
Demonstrating the Viability of Automatically Generated
User Interfaces

Jeffrey Nichols*
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

jwnichols@us.ibm.com

Duen Horng Chau, Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

{dchau, bam}@cs.cmu.edu

ABSTRACT
We conducted a user study that demonstrates that automati-
cally generated interfaces can support better usability
through increased flexibility in two dimensions. First, we
show that automatic generation can improve usability by
moving interfaces that are constrained by cost and poor
interaction primitives to another device with better interac-
tive capabilities: subjects were twice as fast and four times
as successful at completing tasks with automatically gener-
ated interfaces on a PocketPC device as with the actual ap-
pliance interfaces. Second, we show that an automatic
generator can improve usability by automatically ensuring
that new interfaces are generated to be consistent with us-
ers’ previous experience: subjects were also twice as fast
using interfaces consistent with their experiences as com-
pared to normally generated interfaces. These two results
demonstrate that automatic interface generation is now vi-
able and especially desirable where users will benefit from
individualized interfaces or where human designers are
constrained by cost and other factors.

Author Keywords
Automatic interface generation, handheld computers, per-
sonal digital assistants, mobile phone, personal universal
controller (PUC), consistency, Pebbles

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User interfaces –
automatic generation. H.5.2. User Interfaces: Graphical
user interfaces (GUIs).

INTRODUCTION
Researchers have been producing systems for automatically
generating user interfaces for more than two decades. Two

initial motivations for previous work were to better separate
the user interface component from the input/output layer
and to help programmers without any design training pro-
duce high-quality user interfaces. With the development of
better interface abstractions and the increased availability of
trained interface designers, these techniques for automati-
cally generating interfaces were generally not adopted [7].

Recently, however, research into automatic generation has
experienced a renaissance with several new systems offer-
ing improved generation algorithms and new user customi-
zation features. This work is motivated in several ways:

• The increasing diversity of computing devices provid-
ing a user interface, from handheld computers and tab-
let PCs to mobile phones and wristwatches, requires
multiple user interfaces to be constructed for each ap-
plication. Automatic generation can allow applications
to be quickly ported to different platforms [2, 6, 8].*

• For certain devices, especially office appliances and
consumer electronics, it is economical for manufactur-
ers to include many complex functions but expensive to
provide a high-quality user interface [1]. One solution
is to automatically generate the appliance interface on
another device, such as a handheld computer or mobile
phone, which can provide a higher quality user inter-
face for all of the appliance’s complex functions [8].

• There are many users with different backgrounds,
goals, and capabilities using today’s user interfaces,
and each may benefit if his or her interfaces are specifi-
cally designed to take individual needs into account [2-
4, 10]. It is impractical for human designers to create a
different interface for each individual user, but an
automatic interface generator can easily do this. For ex-
ample, users with tremor could benefit from interfaces
designed to support their particular type of tremor [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

In order for new work in automatic generation to be
adopted, it will need to improve on interfaces that are cur-

* This work was conducted while the first author was affiliated with the
Human Computer Interaction Institute at Carnegie Mellon University.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1283

rently available today without increasing the development
and manufacturing costs of products that might use these
technologies. In particular, the cost of writing the abstract
specification used to automatically generate an interface
must not exceed the cost of manually designing and imple-
menting an interface using today’s technology.

In this paper, we present a user study that examines the
usability of interfaces automatically generated by the Per-
sonal Universal Controller (PUC) system [8] (see Figure 1).
We show that the PUC is able to produce interfaces supe-
rior to those available today at approximately the same cost
by moving the interface from the appliance to a handheld
device that users are already carrying. The results show that
users of the PUC interfaces presented on a PocketPC device
were twice as fast and four times more successful than users
of the existing interfaces for a set of eight independent tasks
of varying difficulty.

We also investigate the capability of automatically gener-
ated interfaces to provide benefits beyond what is practical
for human designers to do. Specifically, we show that an
automatically generated interface can be easier to learn if it
is generated to be consistent with users’ previous experi-
ences. This functionality is supported by the PUC’s Uni-
form layer [10]. To analyze this, after the subjects tried to
perform the eight tasks using one interface, we trained them
on the best way to do those tasks using that interface. Then
we asked them to perform the same tasks on a different
interface that provided similar functionality. We found that
users were twice as fast when the second interface is gener-
ated by Uniform to be consistent with the first interface, as
compared to when the second interface is generated with
the normal PUC system with Uniform’s features disabled.

Our study compares interfaces for two different all-in-one
printer appliances. We focus on appliance interfaces be-

cause the PUC system is designed specifically for moving
the interfaces from computerized appliances to a handheld
device, such as a PDA or mobile phone. The two all-in-one
printers we used are a Hewlett-Packard (HP) Photosmart
2610 with a high-quality interface including a color LCD,
and a Canon PIXMA MP780 with a few more features and
an interface that turned out to be harder to learn than the
HP. These two represented the top-of-the-line consumer
models from these manufacturers and the most complex all-
in-one printers available for home use at the time of their
purchase. We chose the all-in-one printers as our appliances
in the study for several reasons:

• Complex appliances are typically more difficult to use
than trivial ones and we wanted to test the PUC with
appliances that would be challenging for its generation
algorithms. We found that all-in-one printers were at
least as complicated, if not more so, than many of the
other appliance types that we have explored (containing
85 variables and commands for the HP and 134 for the
Canon). The two we chose have several different main
functions, including copying, faxing, scanning, and
photo manipulation, that all must be represented in the
user interface. They also have many special configura-
tion options for each of the main functions, which make
the initial setup process difficult and time-consuming.

