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ABSTRACT
Community analysis algorithm proposed by Clauset, New-
man, and Moore (CNM algorithm) finds community struc-
ture in social networks. Unfortunately, CNM algorithm does
not scale well and its use is practically limited to networks
whose sizes are up to 500,000 nodes. The paper identifies
that this inefficiency is caused from merging communities in
unbalanced manner. The paper introduces three kinds of
metrics (consolidation ratio) to control the process of com-
munity analysis trying to balance the sizes of the commu-
nities being merged. Three flavors of CNM algorithms are
built incorporating those metrics. The proposed techniques
are tested using data sets obtained from existing social net-
working service that hosts 5.5 million users. All the meth-
ods exhibit dramatic improvement of execution efficiency
in comparison with the original CNM algorithm and shows
high scalability. The fastest method processes a network
with 1 million nodes in 5 minutes and a network with 4
million nodes in 35 minutes, respectively. Another one pro-
cesses a network with 500,000 nodes in 50 minutes (7 times
faster than the original algorithm), finds community struc-
tures that has improved modularity, and scales to a network
with 5.5 million.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining; G.2.2 [Graph
Theory]: Graph algorithms; H.3 [Information storage
and retrieval]: Information networks

Keywords
Community analysis, clustering, social networking service

1. INTRODUCTION
Research of complex networks attracts interests of broad

scientific disciplines. Examples of complex networks include
World Wide Web (WWW), citation networks, human ac-
tivities on the Internet (e.g., exchange of emails, social net-
working system, consumption behavior on the e-commerce,
and Web-log track-back network), physical phenomena, and
biochemical networks among many others.

Finding community structure in networks is an important
first step to grasp inherent complex structure of social net-
works. Due to ever expanding use of digital networks, traces
of global human activities have become available in digital
forms. There are many research activities that attempt to

define the notion of communities and propose community
analysis algorithms [8, 7, 9, 4, 14, 10, 15, 11, 3, 13, 2, 12].

We implemented a fast community analysis algorithm pro-
posed by Clauset, Newman, and Moore [3] (CNM algorithm)
and applied it to analyze various subsets of an acquaintance
relationship network obtained from a social networking sys-
tem (SNS). The algorithm performs well for a mid-scale sub-
set of the network that consists of less than 500,000 users.
However, the algorithm was incapable to analyze larger net-
works.

We observed that merging communities of unbalanced
sizes has great impact on computational efficiency of CNM
algorithm. From this observation it was expected that merg-
ing communities in a balanced manner will improve the ef-
ficiency of the algorithm. In this paper, we introduce the
notion of consolidation ratio, which is a measure of balanced-
ness of the community pairs, and use it as well as modularity

as means to find next pair of communities to merge into a
larger one.

The paper presents three types of consolidation ratio. Three
flavors of CNM algorithms, each of which incorporates one
of those consolidation ratio, were built. They are imple-
mented as a single-threaded Java program and were tested
using as data sets various subsets of a SNS network that
hosts 5.5 million users. The fastest program finds commu-
nity structure in a network of 1 million nodes in 5 minutes.
Computational efficiency and scalability of the proposed al-
gorithm, and quality of the generated community structures
are discussed in detail.

The structure of the paper is as follows: Section 2 com-
pares our work with other related research activities, Sec-
tion 3 explains the CNM algorithm and identifies the source
of its performance inefficiency, Section 4 introduces a heuris-
tics that makes use of consolidation ratio, Section 5 evaluates
the proposal, and Section 6 concludes the paper.

2. RELATED WORK
Analysis of community structures of social and cyber net-

works is an effort to find cyber-communities. We believe
that such found cyber-communities support reasoning about
structure, nature, and dynamics of real-communities. Many
community analysis techniques have been proposed by re-
searchers of broad discipline. There are two types of algo-
rithms that are designed for this purpose. One type takes
a graph and one or more seed node(s), and gives a com-
munity structure that includes the seed node(s) [8, 4, 14,
10]. This type of community analysis algorithm is widely
used for analysis of WWW link structure. In WWW link
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analysis, Web pages or Web sites are modeled as nodes and
hyper-links are treated as edges, forming a huge directed
graph.

‘HITS’ algorithm [8, 7] proposed by Kleinberg focuses on
two types of characteristic structures called authorities and
hubs that are defined in mutually recursive manner. A Web
page given a higher authority value is regarded as an author-
itative page. It is referenced from many hub pages which in
turn collect many links to authoritative pages. HITS algo-
rithm assigns an authority value and a hub value to each
Web page in an iterative process. Link structures formed
by authorities and hubs can be understood as cores of inter-
related community structures.

