
Design and Implementation of a Stream-based Distributed
Computing Platform using Graphics Processing Units

Shinichi Yamagiwa
INESC-ID/IST

Rua Alves Redol, 9, 1000-029
Lisboa Portugal

yama@inesc-id.pt

Leonel Sousa
INESC-ID/IST

Rua Alves Redol, 9, 1000-029
Lisboa Portugal

las@inesc-id.pt

ABSTRACT
Anonymous use of computing resources spread over the world
becomes one of the main goals in GRID environments. In
GRID-based computing, the security of users or of contribu-
tors of computing resources is crucial to execute processes in
a safe way. This paper proposes a new method for stream-
based processing in a distributed environment and also a
novel method to solve the security matter under this kind
of processing. It also presents the design of the distributed
computing platform developed for stream-based processing,
including the description of the local and remote execution
methods, which are collectively designated by Caravela plat-
form. The proposed flow-model is mapped on the distributed
processing resources, connected through a network, by using
the Caravela platform. This platform has been developed
by the authors of this paper specifically for making use of
the Graphics Processing Units available in recent personal
computers. The paper also illustrates application of the Car-
avela platform to different types of processing, namely scien-
tific computing and image/video processing. The presented
experimental results show that significant improvements can
be achieved with the use of GPUs against the use of general
purpose processors.

Categories and Subject Descriptors
D.2.2 [Software]: SOFTWARE ENGINEERING—Design
Tools and Techniques, Modules and interfaces

General Terms
Design

Keywords
Caravela, GPU, stream-based computing, GRID, flow-model,
GPGPU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005 ...$5.00.

1. INTRODUCTION
Worldwide distributed computing has become one of the

remarkable possible ways to use anonymous computing power,
due to the development of distributed execution platforms.
The platforms can be based on message passing computing,
using a server software such as Globus [3], or a mobile agent-
based one that migrates among the resources organized as
a virtual network [9]. According to the research reports of
those platforms [5, 11], worldwide distributed computing is
effective in achieving an ultra computing power, by taking
advantage of huge amounts of unused computing power from
over the world. This computing style is named GRID com-
puting [18].

For a GRID computing platform, one of most important
issue that the developer must address is security, both for
users and for contributors of the computing resources. For
example, the users of the platform do not desire that some-
one steals programs or data dispatched to a computing re-
source, in the communication channel to the resource or in
the resource itself. On the other hand, contributors of the
computing resources also do not desire that a program as-
signed by the users touch their private resources, such as
protected data, hardware and network connections. The
contributors may call such a program executing in their com-
puters a virus. It must be paid a lot of attention to avoid
such situations in a GRID.

This paper describes the design and implementation of
the Caravela platform [1] that provides a novel mechanism
to execute programs in a GRID environment, which provides
a suitable security level of execution.

The Caravela defines a data structure for a unit of ex-
ecution named flow-model unit, which is composed by in-
put data streams, output data streams and a program to
process those I/O data streams. The Caravela will assign
the flow-model unit(s) to resources in the GRID environ-
ment. The program in the flow-model unit processes the
input data in a stream-based processing flow, such as in a
dataflow processor. According to the proposed execution
model, the program in the flow-model unit is not allowed to
touch the resources around the processing unit to which the
flow-model is assigned, except for its I/O data streams.

The flow-model execution method fits well into a Graphics
Processing Unit (GPU) because the GPU supports stream-
based computation using texture inputs. Moreover, the per-
formance of GPU is much higher when compared with that
of a CPU [17]. Therefore, this paper also shows an imple-
mentation of the Caravela platform which maps the flow-
model on a GPU. Moreover, this paper describes an example

197

where flow-model units execute distributed on remote GPU
resources.

This paper is organized as follows. The next section con-
tains a detailed explanation of the GRID environment, its
security issues and discusses the GPU’s validity for general
purpose application. Section 3 presents the design concepts
for the Caravela platform. Section 4 shows an implementa-
tion of the Caravela platform, assigning flow-model units to
local and to remote GPU resources. In section 5, an appli-
cation example with the Caravela platform is discussed, and
finally section 6 concludes the paper.

2. BACKGROUND AND DEFINITIONS

2.1 The GRID computing environment
Among the platforms for GRID computing, there exist

several methods to implement mechanisms to release re-
sources for users and to remotely use those resources. One of
them is Globus [3], a well known message passing-based plat-
form for GRID computing. The users of the Globus platform
can write programs as MPI-based parallel applications [12].
Therefore, applications which have been parallelized with
MPI functions can easily migrate from a local cluster, or a
supercomputer-based environment to the Globus platform.
Another platform example is the agent-based implementa-
tion Condor-G [9]. This kind of implementation is mainly
used for managing resources in a GRID. The tasks per-
formed in remote computing resources using such platforms
are assigned anonymously. It is very difficult for users and
contributers to trust each other and be sure that the tasks
never damage the computing resource and are not damaged
by some malicious access. Therefore, in any implementation
of GRID platforms the security must be considered as one
of the important issues.