• Two simple copier interfaces were used previously to
demonstrate the features of Uniform [10], and we
wanted to test Uniform with more realistic appliances
with similar functionality.

• Although it was not possible for the PUC to actually
control the all-in-one printers, simulating this control
was easy to achieve by configuring a computer to print
documents on the printers with the correct appearance
based on the task the user was currently performing.

a. HP printer

without consistency
b. Canon printer

without consistency
 c. HP printer consistent

with Canon printer
d. Canon printer consistent

with HP printer

Figure 1. PocketPC interfaces generated by the Personal Universal Controller (PUC) for the two all-in-one printers discussed in this paper.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1284

This resulted in a realistic setting for users of the PUC
interfaces, which allows for better comparisons of the
PUC interfaces with the actual appliance interfaces.

The existing manufacturers’ interfaces from both printers
were used for the comparisons conducted in the studies.
The generated interfaces produced by the PUC system were
presented on a Microsoft PocketPC device (see Figure 1).

This study represents the first quantitative evaluation of the
PUC with real users. Previously, we have evaluated the
completeness of the implementation of the PUC [8, 10]. We
have also performed user studies of appliance interfaces on
handheld devices, but these interfaces were not created
automatically [11].

RELATED WORK
Research in interface generation has a long history dating
back to some of the earliest User Interface Management
Systems (UIMSs) developed in the mid-80’s, such as
COUSIN [5]. This work led to creation of systems in the
late 80’s and early 90’s, such as UIDE [17], ITS [20], Jade
[19], and Humanoid [18], which required designers to spec-
ify models of their applications. The automatically gener-
ated interfaces could generally be modified by a trained
interface designer to produce a final user interface. These
interfaces were sometimes called model-based user inter-
faces because of the models underlying their creation.

These early model-based systems had several drawbacks.
Most notably, creating the models needed for generating an
interface was a very abstract and time-consuming process.
The modeling languages had a steep learning curve and
often the time needed to create the models exceeded the
time needed to program a user interface by hand. Finally,
automatic generation of the user interface was a very diffi-
cult task and often resulted in low quality interfaces [7].
Most systems moved to designer-guided processes rather
than continue using a fully automatic approach.

Two motivations suggested that continued research into
model-based approaches might be beneficial:

Very large scale user interfaces assembled with existing
techniques are difficult to implement and later modify, and
detailed models of the user interface can help organize and
partially automate the implementation process. The models
can then be used to help designers re-visit the interface and
make modifications for future versions. Mobi-D [15] and
TERESA [6] are two notable approaches in this area.

A recent need for device-independent interfaces has also
motivated new research in model-based user interfaces and
specifically on fully automated generation. Work in this
area has also begun to explore applications of automatic
generation to create interfaces that would not be practical
through other approaches. For example, the PUC’s Uniform
layer [10] generates interfaces that are personally consistent
with each user’s previous experience.

Three relevant automatic generation systems are Xweb
[13], ICrafter [14], and the Ubiquitous Interactor [12].
Xweb enables users to interact with services through auto-
matically generated interfaces in several modalities and
client styles, including speech, desktop computers, and pen-
based wall displays. ICrafter is designed to distribute inter-
faces for controlling services to any interactive device that
wishes to display those interfaces. ICrafter’s innovation is
its ability to aggregate the user interfaces for multiple ser-
vices together based on a set of programming interfaces
which identify services that can be used together. The
Ubiquitous Interactor also generates interfaces for services,
but provides service provider’s with the unique ability to
supply hints about how the generated interface should ap-
pear and include brand marks and interactions.

Most automatic interface generation systems, including the
PUC, use a rule-based approach to create user interfaces.
SUPPLE [2] instead uses a numeric optimization algorithm
to find the optimal choice and arrangement of controls
based on a cost function. The developers of SUPPLE have
experimented with including a number of different factors
in this cost function. Common factors to all are the cost of
navigation between any two controls and the cost of using a
particular control for a function. Additional costs have been
included based on the common tasks that a user performs
[2], consistency between interfaces for the same application
generated on different platforms [3], and the physical abili-
ties of the user (for assistive technology) [4].

All of these systems automatically generate interfaces, but
to our knowledge no user studies have been conducted to
evaluate the resulting interfaces. The closest reported study
is of SUPPLE [2], which asked subjects without any design
training to produce interfaces for a presentation room con-
trol panel. The developers then showed that SUPPLE could
generate similar versions of each interface by varying the
task information provided to the interface generator. The
interface used in this study had only a few simple functions
however, and users’ performance on the SUPPLE interfaces
was not measured or compared with any other interfaces.

