
Multiplierless Multiple Constant Multiplication

YEVGEN VORONENKO and MARKUS PÜSCHEL

Carnegie Mellon University

A variable can be multiplied by a given set of fixed-point constants using a multiplier block that
consists exclusively of additions, subtractions, and shifts. The generation of a multiplier block from

the set of constants is known as the multiple constant multiplication (MCM) problem. Finding
the optimal solution, i.e., the one with the fewest number of additions and subtractions is known
to be NP-complete. We propose a new algorithm for the MCM problem, which produces solutions
that require up to 20% less additions and subtractions than the best previously known algorithm.

At the same time our algorithm, in contrast to the closest competing algorithm, is not limited
by the constant bitwidths. We present our algorithm using a unifying formal framework for the
best, graph-based, MCM algorithms and provide a detailed runtime analysis and experimental

evaluation. We show that our algorithm can handle problem sizes as large as 100 32-bit constants
in a time acceptable for most applications. The implementation of the new algorithm is available
at www.spiral.net.

Categories and Subject Descriptors: B.2.4 [High-speed Arithmetic]: Algorithms—Algorithms;
Cost/Performance; F.2.1 [Analysis Of Algorithms And Problem Complexity]: Numerical
Algorithms and Problems—Number-theoretic computations; I.1.2 [Symbolic And Algebraic

Manipulation]: Algorithms—Algebraic Algorithms

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: addition chains, directed graph, fixed-point arithmetic,
strength reduction, FIR filter

1. INTRODUCTION

This paper addresses the problem of efficiently computing a set of products tix, for
i = 1, . . . , n, of a variable x with several known fixed-point constants ti multiplier-
less, that is using exclusively additions, subtractions, and shifts. This problem is
known as multiple constant multiplication (MCM). Avoiding costly multipliers is
particularly important in hardware implementations, for example, of digital signal
processing functionality such as filters or transforms. However, replacing constant
multiplications with additions and shifts can also be relevant in software imple-
mentations. For example, as optimization for speed, since integer multipliers often
have a significantly lower throughput than adders, but also for embedded proces-
sors, which may not feature a multiplication unit at all. The MCM problem can be
considered as a fundamental problem in computer arithmetic.

We propose a new algorithm for the MCM problem, which generates solutions
that are significantly better—in terms of the number of additions/subtractions of
the solution—than any of the previously published algorithms, while at the same
time being more generally applicable. To more clearly state our contribution and
to put it in the context of previous work, we first introduce the problem in greater
detail.

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–39.

2 · Y. Voronenko and M. Püschel

1.1 Single Constant Multiplication (SCM)

The multiplication y = tx of a variable x by a known integer or fixed-point con-
stant t can be decomposed into additions (adds), subtractions (subtracts), and
binary shifts. The problem of finding the decomposition with the least number
of operations is known as single constant multiplication (SCM) problem, and it is
NP-complete as shown in [Cappello and Steiglitz 1984]. Without loss of generality
we will assume that the constants are integers, since a fixed-point multiplication
is equivalent to a multiplication by an integer followed by a right shift. The SCM
problem is related to, but different from the addition chain problem [Knuth 1969],
which multiplies by a constant using additions only. The permission of shifts fun-
damentally alters the problem and the strategies for its solution.

The straightforward method for decomposing the multiplication into adds and
shifts translates 1’s in the binary representation of the constant t into shifts, and
adds up the shifted inputs. For example, for t = 71,

71x = 10001112x = x≪ 6 + x≪ 2 + x≪ 1 + x,

which requires 3 adds. Alternatively, the multiplication can be decomposed into
subtracts and shifts by translating 0’s into shifts, and subtracting from the closest
constant consisting of 1’s only (i.e., of the form 2n − 1):

71x = 10001112x = (x≪ 7− x)− x≪ 5− x≪ 4− x≪ 3,

Taking the best of these two methods yields in the worst and in the average case a
solution with b

2 + O(1) adds/subtracts, where b is the bitwidth of t.
A better digit-based method decomposes into both adds and subtracts by re-

coding the number into the canonical signed digit (CSD) representation [Avizienis
1961], which allows negative digits 1. Using CSD, the previous example can be
improved to use only 2 add/subtract operations:

10001112x = 1001001CSDx = x≪ 6 + x≪ 3− x

Using CSD, the worst case cost remains b
2 + O(1), but the average case is now

improved to b
3 + O(1) [Wu and Hasan 1999].

The optimal decomposition in terms of add/subtract operations is in general not
obtained with CSD, and its worst case and average costs are unknown. [Dempster
and Macleod 1994] designed an exhaustive search algorithm to find the optimal de-
compositions for constants up to 12 bits. The authors also showed that using shifts
no larger than b + 1 is sufficient to yield the optimal solutions for 12 bit constants.
Their work has been extended by [Gustafsson et al. 2002] to constants up to 19
bits, again yielding optimal results regardless of shift constraints. Although the
asymptotic worst case cost of the optimal decomposition remains an open research
problem, it appears to be asymptotically better than O(b) as shown in Fig. 1. The
plot compares the three decomposition methods by showing the average number of
adds/subtracts (y-axis) obtained for 300 uniformly distributed random constants
of bitwidths from 2 to 19 (x-axis).

Consider the smallest constant for which the CSD decomposition is suboptimal,
namely 45. Fig. 2 shows its CSD (3 add/subtract operations) and its optimal (2
add/subtract operations) decomposition both visualized as graphs. We observe

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 3

2 4 6 8 10 12 14 16 18

1

2

3

4

5

6

7

8

b (constant bitwidth)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

b/2+O(1)

b/3+O(1)

O(?)

Binary
CSD
Optimal

Fig. 1. Average number of add/subtract operations required for multiplying by a constant of
different bitwidths.

9 451
1 1

8 4

9x = 8x + x
45x = 5(9x) = 9x + 4(9x)

1 65 49 45
1 1 1

64
−16

−4

65x = x + 64x
49x = 65x− 16x
45x = 49x− 4x

Fig. 2. Multiplication by 45 using 3 adds/subtracts (CSD, top) and 2 adds/subtracts (optimal,
bottom). The vertices represent add/subtract operations labeled with their outputs, and the edges
represent shifts labeled with the corresponding scaling (a 2-power). A negative scaling indicates

that a subtraction is performed.

that the optimal decomposition uses a different graph topology than the CSD de-
composition. Intuitively, digit-based methods, such as CSD, produce suboptimal
results, because they only consider one type of graph topology. The exhaustive
search methods in [Dempster and Macleod 1994; Gustafsson et al. 2002] on the
other hand consider all possible graph topologies to find optimal decompositions.

1.2 Multiple Constant Multiplication (MCM)

An extension of SCM is the problem of multiplying a variable x by several con-
stants t1, . . . , tn in parallel in a so-called multiplier block shown in Fig. 3. Since
intermediate results of the constant decompositions may be shared, a multiple con-
stant multiplier block may be decomposed into fewer operations than the sum of
the single constant decompositions’ operation counts. The problem of finding the
decomposition with the fewest operations is known as Multiple Constant Multipli-
cation (MCM).

The potential savings from sharing intermediate results increase with the num-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Y. Voronenko and M. Püschel

x

t1 t1x

t2 t2x
... . . .

tn tnx

Fig. 3. (Multiple constant) Multiplier block.

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

Separate Optimal
RAG−n

Fig. 4. Average number of add/subtract operations required for multiplying by each of the 12-bit
coefficients in a set of given size.

ber of constants, which is illustrated in Fig. 4. The plot compares the number of
add/subtract operations (y-axis) for varying sizes n (x-axis) of sets of 12-bit con-
stants using separate optimal SCM decompositions and using RAG-n, the heuristic
MCM algorithm from [Dempster and Macleod 1995]. Since MCM is a generalization
of SCM, it is also NP-complete.

The MCM problem is particularly relevant for the multiplierless implementation
of digital finite impulse response (FIR) filters [Bull and Horrocks 1991], but also for
matrix-vector products with a fixed matrix, which includes linear signal transforms
[Püschel et al. 2004; Chen et al. 2002; Liang and Tran 2001], such as the discrete
Fourier transform or the discrete cosine transform, to name a few examples. In an
n-tap FIR filter, every input sample is multiplied by all n taps. Discrete Fourier
and trigonometric transform algorithms, on the other hand, involve 2x2 rotations,
which require the simultaneous multiplication by two constants.

Fig. 5 is an example of a multiplier block, which implements the parallel multi-
plication by 23 and 81 using only 3 add/subtract operations, although the separate
optimal decompositions of 23 and 81 each require 2 add/subtract operations.

The different problem of multiplexed multiple constant multiplication was consid-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 5

9 231

81

1 -1

8
1

8

32

9x = 8x + x
23x = 32x− 9x
81x = 8(9x) + 9x

Fig. 5. Multiplier block with constants 23 and 81.

ered in [Tummeltshammer et al. 2004]. In this case, the multiplier block contains
multiplexers that are switched by control logic to achieve multiplication by different
constants. This way sequential multipliers can be fused. We will not consider this
problem in this paper.

Existing algorithms. The existing MCM algorithms can be divided into four
general classes:

—Digit-based recoding;

—Common subexpression elimination (CSE) algorithms;

—Graph-based algorithms;

—Hybrid algorithms.

Digit-based recoding includes simple methods like CSD and the binary method
mentioned earlier. They generate the decomposition directly from the digit repre-
sentation of the constant. These methods are the fastest and the worst-performing;
however, newer work by [Coleman 2001] uses different number systems to yield
considerably better solutions. The main advantage of digit-based recoding is their
low computational cost, typically linear in the number of bits. As a consequence,
these methods can be easily applied to constants with thousands of bits.

Common subexpression elimination (CSE) algorithms are direct descendants of
digit-based recoding methods. The basic idea is to find common subpatterns in the
representations of the constants after the constants are converted to a convenient
number system such as CSD. Examples for this method include [Pasko et al. 1999;
Lefèvre 2001; Hartley 1996]. The disadvantage, however, is that the performance
of these algorithms depends on the number representation. Further, even though
the considered CSE problem is NP-complete [Garey and Johnson 1979; Downey
et al. 1980], its optimal solution does in general not provide the optimal MCM
solution. More recently, [Dempster and Macleod 2004] proposes searching over
alternative number representations to find considerably improved solutions using a
CSE algorithm.

Graph-based algorithms are bottom-up methods that iteratively construct the
graph (as in Fig. 5) representing the multiplier block. The graph construction is
guided by a heuristic that determines the next graph vertex to add to the graph.
Graph-based algorithms offer more degrees of freedom by not being restricted to a
particular representation of the coefficients, or a predefined graph topology (as in
digit-based algorithms), and typically produce solutions with the lowest number of
operations. Examples of graph-based algorithms include [Bull and Horrocks 1991],
RAG-n [Dempster and Macleod 1995], and [Bernstein 1986]. This paper proposes
a new graph-based algorithm.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Y. Voronenko and M. Püschel

Hybrid algorithms combine different algorithms, possibly from different classes.
For example, [Choo et al. 2004] constructs the multiplier block graph with fixed
topology to compute the so-called differential coefficients, and then switches to a
CSE algorithm for the multiplication by the differential coefficients.

Today, to the best of our knowledge, RAG-n yields the solutions with the smallest
number of add/subtract operations among all algorithms. Graph-based algorithms
are expected to outperform other methods since they have fewest restrictions. How-
ever, RAG-n relies on a lookup table of optimal single constant decompositions,
which is currently limited to 19 bits as mentioned before.

