
UCLA
Papers

Title
Energy-Optimized Image Communication on Resource-Constrained Sensor Platforms

Permalink
https://escholarship.org/uc/item/5vg6h5n0

Authors
Lee, Dong-U
Kim, Hyungjin
Tu, Steven
et al.

Publication Date
2007

DOI
10.1145/1236360.1236390

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vg6h5n0
https://escholarship.org/uc/item/5vg6h5n0#author
https://escholarship.org
http://www.cdlib.org/

Energy-Optimized Image Communication on
Resource-Constrained Sensor Platforms

Dong-U Lee 1, Hyungjin Kim 1,2, Steven Tu 1, Mohammad Rahimi 2

Deborah Estrin 1,3, and John D. Villasenor 1

1 Electrical Engineering Department, University of California, Los Angeles
2 Center for Embedded Networked Sensing, University of California, Los Angeles

3 Computer Science Department, University of California, Los Angeles
dongu@icsl.ucla.edu, hjkimnov@ee.ucla.edu, steventu@ucla.edu, mhr@cens.ucla.edu

destrin@cs.ucla.edu, villa@icsl.ucla.edu

ABSTRACT
Energy-efficient image communication is one of the most
important goals for a large class of current and future sen-
sor network applications. This paper presents a quantita-
tive comparison between the energy costs associated with
1) direct transmission of uncompressed images and 2) sensor
platform-based JPEG compression followed by transmission
of the compressed image data. JPEG compression computa-
tions are mapped onto various resource-constrained sensor
platforms using a design environment that allows compu-
tation using the minimum integer and fractional bit-widths
needed in view of other approximations inherent in the com-
pression process and choice of image quality parameters. De-
tailed experimental results examining the tradeoffs in pro-
cessor resources, processing/transmission time, bandwidth
utilization, image quality, and overall energy consumption
are presented.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—software libraries; F.2.1 [Analysis of Algorithms
and Problem Complexity]: Numerical Algorithms and
Problems—computation of transforms ; I.4.2 [Image Pro-
cessing and Computer Vision]: Compression—approxi-
mate methods

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
While it is intuitive that image communication based on

compression followed by transmission is generally more en-
ergy efficient than direct transmission of uncompressed im-
ages, there has been very little quantitative study of the spe-
cific energy tradeoffs characterizing these two approaches in

.

the context of resource-constrained sensor platforms. This
is due in part to the challenges involved in implementing
compression algorithms such as JPEG on sensor platforms.
There is a wealth of literature and experience regarding
compression in other environments, but sensor platforms
have much more stringent limitations on memory, processing
speed, and energy consumption. In addition, unlike devices
such as camera-equipped mobile phones which are also lim-
ited in some respects, acquisition and dissemination of im-
agery is the primary function of an important class of sensor
platforms, giving the efficiency with which these tasks are
performed primary importance.

The JPEG algorithm is utilized for the work presented
here. While the newer JPEG2000 standard offers some sig-
nificant advantages over the “old” JPEG, it is much less
widely deployed and also requires full-frame processing which
can be challenging in light of memory limitations. As de-
scribed in [1] and elsewhere, JPEG involves partitioning of
an image into blocks of size 8 × 8, computation of the dis-
crete cosine transform (DCT) for each block, quantization,
and then entropy coding. Loss is introduced both in the
quantization process and in the DCT which, while in theory
lossless, in practice introduces loss due to finite precision.
Quality control is effected though adjustment of the quan-
tization step sizes. Choosing small quantization step sizes
leads to more accurate coefficient representation and higher
image quality, but also results in larger compressed image
files.

Energy-aware data compression has previously been ex-
amined by Barr and Asanović in [2], and by Sadler and
Martonosi in [3]. Both papers investigate the effectiveness of
various lossless data compression algorithms such as “LZO”
and “bzip2” on constrained embedded platforms. The re-
sults demonstrate significant energy benefits when trans-
mitting/receiving compressed data over uncompressed data,
primarily due to the higher energy costs associated with
communication versus computation. In comparison to loss-
less data compression, lossy image compression involves a
wider range of tradeoffs because the quality of the image
is related to the energy consumed during compression and
transmission. Wu and Abouzeid [4] have studied the prob-
lem of energy-efficient image transmission in a multi-hop
wireless sensor network using JPEG2000 compression on a
StrongARM SA-1000 processor. For a given image qual-
ity requirement and transmission distance, an algorithm for
finding the best set of JPEG2000 compression parameters is

described. Results indicate that large fractions of the total
energy are spent on computation due to the high complex-
ity of JPEG2000. In [5] Taylor and Dey examine effects on
energy, quality, and speed using JPEG compression when
1) different quantization tables are used and 2) computa-
tion on the high-frequency components is selectively omit-
ted. An adaptive system is described in which quantization
and high-frequency handling are varied in order to meet im-
age quality and energy consumption constraints.

In contrast with the previous work in this area, we di-
rect attention to the issue of mapping JPEG onto resource
limited processors using a design environment that makes
specific use of native word lengths of the target processor.
In traditional JPEG implementations, the precision used in
computing the DCT is often far greater than is necessary
in light of the rounding occurring in the quantization pro-
cess. Furthermore, the precision is often excessive in light
of the approximations inherent in the particular DCT al-
gorithm being used. For example, the DCT is often im-
plemented using fast algorithms based on integer multiplies
that only roughly approximate samples of a scaled cosine
function. Thus, the present paper provides the following
contributions:

• We adopt an energy-aware approach ensuring that
the JPEG computations utilize the minimum preci-
sion needed to ensure that quantization, not insuffi-
cient precision, remains the dominant source of error.
To accomplish this we develop a design framework that
analytically determines the optimum integer and frac-
tional bit-widths for the signal paths in the compres-
sion process and is able to guarantee a specified preci-
sion.