BACKGROUND: THE PUC SYSTEM
The PUC system generates interfaces from specifications of
appliance functionality using a rule-based approach [8]. In
the system, handheld devices and appliances communicate
over wireless networks using a peer-to-peer approach.
When the user wishes to control an appliance, her handheld
device connects to the appliance, downloads a functional
specification from that appliance, and then generates an
interface. The user can then use that interface to both re-
motely control the appliance and receive feedback on the
appliance’s state. Currently, graphical interface generators
using the PUC framework have been implemented for the
PocketPC, Microsoft’s Smartphone platform, and desktop
computers. A speech interface generator was also imple-
mented using Universal Speech Interface techniques [16].
The PUC specification language is designed to be easy-to-

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1285

use, concise, and contain the information most important
for generating user interfaces.

The PUC system is able to control real appliances, and
adapters have been created to connect the PUC to an Audio-
phase stereo, a Sony camcorder, a UPnP camera, and sev-
eral lighting systems. To test the completeness of the PUC
appliance specification language, specifications have been
written for many other appliances that could not be con-
trolled directly. Over 30 different specifications have been
written for appliances as diverse as VCRs, desktop applica-
tions like PowerPoint, a car navigation system, and an ele-
vator. Simulators have been built for some of the appliances
that could not be directly controlled, and a generic simula-
tor has been built which enables Wizard-of-Oz-style simu-
lation for the remaining specifications.

Recently, the PUC system has been augmented with a new
feature called Uniform [10]. Uniform adds additional rules
to the PUC that ensure personal consistency, which means
that new interfaces are generated to be consistent with inter-
faces the user has seen in the past. While these algorithms
ensure consistency, they also preserve the usability of any
unique functions of the new appliance. This choice may
affect the consistency of the generated interface in some
cases, such as when the new appliance has a similar func-
tion that is more complex than the previous appliance. In
this case, the complex functionality will be preserved, but
the function may be moved, within the interface’s structure,
to a location similar to the previous appliance. The com-
pleteness of Uniform was tested qualitatively with two
copiers and several complex VCRs, but the study reported
here is the first to evaluate Uniform’s effectiveness.

USER STUDY OF AUTOMATIC GENERATION
We start with a description of the interfaces and the proce-
dure used in the study, followed by a presentation of the
results and some discussion.

Interfaces
Six different interfaces were used in the study, which in-
cludes three different types for each of the two printers:

• Built-in interfaces on the two existing all-in-one print-
ers (see Figure 2).

• PUC interfaces generated normally, i.e. without consis-
tency, for the two printers (see Figure 1a-b).

• Uniform interfaces generated for one printer by the
PUC’s Uniform layer to be consistent with a PUC inter-
face for the other printer (see Figure 1c-d).

PUC specifications for both all-in-one printers were needed
by the PUC and Uniform to generate interfaces. The first
author wrote the initial specification for the Canon printer
and the second author wrote the initial specification for the
HP printer. Different writers were used for the two specifi-
cations so that they would contain similarities and differ-
ences that might be found in a realistic scenario where the
specifications were written by different manufacturers.

Both authors are experienced with writing specifications,
and the initial drafts were produced in 2-3 days. The speci-
fications were written using an approach that we would
expect actual specification writers to take. We were gener-
ally faithful to the design of the actual appliances, and fol-
lowed the structure and naming used in the manufacturers’
manuals. We also took advantage of the features of the
PUC specification language. For example, the language
allows for multiple labels for each function and we added
extra labels with further detail where appropriate. The PUC
language also calls for authors to include as much organiza-
tional detail as possible in order to support generation on
devices with small screens, and we followed this guideline.
Debugging the specifications, such as ensuring that every
variable had at least one label, took another 2-3 days. Note
that this testing is similar to debugging a program or itera-

a. HP Photosmart 2610 b. Canon PIXMA MP780

Figure 2. The all-in-one printers used in our studies, with a larger view of the built-in user interfaces.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1286

tively testing a user interface, but the advantage of the PUC
system is that these improvements are only needed once
and will migrate properly to interfaces generated on any
platform.

An important point is that both specifications included all
of the features of their appliances, even the features not
tested. Therefore, the resulting generated user interfaces are
complete in that they represent all of the features that could
be accessed from the appliance’s own user interfaces. The
specification for the HP consists of 1924 lines of XML con-
taining 85 variables and commands, and the specification
for the Canon is 2949 lines of XML containing 134 vari-
ables and commands.

The PUC’s Uniform layer also needs information about the
similarities between specifications [10]. An automatic sys-
tem was used to generate an initial set of mappings between
the two all-in-one printer specifications. The first author
then revised the resulting mappings to produce the complete
set used in our study.

Protocol
Our protocol has three steps. Subjects first perform a block
of eight tasks using an interface for one of the printers
without any assistance. Next the subjects are taught the
quickest way to perform the same tasks using the same in-
terface and are not allowed to continue until they can com-
plete every task correctly. Finally, subjects perform another
block of the same eight tasks using an interface for the
other printer, again without any assistance. This design al-
lows us to measure performance without any previous ex-
perience (the first block of tasks) and to compare the effect
on performance of any knowledge transfer from the first
interface to the second. The instruction period between the
task blocks simulates expertise on the first interface, as if
the users were very familiar with that appliance, to maxi-
mize the effects of knowledge transfer.

