
On Dynamically-Scoped Crosscutting Mechanisms

Éric Tanter

DCC – University of Chile

http://www.dcc.uchile.cl/˜etanter

Many crosscutting mechanisms proposed in the literature offer means to restrain aspects to some dynamically-defined scopes. Dynamically-

scoped mechanisms are particularly interesting because of the flexibility, expressiveness, and control they give over structural and be-

havioral changes made by aspects. Since the nature of dynamic scopes as well as the scoping mechanisms themselves greatly vary
among proposals, it is relatively complex to compare them. This paper aims at filling this gap by proposing a first characterization of

dynamically-scoped crosscutting mechanisms, hence providing a reference frame for comparing different approaches. As a result, this

work clarifies some differences between related approaches, suggests possible tracks for further exploration of the design space of such
mechanisms, and discusses some issues raised by dynamically-scoped aspects.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Languages

Additional Key Words and Phrases: Aspect-oriented programming, crosscutting mechanisms, dynamic scope, aspects

1. INTRODUCTION

Aspect-Oriented Programming [Elrad et al. 2001] and other related approaches propose mechanisms for the modular-
ization of crosscutting concerns. Although all these mechanisms were initially statically-scoped, there is a growing
trend of interest in dynamic scoping mechanisms in the field. This interest in dynamically-scoped crosscutting
mechanisms is justified by the flexibility and expressiveness offered by such mechanisms, that make it possible to
conveniently express structural and behavioral changes that should only occur under certain dynamic circumstances.

It is important to note that the notion of dynamic scope we use in this paper slightly differs from the traditional
one: a dynamically-scoped crosscutting mechanism is not only a mechanism that scopes an aspect according to
thread-local values or code, but also to possibly any past, current, and surrounding states of the program. Examples
include conditionals like if pointcuts in AspectJ and others, control and data flow conditions, tracematches and
stateful aspects, and context-aware aspects [Kiczales et al. 2001; Hirschfeld 2002; Masuhara and Kawauchi 2003;
Douence et al. 2005; Allan et al. 2005; Douence et al. 2004; Vanderperren et al. 2005; Aracic et al. 2006; Tanter
et al. 2006]. Similarly, related proposals which are not AOP as such, but still promote better modularization of
crosscutting concerns, such as metaobject protocols and structural refinements, have introduced dynamic scoping
mechanisms [Tanter et al. 2003; Bergel et al. 2003; Costanza and Hirschfeld 2005].

As a side effect of this proliferation of dynamic scoping mechanisms, it is relatively complex to compare each
proposal with respect to how dynamic scoping is actually provided. In this paper we propose a characterization
of dynamically-scoped crosscutting mechanisms. The objective of this classification is to give a reference frame for
comparing different approaches. Therefore, beyond the classification itself, this paper contributes to the field by (a)
clarifying the differences between related approaches, (b) highlighting similar combination of characteristics of some
approaches, thus calling for deeper comparison, and (c) pointing out some tracks for further exploring the design
space of dynamically-scoped crosscutting mechanisms.

In the following, we use aspect in a broad sense, which includes mechanisms for handling crosscutting such as
Classboxes [Bergel et al. 2003] and mixin layers as provided in ContextL [Costanza and Hirschfeld 2005].

2. CHARACTERIZING DYNAMIC SCOPE

An aspect definition includes the (usually intentional) definition of program or execution points of interest (a.k.a. the
cut of the aspect) over which some action is to be performed. The cut of an aspect has a static part, and possibly a
dynamic part –in the case of a dynamically-scoped aspect–. The action of the aspect can either modify the structure
or behavior of a program. We refer to these as structural and behavioral aspects, respectively. For instance,

Author’s address: É. Tanter, Computer Science Department, University of Chile, Blanco Encalada 2120, Santiago, Chile.

A previous version of this work was presented at the European Workshop on Aspects in Software (EWAS 2006), held in Twente, The

Netherlands, September 2006.

ACM SIGPLAN Notices 27 Vol. 42 (2), Feb. 2007



t t

program code aspect application dynamic scope

Fig. 1. General view of the application of a statically-scoped aspect (left) and a dynamically-scoped aspect (right).

a monitoring aspect modifies the behavior of an application in order to report on some parts of the application
execution; a caching aspect adds a cache field to certain classes, thereby modifying their structure.