• We utilize this framework to automatically generate
platform-targeted JPEG C code and perform experi-
ments using the Atmel ATmega128, TI MSP430, TI
TMS320C64x, and Analog Devices Blackfin ADSP-
BF533 processors to measure the energy savings re-
sulting from the precision optimization process.

• Having obtained optimized JPEG implementations,
we then measure the energy consumed by the com-
pression process and subsequent transmission of the
compressed data and compare this with the energy
required to transmit the images in their uncom-
pressed state. While the general result that com-
pression/transmission is typically more energy efficient
than transmission without compression is expected, we
are not aware of any previous publications examin-
ing the specific quantitative aspects of the associated
tradeoffs in terms of processor resources and overall
energy consumption in the context of sensor platforms
running platform-targeted software.

2. PLATFORM-TARGETED JPEG

2.1 JPEG Compression
JPEG is the most widely used lossy image compression

standard. The main steps of JPEG compression are illus-
trated in Figure 1. If the original image is in RGB format,
it is converted into Y CbCr format where Y is the luminance
component and Cb and Cr are chrominance components.
Since the human eye is less sensitive to spatial detail in the

chrominance components, those images are typically sub-
sampled. The three images are then tiled into sections of
8×8 blocks (in pixels) and processed separately as described
below.

Each tile is level shifted to zero mean: e.g. for a pixel
depth of 8 bits, 128 would be subtracted from each pixel
to bring the range to [−128, 127]. The level shifted block
is then converted into frequency space by performing a 2D
DCT, which is commonly accomplished by performing 1D
DCTs on the rows followed by 1D DCTs on the columns.
After the DCT, quantization is performed on the block by
dividing each sample by a quantization step size defined in
accordance with a quantization table, and rounding the re-
sult of the division to the nearest integer. Quantization
tables are designed such many of the higher frequency com-
ponents will be rounded to zero. The standard quantization
table T specified in the JPEG standard for luminance is
given by

T =




16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99




. (1)

The values in the table corresponding to low frequency com-
ponents (upper left) are smaller than those corresponding
to high frequency components (lower right), with the result
that low frequency information will be retained more ac-
curately (because it is quantized using a smaller step size)
than high frequency information. To adjust image quality,
all values in the table are rescaled in inverse proportion to
a quality setting Qtab that ranges from 1 (very poor image
quality) to 100 (very good image quality), with a constant
of proportionality typically introduced so that Qtab = 50
corresponds to no rescaling of the table. The final step in
JPEG compression is entropy coding, a lossless compression
process involving run-length encoding and Huffman coding.
In the present work we focus primarily on the optimization
of the DCT and quantization steps, as these are lossy steps
in JPEG compression and thus offer the largest opportunity
for potential impact in terms of overall energy utilization by
addressing precision issues.

2.2 Design Flow Overview
The DCT and quantization steps consist of large numbers

additions and multiplications involving real numbers. The
most straightforward way of implementing such computa-
tions is to use floating-point representations. However, most
embedded processors found in sensor networks are highly
resource-constrained lack dedicated floating-point hardware.
Emulating floating-point operations via integer operations
retains the high precision associated with floating point but
is extremely slow, especially on 8-bit processors such as the
ATmega128. Moreover, floating-point accuracy is rarely re-
quired in embedded environments, meaning valuable pro-
cessor cycles and memory are wasted for computing overly
precise results. To avoid this waste, we implement the JPEG
computations in fixed-point arithmetic with specific consid-
eration of the precision needed and the native word-length
of the processor.

In systems with a short-word-length fixed-point proces-

B Color
Space

Conversion
G

R

Cr

Cb

Y
Down

Sampling Cr

CbY Extract
8x8 Block

1D DCT
(Rows) Quantization

JPEG
Compressed

Image

Original
Image

1D DCT
(Columns)Buffer

2D Discrete Cosine Transform

Entropy
Coding

Level
Shift

Figure 1: The JPEG compression algorithm.

xH xL
yH yL

xL yL
xH yL
xL yH

xL yH
xHxL yHyL

n bits n bits

4n bits

Figure 2: Performing 2n-bit by 2n-bit multiplication on an n-bit
processor.

sor, multi-word arithmetic, which uses multiple words to
execute operations larger than the natural processor word-
length can be exploited [6], though due attention must be
given to avoid overuse of and/or unnecessarily wide multi-
word methods. Figure 2 shows an example of how 2n-bit ×
2n-bit (i.e. 2-word × 2-word) multiplication can be accom-
plished on an n-bit processor. Assuming that the proces-
sor supports an “add with carry” instruction (which most
processors do), four multiplications and six additions are
required in total. More generally, an L-word by M -word
addition requires max(L, M) additions, while an L-word by
M -word multiplication requires L ×M multiplications and
2× (L×M − 1) additions. In order to minimize execution
time, it is desirable to minimize the number of words used
for each multi-word arithmetic operation, while simultane-
ously meeting the user-specified output error criterion.

Figure 3 depicts the design flow for determining the num-
ber of required bits (or words) involved for each fixed-point
operation. The “Range Analysis” step analyzes the dynamic
range of each signal and computes the minimal integer bit-
widths that avoid overflow. We define a “signal” to be an
operand of an addition/multiplication operation or a result
of an operation. Next, “Precision Analysis” is performed
which computes the fractional bits required to each sig-
nal. Simulated annealing is employed for this step, which
finds the fractional bits in conjunction with constraints such
as the output error requirement and costs associated with
arithmetic operations of the target platform. Once the sig-
nal bit-widths are found, an appropriate C code fragment of
the algorithm is generated.