Before starting each task, subjects were seated such that
they were facing away from the interface. First, the subject
was given the instructions for that task and allowed to read
them. Once they were comfortable with the instructions
they were allowed to turn around and begin the task. Time
was recorded from the moment the subject turned around to
the moment the final step of the task was completed. Sub-
jects were allotted a maximum of 5 minutes to perform each
task and were not allowed to move on until they succeeded
or the maximum time had passed. We chose 5 minutes
based on our pilot studies, which suggested that most sub-
jects would finish within that window or else would never
succeed.

We manipulated the order in which subjects saw the print-
ers and the particular interfaces that they saw. Three differ-
ent configurations of interface type were used:

• Built-in: One built-in interface followed by the other
built-in interface (e.g. HP built-in followed by Canon
built-in or vice versa).

• AutoGen: PUC interface for one appliance followed by
the PUC interface for the other (e.g., HP PUC followed
by Canon PUC or vice versa).

• Consistent AutoGen: PUC interface for one appliance
followed by the Uniform interface for the other appli-
ance generated to be consistent with the first interface
(e.g., HP PUC followed by Canon Uniform generated
to be consistent with HP PUC).

The Consistent AutoGen configuration is designed to fulfill
the assumption of the Uniform’s consistency algorithms,
which is that users will be able to transfer knowledge when
they encounter a new device because they are familiar with
a previous interface.

These three configurations allow us to test both usability
and consistency. Usability is tested by comparing the Built-
in configuration with the other two. Consistency is tested by
comparing the AutoGen and Consistent AutoGen configu-
rations. All configurations were tested with both of the pos-
sible orderings (HP followed by Canon and vice versa), and
subjects were appropriately counter-balanced into each of
the resulting six groups.

Tasks
We chose eight tasks for subjects to perform during the
study. The tasks were chosen to be realistic for an all-in-one
printer, cover a wide range of difficulties, and be as inde-
pendent from each other as possible (so success or failure
on one task would not affect subsequent tasks). The last
point was especially important, because we wanted to
minimize the possibility that a subject might notice an ele-
ment used in a future task while working on an earlier task.
We also tried to minimize this effect by presenting the next
task description only after subjects had completed their
previous task. This does not prevent subjects working on
their second block from remembering the tasks from the
first block and the instructional phase.

The tasks we used, in the order they were always presented
to subjects, are listed below. We chose not to vary the order
of tasks for each subject so that whatever learning effects
might exist between the tasks, despite our best efforts to
eliminate such effects, would be the same for each subject.
The task wording is paraphrased for brevity:

1. Send a fax to the number stored in the third speed dial.

2. Configure the fax function so that it will always redial
a number that is busy.

3. Configure the fax function so that any document re-
ceived that is larger than the default paper size will be
resized to fit the default.

4. Configure the fax function so that it will only print out
an error report when it has a problem receiving a fax,
and not when it has a problem sending.

5. Make two black-and-white copies of the document that
has already been placed on the document scanner.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1287

6. Imagine you find the copies too dark. Improve this by
changing one setting of the device.

7. Given a page with one picture, produce one page with
several instances of the same picture repeated.

8. The device remembers the current date and time. De-
termine where in the interface these values can be
changed (but changing them is not required).

We were careful not to use language that favored any of the
user interfaces being tested. In some cases this was easy
because all interfaces used the same terminology. In other
cases we used words that did not appear in any of the inter-
faces. We also used example documents, rather than lan-
guage, to demonstrate the goal of task 7.

Participants
Forty-eight subjects, twenty-eight male and twenty female,
volunteered for the study through a centralized sign-up web
page managed by our organization. Most subjects were stu-
dents at the local universities and had an average age of 25
and a median age of 23. We also had 3 subjects older than
40 years. Subjects were paid $15 for their time, which var-
ied from about 40 minutes to 1.5 hours depending on the
configuration of interfaces being used. Subjects were ran-
domly assigned to conditions.

Evaluation
To evaluate the performance time data, we performed a
Mixed Model analysis using log(time) as the dependent
variable. The log of time was used to make the distribution
of our time data more normal for analysis. Interface Type
(Built-in, PUC, or Uniform), Appliance (HP or Canon),
Block # (1-2), and Task # (1-8) were modeled as fixed ef-
fects, and Subject # was modeled as a random effect. No
interactions were included in the model reported here,
though we tried models with all combinations of two degree
interactions and found none of them to be significant.

Our analysis showed that all of the fixed effects had a sig-
nificant effect on performance time. Most interesting is the
effect of Interface Type (F1,99 = 49.46, p < 0.001). A Tukey
HSD post-hoc test found each of the interface types to be
significantly different from the others: PUC was faster than
Built-In (t(49) = 7.95, p < 0.001), Uniform was faster than
Built-In (t(89) = 9.65, p < 0.001), and Uniform was faster
than PUC (t(581) = 3.86, p < 0.001). Least squares means
for performance on each were (converted from log space;
all units are seconds): Mbuilt-in = 64.48, Mpuc = 27.48, Muniform
= 18.31.

Task also had a significant effect on performance time
(F1,709 = 77.65, p < 0.001). A Tukey HSD post-hoc test
identified 4 overlapping groups of tasks for which users had
significantly different performance. The most difficult
group contained tasks 1, 2, 3, and 7, and the next slightly
less difficult group contains tasks 1, 2, 3, and 4. This indi-
cates that task 7 was more difficult than task 4 (t(709) =
3.58, p < 0.001), with tasks 1, 2, 3 somewhere between the

two. The third group contains tasks 6 and 8, and was sig-
nificantly less difficult than the previous two groups (t(709)
= 17.74, p < 0.001). The fourth, least difficult, group con-
tains only task 5, which was found to be significantly easier
than all of the other tasks (t(709) = 14.61, p < 0.001).