To achieve trustful communication among users and con-
tributors of computing resources, any GRID platform must
address the following security issues:

1. Data security exchanged among processing re-
sources via network
When a program is assigned to a remote processing
unit, it must be sent to the resource and, also, the data
must be received by the program. The data transferred
via the network can be snooped by a third person using
tools such as tcpdump. This means that the users do
not trust the system. This problem is also a security
matter in web-based applications. Therefore, data en-
cryption such as SSL (Secure Socket Layer) is applied
to the connections between computing resources [8].

2. Program and data security on remote resources
On GRID environments, users would assign their pro-
grams to unknown machines anywhere in the world.
Therefore, the users don’t want that the program con-
tent or data be snooped or stolen by the resource own-
ers. For overcoming this problem, the GRID platforms
force the creation of an account for the user which is
managed by the administrator.

3. Resource security during program execution
This is the most dangerous security problem in the
platform. When a program is dispatched by the user
to a remote computing resource, it may make use any-
thing in there. This is just the behavior of a computer

virus. The GRID environment must have capabilities
to restrict the permissions of user programs. There-
fore, a GRID platform generally has resource manage-
ment tools such as GRMS [4].

The first security problem above is solved by encrypting
the data exchanged among resources and users. The second
problem can be solved by the administrator of the comput-
ing resources, for example creating user accounts. However,
in what respects the third problem, although some solutions
tackle the user program access to resources, such as Java’s
RMI (Remote Method Invocation) mechanism [10] by re-
stricting the available resources to the program in the virtual
machine, it is very hard to configure the restrictions for all
the applications. For this reason, in some applications which
need to touch special resources on a remote host, Java allows
the user program to open a security hole by using JNI (Java
Native Interface) [15]. This is inconsistent with the security
wall of the virtual machine. Therefore, we need to address
the third problem by using a new execution mechanism for
the programs.

2.2 GPUs

2.2.1 Computing power of GPUs
Graphical applications, especially 3D graphics visualiza-

tion techniques, have drastically advanced in this decade.
Even in a commodity personal computer we have available
very high quality graphics created by real-time computing.
This is mainly due to the GPU connected to the personal
computer. The power of GPUs is now growing drastically:
for example, floating point computation performance of
nVIDIA’s Geforce7 achieves 300 GFLOPS, which compares
very well to 8 GFLOPS of Intel Core2Duo processors. This
is a remarkable computational power available for applica-
tions which demand huge computation load.

Nowadays, researchers of high performance computing are
also focusing the research on the performance of GPUs, and
investigating the possibility for its usage as a substitute
of CPUs. For example, using GPUs, GPGPU (General-
Purpose computation on GPU) achieves a high level perfor-
mance [14] [16]. A cluster-based approach using PCs with
high performance GPUs has been reported in [7]. More-
over, compiler-oriented support for GPU resources has also
already been proposed [6].

2.2.2 General purpose computing on GPUs
Let us explain the mechanism in GPUs that processes

graphics objects in order to show them on a screen. The
GPU acts as a coprocessor of the CPU via a peripheral
bus, such as the AGP or the PCI Express bus. A VRAM
(Video RAM) is connected to the GPU, which reads/writes
the VRAM to process the graphics objects. To do this the
CPU sends the object data to the VRAM, sends a program
to the GPU, and controls the overall execution.

Figure 1 shows the processing steps done by the GPU to
create a graphical image in a frame buffer in order to be
displayed in a screen. First, the graphics data is prepared
as a set of normalized vertices of objects on a referential axis
defined by the graphics designer (Figure 1(a)). The vertices
will be sent to a vertex processor to change the size or the
perspective of the object, calculating rotations and trans-
formations of the coordinates. In this step all the objects
will be mapped to a standardized referential axis. In the

198

Vertex processor

Standardized
Referential Axes

Map the vertices of
objects into standard
referential axes

Rasterizer

Interpolates the vertices,
creating planes

Pixel
Processor

Apply texture to objects

Textures for objects

Final Output

(b)

(c)

(a)
y

x

z

y

x

z

Figure 1: Processing steps for graphics rendering.

next step, a rasterizer interpolates the coordinates and de-
fines the planes that form the graphics objects (Figure 1(b)).
Finally, a pixel processor receives these planes from the ras-
terizer and creates color data to send to the frame buffer,
after calculating the composed RGB colors from the textures
of the objects (Figure 1(c)). The color data is written into
the frame buffer, which outputs it to the screen.