2.1 Dynamically-Scoped Aspects in a Nutshell

The application of an aspect is always statically scoped: the cut of an aspect includes some criteria that relate to the
parts of the program text that are potentially altered by the aspect. Let us represent the entire code of a program
as a uni-dimensional line. If we consider time, that is, program execution, then the application of a statically-scoped
aspect is depicted in Fig. 1(left): the parts of the program that are affected by the aspect are always affected, from
the start to the end of the execution.

A dynamically-scoped aspect is different. Depending on the program being in a certain scope or not during
execution, then the aspect applies or not. This is depicted in Fig. 1(right), where we see that the aspect only applies
within a certain dynamic scope, which is active four times in the picture. Note that we indifferently refer to “the
program is in a given scope” and “the given scope is active”. The above relates to an aspect that is subject as a
whole to a certain scope. Most aspect languages and tools allow for the definition of aspects composed of different
subparts, each potentially subject to different dynamic scopes.

Dynamically-scoped aspects are typically implemented using residues: evaluated at runtime, a residue is a condition
that determines whether the aspect applies or not [Masuhara et al. 2003; Hilsdale and Hugunin 2004]. Dynamically-
scoped structural changes are usually performed once for all, and an additional logic ensures that the changes are
visible only in the desired dynamic scope.

2.2 Dimensions of Characterization

We propose several dimensions of characterization for dynamically-scoped crosscutting mechanisms. These dimen-
sions have been chosen by focusing on semantics and software engineering issues. We do not consider the mechanisms
from a point of view of implementation techniques and possible runtime efficiency. The reason for this is the need we
see for a clear conceptual framework relating to dynamically-scoped aspects. We identify the following dimensions:

aspect action. What is the nature of the aspect action? It can be either structural (e.g. a refinement as in Class-
boxes [Bergel et al. 2003] and mixin layers [Costanza and Hirschfeld 2005] or an inter-type declaration as in AspectJ)
or behavioral (a.k.a. advice). The rule to discriminate between a structural change and a behavioral change is that a
structural change consists of an aspect adding or explicitly modifying an existing structural element, while a behav-
ioral aspect defines some action to be triggered upon some execution events (this mechanism may be implemented
by modifying the structure of the program [Hilsdale and Hugunin 2004], but does so in a manner that is oblivious
to the programmer).

scope definition. How are the boundaries (i.e. the entry and exit points) of the scope specified by the programmer?
Is it done implicitly or explicitly at the points where the scope starts and ends? This characteristic determines the
intrusiveness of the scope definition (i.e. how much base code has to be modified in order to define the scope), as

ACM SIGPLAN Notices 28 Vol. 42 (2), Feb. 2007



scoping mechanism example systems scope

if/restriction most condition true

receiver, target, etc. most JP dynamic property

1st-class activation Reflex, AspectS condition true

cflow most dyn-ext. of nested pointcut

tracematches AJ+TM execution history

context-aware aspects Reflex extension any context

deploy block CaesarJ, Steamloom dyn-ext. of deploy

on/off AspectS, Reflex between on and off

classboxes Classbox/J dyn-ext. of top client package

mixin layers ContextL dyn-ext. of layer activation

Fig. 2. List of considered dynamic scoping mechanisms.

well as its tractability by the user (i.e. how easy it is for the programmer to infer when a given scope is active or
not). It has to be noted that in case of intrusive scope definitions, aspects can normally be used to insert start and
end points transparently.
Another question, which is highly dependent on the implementation platform (and hence not considered further) is
how the scope boundaries are determined by the runtime infrastructure1.

scope information exposure. Can information associated with the scope (e.g. a value of a variable bound in the
dynamic scope) be exposed to the aspect action? This characteristic is particulary important to foster reuse of aspect
actions, through genericity. Without such a feature, workarounds have to be devised in order to share scope-specific
information with the aspect action, if at all possible.

scope-aspect binding. When is the binding between a scope and an aspect made? We use the characterization of
binding time and mode introduced in [Redmond and Cahill 2002]. The binding time is the moment at which the
binding is established; it can be either compile time2 or runtime. The binding mode is another dimension referring to
whether the binding can be undone/redone during execution. If yes, then the binding mode is said to be dynamic,
otherwise it is said to be static.

thread locality. Considering a multi-threaded execution, is the scope defined locally for each thread? If not,
should thread locality be manually implemented? This characteristic is very important for the actual semantics of
the dynamic scoping mechanism, and the programmer should therefore be well aware of the default semantics of the
mechanism (e.g. a cflow in AspectJ is by default thread local, while a tracematch in the AspectJ extension of [Allan
et al. 2005] is by default global). Note that thread locality is explicitly considered in this classification because
dynamically-scoped mechanisms are not necessarily related to execution stack properties; they can for instance
relate to past execution states, or to elements pertaining to the physical environment of the running system.