Contribution of this paper. This paper first presents a general formal frame-
work that captures the common structure of graph-based MCM algorithms. A
crucial component in this framework is our notion of “A-distance,” an extension of
the concept of adder distance introduced in [Dempster and Macleod 1995], and its
exact or heuristic estimation. We use the framework to develop a new graph-based
MCM algorithm that outperforms the best available algorithms with respect to the
number of add/subtract operations in the obtained multiplier blocks. In particu-
lar, we achieve an up to 20% lower average operation count than the best previous
algorithm RAG-n. At the same time, our new algorithm is not bitwidth limited
like RAG-n, and can thus be used to generate multiplier blocks for all practically
relevant bitwidths. Finally, we perform a detailed runtime analysis of our new al-
gorithm and other graph-based algorithms used for benchmarks. This analysis was
not provided in the original papers.

Other optimization metrics. Besides reducing the number of add/subtract
operations, it is often desirable to optimize for other metrics, for example, the
critical path of the MCM block, or the register pressure in the generated code.
Examples of such work include [Dempster et al. 2002] and [Kang et al. 2001]. This
paper does not consider this type of optimization; however, the structure of our
algorithm enables its adaptation to other target metrics.

Organization. This paper is organized as follows. Section 2 gives the mathe-
matical background and notation used throughout the paper. Section 3 puts the
existing graph-based algorithms for the MCM problem into a framework that identi-
fies their common structure. Our new algorithm is presented in Section 4 including
a discussion of its main properties. A crucial subroutine of our algorithm estimates
the so-called A-distance, which is explained in Section 5. Section 6 presents a
runtime analysis of our and competing algorithms and shows various experimental
results with generated MCM blocks. The results show that our algorithm outper-
forms the best available methods at the cost of a higher computation time. Finally,
we offer conclusions in Section 7.

2. BACKGROUND

In this section we formally state the problem of multiple constant multiplication,
describe the graphical representation of multiplier blocks, and the corresponding
mathematical notation used in this paper. The notation introduced in this paper
is summarized in Table I and will be used in the following sections to develop a
unifying framework for the existing and our new graph-based algorithms.

A-operation. A multiplier block implements the parallel multiplication by a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 7

Table I. Summary of the notation used in the paper.

Notation Meaning Defined in

A Upper case letters denote sets

a Lower case letters denote integers

U ∪ V Union of sets U and V

U − V Difference of sets U and V Equation (3)

U − a Difference of sets U and {a} Equation (3)
U + a Union of sets U and {a} Equation (4)
a + b Addition of two integers

a − b Subtraction of two integers
UV Set of all products Equation (8)
U
V

Set of all integer quotients Equation (9)

dist(U, a) A-distance of a from set U Definition 2.4
Cn Set of complexity-n constants Definition 2.3
Ap(a, b) A-operation Definition 2.1
A∗(a, b) Vertex fundamental set Definition 2.5
A∗(U, V) Vertex fundamental set Definition 2.6
Aodd A-operation with odd outputs Section 2

R Ready set Section 3.1
S Successor set of R Equation (10)

Sn Set of distance-n constants w.r.t. R Equation (11)
T Targets set Section 3.1
B(R, s, t) Benefit Equation (15)

B(R, s, t) Weighted benefit Equation (16)
Hmaxb(R, S, T) Maximum benefit heuristic Section 4.3
Hcub(R, S, T) Cumulative benefit heuristic Section 4.3

dist(U, a) ≃ d d is an estimate for dist(U, a) Section 5.6
Est(z) Auxiliary cost measure of a constant z Equation (21)
Est(Z) Minimum auxiliary cost measure for a set Z Equation (22)

given set of constants, which we call fundamentals following [Dempster and Macleod
1994], or simply constants. The implementation uses adds, subtracts, and shifts,
but to streamline the search process we consolidate these operations into a single
parameterized operation called an A-operation.

We define an A-operation as an operation on the fundamentals. An A-operation
performs a single addition or a subtraction, and an arbitrary number of shifts, which
do not truncate non-zero bits of the fundamental. Since two consecutive shifts can
be merged, the most general definition is given below.

Definition 2.1 General A-operation. Let l1, l2 ≥ 0 be integers (left shifts),
r ≥ 0 be an integer (right shift) and let s ∈ {0, 1} (sign). An A-operation is an
operation with two integer inputs u, v (fundamentals) and one output fundamental,
defined as

Ap(u, v) = |(u≪ l1) + (−1)s(v ≪ l2)| ≫ r = (1)

= |2l1u + (−1)s2l2v|2−r,

where ≪ is a left binary shift, and ≫ is a right binary shift, p = (l1, l2, r, s) is the
parameter set or the A-configuration of Ap. To preserve all significant bits of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Y. Voronenko and M. Püschel

w

2l1

(−1)s2l2

2−r

u

v

p = (l1, l2, r, s)

w = Ap(u, v) = |2l1u + (−1)s2l2v|2−r

Fig. 6. A-operation: u and v are the input fundamentals and w is the output fundamental.

A-operations directly connected to the input of the multiplier block have u = v = 1.

output, 2r must divide 2l1u + (−1)s2l2v.

Without loss of generality we restrict the discussion to positive fundamentals only.
The absolute value in the definition of A, besides enforcing positive fundamen-
tals, enables the subtraction to be done in only one direction, which simplifies the
definition.

We represent an A-operation graphically as shown in Fig. 6. Note that the
result w is written inside the node, even though the right shift by r has already
been applied to w. The reason for this notation is that what matters later in the
considered MCM algorithms is the unique odd fundamental at each node. Also,
the final right shift by r will be fused in the full A-graph with a subsequent left
shift in the next A-operation. Originally, the final right shift r in the A-operation
was not used; however, it is necessary to obtain the full range of possible outputs.
For example, for odd u an v and l1 = l2 = 0, u + v is even and a right shift can
be applied to obtain a new odd fundamental that may not be possible to obtain
otherwise with only one A-operation.

All MCM algorithms impose constraints on the A-configuration. In particular,
an upper bound on the left shifts l1 and l2 is necessary to make the set of choices
finite. In practice, it is sufficient to limit these shifts by the bitwidth of the target
constants. Experimental results from [Dempster and Macleod 1994; Lefèvre 2003;
Gustafsson et al. 2002] show that allowing larger shifts does not improve upon the
optimal solutions1 obtained with the former limits. However, in the general case,
the smallest obtained theoretical limit on the shifts sufficient to obtain optimal
multiplier blocks is larger [Dempster and Macleod 1994]. Additional insights are
given in [Lefèvre 2003]. Although the authors do not compute this particular bound
(cinf in their notation), they prove that optimal multiplier blocks cannot have shifts
larger than a certain finite value (csup in their notation). The results of [Lefèvre
2003] and [Dempster and Macleod 1994] are not directly comparable, since Lefèvre
did not take into account right shifts.

Some constraints on p may lead to different problem classes. For example, if we
restrict l1 = l2 = r = s = 0, then the SCM problem reduces to the well known
problem of finding the shortest addition chain [Knuth 1969], since the A-operation
in this case is an ordinary addition. However, even a lesser restriction, like s = 0,
which disallows subtractions, can require major changes of the MCM algorithm.
Thus, it is crucial that the A-operation and the A-configuration constraints are
explicitly defined for any MCM algorithm.

1with respect to the number of add/subtract operations.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 9

Since in this paper we are only interested in reducing the number of add/subtract
operations in a multiplier block, we will refer to A-operations also as add/subtract
operations, although in reality they include also shifts.

The rationale for neglecting shifts is that in hardware shifts can be implemented
as wires which require virtually no area, and in software, some CPUs (e.g., Intel
XScale) support combined add/shift and subtract/shift instructions, which execute
as fast as a single add or subtract. If desired, the minimization of the number of
shifts can be incorporated as a secondary criteria in our MCM algorithm.

A-graph. As we have already seen in Fig. 2 and Fig. 5, the structure of a
multiplier block can be represented as a directed graph. We call such graph an
A-graph, since it is built out of the A-operations shown in Fig. 6. The vertices of
an A-graph are labeled with their respective fundamentals; hence the input vertex
has label 1. The edges are labeled with a 2-power scaling factor equivalent to
the performed shift. Negative edge values are used to indicate subtractions at the
following vertex.

Formal problem statement. Now we can formally state the problem of con-
structing multiplier blocks.

Definition 2.2 MCM Problem. Given a set of positive target constants T =
{t1, . . . , tn} ⊂ N. Find the smallest set R = {r0, r1, . . . , rm} with T ⊂ R, such that
r0 = 1, and for all rk with 1 ≤ k ≤ m there exist ri, rj with 0 ≤ i, j < k, and an
A-configuration pk such that

rk = Apk
(ri, rj). (2)

The set of A-graph fundamentals R and the set of A-configurations pk uniquely
define an A-graph for an MCM block with m = |R| − 1 add/subtract operations.

The number of A-operations in an optimal solution for a given set T is called the
A-complexity of T . If any A-graph for T is given, optimal or not, we refer to its
number of required A-operations as cost of this graph.

All constants can be divided into complexity classes.

Definition 2.3 Complexity-n constants. We denote by Cn the set of all
constants with complexity n, i.e. those, for which an optimal SCM solution requires
exactly n A-operations. For example, C0 = {2a | a ≥ 0}, because precisely all
2-power constants require a single left shift and no adds/subtracts.

Although the sets Cn are infinite, we will always limit our discussion to constants
up to certain bitwidth b, which is always explicitly stated. The set of complexity n
constants obeying this constraint is then finite and, by abuse of notation, will also
be denoted by Cn.

Next, we introduce the notion of A-distance, the key component in our proposed
algorithm.

Definition 2.4 A-Distance. Let c ∈ N be a constant, and let R ⊂ N be a set
of constants (fundamentals of an A-graph). Then, the A-distance of c from the set
R, denoted with dist(R, c), is the minimum number of extra A operations required
to obtain c given R.

The A-distance corresponds to the notion of “adder distance” in [Dempster and
Macleod 1995].

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Y. Voronenko and M. Püschel

For example, dist({1}, T) is equal to the complexity of T , and for all c ∈ Cn,
dist({1}, c) = n.

For simplicity, we write in this paper the difference of two sets U and V as

U − V = U\V, and for one element U − a = U\{a}. (3)

For visual appeal we will also use a + for the union of a set with a single element,
i.e.,

U + a = U ∪ {a}. (4)

To express the degree of freedom in the output of an A-operation when different
A-configurations are chosen, we define next the vertex fundamental set.

Definition 2.5 Vertex Fundamental Set. The set of all possible outputs
(not equal to the inputs) of an A-operation with fixed inputs (u and v) under dif-
ferent A-configurations is called the vertex fundamental set, written as

A∗(u, v) = {Ap(u, v) | p is a valid configuration } − u− v. (5)

The definition of valid A-configurations p will be introduced later for each dis-
cussed algorithm.

It is useful to extend the definition of A∗ to sets of inputs.

Definition 2.6. If U, V ⊂ N are sets of fundamentals, then

A∗(U, V) =
⋃

u∈U
v∈V

A∗(u, v)− U − V. (6)

From this definition it follows that for sets U , V , and W :

A∗(U ∪ V,W) = (A∗(U,W)− V) ∪ (A∗(V,W)− U) =

= A∗(U,W) ∪ A∗(V,W)− U − V. (7)

Further we define the product of sets U , V in the usual way

UV = {uv | u ∈ U, v ∈ V } , (8)

and their quotient as

U

V
=

{u

v
| u ∈ U, v ∈ V, v divides u

}

. (9)

Odd fundamental graphs. Any A-graph can be converted into an A-graph
of equal cost, which has only odd fundamentals [Dempster and Macleod 1994].
Such graphs are called odd fundamental graphs. As an example, the graph in
Fig. 5 is an odd fundamental graph. This reduction is possible, because any even
constant can be obtained from an odd constant by a suitable shift. Odd fundamental
graphs are important because they reduce the degree of freedom in choosing graph
fundamentals without affecting the cost of the graph.