In recent GPUs, the vertex and pixel processors are pro-
grammable. The designers of graphics scenes can make pro-
grams for the processors, specific for its graphics effects. It
is very important that the programs run fast in order to
achieve a huge number of frames per second. Therefore, the
GPUs have dedicated floating point processing pipelines in
these processors and GPGPU applications make strong use
of these processors. However, the rasterizer is composed of
fixed hardware, and its output data can not be controlled.
Moreover, the output data from the rasterizer is just sent to
the pixel processor and can not be fetched by CPU. Thus,
it is reasonable for GPGPU applications to use the comput-
ing power of the pixel processor due to its programmability
capabilities and flexibility for I/O data control.

The focus of this paper is not only the performance of
GPUs, but also the execution paradigm on GPUs. As shown
above, the pixel processor does not touch any resources and
the data sent to it is input as a stream of massive data.
Then it processes each data unit (pixel color data) and out-
puts a data stream. This means that the program on the
GPU works in a closed environment. Moreover, it is pos-
sible to write programs in the standard languages such as
the DirectX assembly language, the High Level Shader Lan-
guage (HLSL) [2] and the OpenGL Shading Language [13].
Thus, the program can run on any GPU connected to any
computer.

According to the discussion above, it can be concluded
that the security concerns about the resources touched by
programs on a GRID platform can be solved by the GPU’s
execution mechanism, due to its stream-based processing.
Thus, we aim to develop an execution mechanism on the
GRID environment based on stream-based computation us-
ing GPUs’ power.

3. DESIGN OF CARAVELA PLATFORM
The execution unit of the Caravela platform is defined

as the flow-model. As shown in Figure 2, the flow-model

Input Data Stream(s) Constant Values

Input 4

Input 5

Input 6

Output 0

Output 1

Output 2

Output Data Stream(s)

Input 3 ConstantOP

Program

Figure 2: Structure of the flow-model.

is composed of input/output data streams, of constant pa-
rameter inputs and of a program which processes the input
data streams and generates output data streams, by fetching
each input data unit from the input streams. The applica-
tion program in Caravela is executed as stream-based com-
putation, such as the one of a dataflow processor. However,
the input data stream of the flow-model can be accessed
randomly because the input data streams are just memory
buffers for the program that uses the data. On the other
hand, the output data streams are sequences based on the
unit of data in the stream. Thus, the execution of the pro-
gram embedded in the flow-model is not able to touch other
resources beyond the I/O data streams.

The presentation of the flow-model is one of the issues for
the discussion. Although the same available representation
for the PetriNet graph can be used, due to its dataflow-
like processing style, the flow-model admits finite loops sup-
ported by the Caravela runtime. The Caravela runtime op-
erates as a resource manager for flow-models. To implement
a loop with the flow-model, the output data stream(s) are
connected to the input data stream(s), providing data mi-
gration among the stream buffers.

The flow-model provides the advantage when applied in
distributed environments of encapsulating all the methods
to execute a task into a data structure. Therefore, the flow-
model can be managed as a task object distributed any-
where, and can be fetched by the Caravela runtime. For
example, when a flow-model is placed in a remote machine,
an application over Caravela platform can fetch and repro-
duce the execution mechanism from the remote flow-model.

Regarding the processing unit to be assigned to a flow-
model program, any software-based emulator, hardware data-
flow processor, dedicated processor hardware, or others, can
be applied.

3.1 Caravela runtime environment
The flow-model execution requires a managing system,

which assigns and loads the flow-model program into a pro-
cessing unit, allocates memory buffers for input/output data
streams, copies the input data streams to the allocated buffers
and triggers the start of the program. In addition, after
program execution, the runtime may need to read back the
output data from the output stream buffers to forward it to
the next flow-model or to store it. The Caravela runtime de-
fines two functionalities for flow-model execution: the local
and the remote execution functions.

199

Client
(Appication)

Broker1

Broker2 Broker3

Worker1 Worker2 Broker4

Parent: None
Child: Broker2

Parent: Broker1
Child: Worker1, Worker2

Parent: Broker2 Parent: Broker2
Parent: Broker1
Child: Broker2

Parent: Broker1
Child: Broker4

(3) Request to find a worker.

(4) Request is
forwarded to
the child.

(5) Request
is reached to
a worker. (6) reply

(7) reply

(8) reply

(1) Request
to a worker
directly.

(2) reply

Figure 3: Caravela network example.

The execution in a local processing resource corresponds
to following the steps referred above. The runtime checks if
the program in the flow-model matches the specification of
a local processing unit.

To support the remote execution of the flow-model, the
Caravela runtime needs a function to respond to requests
sent by Caravela platforms located in other remote resources.
The servers placed in the remote resources are categorized
into two types: worker and broker servers.

• Worker server
The worker server acts as a processing resource that as-
signs one flow-model to its local processing unit. This
server communicates with its client to send/receive
output/input data of the flow-model. If an execution
request from a client does not include the flow-model
itself but an information of the location of the flow-
model, the server will fetch it from the address. Then,
the server will assign the flow-model to the local pro-
cessing unit.