3. DYNAMIC SCOPING MECHANISMS

We now analyze a number of proposals for dynamically-scoped aspects, in the light of the different criteria mentioned
above. We consider the following proposals: AspectJ [Kiczales et al. 2001] and similar systems, AspectJ with
tracematching [Allan et al. 2005], Reflex [Tanter et al. 2003; Tanter and Noyé 2005], AspectS [Hirschfeld 2002],
context-aware aspects [Tanter et al. 2006], CaesarJ [Aracic et al. 2006], Classbox/J [Bergel et al. 2003; Bergel
et al. 2005], and ContextL [Costanza and Hirschfeld 2005]. The two last approaches are the only dynamically-
scoped approaches to structural changes we know of; intertype declarations in AspectJ are statically scoped, and
dynamically-scoped structural links in Reflex have only recently been implemented in order to support similar
mechanisms. We also only focus on language-level approaches, not architecture-level ones. The different mechanisms
are listed and described on Fig. 2, and our analysis is summarized on Fig. 3.

1This refers to either “push”-like mode whereby the aspect is effectively installed upon entering the scope, or “pull”-like mode in which

the aspect is always installed and a systematic check is performed before evaluating the aspect action. A system which truly supports

dynamic weaving can choose the “push” option, while other systems have to resort to “pull” techniques.
2For simplicity, we refer to compile, deploy and link times as compile time.

ACM SIGPLAN Notices 29 Vol. 42 (2), Feb. 2007



If/restriction. This is the basic means to specify an arbitrary boolean condition to be evaluated at runtime, as
with the if pointcut in AspectJ or restrictions in Reflex to name a few. This kind of conditions is statically bound
at compile time. The dynamic scope is defined by the condition evaluating to true. Such conditions typically cannot
expose context information to the aspect action. Thread locality has to be manually handled.

Dynamic join point properties. We hereby refer to dynamic conditions over join point properties, such as receiver
or target runtime type, actual arguments, etc. This mechanism is supported by most AOP systems, and usually
permits to expose dynamic information to the aspect action. This contrasts with the previous mechanism.

First-class activation. Some AOP systems like AspectS and Reflex support first-class activation conditions. These
are objects encapsulating a dynamic condition. The difference with the if/restriction mechanism is binding mode:
activation conditions can be unbound/rebound at runtime. So both Reflex and AspectS offer the same binding mode
(dynamic), but differ in the binding time due to implementation environments (Java vs. Smalltalk); Reflex offers
dynamic binding at compile time, while AspectS has dynamic binding at runtime. First-class activation is typically
global to all threads, but thread locality can be developed in a reusable and generic manner [Hirschfeld and Costanza
2005] (hence the M/A characterization on Fig. 3).

Cflow. Most AOP languages and systems support the definition of scope based on control flow, like the cflow
and cflowbelow pointcut designators in AspectJ. These are higher-order constructs, and the scope they define is
the dynamic extent of the nested pointcut. Although bound statically in AspectJ, in Reflex one can actually choose
between a statically-bound restriction or a dynamically-bound activation condition to define a scope based on control
flow. An AspectS implementation could actually be dynamically-bound at runtime. A major use of this mechanism
is to make information up in the stack available to an aspect action (like in the wormhole design pattern [Laddad
2003]). All control flow implementations are indeed thread local, since control flow is hereby a stack-related property
(and each thread has its own stack).

Tracematches. Stateful aspects or tracematches make it possible to restrain the application of an aspect to the
occurrences of certain execution event patterns. Compared to the above mechanism, tracematches greatly enhance
the expressiveness of the scoping, although not differing significantly in most other regards. An exception that
we already mentioned is the thread locality of the tracematch: the default assumption of the AspectJ extension
proposed in [Allan et al. 2005] is that the tracematch is checked globally, that is, matching events in all threads of
the system. Still, a special threadlocal keyword is supported, to easily switch to a thread-local semantics, whereby
sequences of events are looked for in the execution history of a single thread. We consider the syntactical equivalent
of a reusable activation condition for thread locality. The most mature implementations to date [Vanderperren et al.
2005; Allan et al. 2005] are statically-bound at compile time.