Appliance also had a significant effect on performance time
(F1,709 = 50.62, p < 0.001), with the Canon appliance being
more difficult than the HP appliance. This is consistent with
our experiences with the printers and our observations of
the subjects. The effect of Block was also significant (F1,756
= 21.21, p < 0.001). This indicates that subjects’ speed in-
creased over the course of the experiment as they became
more familiar with the tasks or the general concept of an
all-in-one printer.

An important goal of our design was to limit task failures to
between 5-10%, which guided our choice of 5 minutes as
the maximum task time. Over all 768 tasks performed by
our subjects, 57 failures occurred giving a 7.5% failure rate,
which is within our goal range.

To evaluate task failures, we performed a Mixed Model
analysis with failures per block as the dependent variable.
Unlike the model for performance time where task # was an
independent variable, for this model failures across all eight
tasks were aggregated because the total number of failures
was very small. In this analysis, Interface Type, Appliance,
and Block # were included as fixed effects and Subject # as
a random effect. The interaction of Interface Type with
Appliance was also found to be significant and therefore
was also included in the model as a fixed effect. No other
interactions were found to be significant, and thus were not
included in the model reported here. All averages stated as
part of this analysis are least squares means.

The analysis found all of the fixed effects to be significant.
Significantly more failures occurred in Block #1 (F1,49.73 =
4.21, p < 0.05), with an average of 0.79 failures per block
across all tasks in Block #1 as compared to an average of
0.42 failures per block across all tasks in Block #2. There
were also significantly more failures with the Canon printer
as compared to the HP (F1,55.53 = 11.58, p < 0.002), with an
average of 0.92 failures per block for the Canon as com-
pared to an average of 0.29 failures per block for the HP.

The interaction of Interface Type and Appliance was also
significant (F1,62.04 = 4.29, p < 0.02), seemingly because
there were significantly more failures with the Built-In
Canon interface as compared to any of the others (as shown
by a Tukey HSD post-hoc test, t(85.17) = 5.86, p < 0.001).
There were an average of 1.94 failures per block using the
Built-In Canon interface as compared to 0.63 average fail-
ures per block for the Built-In HP interface and even less
for the other interface and appliance combinations.

There was also a significant difference in failures due to
Interface Type (F1,65.97 = 7.53, p < 0.002). A Tukey HSD
post-hoc test showed that there was a significant difference
(t(50.75) = 3.69, p < 0.001) between the Built-In interfaces

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1288

Figure 3. Results of the first block of tasks, showing the Built-In configuration compared with the other two for each appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total

Time HP Built-In 02:16 02:12 02:02 00:51 00:23 00:53 02:31 02:04 13:12
 PUC 01:49 00:18 00:40 00:39 00:22 00:35 01:18 00:13 05:54
 Canon Built-In 04:08 03:23 03:38 03:48 00:30 00:56 02:28 01:42 20:33
 PUC 01:12 02:34 02:15 01:17 00:12 00:16 01:13 00:34 09:32

Failures HP Built-In 2 2 2 0 0 1 1 1 9
 PUC 2 0 0 0 0 0 0 0 2
 Canon Built-In 3 3 5 3 0 0 1 1 16
 PUC 0 5 2 1 0 0 1 1 10

Table 1. Average completion time and total failure data for the first block of tasks. The PUC rows combine data from both the AutoGen and Con-
sistent AutoGen interface configurations. N = 8 for Built-In and N = 16 for PUC.

Figure 4. Results of the second block of tasks, showing the AutoGen configuration compared to the Consistent AutoGen configuration for each

appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total

Time HP AutoGen 00:29 00:43 00:50 00:29 00:08 00:22 01:45 00:08 04:54
 Consistent 00:20 00:17 00:20 00:25 00:07 00:04 00:30 00:07 02:10
 Built-In 01:38 01:23 00:37 00:39 00:18 00:16 03:19 00:45 08:55
 Canon AutoGen 00:28 02:54 01:33 00:44 00:09 00:23 01:25 00:09 07:45
 Consistent 00:38 00:12 00:22 01:03 00:05 00:08 01:05 00:06 03:39
 Built-In 03:15 02:24 02:42 02:14 00:11 01:42 02:42 00:35 15:44

Failures HP AutoGen 0 0 0 0 0 0 0 0 0
 Consistent 0 0 0 0 0 0 0 0 0
 Built-In 0 0 0 0 0 0 1 0 1
 Canon AutoGen 0 2 1 0 0 0 0 0 3
 Consistent 0 0 0 0 0 0 1 0 1
 Built-In 4 2 3 2 0 2 2 0 15

Table 2. Average completion time and total failure data for the second block of tasks. N = 8 for all three interface configurations.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1289

and the others, but there was no significant difference be-
tween the PUC and Uniform interfaces (t(67.26) = 0.223, p
= 0.82). There was an average of 1.28 failures per block
with the Built-In interfaces as compared to less than 0.3
failures per block for the other two interface types.