• Broker server
The broker server performs as a router to reach the
worker servers. The worker servers, after activation,
send a request to register its route to one of broker
servers. The broker server can have a parent broker
server that accepts to register the route to a child bro-
ker. This mechanism creates a tree shaped worker net-
work with broker servers as trunks of a tree. We call
this tree-based virtual network the Caravela network.

Figure 3 shows an example of the Caravela network. The
workers (Worker1 and Worker2) “belong” to the Broker1
and Broker2. Assume that the client tries to find a worker
in the Caravela network and sends a request to the Worker1
directly (Figure 3 (1)). In this case, the client must know
the route to the Worker1. The reply will be returned to the
client directly (Figure 3 (2)). On the other hand, when the
client sends the same request to the Broker1 (Figure 3 (3)),
the Broker1 will forward the request to the Broker2 accord-
ing to the routing information about the child(Figure 3(4)).
The Broker2 knows that the Worker1 is its children and for-
wards the request to it (Figure 3 (5)). Finally, the request is
processed and an answer returns by the opposite direction
of the request and reaches the client(Figure 3 (6)(7)(8)).

Regarding resource limitation for security matters, the
broker and the worker servers may not accept flow-models

that specify larger data streams than the limits configured
by the servers. This mechanism protects the contributors’
environment from the trouble caused by memory consump-
tion. Moreover, the worker servers may specify a time lim-
itation based on a unit of a flow-model execution. When
the time spent by our application exceeds the limit, the
worker server may cancel the subsequent flow-model exe-
cution. This mechanism allows the resource contributors to
quantify the percentage of his/her contribution for anony-
mous computing on Caravela network. Thus, these capabili-
ties of the worker and the broker servers implement a secure
environment for GRID computing.

3.2 Application Interface in Caravela platform
The interface for applications of Caravela platform is de-

fined as a collection of functions to manage computing re-
sources and to assign flow-models to the available comput-
ing resources. Applications on the Caravela platform need
to follow the steps below:

1. Initialization of the platform
In the beginning, the application initializes its context
in the Caravela platform. This step creates a local
temporal space for the subsequent management tasks.

2. Reproduction of flow-model(s)
The Application fetches flow-model which may be in a
remote location.

3. Acquisition of processing unit(s)
To assign the flow-model, the application needs to ac-
quire a processing unit that matches the conditions
needed for the flow-model execution. If the application
targets execution in a local processing unit, it queries
directly the local resource. On the other hand, if the
application needs to query the processing units of re-
mote resources, for example when the requirements
for the flow-model execution do not match the speci-
fication of the local processing unit, it sends a query
request to worker or broker servers. If the application
queries the worker, the worker will return its avail-
ability for flow-model execution. In this case, the ap-
plication will send the requests directly to it. If the
server is a broker, it will tell about all the available
processing units it knows. In this case, the applica-
tion will communicate to the broker server to execute
the flow-model. Then the broker server will propagate
the following requests to the worker server using its
routing information.

4. Mapping flow-model(s) to processing unit(s)
The application needs to map the flow-model to the
processing unit reserved in the previous step. In the
current step it will assign a program, I/O buffers and
constant parameter inputs included in the flow-model.
If the targeted processing unit is remote, the applica-
tion exchanges requests with the worker servers.

5. Execution of flow-model(s)
Before the execution in the processing unit starts, in-
put data streams must be initialized. The execution of
the flow-model is called ”firing”, which corresponds to
activating a program in the flow-model and generating
output data.

200

6. Releasing processing unit(s) and flow-model(s)
After the execution of the flow-model, it is unmapped
from the processing unit. Because the flow-model and
the processing unit are not necessary in the next steps,
they are released by the application.

7. Finalization of the platform
Finally, the application needs to be terminated to exit
from the Caravela environment.

The design considerations mentioned above are able to
build a distributed processing platform using the flow-model
framework. Because the flow-model includes enough infor-
mation for independent execution, it performs stream-based
processing without touching the resources in the host ma-
chine. Application in the Caravela platform is able to exe-
cute flow-models in a processing unit through secure execu-
tion mechanisms.

4. IMPLEMENTATION OF CARAVELA
BASED ON GPUS

The Caravela platform has been implemented using GPU
as the processing unit. First, we need to consider the content
of the flow-model.

4.1 Packing flow-model
When GPUs are used as processing units of the Caravela

platform, the flow-model unit includes a pixel shader pro-
gram, textures as the input data streams, constant values
of the shader program as the input constants and the frame
buffers for output of the shader program as places to put
the output data streams.

The flow-model unit needs to include also other important
items related to the requirements for the program execution.
The requirements consist mainly of the program’s language
type, its version and accepted data types, and an assem-
bly version that shows significant differences, such as loop
instruction available on Pixel Shader Model 3.0 or floating-
point-based frame buffers.