Context-aware aspects. A Reflex framework for context-aware aspects was proposed in [Tanter et al. 2006]. The
idea is to extend pointcut languages with context-specific restrictions, allowing both parameterization of context
definitions and exposure of context state to the aspect action. Context here refers to more than just the program
execution context, as it includes external context perceived by sensors, for instance. The clear separation of aspects
and contexts fosters evolution and reuse of both. The dynamic scope definition in this approach is actually the
context definition. In addition to being active or not, a context exposes state associated to its being active. The
notion of context is very general and subsumes all previous approaches. It is similar to the if/restriction mechanism,
but allows scope information exposure. Context-aware aspects in Reflex can be implemented using either restrictions
or activation conditions, offering different binding modes. Although by default thread global, if first-class activation
is used as an implementation, thread locality can be obtained in context-aware aspects by reusing a thread-local
semantics (as discussed previously).

Deploy block. CaesarJ supports a dynamic scoping mechanism that consists in restricting an aspect to the dy-
namic extent of a deploy block. For instance, deploy(A){...} implies that the aspect A is applied to all execution
occurring within the dynamic extent of the block. In contrast with all the other scoping mechanisms we have seen
so far, here the scope is explicitly embedded within the application code. Still, the definition has an implicit exit
point (the end of the deploy block). Deploy blocks cannot be parameterized with values for access later down in

ACM SIGPLAN Notices 30 Vol. 42 (2), Feb. 2007



binding thread
scoping mechanism action definition exp. time/mode local

if/restriction B I no CT/S M

receiver, target, etc. B I yes CT/S M

1st-class activation B I no depends/D M/A

cflow B I yes depends A

tracematches B I yes CT/S M/A

ctx-aware aspects B I yes CT/D M

deploy block B EI no RT/S A

on/off B EE no RT/D M

classboxes S I no CT/S A

mixin layers S EI no RT/D A

B: behavioral – S: structural – I: implicit – EI: explicit start, implicit end – EE: explicit start and end – CT: compile-time – RT: run

time – S: static – D: dynamic – M: manual – A: automatic

Fig. 3. Summary of the characterization of different dynamic scoping mechanisms.

the execution. The scope-aspect binding is done at runtime, but is indeed static: within the dynamic extent of the
deploy block, the deployment cannot be undone and redone. Finally, the aspect is deployed locally to the thread
executing the deploy block.

Explicit on/off. Some proposals support (de)activation of an aspect by explicit calls to on/off-like methods. In
AspectS this can be done by executing A install or A uninstall at any time (dynamic binding at runtime). Less
flexible versions of this feature can be implemented using first-class activation (as in Reflex) or even if/restriction
mechanisms. In this approach, the dynamic scope to which an aspect is bound consists in the execution taking place
in between a call to the on method and a call to the off method. Therefore both entry and exit points of the scope
definition are explicitly defined. Like other low-level conditional mechanisms, thread locality has to be manually
implemented.

Classboxes. Classboxes are a mechanism for dynamically-scoped structural refinements. Similar to open classes,
refinements in classboxes make it possible to extend a class definition “from the outside” with new fields and meth-
ods, as well as extending methods with a mechanism similar to overriding in standard object-oriented programming.
However, while changes made with open classes are globally visible, classboxes introduce a dynamic scoping mech-
anism based on import relations between modules: a refinement to a class is only visible for all execution that
originates from a client of the module in which the refinement is defined. This property is checked at runtime: it can
be extracted from the stack, and is therefore thread local. The definition of the scope of a refinement with classboxes
is implicitly defined in the sense that the programmer does not explicitly says when the entry or exit points of a
scope occur, but still requires explicit import declarations which are used by the runtime system to determine these
points automatically. The binding is done at compile time, and is static. No context information can be exposed to
the refinements.

Mixin layers. ContextL is a CLOS extension that introduces a mechanism of dynamic mixin layers, which are
dynamically scoped. In ContextL, there is a notion of layers in which one can define structural refinements. These
structural refinements can then be dynamically activated, by executing a set of expressions in the dynamic extent
of a with-active-layers call. In other words, this mechanism can be seen as a combination of the deploy block
mechanism of CaesarJ, but for structural actions like in classboxes. Therefore the definition of the scope is similar
to the deploy block (explicit entry point, implicit exit point). However, as opposed to the deploy block a Caesar,
a mixin layer can be temporarily deactivated, using a with-inactive-layers. Hence this mechanism supports
dynamic binding at runtime. Thread locality is automatic, and, like the last three mechanisms presented, mixin
layers cannot expose information to the refinements.