To obtain odd fundamental graphs, the validA-configuration must be constrained
to allow at most one non-zero left shift l1 or l2, and if l1 = l2 = 0 force r to be
the unique right shift that produces an odd value. We will sometimes use Aodd to
indicate these constraints. For given u and v, the only free parameters in Aodd are
s and the non-zero left shift (either l1 or l2), in contrast to the general A-operation,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 11

Algorithm 1. High-Level Structure of Graph-Based MCM Algorithms.
Given the target set of constants T . Compute (synthesize) the set R = {r1, . . . , rm},
with T ⊂ R, as given in Definition 2.2.

SynthesizeMultiplierBlock(T)

1: R← {1}
2: while T 6= ∅ do
3: compute the successor set S of R
4: select s ∈ S based on a heuristic
5: Synthesize(s)

Synthesize(s)

1: R← R + s
2: T ← T − s

where l1, l2, r, and s can vary. Thus, the space of valid A-configurations p is
considerably reduced.

Algorithms that use Aodd preprocess all target constants with a suitable right
shift to make them odd.

3. OVERVIEW OF MCM ALGORITHMS

Using the notation introduced in the previous section, we put the existing graphical
MCM algorithms into a common context and identify their common structure.
Then we discuss the most important algorithms in greater detail.

3.1 General Framework

The existing graph-based algorithms for multiplier block synthesis share the same
high-level structure, which is shown in Algorithm 1 and explained in the following.
As said before, it is necessary that the notion of A-operation considered by the
algorithm is precisely defined including all constraints.

The input to Algorithm 1 is the target set T of constants. The set R used
in the algorithm is called the ready set. It is initialized in step 1 with the first
fundamental 1 and iteratively augmented in the loop in step 2 with additional
fundamentals. Upon termination, i.e., when T ⊂ R, R is output as the solution. In
each iteration of the loop in step 2, an element of the successor set S of R is chosen
as the next fundamental based on a heuristic. Formally,

S = {s | dist(R, s) = 1} = A∗(R,R) (10)

is the set of all constants of distance 1 from R. Even though S depends on R we do
not write SR or S(R) to simplify the notation. In Algorithm 1 we do not specify
whether or how S is computed, which is discussed later.

Once s ∈ S is chosen, it is added to R, and, if s ∈ T , removed from T . We
call this process synthesizing s. Alternatively, the algorithm may use a heuristic to
choose constants s at a higher distance,

s ∈ Sn = {s | dist(R, s) = n}. (11)

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Y. Voronenko and M. Püschel

In this case, all n− 1 intermediate fundamental have to be synthesized as well. We
call Sn the distance-n set (of R). Clearly, S1 = S. Although S does not have to be
explicitly enumerated and stored, some algorithms do so.

The procedure is repeated until the target set is empty, i.e., all of the target
constants are synthesized.

The heuristic used in step 4, which determines the next fundamental or the next
vertex in the A-graph to be synthesized, is highly dependent on the A-operation
used within an MCM algorithm. Further, the heuristic is what differentiates the
various algorithms and what determines their performance.

In the following we discuss the three most important graph-based MCM algo-
rithms, each of which is an instantiation of Algorithm 1.

3.2 Bull-Horrocks Algorithm (BHA)

[Bull and Horrocks 1991] designed four MCM algorithms: for add, add/subtract,
add/shift, and add/subtract/shift decompositions. Here we discuss the latter one,
since it addresses the problem considered in this paper. We refer to this algorithm
as BHA.

The A-operation considered in BHA imposes constraints on the configuration by
requiring r = 0, and Ap(u, v) ≤ min(T). In words, right shifts are not allowed
and as intermediate fundamentals only numbers smaller as the current min(T) are
synthesized. This also imposes an implicit bound on the shifts l1 and l2 in the
A-configuration.

The heuristic synthesizes targets T in ascending order. Since targets are removed
from T in the synthesize step, the next target to be synthesized is always min(T).

The heuristic used in BHA keeps track of the so-called “error”

ǫ = min(T)−max(R). (12)

If ǫ ∈ R, then the candidate target can be directly synthesized, and the algorithm
proceeds. Otherwise, two successors s1 and s2 that minimize the error are synthe-
sized, chosen as follows:

s1 = arg min
s∈S, s≤ǫ

(ǫ− s), and

s2 = max(R) + s1.

In particular, when ǫ ∈ S, then s1 = ǫ and s2 = ǫ + max(R) = min(T), i.e., the
candidate target is synthesized.

The algorithm considers only the magnitude of the error, and the binary repre-
sentation of the constants is not taken into account, unlike in CSE algorithms.

3.3 Bull-Horrocks Modified Algorithm (BHM)

[Dempster and Macleod 1995] improved BHA and called it the Bull-Horrocks Mod-
ified Algorithm (BHM).

The A-operation considered in BHM is Aodd. Accordingly, all targets T are
preprocessed by right-shifts to become odd. The A-configuration constraints are
relaxed to allow fundamentals larger than constants in T , namely up toAodd

p (u, v) ≤
2max(T), which stimulates the use of subtractions.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 13

R T

S

Optimal Case

R T

S

S2

Heuristic Case A

R T

S

S2

Heuristic Case B

Fig. 7. The three cases considered by the RAG-n heuristic. The dashed circle means that S2 is

not computed explicitly.

The heuristic in BHM is changed from BHA in the following way. First, the
targets are synthesized in the order of increasing A-complexity, which is obtained
from a precomputed lookup table, or estimated by, e.g., the CSD cost. Second,
the error in (12) is allowed to be negative. Finally, because Aodd is used and all
elements of R are odd, minimization applies left shifts to candidate successors.

Let minc(T) denote the next candidate target (target of minimal complexity or
cost), and let rc ∈ R denote the closest (magnitude-wise) fundamental to minc(T),
i.e. rc = minc(T) ± ǫ. Then the chosen successors s1 and s2 are determined as
follows:

(s1, k) = arg min
s∈S

0≤k≤⌈log
2

ǫ⌉

|ǫ− s≪ k|, (13)

s2 = rc ± s1 ≪ k.

Just as in BHA, two successors are synthesized per iteration, unless ǫ ∈ R.
Due to these modifications, BHM performs consistently better than BHA in terms

of the number of A-operations in the generated A-graphs.

3.4 n-dimensional Reduced Adder Graph (RAG-n)

RAG-n [Dempster and Macleod 1995] is a graph-based MCM algorithm that re-
quires a precomputed table of optimal SCM decompositions, obtained by exhaustive
search using the method in [Dempster and Macleod 1994].

The target A-operation in RAG-n is Aodd, and as in BHM all targets T are first
right-shifted to become odd. The A-configuration constraints are less restrictive
than in BHM, with the only constraint being Ap(x, y) ≤ 2b+1, where b is the
maximum bitwidth of the targets. The RAG-n heuristic considers three different
cases, graphically illustrated in Fig. 7, and discussed next.

(1) Optimal Case. If T ∩ S 6= ∅, then there is a target in the successor set, and
it is synthesized. If the entire set T is synthesized this way, then the solution
is optimal, since it is impossible to use less than one A-operation for each odd
target. Thus, this case is called optimal.

(2) Heuristic Case A. If T ∩ S = ∅ and T ∩ S2 6= ∅, then there is a target at an
A-distance of 2 from R. This target is synthesized along with the distance-1
intermediate fundamental.

(3) Heuristic Case B. If no distance-1 or distance-2 targets are available, then RAG-
n synthesizes the target of least complexity using the precomputed optimal
SCM table. In this case three or more constants are synthesized.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Y. Voronenko and M. Püschel

RAG-n computes the entire set S and then finds the intersection S ∩T to detect
distance-1 targets. Distance-2 targets, on the other hand, are detected using a
heuristic distance test only. This test is cheaper than the full computation of S2

but does not detect all distance-2 numbers. We express this in Fig. 7 by using a
dashed circle for S2.

The last case (Heuristic Case B) uses the precomputed SCM decomposition to
decompose a target. In general, this does not lead to any subexpression sharing.
With the current methods, the largest available optimal SCM table is restricted to
constants up to 19 bits [Gustafsson et al. 2002], which also limits the applicability
of RAG-n.

RAG-n applied to a single constant set will always yield an optimal decomposition
if the constant resides in the precomputed optimal SCM lookup table. Constants
not in the lookup table are only synthesized at all (optimal or not) if they have
complexity 1 or 2, i.e., have a distance 1 or 2 from the initial R = {1}. Since RAG-n
uses the lookup table it can only be considered applicable to target sets with 2 or
more constants. Other MCM algorithms, including BHA, BHM, and the proposed
new algorithm, can be applied to the SCM problem directly.

3.5 Hybrid Graph-Based Algorithms

The common structure of graph-based algorithms makes it possible to easily mix
different algorithms to obtain hybrids. For example, in any given iteration, one can
change the heuristic, or use a different algorithm to synthesize a target.

For example, RAG-n itself is a hybrid with three components. When its optimal,
distance-1 test fails, the algorithm switches to a distance-2 heuristic, and when this
also fails, RAG-n reverts to a lookup table to synthesize a fundamental. Similarly,
RAG-n can be easily modified to use a CSE based algorithm, instead of a lookup
table, to synthesize the targets not detected by its distance-1 and distance-2 tests.

4. NEW ALGORITHM

This section first describes the limitations of the existing algorithms introduced in
Section 3, and then presents in detail the proposed new algorithm. The heuristic
in the new algorithm assumes that there is a function that will compute exactly
or estimate the A-distance. This is a non-trivial problem and will be addressed
separately in Section 5.

4.1 Limitations of Existing Graph-based Algorithms.

BHA was designed more than a decade ago, when workstation computers had sev-
eral orders of magnitude less computing power, and thus uses a computationally
cheap heuristic by today’s standards. Although BHM improved on BHA, the heuris-
tic was not changed significantly. So it can be expected that on today’s computers
we can improve on BHA and BHM by choosing a computationally more complex
and thus more precise heuristic.

RAG-n performs reasonably well, however, one main disadvantage is the de-
pendence on a precomputed table of optimal single constant add/subtract/shift
decompositions. First, this table takes a time exponential in the number of bits
to construct. Second, the best available method to compute this table [Gustafs-
son et al. 2002] works only up to 19 bits (even though one could also use a good

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 15

suboptimal table, which was not investigated). Finally, the size of the table is also
exponential in the number bits (it must have an entry for every odd constant). For
instance, the table for all odd constants up to 32 bits requires 231 > 109 entries.
Thus, RAG-n is not applicable to large bitwidths.

Another shortcoming of RAG-n (and BHA, BHM) is that the heuristic does not
try to select intermediate fundamentals to jointly optimize for all target constants.
This often results in suboptimal answers, even in very simple cases. For exam-
ple, RAG-n applied to the target set T = {23, 81} synthesizes a multiplier block
that uses 4 A-operations, without any subexpression sharing (both 23 and 81 are
complexity-2 constants). In contrast, Fig. 5 shows a better solution with only 3
operations produced by our algorithm.

4.2 New Algorithm

The main idea behind our new algorithm is to use a better heuristic for synthesizing
intermediate fundamentals. Our algorithm is computationally more expensive than
BHA, BHM, and RAG-n, since it explores a very large space of possible intermediate
vertices. Unlike RAG-n, it does not require a pregenerated optimal SCM lookup
table. Thus, our algorithm is storage efficient and in its applicability only limited
by the computation time.