We use the name ”pixel” for a unit of the I/O buffer be-
cause the pixel processor processes input data for every pixel
color. For example, a multiplication is performed with two
registers that include ARGB elements as its operands, and
outputs a register formed by ARGB elements.

In conclusion, the flow-model defines the number of pixels
for the I/O data streams, the number of constant parame-
ters, the data type on the I/O data streams, the pixel shader
program and the requirements for the aimed GPU. To give
portability to the flow-model, these items are packed into an
Extensible Markup Language (XML) file. This mechanism
allows the application in a remote computer to fetch just
the XML file and easily execute the flow-model unit.

To help defining the flow-model, we have implemented a
GUI-based tool, called FlowModelCreator, that is available
in the Caravela package.

4.2 Applying GPU to processing unit
The application in the Caravela platform is supported by

the Caravela runtime environment referred in section 3.1,
which is running on the CPU of a commodity computer.
Therefore, the application is a program which transfers and
fires the flow-model unit execution in the GPUs according
to the steps referred in section 3.2. For executing the flow-
model in the GPU we need to define the resource hierarchy in

Graphic card

GPU GPU GPUGraphic card

GPU GPU GPU

Host memoryCPU

System bus

Bus bridge

Peripheral bus

Graphic card

GPU GPU GPU

Machine

Adapter

Shader

Figure 4: Resource hierarchy in a processing unit.

the computer. Figure 4 shows a classification of the resource
hierarchy in a computer. The group composed by the CPU
and peripheral components, such as the host memory and
the graphics boards, is defined as the ”machine”. A graphics
board in the machine is defined as the ”adapter”. A GPU’s
pixel processor on the adapter is defined as the ”shader”. In
summary, a machine may have multiple adapters, and the
adapter may have multiple shaders. The application needs
to get the shader to map the flow-model to be executed on
a pixel processor.

To control the pixel processor we need runtime software.
Our first implementation of the Caravela platform uses Di-
rect3D of the DirectX9 API and OpenGL. These runtimes
provide functions to control the pixel processor. However,
the interface is dedicated for graphics applications. There-
fore, a rectangle plane object must be defined to present the
output data streams of the pixel shader program. The plane
acts as output target for multiple output data streams from
the pixel shader program. However, on VRAM the buffers
are separated into individual memory space. To save the
output data stream, the runtime software fetches the spaces
from the VRAM. According to this technique, a loop of a
flow-model, or the connections of multiple flow-models, can
be implemented with copy operations from the output data
streams to the input data streams.

4.3 The Caravela library
To control the flow-model execution, implicitly controlling

the GPU, the application uses the Caravela library functions
programmed in C language.

The CARAVELA Initialize() function performs the ini-
tialization of one of the graphics runtime specified by the
argument and prepares the context to use the Caravela plat-
form, while CARAVELA Finalize() is called to release those
resources.

The CARAVELA CreateFlowModelFromFile() function is
called to build a flow-model from an XML file. An address
of a flow-model is defined as a URL. Therefore, the function
accesses a flow-model placed in a remote resource by using
the Hypertext Transfer Protocol (HTTP).

The CARAVELA CreateMachine() function is called when
the application needs to define a machine data structure. If
the function returns successfully, the CARAVELA QueryShad-

er() function is called to acquire a shader.

201

After application has prepared a flow-model and a shader,
it can call the CARAVELA MapFlowModelFromShader() func-
tion. This function assigns the program in the flow-model
unit to the pixel shader, allocates the I/O streams to the
VRAM and returns a ”fuse” to be used for triggering the
flow-model execution. After receiving the “fuse”, the CARAV-
ELA FireFlowModel() function sends commands to the pixel
processor to execute the flow-model.

The CARAVELA GetInputData() function prepares an in-
put data stream in the host memory and the VRAM as
texture data that will be input to the pixel processor. This
function returns a buffer pointer for the input data stream
which is used by the application to initialize the input data.
On the other hand, the CARAVELA GetOutputData() function
returns an output data stream allocated in the VRAM.

Using the functions explained above, an application in
the Caravela platform can locally execute a flow-model us-
ing the GPU’s computation power. When the application
needs more shaders, or the shader acquired does not match
the requirements of the flow-model unit, it needs to query
other shaders in the remote worker servers. In this case, the
functions described in the next section are used.

4.4 The remote execution mechanism
The broker and the worker servers are implemented by a

piece of software called CaravelaSnoopServer, runnning on
a remote CPU. The CaravelaSnoopServer can be configured
as a broker or as a worker server.