4. CONCLUSION AND DISCUSSION

We have described a frame of reference to compare different dynamically-scoped crosscutting mechanisms, including
both structural and behavioral approaches. As a result of this study, differences between related mechanisms are

ACM SIGPLAN Notices 31 Vol. 42 (2), Feb. 2007



clarified. For instance, the precise difference between an if pointcut and a first-class activation condition lies in the
binding mode and possibly in the binding time (e.g. in the case of AspectS). Also, the contribution of context-aware
aspects versus these conditional mechanisms comes to light: the possibility to expose information bound in the
conditional to the action. Tracematching appears similar and therefore a deeper comparison of both mechanisms
should be valuable. An interesting parallel can be made between the deploy block mechanism as in CaesarJ and the
mixin layers of ContextL: apart from the fact that one is used for behavioral aspects and the other for structural
changes, they actually differ with respect to the binding mode (the binding time is the same). More comparative
results appear directly from looking at Fig. 3.

Among the suggestions for future development in the area, it seems noteworthy that all mechanisms that are
explicitly defined (deploy block, on/off, classboxes, mixin layers) actually lack the context information exposure
feature. As a matter of fact, such a feature does make sense for these mechanisms. This remark also holds for
first-class activation.

Finally, it seems that a discussion about the different definition mechanisms is valuable. Most mechanisms embed
the scope definition outside of the base code (implicit). The explicit ones require intrusive specification (i.e. base
code embeds the scope boundaries definition) but prove useful in some cases, thanks to the dynamicity of the binding
that is thereby obtained. Of course, it is usually feasible to turn an explicit definition into an implicit one (by using
an aspect!).

With respect to tractability, it is clear that dynamic scoping requires more effort from the programmer. In the
case of explicit scope definitions, both deploy blocks and mixin layers as in ContextL have a clear scope, in the sense
that the end of the scope is implicitly associated to the end of the lexical structure that specifies the begin of the
scope (i.e. the closing } of a deploy block). Conversely, the on/off mechanism is much less “structured”, in the sense
of structured programming vs. GOTO-like programming [Dijkstra 1968]. If many explicit on/off statements are
used in various places of an application, it can easily turn out to be impossible for a programmer to precisely foresee
when an aspect will actually apply. On the other hand, it is true that in some cases, such an explicit mechanism
turns out to be useful. At least for two reasons: first of all, because it is the lowest-level mechanism, it can be used
to experiment with higher-level abstractions like the ones we discussed in this paper; second, because in some cases,
like context-oriented programming [Costanza and Hirschfeld 2005], it seems necessary to be able to align aspect
application to events that can happen at any time, like a user logging out of a system. If we make the analogy with
the history of GOTO-like programming, then we may foresee that these kinds of (too?) flexible schemes may be
bound to disappear in the light of a sound compromise. But this sound compromise is yet to be found.

In any case, dynamically-scoped aspects definitely challenge traditional visions of program understanding, much
more than AOP in its implicit and lexically-scoped flavor –which is already a challenge compared to more traditional
paradigms–.

Acknowledgments. The author thanks the following colleagues for the interesting discussions about one or more
of the presented mechanisms: Alexandre Bergel, Eric Bodden, Pascal Costanza, Marcus Denker, Brecht Desmet,
Kris Gybels, Robert Hirschfeld, and Theo D’Hondt.
É. Tanter is partially financed by the Milenium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile.

REFERENCES

Allan, C., Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G.,
and Tibble, J. 2005. Adding trace matching with free variables to AspectJ. See OOPSLA 2005 [2005], 345–364. ACM SIGPLAN

Notices, 40(11).

Aracic, I., Gasiunas, V., Mezini, M., and Ostermann, K. 2006. An overview of CaesarJ. In Transactions on Aspect-Oriented Software
Development. Lecture Notes in Computer Science, vol. 3880. Springer-Verlag, 135–173.

Bergel, A., Ducasse, S., and Nierstrasz, O. 2005. Classbox/J: Controlling the scope of change in Java. See OOPSLA 2005 [2005],
177–189. ACM SIGPLAN Notices, 40(11).

Bergel, A., Ducasse, S., and Wuyts, R. 2003. Classboxes: A minimal module model supporting local rebinding. In Proceedings of

the Joint Modular Languages Conference (JMLC’03). Lecture Notes in Computer Science, vol. 2789. Springer-Verlag, 122–131.