Target A-operation. The A-operation in our algorithm is Aodd with the same
A-configuration constraint as RAG-n, namely allowing Ap(u, v) ≤ 2b+1, where b is
the maximal bitwidth of constants in T . When describing the algorithm we will
use for simplicity A do denote Aodd with the above constraint.

Outline of the new algorithm. Our algorithm follows the general structure
of Algorithm 1 and is shown in Algorithm 2. The heuristic is split into two parts:
the optimal and the heuristic part, similarly to the RAG-n algorithm. The optimal
part is practically identical to the optimal part in RAG-n, but in Algorithm 2 we
give a more detailed explanation of how to efficiently construct the successor set
S. The heuristic part uses S and the A-distance tests and estimators developed
in Section 5 to select new successors s to be added to R. Unlike in RAG-n, our
heuristic part only adds a single successor to R at each iteration.

When we talk about a single iteration of the algorithm (e.g., later in its analysis),
we refer to the outer loop consisting of steps 5–18.

Next, we discuss Algorithm 2 in greater detail.

Construction of S and the optimal part. The optimal part of our algorithm
is equivalent to the optimal part of RAG-n. Recall, that the optimal part of RAG-n
synthesizes at each iteration all distance-1 targets, i.e., S ∩ T .

To avoid computing in each iteration the entire set S, which can become rather
large, we compute it incrementally. This necessitates an additional set, the worklist
W . When a constant is synthesized it is added to W , first without being accounted
for in neither R nor S. In steps 9–10 we then perform an incremental update of R
and S based on W . The update of R is straightforward (step 9):

Rnew = R ∪W.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Y. Voronenko and M. Püschel

Algorithm 2. New MCM Algorithm. Given the target set of constants T .
Compute the set R = {r1, . . . , rm}, with T ⊂ R, as given in Definition 2.2 in Sec-
tion 2. There is a degree of freedom in choosing the heuristic function H(R,S, T)
for the algorithm. We consider two alternatives Hmaxb and Hcub discussed in Sec-
tion 4.3.

SynthesizeMultiplierBlock(T)

1: Right shift elements of T until odd
2: R← {1}
3: W ← {1}
4: S ← {1}
5: while T 6= ∅ do
6: {optimal part}
7: while W 6= ∅ do
8: {update S and R}
9: R← R ∪W

10: S ← (S ∪ A∗(R,W))−W
11: W ← ∅
12: {if S contains targets, synthesize them}
13: for t ∈ S ∩ T do
14: Synthesize(t)
15: {heuristic part}
16: if T 6= ∅ then
17: s← H(R,S, T)
18: Synthesize(s)

Synthesize(s)

1: W ←W + s
2: T ← T − s

The update formula for S is derived as follows using (7) and (10).

Snew = A∗(Rnew, Rnew) = A∗(Rnew, R ∪W)

= A∗(Rnew, R) ∪ A∗(Rnew,W)

= A∗(R ∪W,R) ∪ A∗(Rnew,W)

= A∗(R,R) ∪ A∗(W,R) ∪ A∗(Rnew,W)−W

= S ∪ A∗(R,W) ∪ A∗(Rnew,W)−W.

Since A∗(R,W) ⊂ A∗(Rnew,W), we get

Snew = (S ∪ A∗(Rnew,W))−W, (14)

which is step 10 in Algorithm 2.
Heuristic part. When no more targets are found in S, the optimal part of the

algorithm cannot synthesize any constants. This means that all targets are more
than one A-operation away, and a heuristic function H(R,S, T) is used to find
the next successor to add to R. Adding a successor to R creates new successors,
possibly enabling the optimal part to then synthesize new targets.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 17

We have developed two different heuristic functions Hmaxb and Hcub, discussed
next.

4.3 Heuristics.

We present two heuristic functions H considered in our algorithm, called Maximum
Benefit and Cumulative Benefit. Both heuristics assume that one can compute or
estimate the A-distance. This is a non-trivial problem, and the next section is
dedicated to A-distance computation/estimation.

Heuristic 1: Maximum benefit. The obvious and natural heuristic that
comes to mind, assuming that it is possible to compute or estimate the A-distance,
is to pick the successor s ∈ S closest to the target set. However, it is useful to also
take into account the current estimate of the distance between R and T . Thus, to
build our heuristic, we first define the benefit function B(R, s, t) to quantify how
much adding a successor s to the ready set R improves the distance to a fixed, but
arbitrary target t:

B(R, s, t) = dist(R, t)− dist(R + s, t). (15)

(Recall that we write R + s for R ∪ {s}.) If dist is exact, then B is at most 1. For
targets farther away, however, the A-distance can only be estimated, and with these
estimated distances the benefit can be larger than 1. Moreover, for remote targets
the estimate becomes less accurate (refer to Section 5), but also less important. We
take this into account by introducing the weighted benefit function

B(R, s, t) = 10− dist(R+s,t)(dist(R, t)− dist(R + s, t)), (16)

where the weight factor 10− dist(R+s,t) is exponentially decreasing as the distance
to t grows. Initially, we always favored closer targets, which is equivalent to having
a very large exponent base, but later it was experimentally found that 10 slightly
improves the solutions obtained with our second heuristic.

The maximum benefit heuristic Hmaxb(R,S, T) used in our algorithm picks the
successor s ∈ S that maximizes the weighted benefit over all targets t ∈ T :

Hmaxb(R,S, T) = arg max
s∈S

(

max
t∈T

B(R, s, t)
)

, (17)

Maximizing B tends to prefer the successors that are closest to T , but between two
successors that are equally far from T , it prefers the one with the greater benefit
value.

Heuristic 2: Cumulative benefit. The key observation about the benefit
function is that benefits for different targets t can be added up to enable joint
optimization for all targets. This leads to the second and, as it turns out, superior
cumulative benefit heuristic, formally defined as

Hcub(R,S, T) = arg max
s∈S

(

∑

t∈T

B(R, s, t)
)

. (18)

The cumulative benefit heuristic adds up the weighted benefits with respect to all
targets in T , instead of taking the maximum, and thus accomplishes joint optimiza-
tion for all targets.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Y. Voronenko and M. Püschel

Remarks. In a sense, our first heuristic Hmaxb corresponds to a maximum norm
|| · ||∞, and the second heuristic Hcub to the 1-norm || · ||1 (of course, a proper norm
would require an underlying vector space). We have also considered the equivalent
of the 2-norm || · ||2 but it did not produce results significantly different from Hcub.

4.4 Termination and Distance Function Admissibility

The inner loop (steps 7–14 in Algorithm 2) of the optimal part is guaranteed to
terminate, since there is a finite number of targets, and at each iteration either a
target is synthesized or the optimal part finishes.

The heuristic part, on the other hand, does not synthesize target constants.
Since one constant at a time is synthesized, it would have to be a distance-1 target.
However, if the test for the optimal part fails, i.e., T ∩ S = ∅, it is guaranteed that
no distance-1 targets exist. Thus, the heuristic part only synthesizes intermediate
vertices, and the algorithm is not guaranteed to terminate, unless the heuristic H
meets certain conditions.

For Hmaxb and Hcub, the termination is guaranteed, if for an arbitrary ready
set R ⊇ {1}, the corresponding successor set S, and any t ∈ T , the A-distance
estimation function dist is admissible, which is defined next.

Definition 4.1 Admissible A-distance estimation function. We call an
A-distance estimation function dist is admissible, if the following holds:

(1) dist(R, t) is a finite nonnegative integer;

(2) dist(R, t) = 0 iff t ∈ R;

(3) dist(R, t) > 0 iff t /∈ R;

(4) For an arbitrary set U , dist(R ∪ U, t) ≤ dist(R, t);

(5) If t /∈ R, then there exists s ∈ S such that

B(R, s, t) = dist(R, t)− dist(R + s, t) > 0 or dist(R + s, t) < dist(R, t).

Theorem 4.2 Algorithm Termination. Algorithm 2 with the heuristic H =
Hmaxb or H = Hcub terminates if dist is admissible.

Proof. Consider the sum of estimated distances to all unsynthesized targets
D =

∑

t∈T

dist(R, t). The admissibility conditions 1–3 in Definition 4.1 imply that D

is finite, and D > 0 for T 6= ∅, and that D = 0 iff T = ∅, i.e., when all targets are
synthesized.

Both heuristics choose a successor with positive benefit if it exists.2 According
to condition 5 such a successor s always exists and

dist(R + s, t) < dist(R, t).

Thus, the intermediate fundamental chosen by the heuristic will decrease at least
one distance estimate, and since according to condition 4, the estimates cannot
increase with an addition of new elements to R, the sum D will also decrease.

2Although Hcub and Hmaxb use the weighted benefit B, it can be easily seen that if B(R, s, t) > 0,
then also B(R, s, t) > 0.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 19

Table II. Worst case set sizes for the new algorithm.

Set Worst case size

A∗(u, v) O(b)

C1 O(b)
C2 O(b2)
T n

R O(nb)

S O(n2b3)

Since at each iteration D is decreased, eventually it will become 0. Then, ac-
cording to condition 2, all targets are synthesized and the algorithm terminates.
Observe also that D is the maximum number of iterations of the heuristic part.
The optimal part decreases D by at least 1 for each synthesized target, and the
heuristic part decreases D by at least 1 for each synthesized intermediate constant,
thus D is also the maximum number of synthesized constants or |R|.

Obviously, if dist is exact and not an estimate it is admissible.

4.5 Algorithm Properties

Let n = |T |, and let b be the maximal bitwidth of all constants in T . We derive the
worst case sizes of A∗, R (i.e., the worst case solution), S, and C1 and C2. These
bounds are necessary for the runtime analysis of the A-distance computation in
Section 5 and hence of the algorithm. Table II summarizes these bounds. We will
also identify scenarios in which the algorithm produces an optimal solution. Both
worst case set sizes and optimality hold under the constraint Ap(u, v) ≤ 2b+1.

Worst case size of A∗. A
odd allows only one non-zero left shift l1 or l2, and

since the fundamental values are limited to 2b+1, the shifts can be between 0 and
b + 1. The only other parameter that can vary is s = {0, 1}. Therefore, for a fixed
u and v, there are at most O(4(b+2)) = O(b) possible A-configurations, and hence
at most O(b) elements in A∗(u, v).

Worst case solution (|R|). As mentioned in the proof of Theorem 4.2, the
size of the solution is bounded as

|R| ≤ D =
∑

t∈T

dist(R, t). (19)

The A-distance estimation function, presented in the next section, is bounded by
the CSD cost of t. Therefore for b bit constants (with a CSD cost of O(b)), and n
targets, the worst case is

|R| = O(nb).

Worst case size of S. Recall that S = A∗(R,R). The number of pairs in R
(with repetition) is at most

|R|+

(

|R|
2

)

= O(nb) +

(

O(nb)
2

)

= O(n2b2).

Since for each r, r′ ∈ R, A∗(r, r
′) contains O(b) elements, we have

|S| = O(n2b2 · b) = O(n2b3).

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Y. Voronenko and M. Püschel

Sizes of C1 and C2. These principally infinite sets (see Definition 2.3) become
finite, if we take into account the restriction of Ap(u, v) ≤ 2b+1 imposed by the
algorithm.

Each odd constant in C1 is in Ap(1, 1), since 1 is the only odd constant with
complexity zero. Thus,

|C1| = |A∗(1, 1)| = O(b).

Each constant in C2 is either in Ap(1, c) or in Ap(c, c) for a suitable c ∈ C1. Thus,

C2 = A∗(C1, 1) ∪
⋃

c∈C1

A∗(c, c).