In [7], a similar design flow was examined for generating

Range Analysis
Integer Bit-Width
Determination

Precision Analysis
Fractional Bit-Width

Determination
(Simulated Annealing)

Algorithm

Costs

Integer
Bit-Widths Ranges

Constraints

Integer
Bit-Widths

Fractional
Bit-Widths

C Code Generation

Optimized C Code of Algorithm

Figure 3: Bit-width optimization flow.

optimized hardware designs on field-programmable gate ar-
rays. approach described here however, differs considerably
from that in [7] in that 1) in the present work we target
software programs on embedded processors which impose
numerous constraints (limited processor word-length, fixed
data types, instruction latencies, etc.), and 2) while [7] aims
to minimize circuit area, the aim in the present paper is to
minimize processor cycles and therefore energy.

2.3 Range Analysis
The aim of range analysis is to analyze the dynamic range

of each signal and to compute the required number of inte-
ger bits that avoid overflow. We assume two’s complement
representation throughout. The bit-width of a signal x is de-
noted by Bx, while its integer bit-width (IB) and fractional
bit-width (FB) are denoted by IBx and FBx respectively,
i.e. Bx = IBx + FBx. In two’s complement fixed-point, the
IB of a signal x is given by

IBx = dlog2(X)e+ 1 (2)

where X = max(|xmin|, |xmax|).
The range analysis method involves examining the local

minima, local maxima, and the minimum and maximum in-
put values at each signal. The local minima and local max-
ima are found by computing the roots of the derivative at

Local Maximum

Local Maximum

Local Minimum

Local Minimum

f(x0)

x0 x1 x2 x3 x4 x5

y2

y4

y0
y3

y5
y1

f(x5)

Figure 4: Local minima and maxima of a signal. The range of
this signal is [y2, y5].

the signal. Consider the signal shown in Figure 4 where the
input interval is over [x0, x5]. The local minima and max-
ima can be found by computing the roots of the derivative.
In Figure 4 the local minima, local maxima f(x0) = y0, and
f(x5) = y5 are the potential candidates for the minimum
and maximum values of the signal. The minimum value is
given by min(y0, y1, y2, y3, y4, y5), while the maximum value
is given by max(y0, y1, y2, y3, y4, y5). For this particular ex-
ample, the output range would be [y2, y5]. This analysis
methodology works for designs with differentiable signals,
which is the case for the algorithms considered in this pa-
per. For more general designs where signals cannot be dif-
ferentiated, one could apply other methods such as affine
arithmetic [8].

2.4 Precision Analysis
The goal of precision analysis is to determine the mini-

mum fractional bit-widths (FBs) of all signals that still en-
able satisfying the user-specified accuracy constraint at the
output. Quantization of signals is generally performed using
truncation or round-to-nearest. Although round-to-nearest
results in smaller errors, it requires an extra addition for
adding the rounding constant.

2.4.1 Error Models
When performing truncation or round-to-nearest to a sig-

nal z, the error ε̂z due to quantization is given by:

Truncation: ε̂z = max(0, 2−FBz − 2−FBz′) (3)

Round-to-nearest: ε̂z =

{
0, if FBz ≥ FBz′

2−FBz−1, otherwise
(4)

where FBz′ is the full precision of z before quantization.
With the addition z = x+y and the multiplication z = x×y,
FBz′ is defined as follows

z = x + y : FBz′ = max(FBx, FBy) (5)

z = x× y : FBz′ = FBx + FBy. (6)

For the addition operation z = x + y, the error εz at the
output z is given by

z = x + y = x + y + εx + εy + ε̂z

⇒ εz = εx + εy + ε̂z
(7)

where εx and εy are errors associated with signals x and y.

c0 c1 x1x0 x2

D0 D1

z

D2

Figure 5: Example for precision analysis: z = c0×x0 +c1×x1 +
x2.

Table 1: Signal ranges and required integer bit-widths (IBs) for
the example in Figure 5.

Signal Range IB

x0 [−0.5, 0.5) 0

x1 [−2, 3) 3

x2 [−4, 5) 4

c0 2.14532 3

c1 0.07937 −2

D0 [−1.07266, 1.07266) 2

D1 [−0.15874, 0.23811) −1

D2 [−1.23140, 1.31077) 2

z [−5.23140, 6.31077) 4

Similarly, for multiplication,

z = xy
= xy + xεy + yεx + εxεy + ε̂z

⇒ εz = xεy + yεx + εxεy + ε̂z.
(8)

It is clear that εz is at its maximum when x and y are at their
maximum absolute values. The expressions in Eqn. (7) and
Eqn. (8) form the basis for the performing precision analysis
on complex computations such as the DCT.

2.4.2 Precision Analysis Example
We describe the precision analysis procedure with the fol-

lowing example:

z = c0 × x0 + c1 × x1 + x2 (9)

which occurs in the computation of the DCT used in this
work. x0, x1, and x2 are inputs, c0 and c1 are constants,
and z is the output we would like to evaluate as shown in
Figure 5. Instead of evaluating the expression in Eqn. (9) di-
rectly, the output of each addition and multiplication opera-
tor is stored in a temporary signal (D0..2) to allow quantiza-
tion to take place. For example, assume the ranges of the in-
puts are x0 = [−0.5, 0.5), x1 = [−2, 3), and x2 = [−4, 5) and
that the two constants are c0 = 2.14532 and c1 = 0.07937.
The range analysis approach described in Section 2.3 then
gives the ranges and integer bit-widths (IBs) shown in Ta-
ble 1. A zero or negative integer bit-width means that the
magnitude of the signal will always be less than 1, and the
specific negative value identifies the number of positions to
the right of the binary point that will always be zero.