The requests for CaravelaSnoopServer are received by the
WebServices via Simple Object Access Protocol (SOAP).
The address of the WebServices is specified by a WSDL
file placed in an predefined address of the server. Two ser-
vice functions are provided by the server: putRequest() and
getReply(). The request and the reply exchanged between
the server and an application are formatted in XML. The
putRequest() function saves the XML description into a
file where the CaravelaSnoopServer can pick it. According
to this mechanism, requests are sent by the application. The
getReply() function returns the reply from the CaravelaS-
noopServer after processing the corresponding request. The
application, or other servers, call this function periodically
to receive the reply.

When the application sends a request about shaders to
a broker server, the request is saved in the server and pro-
cessed by the CaravelaSnoopServer. If the server is a worker,
the request will be processed and the getReply() function
is called. If the server is a broker, the request will be for-
warded to the next server until it reaches a worker server.
Then, a reply from the worker will be fetched by the pre-
vious requester. Thus, the reply will be propagated till the
application. When a broker server is invoked in a bridge
between a Wide Area Network (WAN) and a Local Area
Network (LAN), the request and the reply are also able to
be exchanged among the servers connected to the different
networks and the application successfully.

The Caravela library implements the mechanism men-
tioned above to execute the process remotely.

When the application calls the CARAVELA CreateMachine()

function with REMOTE MACHINE or REMOTE BROKER arguments,
which indicates a worker or a broker server respectively, the
function creates a machine structure of remote resources. If
it is a REMOTE MACHINE, the execution steps of the flow-model
follow the same steps as the ones in the local execution. If it

Table 1: Environment for local execution.
CPU AMD Opteron 170 @ 2Ghz

Host memory 2x1GB DDR

GPU MSI NX7300GS

VRAM 256MB DDR2

OS WindowsXP SP2

Graphics API DirectX9c

is a REMOTE BROKER, the application tries to acquire workers
by executing the CARAVELA GetRemoteMachines() function
and by using the broker machine structure. This function
returns all the worker machines that are “seen” by the bro-
ker. Then, the application can select the appropriate worker
machines and can map the flow-model(s) into the selected
worker(s). After this step the application is able to follow
the steps appropriate for local execution.

Requests and replies from and to the worker server are di-
rectly exchanged if the application selected a worker server.
On the other hand, if it is a broker server, all the requests
and replies are exchanged via the broker server. This mech-
anism has the advantage of being transparent for the appli-
cations.

5. EXPERIMENTAL EXAMPLE
Now, let us examine an experimental example that con-

sists in a two dimensional Finite Impulse Response (2D FIR)
filter algorithm. The 2D FIR filter is mainly used to perform
image or video processing, like sharpening, or edge detec-
tion of an image/frame. The type of filtering is changed by
using different taps values in the coefficient matrix, where
common dimensions are 3x3 or 7x7. Here, we illustrate the
programming of a filter with a 3x3 coefficient matrix:

yk,l =

2
X

i=0

2
X

j=0

hi,jxk+i,l+j (1)

h is the 3x3 coefficient matrix and x is the input matrix,
size MxN, with k and l being integers in the range from 0
to M-3 and to N-3, respectively.

The calculation steps followed in this example are shown
in Figure 5(a) for M = N = 4. The first step consists in
multiplying each element of the sub-matrix (window) with
corners in x00 and x22 with the correspondent elements of
the coefficient matrix, and then adding all of them to get the
output as the result y00. This arithmetic operation is usually
called Multiply and ACcumulate (MAC). In the second step,
the input matrix’ window is shifted to the right, and this
step is repeated with the output going to y01. Repeating
this operation for every element of the input matrix, except
for the elements belonging to the last two columns or rows,
the application calculates the result of applying the filter to
the input matrix.

Figure 5(b) shows the program to be embedded into a
flow-model. This program is written in the DirectX’ HLSL
whose syntax is very similar to the C language. To be fit
into the GPU’s hardware architecture, the program assumes
that M equals to 4×N due to the register characteristics,
but it can be generalized.

The main() function is the routine executed in the GPU.
We need to be careful about the arguments of the function,
because the input to the pixel processor are the coordinates

202

(a) 2D FIR filter with 4x4 input matrix (b) Program embedded in flow-model

sampler s0;
float4x3 c;

void main(
 in float2 t0: TEXCOORD0, // dcl t0.xy

out float4 oC0: COLOR0)
{

 float inv = 1/c[3][0];
 float4 input_row0;
 float4 input_row1;

 int i,j;
 float2 coord = t0;
 oC0 = 0;
 for(i=0;i<3;i++,coord.y+=inv){

input_row0 = tex2D(s0, coord);
coord.x += inv;
input_row1 = tex2D(s0, coord);
oC0.x += (input_row0.x * c[0][i] + input_row0.y * c[1][i] + input_row0.z * c[2][i]);
oC0.y += (input_row0.y * c[0][i] + input_row0.z * c[1][i] + input_row0.w * c[2][i]);
oC0.z += (input_row0.z * c[0][i] + input_row0.w * c[1][i] + input_row1.x * c[2][i]);
oC0.w += (input_row0.w * c[0][i] + input_row1.x * c[1][i] + input_row1.y * c[2][i]);
coord.x= t0.x;