It is easy to see that A∗(c, c) = c · A∗(1, 1), and thus
⋃

c∈C1

A∗(c, c) =
⋃

c∈C1

c · A∗(1, 1) = C1A∗(1, 1) = C1 · C1.

We have C2 = A∗(C1, 1) ∪ C1 · C1 and |C2| = O(b2).
Optimality. In certain situations Algorithm 2 produces an optimal solution,

i.e., with the minimum possible number of A-operations.

Theorem 4.3 Single Constant Optimality. If the A-distance function dist
is exact, then Algorithm 2 with either Hcub or Hmaxb is optimal for a single target
(n = 1).

Proof. Denote the single target with t. Then |R| ≤ dist({1}, t) from (19). Since
the distance function is exact, dist({1}, t) is the A-complexity of t and the result
follows.

Theorem 4.4 Multiple Constant Optimality. If the optimal part of Algo-
rithm 2 synthesizes the entire set T , then the solution is optimal.

Proof. This was already shown for the RAG-n algorithm in [Dempster and
Macleod 1995], which uses the same optimal part.

If after the first pass of the algorithm T is empty, then R contains all targets,
and the solution uses exactly n = |T | A-operations if T has distinct odd constants.
It is not possible to use less operations, because each unique odd target requires at
least one A-operation.

Observe, that n is also the lower bound for the number of A-operations for n odd
constants. Asymptotically, due to the optimal part of the algorithm, the number
of A-operations will approach n, when b is fixed. Further discussion can be found
in [Dempster and Macleod 1995].

5. COMPUTING THE A-DISTANCE

The previous section described the proposed algorithm and the two heuristics Hcub

and Hmaxb both of which are based on a function dist that computes or estimates
the A-distance. Our design of this dist function is described in this section.

First, we show that the A-distance computation is an NP-complete problem to
motivate the use of estimation. Second, we discuss the special cases, in which the
A-distance can be computed exactly, and then describe a general method for its
estimation. Finally, we prove the admissibility (see Definition 4.1) of the proposed

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 21

distance function, which guarantees the termination of our algorithm through The-
orem 4.2.

Theorem 5.1 Complexity of computing A-distance. The problem of co-
mputing the A-distance under the constraint Ap(u, v) ≤ 2b+1 is NP-complete.

Proof. We prove this by reducing the NP-complete problem of finding the opti-
mal decomposition for a single constant3 to the problem of A-distance computation
in polynomial time.

If the A-distance function is exact, then Algorithm 2 is optimal for a single
constant (see Theorem 4.3). The heuristic is invoked in the algorithm once per
iteration. There are O(nb) = O(b) iterations (n = 1 for a single constant), and
O(|S|) = O(n2b3) = O(b3) weighted benefits to compute per iteration. Thus,
the A-distance is computed O(b4) times. Therefore, the optimal single constant
decomposition is reduced to A-distance computation in polynomial time. Hence,
A-distance computation is NP-complete.

Note that computing theA-distance without the shift constraint is a more general
problem and, thus, at least as hard.

We proceed by giving algorithms for computing the exact A-distance for dis-
tances ≤ 3, and then give a general method that estimates the A-distance > 3.

5.1 A-Equations and Exact A-Distance Tests

The algorithm for finding the exact value of dist(R, t) is based on testing specific
distances d for feasibility. First, all possible A-graph topologies that synthesize t
using exactly d A-operations are enumerated. Then, these topologies are converted
to the so called A-equations, which relate values at the input, output, and inter-
mediate nodes of the topology. If it is determined that the equation has a solution,
then the A-distance is ≤ d. If we perform these tests in the order of increasing
distance d, the exact A-distance can be determined. Since the number of graph
topologies for a given distance grows quickly [Gustafsson et al. 2002], this approach
is feasible only for very small values of d. We consider d = 1, 2, 3, and only estimate
the large distances.

Before we start, we list below a few useful properties of theA-operation A = Aodd

including constraints (as defined in Section 4.2) used in our algorithm. For other
choices of the A-operation the properties may not hold.

Lemma 5.2. If w = Ap(u, v), then there exists an A-configuration p′ such that
u = Ap′(w, v).

Proof. Using the definition of Ap:

w = |2l1u + (−1)s2l2v|2−r, p = (l1, l2, s, r).

Solving for u we obtain

u = |2rw + (−1)s′

2l2v|2−l1 = Ap′(w, v),

p′ = (r, l2, s
′, l1) for a suitable s′.

The value of s′ is 1 if s = 0, and either 0 or 1 if s = 1.

3The SCM problem with the shift constraint is still NP-complete.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Y. Voronenko and M. Püschel

R T

S

(a) Distance 1
T ∩ S 6= ∅

R T

S

S2

(b) Distance 2
T ∩ S2 6= ∅

R T

S

S2

S3

(c) Distance 3
T ∩ S3 6= ∅

R T

S

S2

S3

(d) Distance ≥ 4

T ∩ S3 = ∅

Fig. 8. Special distance cases handled by the heuristic. Solid circles denote the available sets, and
dashed circles denote the sets that are not computed.

Lemma 5.3. If w = Ap(u, v), then there exists an A-configuration p′ such that
w = Ap′(v, u).

Proof. Obviously, the A-operation is symmetric, and it suffices to switch the
left shifts to obtain p′.

The following two corollaries follow immediately, using the definition of A∗ (Defi-
nition 2.5).

Corollary 5.4. For any u and v

A∗(u, v) = A∗(v, u).

Corollary 5.5. If w ∈ A∗(u, v), then

u ∈ A∗(w, v) and u ∈ A∗(v, w),

v ∈ A∗(u,w) and v ∈ A∗(w, u).

We use these properties of A for solving A-equations that arise in designing the
distance tests.

To test for a specific A-distance dist(R, t) = d we need all graph topologies with
d nodes, one or more inputs, and a single output (corresponding to t). We construct
these topologies from the cost 1–3 SCM topologies from Fig. 5 in [Gustafsson et al.
2002] by splitting the single input node into multiple input nodes.

The tests for dist(R, t) proceed by assigning a value ri ∈ R to each input node,
assigning t to the output node, and solving for all possible values at the first succes-
sor node. If any of those values do exist in S, then the test succeeds. We consider
the distances d = 1, 2, 3 separately next.

5.2 Distance-1 Tests

Fig. 8(a) displays the case of a distance-1 target, dist(R, t) = 1. For distance-1
there is only one possible topology, shown in Fig. 9(a).

Although distance-1 targets can be detected with an A-equation based test, it
is not necessary. The optimal part constructs the entire S (the set of distance-1
constants) and immediately synthesizes all distance-1 targets, i.e., the intersection
S ∩ T .

Assuming that S is sorted, the runtime of the test is dominated by set intersec-
tion, which can be done in O(|T | log |S|) = O(n log(n2b3)) = O(n log(nb)) time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 23

r0

r1

t

t = Ap(r0, r1)

(a) Distance-1 (1 topology)

r0

r1

s t

1. t = c1s

r0

r1

r2

s t

2. t = Ap(s, r2)

(b) Distance-2 (2 topologies)

r0

r1

s t

1. t = c2s

r0

r1

s t

2. t = c2s

r0

r1

r2

s t

3. t = A∗(s, r2) · c1

r0

r1

r2

s t

4. t = Ap(c1s, r2)

r0

r1

r2

r3

s1

s2

t

5. t = Ap(s1, s2)

(c) Distance-3 (5 topologies)

Fig. 9. Graph topologies for exact distance tests.

5.3 Distance-2 Tests

Fig. 8(b) shows the scenario where distance-2 targets exist. A distance-2 constant
can be realized with two possible topologies, shown in Fig. 9(b). Below we construct
an A-equation for each of the cases.

Case 1. The subgraph from s to t has a single input and a single output, and
hence is a multiplier block with one A-operation, which multiplies by a complexity-
1 constant. Thus t can be expressed as t = c1s, where c1 ∈ C1. Alternatively,
s = t

c1

, which has a solution iff

t

C1
∩ S 6= ∅.

Since |C1| = O(b), and intersection with S (assumed to be sorted) gives another
factor of O(log |S|) = O(log(nb)), this test requires O(b log(nb)) time.

Case 2. Given t = Ap(s, r2), we obtain s = Ap′(t, r2) using Lemma 5.2, which
has a solution iff

A∗(t, R) ∩ S 6= ∅.

A∗ has O(b) elements (and takes the same amount of time to compute) for each pair
of inputs. Thus, for each O(nb) elements in R we have to perform O(b) operations.
Intersection with (sorted) S gives another factor of O(log |S|) = O(log(nb)), and
the total time for this test is O(nb2 log(nb)).

5.4 Distance-3 Tests

Fig. 8(c) shows the scenario where distance-3 targets exist. A distance-3 constant
can be realized with five possible topologies, shown in Fig. 9(c).

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Y. Voronenko and M. Püschel

[Gustafsson et al. 2002] presents all graphs in the so-called reduced form, which
allows vertices to have an in-degree larger than 2. For topologies 2, 3, 4, and 5, we
have chosen to split these vertices into binary vertices. It is shown by the authors
that different splittings have equivalent possible outputs at the output vertex. We
have chosen splittings that minimize the runtime of the distance test.

Cases 1 and 2. In both of these cases, the subgraph from s to t has a single
input and a single output, and hence is a multiplier block, which multiplies by a
complexity-2 constant. Cases 1 and 2 consider different complexity-2 constants,
but both can be covered, if the target value is written as t = c2s, where c2 ∈ C2.
Alternatively, s = t

c2

, which has a solution iff

t

C2
∩ S 6= ∅.

There are O(b2) complexity-2 constants (see Table II). Test membership in S can
be done in O(log(nb)) operations, so this test requires O(b2 log(nb)) time.

Case 3. The A-equation can be rewritten as Ap(s, r2) = t
c1

. Using Lemma 5.2

we get Ap′

(

t
c1

, r2

)

= s, which has a solution iff

A∗

(

t

C1
, R

)

∩ S 6= ∅.

Since |C1| = O(b), the time for this test is O(b · nb · b · log(nb)) = O(nb3 log(nb)).
Case 4. Given t = Ap(c1s, r2) and using Lemma 5.2, we obtain c1s = Ap′(t, r2),

or, alternatively, s =
Ap′ (t,r2)

c1

, which has a solution iff

A∗(R, t)

C1
∩ S 6= ∅.

This test is similar to the second distance-2 test, but for each element of A∗(R, t)
it has to go through all elements of C1. Since there are O(b) constants in C1, the
requires time is O(b · nb2 log(nb)) = O(nb3 log(nb)).

Case 5. Given t = Ap(s1, s2) and using Lemma 5.2, we obtain s2 = Ap′(s1, t),
which has a solution iff

A∗(S, t) ∩ S 6= ∅.

For each s1 ∈ S, we have to perform O(b log(nb)) operations. Thus, the time for
this test is O(|S| · b log(nb)) = O(n2b4 log(nb)).

5.5 Summary of Exact Tests

Table III shows the set intersections that need to be computed for each of the exact
A-distance tests, and the corresponding asymptotic runtime per each tested target.
In all cases, the runtime per target is equal to the worst case set size times log(nb)
overhead for the intersection with S, assuming that S is sorted.

The tests above yield the exact value of dist(R, t). Adding a single element to R
can decrease the A-distance by at most 1; this implies that dist(R + s, t), needed
for calculating B(R, s, t), does not have to be computed at all.

All given tests compute the set, call it X, of possible values at the successor
node s, and then check whether X ∩ S 6= ∅. For all s ∈ X ∩ S it holds that

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 25

Table III. Set intersections computed for exact distance tests and computation time per target.