Dean and Henzinger used HITS algorithm to build a new
Web search engine called ‘Companion’ [4]. Unlike standard
keyword-based search engines, Companion takes Web pages
of interest for the user and performs a Web link analysis
to find a set of Web pages whose contents are closely re-
lated with each other. Toyoda and Kitsuregawa improved
the performance of Companion’s link analysis and proposed
an improved version called ‘Companion–’. Companion– vi-
sually addresses internal structure of the Web community
[14].

Another type of community analysis algorithms takes a
graph and divide it into a set of densely connected subgraphs
[8, 9, 6, 5, 15, 11, 3, 2, 12]. Various notions of communi-
ties have been proposed. Some work “defines” communi-
ties by the algorithm. Kumar and others formulated graph
partition problem as finding minimum complete bipartite
subgraphs. Flake and others gave a concise definition of
cyber-communities based on graph-theoretic foundation [6,
5] and proved that community analysis falls into maximum-
flow, minimum-cut problem. Newman and Girvan proposed
a measure called modularity, which is a quantitative mea-
sure of quality of graph partitioning [11]. A fast algorithm
that finds a community structure in a bottom-up manner,
greedily maximizing on modularity was presented in [3]. Our
research is based on this work.

3. CNM ALGORITHM
Newman and Girvan attempt to measure the quality of

network clustering by means of modularity [11]. Their algo-
rithm (CNM algorithm) is a bottom-up greedy optimization
that continuously finds and merges pair of communities try-
ing to maximize modularity of the community structure [3].
This section briefly presents the notion of modularity, an
outline of CNM algorithm, and addresses its computational
inefficiency.

3.1 Modularity
Modularity of network’s community structure is a quan-

titative measure of the quality of clusterings (i.e., a graph
partitioned into a set of subgraphs) [11]. It can be used
to compare the quality of different clusterings of the same
network. It is desirable that members of a community have
a dense intra-community links and small number of links
connected to members of other communities. This idea is
embedded in the formulation of modularity as explained sub-
sequently.

Let G = (V, E) be a undirected graph that represents a
social network. For example, an acquaintance network of a
SNS can be represented by (U, F ), where U is a set of users
and F represents friendship (if users u1 and u2 are friends

then (u1, u2) ∈ F )). Adjacency matrix A is another way to
represent edges:

Avw =

(

1 (v, w) ∈ E

0 otherwise.

It can be used to define the number of total edges (m =
P

v,w∈V
Avw/2) and the degree of a node v (kv =

P

w∈V
Avw).

A clustering (C) of G into a set of communities is a parti-
tioning of nodes V into its subsets:

C = {c1, c2, . . .} , ci ∩ cj = ∅ (i 6= j),
[

ci∈C

ci = V

Proportion of edges that link members of communities ci

and cj in the whole graph is given by eij . Likewise propor-
tion of ci’s edges in the whole graph is given by ai:

eij =
X

v∈ci,w∈cj

Avw/2m

ai =
X

v∈ci

kv/2m.

Definition of modularity as given below states that com-
munities in a good clustering of a graph G has dense intra-
community links and less inter-community links:

Q(G, C) =
X

i

(eii − a2

i ).

3.2 Algorithm
Newman and Girvan presented a greedy community anal-

ysis algorithm that optimize on modularity. Later, Clauset,
Newman, and Moore proposed a more efficient algorithm
(CNM algorithm) that works the same as the former pro-
posal in principle but incorporates sophisticated data struc-
tures [3].

The algorithm starts from a totally unclustered situation,
where each node in a graph forms a singleton community.
Then computed is for each pair of communities, expected
improvement of modularity when they merge:

∆QC
ci,cj

= Q(G, C − ci − cj + (ci ∪ cj)) − Q(G, C).

The algorithm repeatedly chooses a community pair that
gives the maximum ∆Q value and merges them into a new
community (Algorithm 1). During the merge process, ∆Q
values of the communities that adjoin the new community
needs to be updated. Because the number of community
pairs in the clustering decreases monotonously, the algo-
rithm eventually stops when there remains no community
pairs to merge.