 }

(1)

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3

Coefficient matrix

Input matrix
MAC

MAC

MAC

h0,0 h0,1 h0,2

h1,0 h1,1 h1,2

h2,0 h2,1 h2,2

MAC

y0,0y0,1 y1,0 y1,1

Figure 5: The calculation steps and the program of a flow-model corresponding to a 2D FIR filter.

of the texture’s pixels (t0). The output contains the pixel
colors on the buffer for the screen (oC0). This function will
be executed in parallel on the multiple pixel processors be-
cause the pixel values are independent, and outputs a pixel
color by each input texture’s coordinate.

The code shown in Figure 5(b)(1) corresponding to the
calculation of equation (1), and accesses not sequentially
the texture data by adding the offset inv to coord for each
texture pixel. The coord is the 2D address of the texture
(i.e. input matrix) and the tex2D function fetches the tex-
ture values. Therefore, the input data of this application is
randomly accessed.

The values of the texture returned by tex2D function (i.e.
the input matrix), the output oC0 and the coefficient matrix
c include four floating point values and calculates four ele-
ments of the output matrix oC0. Thus, the pixel processor
also performs parallel processing.

5.1 A local execution example
The code using the runtime functions of the Caravela for

local execution of the flow-model of 2D FIR filter is shown in
Figure 6(a). At the beginning, the machine is created in step
(1). The flow-model will be reproduced in step (2), from a
path to an XML file defined in the FLOWMODEL FILE macro.
Using the machine structure, step (3) queries a shader from
the local machine. If it is successful, the flow-model will
be mapped to the shader in step (4). Here the input data
stream is initialized as shown in step (5). After initialization,
the flow-model will be fired in step (6). This function will
block the subsequent execution until its execution has been
finished. Therefore, the code for getting the output in step
(7) is executed right after the firing. Finally, the flow-model
and the shader are released in step (8).

Thus, the interface for executing the flow-model execution
in the local machine is simple and transparent. Therefore,
the programmer can write application for the Caravela plat-
form without accounting for the details of the processing
unit which is used.

5.2 A remote execution example
There exist two ways for remote execution of the flow-

model. One of them requests a processing unit to a spe-

(b) Caravela runtime code for remtoe execution

CARAVELA_Initialize(RUNTIME_DIRECTX9);
CARAVELA_CreateMachine(LOCAL_MACHINE,NULL,&machine);
CARAVELA_CreateFlowModelFromFile(FLOWMODEL_FILE,NULL,&flowmodel,&flowmodel_err);
CARAVELA_QueryShader(machine,&flowmodel->ShaderCondition, &shader);
CARAVELA_MapFlowModelIntoShader(shader,flowmodel,&compile_err,&fuse);
CARAVELA_GetInputData(flowmodel,0,&input_matrix);
for(i=0;i<NUMDATA;i++)

for(j=0;j<NUMDATA*4;j++)
GETFLOAT32_2D(input_matrix,NUMDATA,i,j) = input_martix_orig[i][j];

CARAVELA_FireFlowModel(fuse);
CARAVELA_GetOutputData(flowmodel,0,&output_matrix);
printf("output[%u][%u]=%f\n", NUMDATA-3,NUMDATA*4-3,

GETFLOAT32_2D(output_matrix,NUMDATA,NUMDATA-3,NUMDATA*4-3));
CARAVELA_UnmapFlowModelFromShader(flowmodel);
CARAVELA_ReleaseFlowModel(flowmodel);
CARAVELA_ReleaseMachine(machine);
CARAVELA_Finalize(RUNTIME_DIRECTX9);

(a) Caravela runtime code for local execution

CARAVELA_Initialize(RUNTIME_DIRECTX9);
#ifdef REMOTE_IS_WORKER
CARAVELA_CreateMachine(REMOTE_MACHINE, URL, &machine);
#else // REMOTE_IS BROKER
CARAVELA_CreateMachine(REMOTE_BROKER, URL, &machine);
CARAVELA_GetRemoteMachines(machine,&num_machines,&worker_machines);
#endif
... the rest is the same way as the local execution.

(1)
(2)

(3)
(4)

(5)

(6)

(7)

(8)

(10)

(9)

Figure 6: An example of application code on the
Caravela platform for performing local and remote
flow-model execution.

cific worker server as shown in step (9) of Figure 6(b). In
this case, a remote machine is created as REMOTE MACHINE

with the URL for the remote worker. All the processes, such
as querying shaders and mapping the flow-model, are per-
formed by the machine structure returned by CARAVELA Cre-

ateMachine(). On the other hand, when the request for ac-
quiring a processing unit is performed via a broker server, as
shown in step (10) of Figure 6(b), the machine structure will
be created by passing REMOTE BROKER to the CARAVELA Crea-

teMachine() function with the URL for a remote broker server,
and the machine structure returned by the function will be
passed to the CARAVELA GetRemoteMachines() function. Fi-
nally, the available machines returned by the function will
be used by the application, but the communication itself will
be performed via the broker server.