Costanza, P. and Hirschfeld, R. 2005. Language constructs for context-oriented programming – an overview of ContextL. In ACM

Dynamic Language Symposium (DLS 2005). San Diego, CA, USA.

Dijkstra, E. W. 1968. Go To statement considered harmful. Communications of the ACM 11, 3 (Mar.), 147–148.

Douence, R., Fradet, P., and Südholt, M. 2004. Composition, reuse and interaction analysis of stateful aspects. See Lieberherr

[2004], 141–150.

ACM SIGPLAN Notices 32 Vol. 42 (2), Feb. 2007



Douence, R., Fradet, P., and Südholt, M. 2005. Trace-based aspects. In Aspect-Oriented Software Development, R. E. Filman,

T. Elrad, S. Clarke, and M. Akşit, Eds. Addison-Wesley, Boston, 201–217.

Elrad, T., Filman, R. E., and Bader, A. 2001. Aspect-oriented programming. Communications of the ACM 44, 10 (Oct.).

Hilsdale, E. and Hugunin, J. 2004. Advice weaving in AspectJ. See Lieberherr [2004], 26–35.

Hirschfeld, R. 2002. AspectS – aspect-oriented programming with Squeak. In International Conference NetObjectDays on Components,
Architectures, Services, and Applications for a Networked World, M. Akşit, M. Mezini, and R. Unland, Eds. Lecture Notes in Computer

Science, vol. 2591. Springer-Verlag, 216–232.

Hirschfeld, R. and Costanza, P. 2005. Extending advice activation in AspectS. In 2nd European Interactive Workshop on Aspects
in Software (EIWAS 2005). Brussels, Belgium.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. 2001. An overview of AspectJ. In Proceedings of

the 15th European Conference on Object-Oriented Programming (ECOOP 2001), J. L. Knudsen, Ed. Number 2072 in Lecture Notes

in Computer Science. Springer-Verlag, Budapest, Hungary, 327–353.

Laddad, R. 2003. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Press.

Lieberherr, K., Ed. 2004. Proceedings of the 3rd International Conference on Aspect-Oriented Software Development (AOSD 2004).

ACM Press, Lancaster, UK.

Masuhara, H. and Kawauchi, K. 2003. Dataflow pointcut in aspect-oriented programming. In Proceedings of the First Asian Symposium

on Programming Languages and Systems (APLAS’03). Lecture Notes in Computer Science, vol. 2895. 105–121.

Masuhara, H., Kiczales, G., and Dutchyn, C. 2003. A compilation and optimization model for aspect-oriented programs. In

Proceedings of Compiler Construction (CC2003), G. Hedin, Ed. Lecture Notes in Computer Science, vol. 2622. Springer-Verlag,

46–60.

OOPSLA 2005 2005. Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2005). ACM Press, San Diego, California, USA. ACM SIGPLAN Notices, 40(11).

Redmond, B. and Cahill, V. 2002. Supporting unanticipated dynamic adaptation of application behavior. In Proceedings of the

16th European Conference on Object-Oriented Programming (ECOOP 2002), B. Magnusson, Ed. Number 2374 in Lecture Notes in
Computer Science. Springer-Verlag, Málaga, Spain, 205–230.

Tanter, É., Gybels, K., Denker, M., and Bergel, A. 2006. Context-aware aspects. In Proceedings of the 5th International Symposium

on Software Composition (SC 2006), W. Löwe and M. Südholt, Eds. Lecture Notes in Computer Science, vol. 4089. Springer-Verlag,

Vienna, Austria, 227–242.

Tanter, É. and Noyé, J. 2005. A versatile kernel for multi-language AOP. In Proceedings of the 4th ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE 2005), R. Glück and M. Lowry, Eds. Lecture Notes in

Computer Science, vol. 3676. Springer-Verlag, Tallinn, Estonia, 173–188.

Tanter, É., Noyé, J., Caromel, D., and Cointe, P. 2003. Partial behavioral reflection: Spatial and temporal selection of reification.
In Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications

(OOPSLA 2003), R. Crocker and G. L. Steele, Jr., Eds. ACM Press, Anaheim, CA, USA, 27–46. ACM SIGPLAN Notices, 38(11).

Vanderperren, W., Suvee, D., Ćıbran, M. A., and De Fraine, B. 2005. Stateful aspects in JAsCo. In Proceedings of Software

Composition (SC 2005). Lecture Notes in Computer Science, vol. 3628. Springer-Verlag, 167–181.

ACM SIGPLAN Notices 33 Vol. 42 (2), Feb. 2007