Figure 3 shows the performance times for the first block of
tasks. Because the same interfaces were used in the first
block of both the AutoGen and Consistent AutoGen inter-
face configurations, the results of these two configurations
have been combined into the PUC category. Table 1 shows
the same performance times, along with the total number of
failures that occurred in the first block of tasks. This figure
and table should be used primarily to evaluate the usability
of the PUC system.

Figure 4 shows the performance times for the second block
of tasks for the AutoGen and Consistent AutoGen interface
configurations. Table 2 shows the performance times and
failures for the second block of tasks for all three interface
configurations. This figure and table should be used primar-
ily to evaluate the effect of consistency between each of the
different interfaces.

Discussion of Usability
The results show that users perform faster using the PUC
and Uniform interfaces as compared to the printers’ built-in
interfaces. The benefits seem to apply across all of the tasks
(see Figure 3), though the extent of the benefit varies de-
pending on the task and the appliance. There does not ap-
pear to be a trend with respect to task difficulty. Tasks 1-4
and 7 were found to be the most difficult in the analysis, but
the performance improvement does not seem to be different
overall for these tasks than for the other easier tasks.

Task 2 had the most failures by users of the PUC interfaces
by a wide margin, and all of these failures occurred on the
Canon interface. We believe task 2 was particularly hard
because the Canon printer has many configuration features
for sending and receiving faxes, which are complex, over-
lap, and use language that is difficult to understand. These
functions were difficult to represent cleanly in the PUC
specification language, which may have carried their com-
plexity through to the generated interfaces.

This study, at least for the first block of tasks, compares the
performance of novice users. There is then a question of
whether the PUC would be equally successful for expert
users. As users become experts, they are less likely to make
mistakes, which would probably benefit the harder-to-use
Built-In appliance interfaces more than the PUC interfaces.
However, fewer steps are required to navigate to and use
most functions in the PUC interfaces so there is less for
users to learn. Furthermore, the PUC interfaces provide
more visual context for the user’s current location in the
interface. We believe that these features would allow users
to become experts with the PUC interface faster than the
Built-In interfaces. Unfortunately, this cannot be deter-
mined from the data collected in this study.

Discussion of Consistency
The results show that users perform faster using the Uni-
form interfaces as compared to the PUC interfaces. Much of
the benefit from consistency for both appliances seems to
be due to four tasks: 2, 3, 6, and 7. This was expected, be-
cause the normal PUC interfaces for these appliances were
already consistent for tasks 1 and 8, and thus did not benefit
from any change in the consistent interfaces. We had hoped
to see consistency effects for the remaining tasks, but other
factors seem to have affected tasks 4 and 5.

The difference between the two PUC printer interfaces for
task 5 (copying) involves the placement of the copy and
cancel buttons on the screen (see Figure 1). Uniform was
able to change its interfaces to make the button placements
consistent with the previous interface that the subject had
seen. Despite the change, there was not an appreciable de-
crease in task time. Because the buttons were prominent in
both the PUC and Uniform interfaces, it may be that the
visual search was so quick for subjects to perform that little
performance benefit was gained from remembering the pre-
vious location of the button.

Uniform was able to make one change to ensure consis-
tency for task 4 (changing the fax error printing). The func-
tion needed for this task is located with other fax
configuration functions that appear in different places on
the two printers: in the fax mode on the HP and in the setup
section of the Canon interface. The change for consistency
performed by Uniform is to move all the configuration
functions to the location where the user originally saw
them. From observations of subjects’ actions, it appeared
that this manipulation worked in the studies. Unfortunately,
the error reporting function was also different between the
two appliances in a way that Uniform could not manipulate.
When using the HP interface made to be consistent with the
Canon interface, users needed time to understand how the
functions were different before they could make the correct
change. When using the Canon interface consistent with the
HP interface, the interface generator made the unfortunate
choice of placing the needed functions in a dialog box ac-
cessible by pressing a button. The button to open the dialog
was placed next to several other buttons, which distracted
subjects from the button they needed to find.

It is important to note that there are no situations where the
PUC’s consistency algorithms make the interface worse for
users, even for task 4 on the Canon interface generated to
be consistent with the HP. Uniform is able to provide bene-
fits when there are similarities between the appliances and
it does not hurt the user when there are differences.

A question to ask is whether the apparent benefits of consis-
tency could be due to some other factor in the generation
process. We do not believe this is likely, because the rules
added by Uniform only make changes to the new interface
based on differences with a previous interface. These rules
do not perform other modifications that might improve the
user interface independent of consistency.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1290

GENERAL DISCUSSION
This study has shown that the PUC can improve usability
by moving appliance interfaces to another platform with
improved interaction primitives. Using automatic genera-
tion to create appliance interfaces offers flexibility in the
design of the interface, which allows interfaces to be modi-
fied for each particular user. The consistency feature that
we studied here is one example, and our study showed that
consistency can be beneficial to users.

