplement the
creative skills and include technical writing,
prototyping, coding, testing, proof-reading, presentation
and reporting.

Another way of looking at the lifecycle of an artifact is to
consider it in terms of knowledge management. Demarest [16]
proposes a process where knowledge is embodied in the form of
an artifact and disseminated throughout the organization.
Although this process is not cyclical like the previous models, it is
suggested that the use of an artifact will generate new knowledge
that, in turn, needs to be organized and embodied into a new sort
of artifact.

Thus the trigger event is the dissemination of some sort of
knowledge and this is used to analyze the problem of creating the
next artifact. The analysis and design of the new artifact is termed
construction, which is defined by Demarest as “the process of
discovering or structuring a kind of knowledge: how to sell a
particular product to a particular market, for example, or how to
diagnose a particular kind of customer problem” (p.376). The
actual creation of the artifact maps onto embodiment.

Table 1. Relating the Models

Knowledge
Management
(Demarest)

Artifact Dynamics
Learning Cycle

(Lewin)

Dissemination Trigger Event Concrete
Experience

Use
Problem Analysis Observations and

Reflections
Construction

Artifact Design Abstract
Conceptualization

Embodiment Artifact Creation Active
Experimentation

To summarize, these models illustrate the dynamic nature of
artifacts. They begin after a trigger event, which may well be the
dissemination of a previous artifact. The goals of the new artifact
must be tied down and all necessary information gathered before
it can be designed. The design is conceived and then articulated,
or embodied, in the form of a tangible artifact. This artifact, in
turn, must be disseminated and used to make decisions or base
further artifacts on.
Thus, from a knowledge, skills and abilities perspective, an
artifact should not be considered merely in terms of the skills
needed to design it, but also in terms of the knowledge and the
other artifacts that must be acquired before any sensible synthesis
can take place. Having created, or embodied, the artifact, it must
be made available to others on the project team and reviewed by
them. Therefore, a single artifact draws on research, analysis,
design, implementation and evaluation skills.

3.2 Relating Artifacts to Organizational
Functions
The practitioner interviews have shown that it is the organization
and the individuals concerned who dictate which person works on
what artifacts. Although it is not possible to formulate rules
relating artifacts to individuals, a level of understanding is
possible if attention is given to the organizational functions that
are related via artifacts.

Judging by the interview data, it is useful to consider the
corporate structure as a set of overlapping functions. It is also
clear from these data that the overlap between functions is
accommodated by means of artifacts. Indeed, the interface
between the company and its external customers is also facilitated
through artifacts. This suggests that the bulk of the artifacts reside
in overlapping areas, signifying that the software development
process is truly a multi-functional team effort.

The term ‘organizational function’ has been chosen deliberately
rather than department, as each company may have different

departmental structures. Thus, for the purposes of this study, the
organizational functions will be defined as:

1. Management. This includes project management and
senior management. It also covers the finance and legal
departments. Essentially, it is where the major decision-
making activities take place.

2. Front-end customer interface. Here we find the product
managers and the sales and marketing personnel. These
people interact directly with the customer and with the
marketplace.

3. Back-end customer interface. This is where the product
is installed in the customer site. The installation and the
subsequent maintenance of the product are under the control
of the customer-support function.

4. Development. This area includes all personnel who
contribute directly to the creation of the delivered product.
That is: programmers, testers, technical writers and trainers.

Locating artifacts within the organization is achieved by studying
the interview data and determining which actors are involved with
each artifact. A person may be associated with a particular artifact
if s/he designs and creates it, contributes data to it, reviews it or
makes use of it to create another artifact or to make a decision.

To illustrate the process, the four principal artifacts identified in
Figure 1 are analyzed:

• Engineering Requirements. This artifact is the
responsibility of the systems architect, who is part of
the development function. S/he is assisted by
programmers, who are also in this function. The trigger
for the engineering requirements is the marketing
requirements document, which is produced by a product
manager. This establishes an overlap between
development and the front-end customer interface.
Because the engineering requirements document
informs the project plan, the management function is
involved. Finally, because the requirements might
contain aspects that affect the external interfaces of the
product, the customer-support personnel need to review
the document. This creates an overlap with the back-end
customer interface. These relationships place the
engineering requirements artifact firmly in the
intersection of all the organizational functions.

• Feasibility Report. As this is the responsibility of
product management, it involves the front-end customer
interface function. As time and headcount estimates and
technical feasibility input come from the architects and
programmers, it overlaps with the development
function. Its purpose is to provide the basis for the
go/no-go decision, made by the management function.
There is no evidence in this study that the back-end
customer interface is involved.

• Project Plan. This is the responsibility of the project
manager in the management function. It depends for its
time and headcount estimates and details of the work
breakdown structure on both the development and back-
end functions. It is also of concern to product managers,

who need to be able to relay to potential customers what
features are currently under development and when they
are likely to become available. These overlaps place the
project plan in the center of all organizational functions.