Distance Case Formula Time per target

1 - t ∩ S O(log(nb))

2 1 A∗(R, t) ∩ S O(nb2 log(nb))
2 t

C1

∩ S O(b log(nb))

3 1,2 t
C2

∩ S O(b2 log(nb))

3 A∗

(

t
C1

, R
)

∩ S O(nb3 log(nb))

4
A∗(R,t)

C1

∩ S O(nb3 log(nb))

5 A∗(S, t) ∩ S O(n2b4 log(nb))

dist(R + s, t) = dist(R, t)− 1.
The algorithm requires an admissible distance function (Section 4.4). For A-

distances up to 3, we use the exact distance function which is admissible. For
larger distances we estimate the A-distance, which is explained next.

5.6 Estimation (For Distance-4 and Higher)

Fig. 8(d) shows the scenario where no targets of distance 3 or lower exist. We do
not use an exact distance computation in this case. However, the exact test is still
feasible, and could be designed with the method shown above from the 15 possible
distance-4 topologies.

Our approach estimates distances of 4 or higher using several estimators, each
of which overestimates the exact distance. The final estimated distance is then the
minimum of these overestimates.

Recall that, for the weighted benefit B(R, s, t), we need both dist(R, t) and
dist(R + s, t). For the exact tests, described above, dist(R, t) is computed, and
dist(R + s, t) for each successor is obtained as a side effect. For the estimation, the
converse is true. The distances dist(R, t) are obtained from dist(R + s, t) and then
cached, as explained below.

Initially, for targets t which are not covered by exact distance tests, the cached
value of dist(R, t) is set to the largest possible distance value. Each time the
benefit function has to be computed, and the exact tests do not apply, dist(R, t)
is obtained from the cache, and dist(R + s, t) is estimated using the method given
here. If a particular successor s is chosen to be synthesized, the computed value of
dist(R + s, t) replaces dist(R, t) in the cache.

For exact tests, both the Hcub and Hmaxb heuristics only need a single dist(R, t)
computation for each target t. Estimation, on the other hand, is much more expen-
sive, because it requires dist(R + s, t) for each of the O(|S|) = O(n2b3) successors
s for each target t.

Estimating dist(R+s, t). To estimate the A-distance, we try to find an answer
to the following two questions: what constant z do we need to reduce the distance
to a target? and, how expensive is z?

To answer the first question, we construct solutions to the problem of synthesizing
t using 2 and 3 A-operations. These partial solutions are graph topologies, as in
the exact test cases in Fig. 9(b) and 9(c), but have one of the inputs designated

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Y. Voronenko and M. Püschel

r0

r1

z

s t

1. t = Ap(s, z)

r0

r1

z

s t

2. t = c1 · Ap(s, z)

r0

r1

z

s t

3. t=Ap(c1s, z)

r0

r1

r2

z

s

t

4. t=Ap(s,Ap′(r2, z))

Fig. 10. Partial graph topologies for dist(R + s, t) estimation. z denotes the unsynthesized part.
Estimation proceeds by determining all possible values of z, finding the “cheapest” (we use CSD
cost), and adding the cost of the cheapest element to the number of operations in the topology

minus 1 (since s is assumed to be available).

as an unknown and unsynthesized constant z. Since besides a successor node s we
also need z, the graphs must have at least 3 inputs. Note, that there are exactly 4
topologies with 3 or more inputs in Fig. 9: distance-2 topology 2, and distance-3
topologies 3, 4, and 5. These are the graph topologies used for distance estimation,
and Fig. 10 repeats them showing also the designated unknown input z. Using
these topologies and Lemmas 5.2 and 5.3, as we did for exact distance tests, we can
compute the set of all possible values of z.

To answer the second question we use a crude estimate for dist(R + s, z), called
a single constant auxiliary cost measure Est(z), as the cost.

For a given partial topology and a given value of z an overestimated distance can
be obtained as

dist(R + s, t) ≤ dist(R + s, z) + dist(R + s + z, t) =

= Est(z) + #ops− 1,

where #ops is the number of nodes (i.e., number of A-operations) in the topology,
and, since s is assumed to be available, 1 is subtracted.

However, since the value of z is unknown, we compute the set Z of all possible
values of z for a given partial topology and values of s and t, and then use the
“cheapest” (with respect to Est) value, denoted with Est(Z):

dist(R + s, t) ≤ min
z∈Z

Est(z) + #ops− 1

= Est(Z) + #ops− 1. (20)

There is a degree of freedom in choosing the auxiliary cost measure Est. However,
first, we must ensure the distance function is admissible, and second, it has to be
computationally efficient. For example, the constant complexity cannot be used,
because the resulting distance function will not be admissible. Among the possible
choices are the number of non-zero CSD bits (CSD cost) of the constant, or the
number of non-zero binary bits of the constant. We have chosen the CSD cost as
an auxiliary estimator:

Est(z) = CSD-Cost(z), (21)

Est(Z) = min
z∈Z

Est(z) = min
z∈Z

CSD-Cost(z). (22)

Computing the CSD cost takes O(b) time, and we show later that the resulting
A-distance estimation function is admissible.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 27

Table IV. Sets computed for distance estimation and estimation runtime per each successor-target
pair.

Case Set Z Set size Est(Z) runtime

1 A∗(s, t) O(b) O(b2)
2 A∗(s, t

C1

) O(b2) O(b3)

3 A∗(C1s, t) O(b2) O(b3)
4 A∗(R,A∗(s, t)) O(nb3) O(nb4)

Using (20) for distance estimation, and Lemma 5.2 to compute Z using com-
putations similar to the exact distance test, we obtain the following A-distance
overestimates for each case in Fig. 10:

Case 1. dist(R + s, t) ≤ 1 + Est(A∗(s, t)) = E1.
Case 2. dist(R + s, t) ≤ 2 + Est(A∗(s,

t
C1

)) = E2.
Case 3. dist(R + s, t) ≤ 2 + Est(A∗(C1s, t)) = E3.
Case 4. dist(R + s, t) ≤ 2 + Est(A∗(R,A∗(s, t))) = E4.
The estimates E provide an upper bound and thus can be larger than dist(R, t).

When all estimates are larger than dist(R, t), the benefit B(R, s, t) must be 0 (and
not negative), and therefore, as the final value for the estimate of dist(R + s, t) we
take the minimum of the four overestimates and dist(R, t):

dist(R + s, t) ≃ min(dist(R, t), E1, E2, E3, E4). (23)

Here and further on we will use ≃ to denote that the right hand size is an estimate.
Table IV shows for each case the set Z (of z values) to compute, the worst case

size of the set, and the runtime for computing Est(Z) (“Est(Z) runtime”) for each
successor-target pair assuming that computing Est(z) takes O(b) time.

In our actual implementation of Algorithm 2, the fourth estimator is not used,
since it is the most expensive and improves the results only insignificantly. Further,
the sets required for the first three estimators do not change between iterations,
and thus Est(Z) can be computed once for each successor-target pair.

5.7 Estimation Admissibility

We mentioned before already that the exact distance function is admissible.
The distance estimate using (23) obviously satisfies the admissibility conditions

1–4 in Definition 4.1. However, it is not as obvious that condition 5 in this definition
is satisfied. We prove this in the following theorem.

Recall, that the estimate for dist(R, t) is obtained from the estimate for dist(R+
s, t), when s is chosen to be synthesized. Initially, all cached estimates are assumed
to be infinite. Therefore, at the first iteration we are guaranteed that the obtained
estimate d satisfies d < dist(R, t). The theorem below proves that this will continue
to be the case for the following iterations, as long as the given estimators are used.

Theorem 5.6. Let R, S, T be the ready set, the successor set, and the target set,
respectively. Let s ∈ S, and t ∈ T , and let dist(R+s, t) ≃ d be the distance estimate
obtained from (23). Further, assume that d < dist(R, t), and thus B(R, s, t) > 0.
Then, at the next iteration, there exists s ∈ Snew (the new successor set of Rnew =
R + s), such that dist(R + s + s, t) = d− 1, i.e., B(R + s, s, t) > 0.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Y. Voronenko and M. Püschel

Proof. There are 4 cases to consider: d = E1, d = E2, d = E3, and d = E4.
We will show only the case d = E1; the proofs for the other cases are analogous.

According to the case 1 estimator A-equation,

t ∈ A∗(s, z).

Since d ≥ 3, Est(z) ≥ 2, i.e. the CSD cost of z is at least 2. If one non-zero CSD
bit is removed from z, we get a new constant z with a CSD cost that is reduced by
1, and z can be written as

z = Ap(1, z) so that Est(z) = Est(z)− 1.

If this expression for z is substituted into the original A-equation, we obtain

t ∈ A∗(s,Ap(1, z)).

Using the definition of Aodd it can be easily shown that there exists an A-configu-
ration p′ such that

t ∈ A∗(Ap′(s, 1), z).

However Ap′(s, 1) ⊂ Snew, and hence

t ∈ A∗(Snew, z).

Therefore there exists s ∈ Snew with t ∈ A∗(s, z), and using the case 1 overestimate
dist((R + s) + s, t) ≤ 1 + Est(z) = 1 + Est(z)− 1 = d− 1.

In the proof, we assumed that an estimate d was obtained using E1, and found
that the value of again E1 will necessarily decrease. For the other estimates E2–E4

of d, however, at the next iteration only a different estimate might decrease.
We have experimented with more expensive estimators. Often, the proof does

not go through without an additional and even more expensive estimator that
guarantees admissibility.

6. RUNTIME ANALYSIS AND EXPERIMENTAL EVALUATION

In this section we analyze the runtime of the new algorithm (Algorithm 2) and its
performance in terms of the average number of A-operations (add/subtract opera-
tions) in the synthesized solutions. We compare to the best performing algorithms
from the literature. We also provide some measured sample runtimes of the new
algorithm. As before, we will use b to denote the constant bitwidth, and n = |T |
to denote the number of constants in the target set.

6.1 Algorithms Evaluated

We provide some details on the actual implementations of the algorithms used in
our benchmarks. In some cases, we reimplemented and improved the published
algorithms for fair comparison.

New algorithm with heuristic Hcub. We have implemented our Algorithm 2
in C++, and tried both the Hcub and the Hmaxb heuristic from Section 4.3. Both
heuristics have the same computation cost, but Hcub consistently found better solu-
tions. Thus, we present the results of Hcub only, and for convenience the algorithm
is simply abbreviated as Hcub.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 29

Table V. Asymptotic runtime summary.

Algorithm Runtime b n = |T |

Optimal [Gustafsson et al. 2002] Ω(2b) ≤ 19 1

RAG-n [Dempster and Macleod 1995] O(n2b3 log(nb)) ≤ 19 ≥ 2
BHM [Dempster and Macleod 1995] O(n3b4) any any
Lefèvre [Lefèvre 2001] O(n3b3) any any
Hcub O(n4b5 log(nb) + n3b6) any any

Hcub (distance-2 tests only) O(n3b5) any any

Optimal SCM. This method performs exhaustive search over all possible graph
topologies to find optimal single constant decompositions. It was originally de-
scribed in [Dempster and Macleod 1994], and later improved in [Gustafsson et al.
2002] to handle constants up to 19 bits. We have reimplemented the algorithm in
C++ and cross-checked the generated constant complexities with the authors.

RAG-n. Described in [Dempster and Macleod 1995], and discussed in Section 3,
RAG-n is currently the best published MCM algorithm that we are aware of. The
authors have kindly provided us with their MATLAB implementation, which, how-
ever, only handled constants up to 12 bits. For a fair comparison, we have reimple-
mented the algorithm in C++, and generated the lookup table up to 19 bits (using
[Gustafsson et al. 2002]). Further, we improved the algorithms by inserting our
complete A-distance test for distance 2, in which case the original implementation
used a heuristic only. All RAG-n results shown were produced using this improved
version.