CNM algorithm uses two data-structures to find a com-
munity pair with maximum ∆Q value: (1) a balanced binary
tree (or heap tree) of community pairs (ci, cj) and (2) a max
heap (or priority heap) of community pairs that is sorted by
∆QC

ci,cj
. They achieve logarithmic order of computational

cost for removal and insertion of a community pair, and find-
ing a community pair (ci, cj) with maximum ∆Q value for
a given ci. For each community, the community pair with
maximum ∆Q value are stored in a system-wide max heap.

By using these data structures, search for the community
pair with the largest ∆Q value is performed in two stages.
Firstly, each community searches in its max heap for the pair
with the largest ∆Q among its community pairs and stores it
in a system-wide max heap that is used in the second stage.
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Algorithm 1 An outline of the algorithm proposed by
Clauset et al [3]

C := {v ∈ V |{v}};

function join(ci, cj) {
return C − ci − cj + (ci ∪ cj);
}

procedure updateDeltaQ() {
∀ci, cj ∈ C.
∆QC

i,j := Q(G, join(ci, cj)) − Q(G,C);
}

while (true) {
updateDeltaQ();
Find (ci, cj) ∈ C2 that has maximum ∆QC

ci,cj
.

if (max(∆QC
ci,cj

< 0) break;

C:= join(ci, cj);
}

Elements in the system-wide max heap are candidates of the
community pair who has system-wide maximum ∆Q value.
When all the candidates are stored in the system-wide max
heap, the pair with system-wide maximum ∆Q value can be
easily found.

Newman and Girvan showed that update of ∆QC
ci,cj

for

a community pair (ci, cj) needs to be performed only when
either ci or cj merges. Also update of ∆QC

ci,cj
is a simple

arithmetics using its neighbors’ past ∆Q values. Clauset
and others have applied this algorithm to several real world
social networks including purchase transactions offered by
Amazon which contains more than 400,000 nodes and 2 mil-
lion edges.1

3.3 Performance inefficiency
The authors have programed CNM algorithm and attempted

to analyze an acquaintance network of an SNS called “mixi2”
that hosted about one million users in October 2005. The
experiment was performed on a PC (Intel Xeon 2.80GHz,
L2 cache = 2MB, Memory = 4GB). However, in spite of the
good scalability as advertised in [3], the authors have found
it was impractical to analyze this mega-scale social network
using CNM algorithm. The experiment was stopped after
a week when less than 10% of the whole analysis was fin-
ished. Yuta and others has conducted similar experiment on
earlier mixi network on Linux running on Pentium IV 2.8
GHz with 1GB memory and states that community analysis
of an SNS network of 360,000 users using CNM algorithm
took six hours [16, 17].

To figure out the performance bottleneck of CNM algo-
rithm, we conducted community analysis on a various sub-
sets of mixi SNS network. The mixi SNS gives each user an
ID number starting from “1”, in the order of user registra-
tion. Therefore, the mixi SNS network can be represented
by a graph Gmixi = (U, F ), where U = {1, 2, . . .} is the set
of user IDs and F ⊂ U ×U is a set of acquaintance relation-
ship, namely (i, j) ∈ F if and only if two users identified by
i and j are friends. We built a subset of mixi acquaintance

1http://www.amazon.com/
2mixi (http://mixi.jp/) is the largest invitation-based SNS
in Japan.
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Figure 1: Analysis time required for networks with
various scales (100K, 200K, . . . , 500K nodes). Each
bar represents time required for merging 10,000
community pairs.

graph Gn
mixi as follows:

Gn
mixi = (U(n), F ∩ (U(n) × U(n)))

where U(n) = {u ∈ U |u ≤ n}

Figure 1 illustrates time required for community analy-
sis of various subsets of the social network: G100K

mixi , G200K
mixi ,

G300K
mixi , G400K

mixi , and G500K
mixi . Each bar of the graph depicts

time required to perform 10,000 merges of community pairs.
For example, in case of G500K

mixi (black bars), 427,794 merges
are performed and the third 10,000 merges took about 1,600
seconds.

For each data set, most of the computation time is con-
sumed for the first half of the merging process and computa-
tion time decreases dramatically for the latter half. For ex-
ample, in case of G500K

mixi , merging 10,000 communities takes
less than 200 seconds after 250,000 communities are merged.