• Installed Product. The installed product relates the
back-end customer interface function with the
customers themselves, providing a boundary with the
outside world. It seems surprising that the development
function is not involved with this artifact, as
programmers and testers often accompany the
installation team. However, the installed product is
literally that which is installed in the customer site. It is
the end product of the development lifecycle and is
being used by the customer. If there are problems with
the product, the bug report/code update mechanism is
employed.

Table 2. Locating the Principal Artifacts

 Feasibility
Report

Engineering
Reqs

Project
Plan

Installed
Product

Front-End x x x
Management x x x
Development x x x

Back-End x x x x
Outside
World

 x

As can be seen from Table 2, the principal artifacts are all
boundary objects. Study of the principal artifacts also shows how
some of them contain data that is needed for decisions – such as
the go/no-go decision – to be made. If knowledge, skills and
abilities are now considered in terms of artifacts, it is likely that
each artifact will require certain communications, collaboration
and decision-support skills. However, before exploring this
possibility, the concept of an artifact needs to be examined
further.

4. Relating KSAs to artifacts
Considering KSAs in terms of the four phases of an artifact’s
lifecycle brings the team into focus. This is a useful development
as the three factors influencing team performance are: the task,
the team and the individual [17, 18]. Team focus is achieved by

highlighting the communication, collaboration and decision
support skills intrinsic in the lifecycle of an artifact.

1. Communication. Obviously, information is conveyed via
artifacts. This is particularly the case when the parties
involved are not co-located. It should be noted that not all
artifacts are produced by the development team. These
artifacts may be produced by other organizations (such as
industry regulators) or by other divisions within the same
company (such as the finance and purchasing departments).

2. Collaboration. An artifact is not something that is created
by a project stakeholder and never seen by anyone else. At
its simplest, it is created by one party and acted upon by
another. For more sophisticated artifacts, a myriad of people,
from many different organizational functions, may be
involved in its creation. Their product is then reviewed by
interested parties and the insights from the review go to
generating an improved version of the artifact.

3. Decision Support. The management team needs to decide
on what courses of action to take. They must decide what
features are worth investigating further, what features should
comprise a release and what actions to take if a project is
running behind schedule. Each of these decisions is informed
by artifacts – feasibility studies and progress reports in these
examples.

It should be noted that technical skills are still required and make
up a fourth category in this new taxonomy. Each of these
categories plays a critical role in particular phases. Because each
artifact has a similar lifecycle, it is not surprising that each of the
interviewees has a broadly similar skill set. While specific
technical skills are role specific, the communication, collaboration
and decision-support skills are required to deal with any artifact in
a team environment.

Table 3 highlights the way the collaboration and decision-support
skills are so important for dealing with trigger events and the
gathering of data in the analysis stage. For instance, a noticeable
feature of the interviews is the way teams are formed on an ad-
hoc basis, often for the sole purpose of creating a single artifact,
such as a feasibility report. The technical skills, those cited by the
senior programmers and the systems architects as the most
rewarding, are really only called for to synthesize and embody
solutions. This suggests that the emphasis that is currently placed
on technology-based skills is not equipping team members with
the range of knowledge and skills/abilities to deal with the entire
artifact lifecycle.

5. Conclusion
The analysis in this paper is motivated by the difficulties
encountered in defining individual roles. To create a framework
that addresses the problem, two relationships need to be
considered: how artifacts are located in the organizational context
and how knowledge, skills and abilities (KSAs) are related to
phases of the artifacts’ lifecycles. While this arrangement does
not allow KSAs to be mapped to roles, it does provide a means of
identifying the KSAs needed to develop software and the
organizational functions that are involved in the effort.

Figure 3. The Artifact-centric Framework

The lifecycle of an artifact is central to this framework. Artifacts
are triggered; their goals are set and relevant data gathered; their
contents are designed and embodied in artifact form. It is not
surprising that most of the artifacts identified in this study are
boundary objects, facilitating communication and collaboration
between organizational functions and between the organization
and the outside world. They also serve to support the decision-
making process. These communications, collaboration and
decision-support skills are generic to artifacts while the
technical skills are more artifact-specific. The framework caters
for this difference by allowing each artifact to be considered in
turn.

The artifact-centric framework has produced a new taxonomy of
knowledge and skills/abilities. MIS skills surveys [19-23]
classify KSAs as technical, business, inter-personal and the

Table 3. Relating KSAs to Artifact Phases

A
rt

ifa
ct

T

ri
gg

er

A
rt

ifa
ct

A

na
ly

si
s

A
rt

ifa
ct

D

es
ig

n

A
rt

ifa
ct

C

re
at

io
n

Communication

 Reading x x

 Listening x x

 Comprehension x x

 Writing x

 Presentation x x

 Reporting x

Collaboration

 Evaluation

 Document Review x

 Code Inspection x

 Problem Analysis x

 Management

 Coordination x x x x

 Teamwork x x x x

 Team Leading x x x x

 Negotiation x x x x

Decision Support

 Management

 Decision Making x x x x

 Coping with Ambiguity x x

 Prioritization x x

 Risk Identification x x

 Planning x x x

 Risk Management x x

 Business

 Estimation x

 Budgeting x

 Purchasing x

 Logistics x

Technical

 Design x

 Prototyping x

 Coding x

 Testing x

 Proof-reading x

application of technology to business. The artifact-centric
taxonomy instead incorporates communication, collaboration,
decision-support and technical skills, along with the different
types of knowledge – technical, product, domain, market,
political and commercial. This new taxonomy appears to place
its emphasis on team-working skills. However, while being able
to inter-work well with other team members is important, the
inter-working skills serve as conduits for the technical skills
each member brings to the team. Without technical skills, a
person would not be able to contribute to the project.