BHM. Also described in [Dempster and Macleod 1995], BHM is an improved
version of BHA (i.e., the “add/subtract/shift” algorithm from [Bull and Horrocks
1991]). Both BHA and BHM are described in Section 3. We have implemented this
algorithm in C++ using the BHA pseudo-code given in [Bull and Horrocks 1991]
and the BHM improvements from [Dempster and Macleod 1995].

Lefèvre. Described in [Lefèvre 2001], this is one of the newer common subex-
pression elimination based MCM algorithms. We did not discuss the details of the
algorithm in this paper, since it is not graph-based. The algorithm uses more sophis-
ticated methods for identifying common subexpressions, but otherwise is similar to
[Pasko et al. 1999]. The author has kindly provided us with his implementation in
Perl.

Note, that we implemented every algorithm except the CSE-based from Lefèvre.
This was facilitated by the general framework presented in this paper, which enables
considerable code reuse. All four algorithms (ours, optimal SCM, RAG-n, and
BHM) require only about 1900 lines of C++ code. Our package implementing
these algorithms is available at [Spiral website].

6.2 Asymptotic Runtime Analysis

Table V summarizes asymptotic bounds for the worst case runtimes of the different
MCM algorithms. Below we describe how they were obtained.

Hcub. To derive the worst case runtime of the new algorithm, we use the worst
case bounds from Sections 4.5 and 5.

The algorithm executes three conceptually separate parts at each iteration: the

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Y. Voronenko and M. Püschel

Table VI. Runtime breakdown for the new algorithm.

Per-iteration runtime Total runtime

S computation - O(n2b3 log(nb))

Optimal part O(n log(nb)) O(n2b log(nb))
Heuristic part, exact distance tests O(n3b4 log(nb)) O(n4b5 log(nb))
Heuristic part, distance estimation - O(n3b6)
Total - O(n4b5 log(nb) + n3b6)

incremental successor set S construction, the optimal part, and the heuristic part.
Below we show the runtime of each of these steps, and then compute the total
runtime, using the O(nb) bound for the number of iterations.

Successor set construction. The computation of S is done in increments and is
distributed across iterations. The total number of successors when the algorithm
terminates is O(n2b3). We assume that S is kept sorted in order to do quick set
intersections, and thus the total runtime is O(n2b3 log |S|) = O(n2b3 log(nb)).

Optimal part. The only overhead of the optimal part over the computation of S
is checking for targets in the new successors, i.e., the computation of S′ ∩ T . For n
targets, the runtime per iteration is O(|T | log |S|) = O(n log(n2b3)) = O(n log(nb)).

Heuristic part. At each iteration we perform a series of exact tests and, if ap-
plicable, distance estimators. Table III shows the per target runtime for the exact
tests, which have to be evaluated at every iteration. Table IV shows the distance
estimator runtime per successor-target pair, which do not have to be recomputed
between iterations.

The most expensive exact distance test is case 5 of Table III with the runtime
of O(n2b4 log(nb)) per target, for n targets we obtain the per iteration runtime of
O(n3b4 log(nb)) and since the worst case number of iterations is O(nb) the total
runtime is O(n4b5 log(nb)).

The most expensive distance estimator that we use are cases 2 and 3 of Table IV
with the runtime of O(b3) per each successor-target pair. As discussed earlier we do
not use the case 4 estimator. The sets Z computed for case 1–3 estimators do not
change between iterations, and therefore the estimator values have to be computed
only once per each successor-target pair. There are O(|T | · |S|) = O(n3b3) such
pairs, and thus the total runtime is O(n3b3 · b3) = O(n3b6).

Table VI summarizes the per iteration and total runtimes for the new algorithm.
As can be seen from the table, the total runtime of the algorithm is dominated
by the exact distance tests and distance estimators in the heuristic part and is
O(n4b5 log(nb) + n3b6).

If only distance-2 tests and estimators are used, the most expensive distance test
is the distance-2 case 1 of Table III with the runtime of O(nb2 log(nb)) per target,
which for n targets yields the runtime of O(n2b2 log(nb)) per iteration

The only available distance-2 based estimator is the case 1 of Table IV with the
runtime of O(b2) per successor-target pair, yielding the total runtime of O(n3b3 ·
b2) = O(n3b5).

Table VII summarizes the per iteration and total runtimes for the new algorithm
with distance-2 tests only. Note that the total runtime is now dominated by the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 31

Table VII. Runtime breakdown for the new algorithm with distance-2 tests only.

Per-iteration runtime Total runtime

S computation - O(n2b3 log(nb))

Optimal part O(n log(nb)) O(n2b log(nb))
Heuristic part, exact distance tests O(n2b2 log(nb)) O(n3b3 log(nb))
Heuristic part, distance estimation - O(n3b5)
Total - O(n3b5)

distance estimation and is decreased to O(n3b5).
Optimal SCM. The optimal method for SCM performs an exhaustive search

over all possible decompositions, and thus has the highest runtime among all meth-
ods. The method has to look at every constant of given bitwidth, so the runtime is
Ω(2b). The exact analysis was not provided in the original paper. The size of the
generated lookup table is O(2b).

RAG-n. The authors of RAG-n did not provide a runtime analysis for the
algorithm, so we perform the analysis here.

Since at each iteration at least one target is synthesized, the total number of
iterations in the worst case is O(|T |) = O(n). The optimal part is equivalent to
Hcub with a runtime of O(n2b3 log(nb)). When the optimal part is not applicable,
the same distance-2 test as in our algorithm is invoked (which is our improvement of
the original as stated in the beginning of this section). According to Section 5.1, the
per iteration, per target runtime is O(nb2 log(nb)). At each iteration the number
of targets is decreased by at least 1, thus the total runtime is

O((n + (n− 1) + (n− 2) + . . .) · b2 log(nb)) = O(n2b2 log(nb)).

When the distance-2 test fails, RAG-n uses an O(1) table lookup. Thus, the total
runtime is dominated by the successor set construction in the optimal part and is
O(n2b3 log(nb)). This is different from the original RAG-n paper [Dempster and
Macleod 1995], in which the authors observed the heuristic part to be slower. The
reason is that our distance-2 test is more efficient.

BHM. For BHM the runtime analysis was also not available. We do it below,
first obtaining a bound on the number of iterations.

The error ǫ starts as a b bit number equal to one of the targets, and at each
iteration is reduced by at least a factor of 4, i.e., by 2 bits, until it reaches 0 and a
new target is selected. This gives a total of O(b

2 · |T |) = O(nb) iterations.
At each iteration the heuristic makes a pass through the entire set S according

to (13). Thus, the total runtime is O(|S| ·b ·nb) = O(n2b3 ·nb) = O(n3b4). It can be
verified that the bound |S| = O(n2b3) derived for our algorithm still holds (BHM
uses an almost equivalent A-operation constraint, and |R| is still O(nb)).

BHM has a higher runtime than RAG-n, while [Dempster and Macleod 1995]
stated otherwise, and created a hybrid RAG-n + BHM algorithm to make it faster.
The authors’ implementation of the distance-2 test was suboptimal, and with the
A-distance computation presented in this framework RAG-n runs much faster.

Lefèvre. The asymptotic runtime of Lefèvre’s algorithm was provided to us by
the author; he also noted that the average runtime is lower.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Y. Voronenko and M. Püschel

5 10 15 20 25 30

2

3

4

5

6

7

b (constant bitwidth)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
Optimal

(a) n = 1

5 10 15 20 25 30
2

4

6

8

10

12

b (constant bitwidth)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(b) n = 2

5 10 15 20 25 30

10

15

20

25

30

35

40

45

50

55

b (constant bitwidth)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(c) n = 10

5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

100

b (constant bitwidth)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(d) n = 20

Fig. 11. Average number of A-operations (adds/subtracts) vs. constant bitwidth b for a fixed
number of constants n. The average is taken over 100 uniformly drawn random target sets.

6.3 Experimental Evaluation.

To evaluate the performance of different algorithms we ran a series of experiments
on a large random sample of uniformly distributed target sets and measured the
average number of adds/subtracts in MCM decompositions.

In the first experiment, we fix n (the number of constants in the target set) and
vary b (the bitwidth of constants). In the second experiment, we fix b and vary n.
In both experiments, we consider BHM, Lefèvre, RAG-n, and Hcub. In the third
experiment, we investigate the improvement of our algorithm over RAG-n. The
fourth experiment shows the gain obtained by using distance-3 tests compared to
only distance-2 tests in the algorithm. Finally, we show the actual runtime of our
algorithm on a 3.4 GHz Pentium 4 workstation.

Fixed number of constants. This experiment investigates the effect of chang-
ing the constant bitwidth b on the number of A-operations for n = 1, 2, 10 and 20.
Fig. 11 shows the average number of operations (y-axis) versus b (x-axis) for a 100
uniformly drawn random target sets of size n.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 33

For a single constant RAG-n uses an optimal SCM decomposition, and therefore
is not shown separately. Hcub is within 4% of an optimal decomposition at b =
19 bits, which is the largest bitwidth handled by the optimal algorithm. As the
number of bits increases, Hcub approaches BHM slightly, because the A-distance
estimation used in Hcub gives increasingly less accurate results. This indicates that
for large bitwidths a hybrid Hcub + BHM based method might be beneficial. Refer
to Section 3.5 for a discussion of how hybrid algorithms can be implemented.

As the number of constants increases (n = 2, 10, 20), the performance deterio-
ration effect of A-distance estimation at large bitwidths is delayed, since the joint
optimization nature of Hcub outweighs the drawbacks of less accurate A-distance
estimations.

In particular, Hcub performs well for 2 constants. For bitwidths larger than 14
bits it requires 10-15% fewer adds/subtracts than RAG-n, which is the best of all
other algorithms. Beyond 19 bits, where RAG-n is not applicable, Hcub uses up to
17% fewer operations. Sets with 2 constants are an important case in linear signal
transforms, such as the discrete Fourier transform and the various discrete cosine
transforms.

For 20 constants Hcub produces solutions with up to 17% fewer operations than
RAG-n, and 25% fewer operations than BHM, where RAG-n is not applicable.

Fixed constant bitwidth. This experiment investigates the effect of changing
n, the number of constants in the target set, for different fixed bitwidths b = 12,
16, 19, 22, 28 and 32. Fig. 12 shows the plots of the average number of operations
(y-axis) versus n (x-axis) for 200 uniformly drawn random target sets of size n for
b ≤ 22, and 50 sets for b ≥ 28.

Again, in all cases Hcub outperforms all the other algorithms. For 12 bits, both
RAG-n and Hcub quickly converge to the optimal lower bound of n specified in
Theorem 4.4. For 16 bits more constants are needed to converge, and starting with
19 bits, we no longer see this behavior within the considered range of n. Note,
that this lower bound holds for n distinct odd constants (i.e., after right shifting),
however on average the randomly drawn constant set contains slightly less than n
unique odd constants after right shifting.

For 16 bits and more, Hcub performs clearly best, improving up to 20% over
RAG-n for 16 and 19 bits. Beyond that, RAG-n is not applicable anymore, and the
gap between Hcub and the next best algorithm (BHM) widens. For example, at 28
bits Hcub requires up to 26% less operations than BHM.

Comparison with RAG-n. To evaluate the performance improvement relative
to BHM and RAG-n, we generated 100 randomly distributed constant sets, com-
puted their MCM decompositions using RAG-n, BHM and Hcub, and then plotted
the ratio of the average A-operation counts of the solutions produced by Hcub and
BHM over those produced by RAG-n versus n (Fig. 13) and versus b (Fig. 14). In
the latter case, an optimal SCM decomposition was used for n = 1.