The gross area of each pattern is the elapsed time of re-
spective subset of the network (Elapsed time for Gn

mixi is
compared with our proposal in Figure 5 on page 5). In this
experiment, we can approximate the elapsed time for anal-
ysis of Gn

mixi by T (n) ≈ 1.5 · 10−8x2.13±0.104 .
[3] estimates the computational complexity of CNM al-

gorithm to be O(md log n), where n and m are numbers of
nodes and edges, respectively, and d is the height of dendro-

gram3. It also discusses in a sparse network m and d can be
approximate by n and log n, respectively and that compu-
tational complexity will be O(n log2 n) for social networks.
This discussion and the above mentioned super quadratic
computational cost observed in our experiment contradict.
Investigation of the structure of the dendrogram suggests
that d ≈ log n does not hold for the analysis of mixi SNS
network.

Then the authors carefully observed a merge logs that
record how community pairs are merged into larger ones.
The merge logs suggested that among huge number of com-
munities only a small portions are growing fast, merging

3A dendrogram is a binary tree that represents a history of
merge process. If a pair of nodes (ci, cj) are merged into a
new community ck, the dendrogram for ck will be a binary
tree whose subtrees are dendrograms for ci and cj .
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Figure 2: Consolidation ratio of each merge step
illustrated in a partially log-scale chart.

in many tiny communities. Because of this phenomenon, a
huge unbalanced dendrogram was constructed.

This phenomenon can be clearly seen in Figure 2 which
presents unbalancedness of merge steps are through out the
progress of community analysis for G500K

mixi . For this pur-
pose, we have defined the notion of consolidation ratio of
community merge, which is defined as follows:

ratio(ci, cj) = min(|ci|/|cj |, |cj |/|ci|).

Figure 2 plots, for n-th merge step, ck := join(ci, cj),
(n, ratio(ci, cj)), where the size of a community (|c|) is mea-
sured in terms of the number of its links to other commu-
nities. In this figure, we can see growth of some eight large
communities in the first half of the community analysis. We
can conclude that unbalanced growth of large communities
is the primary cause of performance degradation when CNM
algorithm is applied to our dataset.

Unbalanced merging process, makes the height of the den-
drogram grow more or less proportionally to its size and
leads to degrade the computational efficiency to O(n2 log n).

4. ALGORITHM
In the previous section, we have seen the cause of the in-

efficiency of CNM algorithm. In this section, we present a
data structure and three types of heuristics that dramati-
cally improve computational efficiency of CNM algorithm.

4.1 Data structure
In CNM algorithm, heavy operations are performed when

it finds for the community pair that has the maximum ∆Q
value and when merging communities. We have replaced
balanced binary trees and max heaps, originally suggested
in [3] by a doubly-linked list that is sorted in the order of
community ID.

Each community ci in our system has a data structure to
store references to neighboring communities which is repre-
sented by a list of pairs of communities (see Figure 3). The
list is sorted by the order of Community ID. For example,
a community c1 that links to communities c2, c3, c4, c5,
. . . is represented by a community object that has a list of
community pairs {(1, 2), (1, 3), (1, 4), (1, 5), . . .}. A commu-
nity pair has references to the communities it belongs to.

C
1

C
5

(1, 2) (1, 3) (1, 4) (1, 5)

(5, 1) (5, 2) (5, 3) (5, 6)

C
2

C
3

C
4

C
6

max   Q ismax   Q is
Figure 3: Our implementation of communities. A
community maintains a link to its neighboring com-
munities in a list of community pairs and a pair that
has maximum ∆Q value.max   Q is

C
7 (7, 2) (7, 3) (7, 4) (7, 6)

C
2

C
3

C
4

C
6

Figure 4: Merge of c1 and c5 in Figure 3 produced a
new community c7. During the merge, community
pairs for the merged updating their ∆Q values.

For example, in Figure 3, community pair (c1, c2) has links
pointing at communities c1 and c2. Merging two commu-
nities effectively is a process of merging their community
pairs, eliminating duplicates and updating their ∆Q values.
By the use of sorted lists, merging can be accomplished in
linear order to the number of community pairs.

Similarly to [3], each community nominates its largest

community pair (the pair in its community pair list that has
the largest ∆Q value) to be stored in the system-wide max
heap. This technique allows for efficient retrieval of maxi-

mum community pair (the pair of communities that has the
largest ∆Q value, system-wide). For this purpose, each com-
munity maintains a link to the largest pair of communities
among members of its list. Figure 3 marks the largest com-
munity pair of communities by black stars (⋆’s) and links to
the largest community pairs by “max ∆Q is” links. When
two communities merge, the “max ∆Q is” link for the new
community can simply be found because anyway we need to
scan all the community pairs to merge them (Figure 4).