In both cases, the processing steps after machine creation
are the same as those presented in the description of local
execution in Figure 6(a). Thus, it is easy for the application
designer to migrate it from a local execution situation to a

203

remote execution situation by changing only a small part of
the code for machine creation.

5.3 Performance Considerations
To evaluate the performance of the local execution of the

FIR filter depicted in Figure 5(b), we measured execution
times when using the computing environment referred in Ta-
ble 1, with 100 iterations on a 1024x1024 pixel input matrix
(i.e. 1024x4096 floating point values at the input of the 2D
FIR filter). In order to have a comparison reference, we have
also implemented the 2D FIR filter on the CPU side. The
input matrix size and the number of iterations are the same
in both experiments.

The calculation time on the Caravela platform is 10.6 s,
which compares with 23.5 s on the CPU-based version. The
Caravela platform achieves about 2.2 times higher perfor-
mance than the host CPU. Thus, we can conclude that, by
providing a secure environment and a transparent interface
for programmers and resource contributors, the current im-
plementation of the Caravela platform smoothly assigns the
flow-model to the pixel processor on a GPU for example. It
also implements a high performance stream-based comput-
ing environment.

6. CONCLUSIONS
This paper has described the Caravela platform where

applications can be invoked by the secure execution mecha-
nism with the proposed flow-model. Moreover, it presented
the design and the implementation of the Caravela platform
using GPUs as its processing unit. The application inter-
face to the Caravela platform is transparent to program the
execution steps for the local and the remote execution mech-
anisms.

An experimental example running in the Caravela plat-
form has also been shown. According to the obtained results,
it can be concluded that the Caravela platform, namely un-
der local execution, is able to significantly improve the per-
formance of stream-based computation, when compared to
CPU-based execution.

Regarding the evolution of the Caravela platform, it is
planed to implement a pipelined execution mechanism of
the flow-models, called meta-pipeline, which will distribute
the flow-models in the Caravela network. This mechanism
will create a virtual meta network of flow-model units and
will execute them with data received at the input of the
virtual network.

7. ACKNOWLEDGEMENTS
This work is partially supported by the Portuguese Foun-

dation for Science and Technology (FCT).

8. REFERENCES
[1] Caravela homepage. http://www.caravela-gpu.org/.

[2] DirectX homepage.
http://www.microsoft.com/directx.

[3] Globus alliance. http://www.globus.org/.

[4] Gridlab resource management system
http://www.gridlab.org/workpackages/wp-9/.

[5] D. Bernholdt, S. Bharathi, and et al. The Earth
System Grid: Supporting the Next Generation of
Climate Modeling Research. Proceedings of the IEEE,
93:485–495, 2005.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: stream computing on graphics hardware.
ACM Trans. Graph., 23(3):777–786, 2004.

[7] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover.
GPU Cluster for High Performance Computing. In SC
’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 47, Washington, DC, USA,
2004. IEEE Computer Society.

[8] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL
Protocol Version 3.0. Netscape communications
corporation, 1996.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. In Proceedings of
the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10) San Francisco,
2001.

[10] W. Grosso. Java RMI. O’Reilly Media, 2001.

[11] R. Jacob, C. Schafer, I. Foster, M. Tobis, and
J. Anderson. Computational Design and Performance
of the Fast Ocean Atmosphere Model, Version One. In
2001 Intl Conference on Computational Science, 2001.

[12] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A
Grid-Enabled Implementation of the Message Passing
Interface. Journal of Parallel and Distributed
Computing, 2003.

[13] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL
Shading Language. 3Dlabs, Inc. Ltd., 2006.

[14] P. Kondratieva, J. Krüger, and R. Westermann. The
Application of GPU Particle Tracing to Diffusion
Tensor Field Visualization. In IEEE Visualization,
page 10, 2005.

[15] S. Liang. Java Native Interface: Programmer’s Guide
and Specification. Addison-Wesley Professional, first
edition, 2001.

[16] K. Moreland and E. Angel. The FFT on a GPU. In
HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 112–119, 2003.

[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell. A Survey
of General-Purpose Computation on Graphics
Hardware. In Eurographics 2005, State of the Art
Reports, pages 21–51, Aug. 2005.

[18] D. A. Reed, C. L. Mendes, C. da Lu, I. Foster, and
C. Kesselman. The Grid 2: Blueprint for a New
Computing Infrastructure - Application Tuning and
Adaptation. Morgan Kaufman, 2003.

204