In order to compute the required fractional bit-widths
(FBs) using the expressions in Eqn. (7) and Eqn. (8), it
is first necessary to derive the error expressions to each sig-
nal. We assume that round-to-nearest is performed for the
constants and truncation is performed for all other signals.
The following error expressions can be derived for each sig-
nal in this example:

εD0 = c0εx0 + max(|x0|)εc0 + εc0εx0 + ε̂D0 (10)

εD1 = c1εx1 + max(|x1|)εc1 + εc1εx1 + ε̂D1 (11)

εD2 = εD0 + εD1 + ε̂D2 (12)

εz = εD2 + εx2 + ε̂z. (13)

For a desired worst-case error requirement εreq, one must
satisfy εz ≤ εreq. This is an optimization problem, where
the goal is to find the minimal FBs for a given error re-
quirement εz and output fractional bit-width FBz. Though
such optimization problems can be addressed in a number
of different ways, we address it using simulated annealing,
which is known to provide near-optimal results at reason-
able computational cost [7]. Inequalities such εz ≤ εreq are
supplied as the constraint function and the latency costs
associated with multi-word arithmetic are supplied as the
cost function for the annealing process. In the case of the
ATmega128 processor, an 8-bit addition requires a single
cycle and an 8-bit multiplication consumes two cycles. In
addition, the following extra constraints are added.

1. Bit-widths must conform to the C language integer
data types, which are limited to 8, 16, 32, and 64 bits.

2. Bit-widths of the two operands for an addition or mul-
tiplication must be the same. This is because the C
language performs additions and multiplications using
operands with the same data types. If the types are
different, compilers will cast the smaller operand to
the bigger operand during compilation. Forcing the
operand widths to be the same simply anticipates a
step the compiler will take anyway, and allows the opti-
mization algorithm to use precision opportunities that
will be introduced in compilation.

3. The two operands of an addition must share the same
FB since binary points must be aligned for additions.
Due to constraint 2, this also means the addition operands
share the same IB.

Table 2 shows the set of bit-widths obtained after the op-
timization process for error requirements of εreq = 2−5 and
εreq = 2−10 with a fixed output bit-width of Bz = 16. The
shifts shown in the last column are required to perform quan-
tization and binary point alignments which will be discussed
in Section 2.5. Compared to Table 1, the IBs of D1 and D2

have increased from −1 and 2 to 2 and 4 respectively, which
is necessary to satisfy constraint 3. Requirements imposed
by constraint 1 and constraint 2 have also been met. While
16 bits are required for all signals in the case of εreq = 2−10,
some signals in the case of εreq = 2−5 can be represented
by 8 bits. The optimization tool preferentially targeted re-
duction of the multiplications rather than of additions since
multiplications cost more processor cycles. This will lead to
a reduction in overall latency due to the reduced number of
words involved in during multi-word arithmetic.

Table 2: Signal bit-widths for the example in Figure 5 after
optimization for error requirements of εreq = 2−5 and εreq =
2−10 with a fixed output bit-width of Bz = 16.

εreq Signal B IB FB ¿
x0 8 0 8 0

x1 8 3 5 0

x2 16 4 12 0

c0 8 3 5 0

2−5 c1 8 −2 10 0

D0 16 2 14 −1

D1 16 2 14 1

D2 16 4 12 2

z 16 4 12 0

x0 16 0 16 0

x1 16 3 13 0

x2 16 4 12 0

c0 16 3 13 0

2−10 c1 16 −2 18 0

D0 16 2 14 15

D1 16 2 14 17

D2 16 4 12 2

z 16 4 12 0

x

y
z' >> (FBz' -FBz) z

FBz' =
 FBx+FBy

FBx

FBy

FBz

x

y
FBz' =

max(FBx,FBy)

FBx

FBy

z
FBz

z' >> (FBz' -FBz)

Figure 6: Computing the number of shifts required for multipli-
cation and addition.

2.5 Fixed-Point to Integer Mapping
Internally, fixed-point processors perform integer opera-

tions. Although fixed-point libraries for the C language are
available, they generally do not provide support for negative
IBs. This is problematic given the potential resource sav-
ings that can be achieved by exploiting in the leading zeros
which, as Table 1 demonstrates, can occur commonly. This
can be addressed by performing integer arithmetic with an
implicit binary point.

Shifts are conducted after each operation to perform quan-
tization and binary point alignment. Figure 6 illustrates how
the shifts are computed for each operation. For instance, for
the expression z = x× y, the FBs of x, y and z are known
a priori from the precision analysis phase. The intermedi-
ate result z′ will contain the multiplication full precision of
FBx + FBy fractional bits. To adjust the number of frac-
tional bits according to what is needed for z, z′ is simply
shifted to the right by FBz′ − FBz bits.

Consider the εreq = 2−5 case in Table 2 when x0 =
0.44140625, x1 = −1.84375, and x2 = 2.122314453125 which

have FBs of 8, 5, and 12 bits, respectively. We use the nota-
tion x̄ to represent a fixed-point quantity x in integers with
an implicit binary point. The corresponding integer repre-
sentations of the three inputs are x̄0 = x0 ¿ FBx0 = 113,
x̄1 = −59, and x̄2 = 8693. Likewise, c̄0 = b(2.14532 ¿
5) + 0.5c = 69 and c̄1 = 81. The steps below illustrate how
z̄ is computed.