The use of “max ∆Q is” link, however, introduces an
unpleasant problem. When communities ci and cj merge
and ∆Q value of community pair p = (ci, ck) is updated, we
need to maintain the integrity of ck such that its “max ∆Q
is” link points to the truly largest community pair in ck’s
list.

• If p is not the largest community pair of ck (or more
casually p is not marked by a black star) and its ∆Q
value decreases, nothing is needed.

4



• If p is not the largest community pair of ck and its ∆Q
value increases, we need to compare it with ck’s ∆Q.
If the updated value is larger, the “max ∆Q is” link
is arranged to point to p (or more casually, we remove
a black star from ck’s former largest community pair
and put it to p).

• If p is ck’s largest community pair and its ∆Q value
increases, nothing is needed.

• (The Worst case) If p is ck’s largest community pair
and its ∆Q value decreases, we do not have a conve-
nient means to tell if it remains the largest or not. In
this case, we scan all the community pairs of ck and
find the largest one.

The reader may fear a scenario, where the last case is
taken most of the time. However, we believe it is not the
case. The ∆Q quantity for the community pairs depends
on the number of neighboring communities that those pair
have. If the search process for community structure follows
the preferential attachment law [1], it is expected that there
exists a heavily linked pair in each community’s list and its
∆Q is superior to those of other pairs’. In such situation
it would be very difficult for others to compete with the
largest community pair. If this optimistic anticipation is
guaranteed, the update of ∆Q is performed in a unit cost
for each community pair.

In summary, arranging a set of community pairs in a list
allows for fast merging cost (O(m) time), fast retrieval of the
community pair with maximum ∆Q value (O(1) time), and
hopefully fast updates of ∆Q values for the community pairs
(O(m) time), where m stands for the number of community
pairs.

4.2 Heuristics based on consolidation ratio
In Subsection 3.3, we have seen that the performance of

the algorithm degraded from unbalanced growth of large
communities. If, in certain way, we could control the growth
of communities so that they grow in a balanced manner, it
is anticipated that the performance of the algorithm will im-
prove remarkably. To turn this idea into practice, we tested
three flavors of CNM algorithm that incorporate heuristics
based on three kinds of consolidation ratio.

Algorithm 2 Outline of the proposed algorithm. The up-
dateDeltaQ function remains the same as Algorithm 1.

function ratio(ci, cj){
return min(|ci|/|cj |, |cj |/|ci|);
}

while (true) {
updateDeltaQ();
Find (ci, cj) ∈ C2

that has maximum ∆QC
ci,cj

· ratio(ci, cj).

if (max(∆QC
ci,cj

< 0) break;

C:= join(ci, cj);
}

The structure of the algorithm remains the same as Al-
gorithm 1. The only difference resides in the valuation ba-
sis of community pairs. Algorithm 1 uses ∆QC

ci,cj
while

we use combination of both ∆QC
ci,cj

and consolidation ratio
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(ratio(ci, cj)). This heuristics is designed so that it sup-
presses unbalanced merge of communities and leads to bal-
anced growth of communities.

So far we have not defined how we measure the size of a
community (|ci|). We have defined three different valuation
of community size and developed three kinds of heuristics.

The first heuristics (HE ) measures the community size in
terms of its degree (i.e., the number of edges linked to its
neighboring communities or the length of its list of com-
munity pairs). This heuristics was induced from the fact
that the cost for merging communities is proportional to
the number of their community pairs (see page 3).

The second heuristics (HE’ ) was found accidentally when
we were trying to implement HE. As we have noted, the
choice of the pair with largest ∆Q value is two staged. For
the first stage (selection of a candidate community pair),
HE’ ignores the size of a community and thus behaves equiv-
alent to CNM algorithm. On the other hand, for the second
stage, where candidates pairs of maximum ∆Q is searched
for, it measures community size in terms of its degree, like
HE. This weird heuristics, however, works faster than CNM
algorithm and also it finds better clustering with respect to
modularity.

The last heuristics (HN ) measures the size of community
in terms of the number of its members.

5. EVALUATION
This section presents results obtained from running four

flavors of CNM algorithm, the original one proposed in [3]
and three variations of Algorithm 2 that incorporate our
heuristics (namely, HE, HE’, and HN).

Four flavors of CNM algorithm, including the original
one, are implemented using Java platform: Java 5.0, Java
HotSpot Server VM (build 1.5.0 06 b-05) with 3.2GB heap
size. The test was performed on a PC (CPU = Intel Xeon
2.80GHz, L2 Cache = 2MB, RAM = 4GB) running Linux
(Red Hat Linux version 2.6.16). Though Xeon comes with
multiple cores, our Java program is single-threaded and makes
use of no parallelism.