An important question is: what allows the PUC to generate
interfaces that are better than the built-in interfaces on the
appliances? In part, the PUC benefits from moving inter-
faces to a device with better interactive capabilities, but the
PUC also uses good HCI practice in its generation, which
avoids some problems often seen in appliance interfaces.
First, all buttons, sliders, etc. presented in PUC interfaces
are used for only one function. In contrast, most appliances
overlap multiple functions on their buttons. For example,
both printer interfaces provide a number of multi-purpose
buttons, including directional pads, ok buttons, and number
pads (see Figure 2), whose behavior changes depending
upon the function selected through the printer’s menu. This
was a particular problem for the built-in Canon interface,
which has many modes where certain buttons cannot be
used and for which there is no feedback. Users must ex-
periment to determine which buttons can be pressed in
which situations. The PUC provides feedback by graying-
out controls that are not currently available.

An important issue with this study is the fairness of the
comparison for usability. Why not instead compare the
automatically generated interfaces with hand-designed ap-
pliance interfaces provided on a similar PDA? After all,
some portion of the usability improvement enjoyed by the
PUC interfaces is likely due to the improved interaction
primitives and larger screen afforded by the PocketPC de-
vice on which the interfaces were shown. While we could
do this comparison, it would not be realistically addressing
the limitations faced by today’s consumer electronics
manufacturers. Costs from both development and manufac-
turing must be heavily minimized in that industry in order
to produce profitable products, and it is simply not eco-
nomical to include the user interface hardware from a PDA
on every appliance or to hire a team of usability experts to
spend months carefully designing an interface [1].

How then does the PUC address these limitations? First of
all, it makes use of a device that users already have or are
likely to get in the near future: a mobile phone or PDA. In
the PUC model, this device would be used across all appli-
ances, so it is reasonable to expect that consumers might be
willing to spend a little more on their device to have a better
experience with all of their appliances. With the increasing
popularity of high-performance smart phones, such as the
Apple iPhone, many more people will be carrying devices
capable of PUC-like features. Second, the cost of adding
PUC functionality to an appliance is relatively small in both

development and manufacturing and might be offset by
reducing the existing interface on the appliance.

The main development cost is in writing a specification for
the appliance. A design goal of the PUC specification lan-
guage was conciseness and ease-of-use. As discussed ear-
lier, the specifications used in this paper were each written
in 2-3 days by experienced authors starting with no knowl-
edge of the appliance. Appliance developers may not be
experienced specification authors, but they will be experi-
enced with the appliance. In previous work, we have shown
that the language is easy to learn: subjects with no knowl-
edge of the language were able to learn it in about 1.5 hours
and produce a medium-sized specification in about 6 hours
[10]. Manufacturers can also benefit if they have already
written a functional specification of their appliance for in-
ternal purposes, which is quite common. Although this
specification would not be in the same format and might not
have all of the same details as a PUC specification, it would
provide a good starting point. Overall, we estimate that a
new manufacturer might require two weeks to write and
debug a new specification (twice the amount of time it took
us), which is likely to be substantially faster than designing,
implementing and testing a new graphical interface.

If it is necessary to add a wireless radio transceiver to sup-
port Bluetooth or another wireless network, then manufac-
turing costs for each appliance could slightly increase with
the PUC technology. There might also be an additional cost
for a more powerful microcontroller, but we believe that the
processing power already in most appliances should be able
to manage the PUC communication protocol in addition to
the appliance’s main function. It is important to note that
these extra costs could be compensated for by removing
some elements from the existing appliance interface. For
example, a manufacturer might remove the buttons for
some complex functions in favor of only offering these
through a PUC interface. If the PUC became more wide-
spread, it might be possible to eliminate most of the on-
appliance interface and also any remote control that might
ship with the appliance.

The question remains whether manufacturers would be
willing to adopt a technology like the PUC. Although us-
ability is becoming more of a marketing point, it is still not
clear that consumers value it over price except in a few in-
stances (e.g. the iPod). We believe usability is a growing
desire among consumers however, which may lead manu-
facturers towards this kind of technology in the future.

Another reason to adopt technology like the PUC could be
for its other benefits, such as improved flexibility for the
user interface. Consistency is one such benefit, though users
may be more in favor of it than manufacturers. In particular,
manufacturers may object to consistency because branding
may be removed from interfaces, and, worse still, branding
from a competitor may be added in its place. Our position is
that branding which affects the usability of an appliance,
such as custom labels for certain functions or particular sets

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1291

of steps needed to complete particular tasks, is not good for
the user and the consistency system should be allowed to
modify them. However, branding marks, such as company
names, logos, etc., should be preserved appropriately. Sup-
port for branding marks and consistency of those marks is a
feature that may be added to the PUC system in the future.

The study presented here does have some limitations. We
used only one type of appliance, the all-in-one printer, and
only tested two instances of this type. As discussed earlier,
we believe that the printers we chose are representative of
most complex appliances. They also required the use of
many of the PUC specification language’s advanced fea-
tures, such as lists and Smart Templates [9]. Although we
only used two printers, we carefully chose both to be com-
plex and representative of different common interface
styles. We also chose the HP in part because it had, in our
estimation, a better interface than most other all-in-one
printers.