D̄0 = (x̄0 × c̄0) ¿ 1 = 15594 (14)

D̄1 = (x̄1 × c̄1) À 1 = −2389 (15)

D̄2 = (D̄0 × D̄1) À 2 = 3301 (16)

z̄ = (D̄2 × x̄2) = 11994 (17)

To compute the fixed-point quantity z we simply shift z̄
by FBz bits to the right and keep the fractions, i.e. z =
11994 À 12 = 2.92822265625.

2.6 Optimized DCT and Quantization
For an input matrix x(i, j) and an output matrix z(m, n),

the N ×N 2-D DCT is defined as

z(m, n) =
2

N
K(m)K(n)

N−1∑
i=0

N−1∑
j=0

x(i, j) (18)

× cos
πm(2i + 1)

2N
cos

πn(2j + 1)

2N

where K(0) = 1/
√

2, and K(m) = 1 and K(n) = 1 for
m 6= 0 and n 6= 0. For the case of an 8 × 8 DCT, a direct
implementation of Eqn. (18) would require 4096 multipli-
cations (though some of them are trivial). However, since
the transform kernel in the summation is separable, the 2D
DCT can be computed by performing 1D transforms of the
rows and then columns, or vice versa. Further reductions in
complexity can be realized by using fast algorithms and, in
the case of JPEG, by exploiting the specific multiplications
that occur with the DCT length is 8. Among the many fast
N = 8 DCT algorithms that have been proposed, we use
the LLM algorithm described by Loeffler et al. [9], which
requires 12 multiplications and 32 additions for the 8-point
1D DCT. For the complete 8×8 2D DCT, this must be per-
formed once for each of the 16 rows and columns, leading to
a total of 192 multiplications and 512 additions.

To obtain optimized DCT and quantization, the bit-width
optimization methods described earlier were applied to the
operations in the LLM algorithm to determine appropriate
bit-widths given the precision requirement and to automati-
cally generate the C code appropriate to the target platform.
In addition to the three constraints described in Section 2.4,
we added an extra constraint where shifts involving 32-bit
integers were constrained to multiples of bytes. This was
introduced since arbitrary bit shifts on 32-bit integers using
processors without hardware shifters can be extremely slow.
Constraining such shifts to be multiples of bytes allows the
processor to perform shifts simply by moving memory lo-
cations. To avoid division in the quantization process, the
DCT outputs were multiplied by the reciprocal of the quan-
tization table values. Due to the nature of the LLM algo-
rithm, the resulting DCT outputs are scaled by a factor of
8. This factor is compensated in the quantization tables.

Since the bit-widths of the standard C data types such
as “int” or “long int” can differ depending on the target
platform, we use the “inttypes.h” standard C header, which
enforces target-independent fixed size integer type defini-

tions, and use the data types “int8 t”, “int16 t”, “int32 t”
and “int64 t”, which correspond respectively to two’s com-
plement 8, 16, 32, and 64-bit integers.

3. EXPERIMENTAL RESULTS

3.1 Compression
Image compression experiments were performed using

grayscale images, as this is sufficient to allow exploring the
compression speed, image quality, and energy consumption
tradeoffs of interest in the present work. As is common in
JPEG implementations, the JPEG standard table shown in
Eqn. (1) was mapped to Qtab = 50, and quantization tables
for other quality settings were generated by linearly scaling
the JPEG standard table [10].

Table 3 provides the latency, code size, execution time,
energy consumption, and peak signal to noise ratio (PSNR)
for three test images at Qtab = 50 for the DCT and quan-
tization steps in JPEG. The Bird, Camera, and Goldhill
images from the “GreySet1” image archive hosted at the
Waterloo BragZone [11] are used. The code size shown in-
cludes both instructions and data. The ATmega128 at 8
MHz with an active power consumption of 22 mW [12] is
used as the target platform. Compilation is performed via
WinAVR 20060421 with “-O3” optimization setting. As a
basis for comparison, the library released by the Indepen-
dent JPEG Group (IJG) [10] is used. The first row of the
table gives the requirements for a floating point implemen-
tation in which C single-precision computations are mapped
to the processor using standard compilation approaches. As
noted earlier, such an approach delivers far more precision
than is needed and in this case uses over an order of mag-
nitude more time than all of the optimized versions. IJG
has released two speed-optimized integer versions of JPEG
code - a “slow” version with a DCT that favors accuracy over
speed, and a “fast” version that makes the opposite tradeoff.
The PSNR results in the table show that the “slow” version
incurs no PSNR penalty over a full floating point implemen-
tation, while the “fast” version causes a 5 to 6 dB loss, which
is very significant in dB terms and visually. When mapped
into the ATmega128, the IJG “fast” version requires about
half as many clock cycles as the “slow” version.

One of the most powerful advantages of the custom pre-
cision approach is that it offers the implementer a range of
operating point choices and provides an energy optimized
implementation for the chosen operating point. Rows 4-6
of Table 3 illustrate three such operating points. The im-
provements in the mappings in rows 4-6 of the table arise be-
cause the IJG implementations use fixed integer data types,
whereas we customize the data types for each operation via
the approach described in Section 2. Row 4 gives the re-
sults for a “slow” algorithm in which the constraint is that
there must be no PSNR loss with respect to the floating
point implementation. This is achieved using 38,364 cycles,
which is approximately 25% lower than the corresponding
IJG algorithm in row 2 of the table. Row 5 of the table
illustrates an intermediate solution in which a PSNR loss
of several tenths of a dB is allowed, and the cycle count is
then reduced to approximately 23,000. Row 6 of the table
gives the result of a “fast” optimization. Notably, this this
more than twice as fast as the IJG “fast” algorithm in row
3, while still producing PSNR values that are only about 1
dB reduced from the full floating point PSNR, and 4 to 5 dB

Table 3: Comparisons between IJG’s 8× 8 DCT and quantization implementation and the proposed on the ATmega128. The PSNR is
computed using 128× 128 Bird, Camera, and Goldhill images at Qtab = 50.