The question of what knowledge, skills and abilities (KSAs) are
needed to develop software is an important one for many
stakeholders, particularly in the context of globally distributed
software development: Educators need to know what skills their
graduates will need. Employers need to assess the skills of the
people they recruit, and managers need to assess the skills
required for new projects. Practitioners are interested in gaining
and improving necessary, sought after skills. Professional bodies
will want to develop their members’ careers so that they tailor
their skills to the areas in most demand. Government agencies
want to draw attention to the skills available in their respective
countries, in order to attract inward investment.

The artifact-centric framework is a theory grounded in the
experiences of four Irish telecommunications software teams. It
is a descriptive theory in that it seeks to describe what KSAs are
actually needed to develop software. Further research is needed,
applying the framework in different development contexts, for
example, in different application domains, such as automotive
software development or using different development methods,
such as the Rational Unified Process (RUP), which is based on a
specific set of artifact types, or agile development which relies
on fewer and less formal artifacts.

6. REFERENCES
[1] P. Kruchten, "Rational Unified Process - An Introduction,"

Addison-Wesley, Boston, 1999.

[2] M. Jarke and K. Pohl, Software Engineering Journal, 9,
257 - 266 (1994)

[3] J. Downey, Systems Architect and Systems Analyst: Are
These Comparible Roles?, K. Kaiser and T. Ryan, Eds.,
2006 ACM SIGMIS CPR Conference, Claremont,
California, ACM Press, 2006, p. 213-220

[4] Office for National Statistics, "Standard Occupational
Classification - Volume 2," The Publishing House,
London, ed. v6, 2000b.

[5] Forfas (2003) Responding to Ireland's Skills Needs, The
Fourth Report of the Expert Group on Future Skills Needs.
Dublin, Forfas, pp. 24-33, 86-94.

[6] Enterprise Strategy Group (2004) Ahead of the Curve:
Ireland's Place in the Global Economy. Dublin, Forfas.

[7] Irish Computer Society (2006) Irish Computer Society
Website, vol. 2006, pp. http://www.ics.ie.

[8] SFIA Foundation (2006) Skills Framework for an
Information Age, vol. 2006, pp. http://www.sfia.org.uk.

[9] J. Downey, A Framework to Elicit the Skills Needed for
Software Development, J. E. Moore and S. E. Yager, Eds.,
2005 ACM SIGMIS CPR Conference, Atlanta, Georgia,
ACM Press, 2005, p. 122-127

[10] M. Norris and P. Rigby, "Software Engineering
Explained," John Wiley & Sons, Chichester, England,
1992.

[11] M. M. Cluts, The Evolution of Artifacts in Cooperative
Work: Constructing Meaning Through Activity, ACM
SIGGROUP 2003, Florida, USA, ACM Press, 2003, p.
144-152

[12] M. Morisio, I. Stamelos and A. Tsoukias, A New Method
to Evaluate Software Artifacts Against Predefined Profiles,
ACM SIGSSEKE, Ischia, Italy, ACM Press, 2002, p. 811-
818

[13] P. Mambrey and M. Robinson, Understanding the Role of
Documents in a Hierarchical Flow of Work, ACM
SIGGROUP 1997, Phoenix, Arizona, ACM Press, 1997, p.
119-127

[14] D. A. Kolb, "Experiential Learning: Experience as the
Source of Learning and Development," Prentice Hall,
Englewood Cliffs, New Jersey, 1984.

[15] K. Lewin, "Field Theory in Social Science: Selected
Theoretical Papers," Tavistock Publications, New York,
1952.

[16] M. Demarest, Journal of Long Range Planning, 30, 374-
384 (1997)

[17] J. Adair, "The Inspirational Leader: How to Motivate,
Encourage and Achieve Success," Kogan Page Ltd,
London, 2003.

[18] J. Adair, "The John Adair Handbook of Management and
Leadership," Thorogood Publishing Ltd, London, 2004.

[19] D. M. S. Lee, E. M. Trauth and D. Farwell, MIS Quarterly,
17, 313-340 (1995)

[20] S. Sawyer, K. R. Eschenfelder, A. Diekema and C. R.
McClure, ACM SIGCPR Computer Personnel, 19, 27-41
(1998)

[21] N. Shi and D. Bennett, ACM SIGCPR Computer Personnel,
19, 3-19 (1998)

[22] E. M. Trauth, D. W. Farwell and D. Lee, MIS Quarterly,
17, 293-307 (1993)

[23] C. L. Noll and M. Wilkins, Journal of Information
Technology Education, 1, 143-154 (2002)

7. Appendix 1: All Identified Artifacts

	An artifact-centric framework for software development skills