Fig. 13 fixes the bitwidth b = 12, 16, 19, and plots the ratio versus n, the number
of constants. The largest improvements of Hcub are observed for b = 19, with up to
20% lower operations counts than RAG-n at n = 80. BHM performs consistently
worse than RAG-n.

Fig. 14 fixes n = 1, 2, 10, 20, and plots the ratio versus b. Since, for n = 1

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Y. Voronenko and M. Püschel

20 40 60 80 100

20

40

60

80

100

120

140

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(a) b = 12

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(b) b = 16

20 40 60 80 100

50

100

150

200

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub
RAG−n

(c) b = 19

20 40 60 80 100

50

100

150

200

250

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub

(d) b = 22

20 40 60 80 100

50

100

150

200

250

300

350

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub

(e) b = 28

20 40 60 80 100

50

100

150

200

250

300

350

n (number of constants)

av
er

ag
e

nu
m

be
r

of
 a

dd
/s

ub
tr

ac
t o

pe
ra

tio
ns

BHM
Lefevre
Hcub

(f) b = 32

Fig. 12. Average number of A-operations (adds/subtracts) vs. number of constants n for a fixed
constant bitwidth b. Average is taken over 200 uniformly distributed random constant sets for
b ≤ 22, and over 50 sets for b ≥ 28.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 35

10 20 30 40 50 60 70 80 90 100

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

n (number of constants)

R
at

io
 o

ve
r

R
A

G
−

n

BHM (b=12)
BHM (n=16)
BHM (b=19)
Hcub (b=12)
Hcub (b=16)
Hcub (b=19)

Fig. 13. Ratio of the average number of A-operations in the solution produced by Hcub and BHM

over the average for RAG-n versus n for a fixed constant bitwidth b. The average is taken over
100 uniformly drawn random target sets.

6 8 10 12 14 16 18

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

b (constant bitwidth)

R
at

io
 o

ve
r

R
A

G
−

n
(n

 >
 1

)
or

 O
pt

im
al

 (
n=

1)

BHM (n=1)
BHM (n=2)
BHM (n=10)
BHM (n=20)
Hcub (n=1)
Hcub (n=2)
Hcub (n=10)
Hcub (n=20)

Fig. 14. Ratio of the average number of A-operations in the solution produced by Hcub and BHM
over the average for RAG-n versus b for a fixed constant set size n. The average is taken over 100
uniformly drawn random target sets.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Y. Voronenko and M. Püschel

10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

1.25

n (number of constants)

R
at

io
 o

ve
r

H
cu

b
w

ith
 d

is
ta

nc
e−

3
te

st
s

b=12
b=16
b=19
b=22
b=28
b=32

Fig. 15. Ratio of the average number of A-operations in the solution produced by Hcub with

distance-2 tests only over the average for Hcub with distance-3 and distance-2 tests versus n for
several fixed constant bitwidths b. The averages are taken over 100 uniformly drawn random
target sets.

an optimal decomposition is used, the ratio for n = 1 is always greater than 1.
Otherwise, the average improvement over RAG-n tends to increase with b, but the
ratio does not increase monotonically.

Effect of distance-3 tests. The runtime of Hcub can be reduced by removing
the exact distance-3 tests and using only the estimator based on the distance-2
topology (i.e., case 1 of Table IV). As discussed earlier, this reduces the asymptotic
runtime to O(n3b5).

Fig. 15 shows the ratio of average A-operation counts of the solutions produced
by our algorithm with distance-2 tests only over our original variant with distance-
2 and distance-3 tests. The averages were computed from 100 uniformly drawn
random target sets.

For a single constant (n = 1) Hcub with distance-2 produces solutions with 6% to
15% higher operation count. For b ≤ 19 the largest difference occurs at n = 1 and
decreases to eventually less than 3% for larger constant sets. For b ≥ 22, however,
the ratio initially rises and drops much slower. Since the average complexity of
constants goes up with b, the importance of more precise distance tests should
also increase, which is confirmed by the plot. Further the plot shows that for
increasing n, the difference between both tests eventually vanishes. The reason is
that, intuitively, as the number of constants is increased, the precise distance value
to a single target becomes less important, since the main objective is to optimize
jointly for all targets.

Runtime. In Table VIII, we give a few average runtime examples of Hcub for
one target set of varying size and bitwidth on a 3.4 GHz Pentium 4 EM64T Xeon

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 37

Table VIII. Average runtimes for Hcub in seconds. Average runtime for Hcub with distance-2 tests
only is given in parenthesis. The averages are taken over 100 experiments with random constant

sets. Values less than .01 are rounded to a single decimal digit.

b n = 1 n = 5 n = 10 n = 20 n = 50 n = 100

12 .002 (.0004) .003 (.002) .007 (.006) .012 (.012) .020 (.020) .063 (.063)
16 .002 (.001) .023 (.013) .060 (.038) .16 (.11) .64 (.60) 1.1 (1.0)
19 .007 (.002) .092 (.035) .29 (.14) .80 (.50) 3.6 (2.9) 13 (13)

22 .018 (.004) .28 (.071) 1.6 (.31) 3.9 (1.4) 16 (10) 60 (45)
28 .081 (.010) 1.9 (.20) 7.0 (1.0) 32 (6.0) 540 (60) 1800 (360)
32 .20 (.018) 4.2 (.35) 20 (1.8) 95 (11) 910 (150) 8500 (1040)

workstation.
The runtimes are averages of 100 experiments, where each experiment was per-

formed with a different random constant set. The runtimes show that the scope
of parameters that should be sufficient for most applications is handled efficiently
(even 8500 seconds, i.e., about 2.5 hours for 100 constants of bitwidth 32 would be
acceptable within a specialized hardware design for a digital filter).

Summary. In all performed experiments Hcub outperforms all other algorithms
in terms of the number of A-operations of the produced solutions. We achieve up
to 20% improvement over RAG-n, the previously best available algorithm, while
not being limited to 19 bit constants. The improvement comes at the expense of
an increased runtime.

Although not shown in this paper, we measured the standard deviation of the
number of add/subtract operations for different algorithms on uniformly drawn
random constant sets. Interestingly, the Hcub algorithm had the smallest stan-
dard deviation followed by RAG-n and BHM, and CSD had the highest standard
deviation.

7. CONCLUSIONS

The main contribution of this paper is a new MCM algorithm that achieves signifi-
cantly better results than previous methods as we demonstrated for the cases most
relevant in practice: bitwidth b ≤ 32 and n ≤ 100 constants. However, asymptoti-
cally the new algorithm produces solutions with no known better complexity than
O(nb) add/subtract operations, just like CSD and all the other algorithms.

The A-distance computation and estimation framework developed in this paper
should be useful for further research in this area. One direction could be to improve
the heuristic, which currently combines A-distances in a trivial way. Another direc-
tion would be to use our framework to optimize MCM blocks with respect to other
criteria such as critical path or to also minimize for the number of shifts required.

The big question that remains unanswered is the actual asymptotic worst-case
cost of SCM and MCM decompositions. However, the precise bounds remain un-
known even for the simpler problem of addition chains.

ACKNOWLEDGMENTS

The authors acknowledge the support of NSF, which funded this work through
awards 0234293, 0310941, and 0325687. Further the authors would like to thank

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Y. Voronenko and M. Püschel

one anonymous reviewer whose detailed comments helped to improve the quality
of the paper.

REFERENCES

Avizienis, A. 1961. Signed-digit number representation for fast parallel arithmetic. IRE Trans-

actions on Electronic Computers EC-10, 389–400.

Bernstein, R. L. 1986. Multiplication by integer constants. Software – Practice and Experi-

ence 16, 7, 641–652.

Bull, D. R. and Horrocks, D. H. 1991. Primitive operator digital filters. IEE Proceedings

G 138, 3, 401–412.

Cappello, P. R. and Steiglitz, K. 1984. Some complexity issues in digital signal processing.

IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-32, 5, 1037–1041.

Chen, Y.-J., Oraintara, S., Tran, T. D., Amaratunga, K., and Nguyen, T. Q. 2002. Multipli-
erless approximation of transforms with adder constraint. IEEE Signal Processing Letters 9, 11,

344–347.

Choo, H., Muhammad, K., and Roy, K. 2004. Complexity reduction of digital filters using shift

inclusive differential coefficients. IEEE Transactions on Signal Processing 52, 6, 1760–1772.

Coleman, J. O. 2001. Cascaded coefficient number systems lead to FIR filters of striking com-

putational efficiency. In Proc. International IEEE Conference in Electronics, Circuits, and
Systems.

Dempster, A. G., Demirsoy, S. S., and Kale, I. 2002. Designing multiplier blocks with low
logic depth. In Proc. IEEE International Symposium on Circuits and Systems. Vol. 5. 773–776.

Dempster, A. G. and Macleod, M. D. 1994. Constant integer multiplication using minimum
adders. IEE Proceedings - Circuits, Devices and Systems 141, 5, 407–413.

Dempster, A. G. and Macleod, M. D. 1995. Use of minimum-adder multiplier blocks in FIR
digital filters. IEEE Transactions in Circuits and Systems-II: Analog and Digital Signal Pro-
cessing 42, 9, 569–577.

Dempster, A. G. and Macleod, M. D. 2004. Using all signed-digit representations to design
single integer multipliers using subexpression elimination. In Proc. IEEE International Sym-
posium on Circuits and Systems.

Downey, P. J., Sethi, R., and Tarjan, R. E. 1980. Variations on the common subexpressions
problem. J. ACM 27, 4, 758–771.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman And Company, New York.

Gustafsson, O., Dempster, A. G., and Wanhammar, L. 2002. Extended results for minimum-
adder constant integer multipliers. In Proc. IEEE International Symposium on Circuits and

Systems.

Hartley, R. I. 1996. Subexpression sharing in filters using canonic signed digit multipliers.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 43, 10,
677–688.

Kang, H.-J., Kim, H., and Park, I.-C. 2001. FIR filter synthesis algorithms for minimizing the
delay and the number of adders. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing 48, 8, 770–777.

Knuth, D. 1969. The Art of Computer Programming: Seminumerical Algorithms. Vol. 2.
Addison-Wesley.

Lefèvre, V. 2001. Multiplication by an integer constant. Tech. rep., INRIA.

Lefèvre, V. 2003. Multiplication by an integer constant: Lower bounds on the code length. In
Proc. 5th Conference on Real Numbers and Computers.

Liang, J. and Tran, T. 2001. Fast multiplierless approximations of the DCT with the lifting
scheme. IEEE Transactions on Signal Processing 49, 12, 3032–3044.

Pasko, R., Schaumont, P., Derudder, V., Vernalde, S., and Durackova, D. 1999. A new
algorithm for elimination of common subexpressions. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18, 1, 58–68.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Multiplierless Multiple Constant Multiplication · 39

Püschel, M., Zelinski, A., and Hoe, J. C. 2004. Custom-optimized multiplierless implementa-
tions of DSP algorithms. In Proc. Int’l Conf. Computer Aided Design (ICCAD). 175–182.

Spiral website. http://www.spiral.net.

Tummeltshammer, P., Hoe, J. C., and Püschel, M. 2004. Multiple constant multiplication

by time-multiplexed mapping of addition chains. In Proc. Design Automation Conference.
826–829.

Wu, H. and Hasan, M. A. 1999. Closed-form expression for the average weight of signed-digit
representations. IEEE Transactions on Computers 48, 848–851.

Received Month 2005; revised Month 2005; accepted Month 2005

ACM Journal Name, Vol. V, No. N, Month 20YY.