Method Type
DCT Quantization Total Code Size Execution Energy PSNR [dB]

[Cycles] [Cycles] [Cycles] [Bytes] Time [ms] [µJ] Bird Camera Goldhill

1 Float 580,106 244,840 824,946 5,964 103.12 2268.60 31.8 28.3 27.0

2 IJG Slow 31,378 17,039 48,417 3,355 6.05 133.15 31.8 28.3 27.0

3 Fast 8,131 17,831 25,962 1,670 3.25 71.40 25.8 23.7 23.8

4 Slow 21,172 17,192 38,364 3,524 4.80 105.50 31.8 28.3 27.0

5 Proposed Medium 20,718 2,810 23,528 3,318 2.94 64.73 31.3 28.0 26.6

6 Fast 8,768 2,385 11,153 2,662 1.39 30.67 30.6 27.5 26.1

Table 4: Variation in entropy coding latency with Qtab on the
ATmega128. Numbers have been averaged over the three images.

Qtab 10 30 50 70 90

Latency [Cycles] 12124 19265 21504 28431 40893

above the PSNR results of the “fast” IJG algorithm in row
3 of the table. Thus, in this example the custom precision
approach has enabled algorithm mapping that is both faster
and gives more accurate DCT and quantization results (thus
the higher PSNR). It is important to emphasize that these
results are not intended to suggest that the IJG algorithm is
“bad” in any sense; in fact it is widely recognized to be quite
good. Rather, the key point conveyed in the table is that
when platform-specific architectural attributes are consid-
ered in combination with precision requirements consistent
with the application and precision of the underlying data,
substantial savings can be realized.

Table 4 shows the variation in entropy coding latency as a
function of different quality factors Qtab. The latencies have
been averaged over the three images. The general trend that
higher quality settings require entropy coding of more bits
is of course expected because the associated image files are
larger. These latencies apply to both the IJG JPEG imple-
mentation as well as the implementation presented here, as
it was the DCT and quantization steps that were subject to
optimization, not the entropy coding. The value of this table
is that it provides information that, in combination with Ta-
ble 3, allows comparison of the overall latency requirements
for the entire end-to-end JPEG algorithm for the IJG and
DCT-optimized approaches. One example of such a com-
parison is given in Table 5, which provides a comparison of
the DCT computation using the IJG “slow” algorithm and
the proposed “fast” approach for the case where Qtab = 50.
As was discussed in association with rows 2 and 6 of Table 3,
the proposed “fast” algorithm leads to PSNR values that are
less than 1 dB lower than the IJG “slow” algorithm, which
in most applications would not be visually significant. As
Table 5 shows, the proposed “fast” algorithm requires about
1/4 as many cycles for DCT and quantization and the same
number of cycles for entropy coding (because no entropy
coding optimization was performed). The total number of
cycles is approximately halved, with the energy consump-
tion reduced accordingly.

Figure 7 provides a comparison of the image quality asso-

ciated with different PSNR levels and algorithm mappings
for the Camera image. Images shown are (a) the original,
(b) the result of the IJG “slow” mapping (row 2 of Table 3)
and the proposed “slow” mapping (row 4 of Table 3) at
Qtab = 50 (both “slow” methods give exactly the same im-
age with a PSNR of 28.3 dB, but the proposed “slow” map-
ping requires approximately 10,000 fewer cycles than the
IJG approach), (c) the result of the proposed “fast” map-
ping also at Qtab = 50, giving a PSNR of 27.5 dB, and (d) an
example of a the quality associated with a poor image qual-
ity setting of Qtab = 10. In image (d) the proposed “fast”
mapping was used, giving a PSNR of 22.8 dB, though if the
IJG “slow” mapping were used with this Qtab setting the
PSNR would be 22.9 dB, which is almost identical.

Table 6 provides comparisons among various platforms for
performing DCT and quantization on a single 8×8 block via
the proposed “fast” method. The voltage, clock speed, and
active power specifications were obtained from [12] for the
Atmel ATmega128 and the TI MSP430F1611, and from [13]
for the Analog Devices Blackfin ADSP-BF533 and the
TI TMS320C6414T. Compilations are performed with the
fastest optimization settings using WinAVR 20060421, IAR
Embedded Workbench 3, Analog Devices Visual DSP++
4.5, and TI Code Composer Studio 3.1. The cycle counts
given in the latency column are the result of the optimization
methods described in present paper, and differ among the
various processors due to architectural differences such as
the native world-length. The most interesting information
in the table is in the final two columns, which give execu-
tion time and energy respectively. The lowest power proces-
sors (the ATmega128 and MSP430F1611) actually have the
highest energy results, in part because they operate a lower
speeds and require a longer time to complete the processing.
In this respect, the ratio of power to speed (which is given
in the fourth column of the table for all the processors) is
at least as important as the power consumption alone. It is
also important to note that there is a wide range of oper-
ating voltages, from 0.8 V in the case of the ADSP-BF533
to 2.7 V for the ATmega128. Thus, a conclusion that the
ATmega128 is 30 times less energy efficient than the ADSP-
BF533 must be tempered by the fact that the voltage ratio
between these two processors is more than a factor of 3.