The results of our study show that the PUC can generate
usable printer interfaces, but what about for other kinds of
user interfaces? It would probably be beneficial to have
features, like personal consistency, built into all of our user
interfaces. Currently, the PUC cannot generate interfaces
that use direct manipulation, such as a painting application,
and the PUC may have difficulty generating interfaces for
large amounts of structured data, such as a calendaring sys-
tem. It might also be possible for the PUC’s consistency
algorithms to be applied in other systems. Others [2] have
automatically generated interfaces for ubiquitous comput-
ing applications, and it might be possible for Uniform to be
integrated into these systems. It might also be possible to
apply Uniform to hand-designed interfaces, provided that a
model of the interface was available to guide the interface
modifications. Developing systems that automatically mod-
ify user interfaces is a promising direction for future work.

CONCLUSION
The results of the study in this paper show that the PUC can
automatically generate interfaces which are more usable
and provide personal consistency. This suggests two impli-
cations for future user interface design and research. For
design, it suggests that automated processes should be con-
sidered in products where interfaces may be constrained by
external factors or individual user customization may pro-
vide substantial benefits. For research, it suggests that an
important direction for future work is developing new tech-
niques that use automatic generation to create interfaces
that are customized for each individual.

ACKNOWLEDGMENTS
We would like to thank the reviewers and Daniel Avrahami for
providing insightful feedback that helped us improve the paper
substantially. This work was funded in part by grants from the
Pittsburgh Digital Greenhouse, Microsoft, General Motors, and
under Grant No. IIS-0534349 from the National Science Founda-
tion. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not nec-
essarily reflect those of the National Science Foundation.

REFERENCES
1. Brouwer-Janse, M.D., Bennett, R.W., Endo, T., van Nes, F.L.,

Strubbe, H.J., and Gentner, D.R. Interfaces for consumer products:
"how to camouflage the computer?" in CHI'1992: 287-290.

2. Gajos, K., Weld, D. SUPPLE: Automatically Generating User Inter-
faces, in Intelligent User Interfaces. 2004: 93-100.

3. Gajos, K., Wu, A., and Weld, D.S. Cross-Device Consistency in
Automatically Generated User Interfaces, in 2nd Workshop on Multi-
User and Ubiquitous User Interfaces. 2005: 7-8.

4. Gajos, K.Z., Long, J.J., and Weld, D.S. Automatically Generating
Custom User Interfaces for Users With Physical Disabilities, in
ASSETS. 2006: 243-244.

5. Hayes, P.J., Szekely, P.A., and Lerner, R.A. Design Alternatives for
User Interface Management Systems Based on Experience with
COUSIN, in SIGCHI'85: 169-175.

6. Mori, G., Paterno, F., and Santoro, C., Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions.
IEEE Transactions on Software Engineering, 2004. 30(8): 1-14.

7. Myers, B.A., Hudson, S.E., and Pausch, R., Past, Present and Future of
User Interface Software Tools. ACM Transactions on Computer Hu-
man Interaction, 2000. 7(1): 3-28.

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., and Pignol, M. Generating Remote Control Interfaces
for Complex Appliances, in UIST'2002: 161-170.

9. Nichols, J., Myers, B.A., and Litwack, K. Improving Automatic Inter-
face Generation with Smart Templates, in Intelligent User Interfaces.
2004: 286-288.

10. Nichols, J., Myers, B.A., and Rothrock, B. UNIFORM: Automatically
Generating Consistent Remote Control User Interfaces, in CHI'2006:
611-620.

11. Nichols, J., Myers, B.A. Studying The Use Of Handhelds to Control
Smart Appliances, in 23rd International Conference on Distributed
Computing Systems Workshops (ICDCS). 2003: 274-279.

12. Nylander, S., Bylund, M., and Waern, A. The Ubiquitous Interactor -
Device Independent Access to Mobile Services, in Computer-Aided
Design of User Interfaces (CADUI). 2004: 271-282.

13. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and Fredrickson,
P. Cross-modal Interaction using Xweb, in UIST'00: 191-200.

14. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and T.Winograd.
ICrafter: A service framework for ubiquitous computing environ-
ments, in UBICOMP 2001: 56-75.

15. Puerta, A.R., A Model-Based Interface Development Environment.
IEEE Software, 1997. 14(4): 41-47.

16. Rosenfeld, R., Olsen, D., and Rudnicky, A., Universal Speech Inter-
faces. ACM interactions, 2001. VIII(6): 34-44.

17. Sukaviriya, P., Foley, J.D., and Griffith, T. A Second Generation User
Interface Design Environment: The Model and The Runtime Architec-
ture, in INTERCHI'93: 375-382.

18. Szekely, P., Luo, P., and Neches, R. Facilitating the Exploration of
Interface Design Alternatives: The HUMANOID Model of Interface
Design, in SIGCHI'92: 507-515.

19. Vander Zanden, B. and Myers, B.A. Automatic, Look-and-Feel Inde-
pendent Dialog Creation for Graphical User Interfaces, in SIGCHI'90:
27-34.

20. Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., ITS: A
Tool for Rapidly Developing Interactive Applications. ACM Transac-
tions on Information Systems, 1990. 8(3): 204-236.

CHI 2007 Proceedings • Augmentation, Automation & Agents April 28-May 3, 2007 • San Jose, CA, USA

1292

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	BACKGROUND: THE PUC SYSTEM
	USER STUDY OF AUTOMATIC GENERATION
	Interfaces
	Protocol
	Tasks

	Participants
	Evaluation
	Discussion of Usability
	Discussion of Consistency

	GENERAL DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