3.2 Compression and Transmission
In many applications what is of most interest is not the

energy cost to compress alone, but also the energy cost to
deliver an image to a different location. Transmission energy

Table 5: Comparisons between IJG’s slow JPEG and proposed fast JPEG compression for an 8×8 block on the ATmega128 at Qtab = 50.
Entropy coding cycles have been averaged over the three images.

Method
DCT & Quantization Entropy Coding Total Code Size Execution Energy

[Cycles] [Cycles] [Cycles] [Bytes] Time [ms] [µJ]

IJG Slow 48,417 21,504 69,921 19,197 8.74 192.28

Proposed Fast 11,153 21,504 32,657 18,504 4.08 89.81

(a) Original (b) Slow: Qtab = 50 (c) Proposed Fast: Qtab = 50 (d) Proposed Fast: Qtab = 10

Figure 7: Comparisons between the original 128× 128 Camera and its JPEG compressed versions. The JPEG images correspond to (b)
the IJG “slow” algorithm (row 2 of Table 3) and the proposed “slow” algorithm (row 4 of Table 3) - both “slow” methods give exactly
the same image, but the proposed method is faster by about 10,000 cycles than the IJG algorithm, (c) the proposed “fast” mapping at
Qtab = 50, and (d) the proposed “fast” at Qtab = 10. The PSNRs of the three JPEG images are 28.3 dB, 27.5 dB, and 22.8 dB. The
original image size is 131 kb, images (b) and (c) have compressed size 21 kb, and the last JPEG size is 9 kb.

Table 6: Comparisons between various processors when performing fast DCT and quantization on an 8× 8 block.

Voltage Clock Speed
Active Power Latency [Cycles] Execution

Energy
Processor

[V] [MHz]
Power / Speed

DCT Quantization Total
Time

[µJ]
[mW] [mW/MHz] [µs]

ATmega128 2.7 8 22 2.75 8,768 2,385 11,153 1,394.16 30.67

MSP430F1611 1.8 8 3 0.37 5,113 2,266 7,379 922.38 2.78

ADSP-BF533 0.8 100 24 0.24 2,855 1,313 4,168 41.68 1.00

ADSP-BF533 1.4 756 644 0.85 2,855 1,313 4,168 5.51 3.55

TMS320C6414T 1.1 400 673 1.68 1,382 505 1,887 4.72 3.17

Table 7: Specifications of Mica2, MicaZ, and Telos motes [12].

Mote Mica2 MicaZ Telos

Processor ATmega128 ATmega128 MSP430F1611

Radio CC1000 CC2420 CC2420

Data Rate [kbps] 38.4 250 250

Processor [mW] 22 22 3

Transmit [mW] 69 57 35

Receive [mW] 41 63 39

is obviously highly platform-specific, so to examine this we
consider three commonly used motes with the specifications
as provided in Table 7 [12] (the radio transmit power for the
data in the table is 0 dBm).

Figure 8 is a bar graph giving the total time for com-
pression and transmission using an average of the results

for the same three test images considered in Table 3. The
upper and lower parts of each bar indicate the time used
by transmission and compression respectively. Results are
given for different image resolutions (square images of linear
sizes 64, 128, and 256), and within each resolution for low
(Qtab = 10), medium (Qtab = 50), and high (Qtab = 90) im-
age quality settings. Results for transmitting images with
no compression are also provided. Not surprisingly, whether
or not it is faster to compress and then transmit or to trans-
mit without compression is at least partially dependent on
the specific processor/radio combination. In the case of the
Mica2 mote in combination with the ATmega128 proces-
sor and CC1000 radio, compression is always advantageous;
with the Telos mote in combination with the MSP430F1611
processor and CC2420 radio the opposite is true. This is
largely due to the significantly higher data rate of the Telos
versus the Mica2. More specifically, the compression process
is unable to reduce the size of the file by an amount equal
to the number of bits that can be transmitted by the Telos

64 128 256 64 128 256 64 128 256
0

2

4

6

8

10

12

14

Mica2 MicaZ Telos

T
im

e
[s

]
JPEG: Q

tab
 = 10

JPEG: Q
tab

 = 50

JPEG: Q
tab

 = 90

Uncompressed

Figure 8: Average time for compressing and transmitting an im-
age. Results are given for different image resolutions (square im-
ages of linear sizes 64, 128, and 256), and within each resolutions
for low (Qtab = 10), medium (Qtab = 50), and high (Qtab = 90)
image quality settings. Results for transmitting images with no
compression are also provided. The upper and lower parts of each
bar indicate the portions used by transmission and compression
respectively.

during the time otherwise consumed by compression. In all
cases, Figure 8 highlights large reduction transmission time
when JPEG is employed. This of course leads to reduction
in bandwidth usage and thus less contention in the channel
which is a common problem in wireless sensor networks.

When energy is considered instead of time, a very differ-
ent set of results is produced as shown in Figure 9. The
image resolutions and quality settings are the same as those
in Figure 8. The energy values in the figure include the
cost to compress and to transmit; the potential costs to
receive and decompress are not considered. While recep-
tion/decompression are certainly part of the overall process
of communicating an image, the value and significance of
energy costs at a receiver are highly system dependent, and
in many environments images would be received at highly
capable nodes in which energy was less problematic. For sys-
tems such as multi-hop environments in which other energy-
constrained nodes would be relaying the images, information
such as that in Table 7 can be used to obtain an end-to-end
cost. Since compression costs are only associated with the
initial node, the time and energy savings of using JPEG
would increase with the number of hops.

The energy results in Figure 9 are notable in compari-
son with the time results in Figure 8 in several respects.
First, while for the Telos avoiding compression at all was the
most time-efficient approach, for energy efficiency compres-
sion offers significant benefits. As would be expected, these
benefits are larger when more compression is applied. Sec-
ondly, for the Mica2, compression was advantageous from a
time standpoint, and Figure 9 shows that it is advantageous
from an energy standpoint as well. Finally, results for the
MicaZ are more nuanced. For the low and medium image
quality levels, compression offers an energy advantage. For
the highest quality level, compression is not justified be-
cause transmitting the uncompressed image consumes less
energy. As the figure shows, this is because at that quality
level the compression process alone (even without consider-
ing transmission of the compressed image) consumes more
energy than transmission without compression. The results

64 128 256 64 128 256 64 128 256
0

50

100

150

200

250

Mica2 MicaZ Telos

E
ne

rg
y

[m
J]

JPEG: Q
tab

 = 10

JPEG: Q
tab

 = 50

JPEG: Q
tab

 = 90

Uncompressed

Figure 9: Average energy for compressing and transmitting an
image. The upper and lower parts of each bar indicate the por-
tions used by transmission and compression respectively. The two
cropped Mica2 bars are 380.2 mJ and 942.1 mJ.

in Figure 9 correspond to a radio power of 0 dBm. When
large transmission distances are desired, the radio power will
have to be increased accordingly, which of course leads to
an increase in the overall transmission cost per bit. Hence
with increasing radio power, the relative cost of transmit-
ting uncompressed images as opposed to JPEG-compressed
images would increase.

4. CONCLUSIONS
We have explored the energy tradeoffs involved in JPEG

compression on energy-constrained platforms followed by
wireless transmission of the compressed images. A design
approach based on precision-optimized custom arithmetic
was used to obtain energy-minimal, platform-specific imple-
mentations of the DCT and quantization steps in the JPEG
algorithm. Comparisons with traditional JPEG libraries
show speed and energy improvements ranging from factors of
2 to 5 depending on which portion of the algorithm was con-
sidered. Comparisons across different platforms show that
the JPEG energy consumption is actually higher on “low”
power platforms due to the longer times needed for these
platforms to perform the computation tasks to the desired
precision. Time and energy requirements for the combina-
tion of compression/transmission were also investigated for
several different processor/radio combinations. The most
energy-efficient and time-efficient approaches among the op-
tions of 1) transmission of uncompressed images or 2) com-
pression followed by transmission were identified for a vari-
ety of processor/radio combinations.

5. ACKNOWLEDGMENTS
The authors thank David Choi for his assistance. The

support of the National Science Foundation (Grant number
CCR-0120778 and CCF-0541453) and the Office of Naval
Research (Contract number N00014-06-1-0253) is gratefully
acknowledged.

6. REFERENCES
[1] G. Wallace, “The JPEG still picture compression

standard,” Communications of the ACM, vol. 34,
no. 4, pp. 30–44, April 1991.

[2] K. Barr and K. Asanović, “Energy-aware lossless data
compression,” ACM Trans. Computer Systems,
vol. 24, no. 4, pp. 250–291, August 2006.

[3] C. Sadler and M. Martonosi, “Data compression
algorithms for energy-constrained devices in delay
tolerant networks,” in Proc. ACM Conf. on Embedded
Networked Sensor Systems, 2006.

[4] H. Wu and A. Abouzeid, “Power aware image
transmission in energy constrained wireless networks,”
in Proc. IEEE Int’l Symp. on Computers and
Communications, vol. 2, 2004, pp. 202–207.

[5] C. Taylor and S. Dey, “Adaptive image compression
for wireless multimedia communication,” in Proc.
IEEE Int’l Conf. on Communications, vol. 6, 2001,
pp. 1925–1929.

[6] T. Lukasiak, “Extended-precision fixed-point
arithmetic on the Blackfin processor platform,” Analog
Devices Engineer To Engineer Note (EE-186), 2003.

[7] D. Lee, A. Abdul Gaffar, R. Cheung, O. Mencer,
W. Luk, and G. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 1990–2000, October
2006.

[8] L. de Figueiredo and J. Stolfi, “Self-validated
numerical methods and applications,” in Brazilian
Mathematics Colloquium monograph. IMPA, Brazil,
1997.

[9] C. Loeffler, A. Ligtenberg, and G. Moschytz,
“Practical fast 1-D DCT algorithms with 11
multiplications,” in Proc. IEEE Int’l Conf. on
Acoustics, Speech, and Signal Processing, vol. 2, 1989,
pp. 988–991.

[10] T. Lane, P.Gladstone, L. Ortiz, J. Boucher,
L. Crocker, J. Minguillon, G. Phillips, D. Rossi, and
G. Weijers, “The independent JPEG group’s JPEG
software release 6b,” 1998,
http://www.ijg.org.

[11] J. Kominek, “Waterloo BragZone,” University of
Waterloo, 1995,
http://links.uwaterloo.ca/bragzone.base.html.

[12] J. Polastre, R. Szewczyk, and D. Culler, “Telos:
enabling ultra-low power wireless research,” in Proc.
ACM/IEEE Int’l Symp. on Information Processing in
Sensor Networks, 2005, pp. 364–369.

[13] BDTI, “Processor overviews,” 2006,
http://www.bdti.com/procsum/index.htm.