5.1 Execution Efficiency
Use of heuristics dramatically accelerates execution of com-

munity analysis. We have applied four implementations to
analysis of data sets Gn

mixi, (n ∈ {50K, 100K, . . . , 1000K}).
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Table 1: Elapsed time (seconds)
200K 400K 600K 800K 1M

Original 2,530 11,800 NA NA NA
HE 129 408 814 1470 2170
HE’ 511 2,130 4,090 7,410 10,400
NE 25.7 70.0 123 190 268

Results are presented in Figure 5 and Table 1. The largest
data set the original algorithm (Clauset+ (2004)) was pos-
sible to analyse is G500K

mixi . It took about 5.9 hours. The
fastest heuristics was NE. It processes G1M

mixi in less than
five minutes. Other heuristics, HE and HE’, processes G1M

mixi

in about 36 minutes and 3 hours, respectively. They are
slower than HE but still are practically usable, concerning
the size of data sets.

5.2 Consolidation Ratio
Improvement of consolidation ratio of merged communi-

ties can explain the speed-up that we have seen previously.
Figure 6: (a)-(c) demonstrates consolidation ratios of merges
of community pairs. In Figure 2, we have observed frequent
unbalanced merges especially in the first half of community
analysis. Consolidation ratios were some 1:1,000 to 1:10,000.
In heuristics NE, the fastest one, for the most part of analy-
sis consolidation ratios are kept better than 1:100 and most
of the unbalanced merging are performed in the last stage
of analysis.

We can observe similar phase-shift in heuristics HE but
the phase-shift starts earlier than NE and phase transition
is rather moderate.

In heuristics HE’, it is difficult to observe a phase-shift
that we have observed for NE and HE. Consolidation ra-
tios degrade slow as community analysis progresses. As we
will see shortly, this slow degradation of consolidation ratio
seems to be a key issue in retaining higher modularity while
achieving practical computational efficiency.

As we mentioned earlier, we can observe growth of sev-
eral large communities in the earlier stage of the original
algorithm (see Figure 2). In contrast, we can see many
thin curves running from upper-left to central-right in Fig-
ure 6-(c). It can be interpreted that multiple communities
of different sizes are growing in a concurrent manner as com-
munity analysis progresses. We believe concurrent growth
of various communities gives more natural explanation to
the community growth dynamics of a real SNS than than
sequential development of large communities.

The impact of the heuristics on improvement of analysis
time can clearly be seen in Figure 7: (a)-(c). These charts
presents time required for merging 10,000 community pairs.
The patterns painted on bars illustrate data sets of different
scales (Gn

mixi, n ∈ {200K, 400K, 600K, 800K, 1000K}).
Unlike Figure 1, computation cost is kept much cheaper

up to the point when computational cost steeply increases.
The black bars stand for an experiment performed using
G1M

mixi. In this experiment, heuristics NE merges 10,000 com-
munities in less than 7 seconds for the first 760K merges of
communities among 870K total merges. It processes the
heaviest part of the computation in less than 25 seconds,
which is much smaller than heaviest computation cost per-
formed in other heuristics, not to mention the original algo-
rithm.

(a) HE (#edge ratio)

(b) HE’ (#edge ratio with a bug)

(c) NE (#node ratio)

Figure 6: Consolidation ratio observed during anal-
ysis of G500K

mixi .
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Figure 7: Analysis time required for networks of
various scales. Each bar represents time required
for merging 10,000 community pairs.
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Figure 8: Modularity of community structures re-
sulted from community analysis performed on vari-
ous scales.

Table 2: Modularity
100K 400K 700K 1M

Original 3.13 · 1011 6.08 · 1012 NA NA
HE 2.61 · 1011 4.74 · 1012 1.38 · 1013 2.63 · 1013

HE’ 3.38 · 1011 6.72 · 1012 2.02 · 1013 3.98 · 1013

NE 2.66 · 1011 4.85 · 1012 1.39 · 1013 2.72 · 1013

HE heuristics merges 10,000 communities in less than 5
seconds for the first 560K merges among 870K total merges.
In the computationally heavy part, it takes 60-130 seconds
per 10,000 merges.

Merge cost of HE’ heuristics is much higher than those
of HE and NE. In the computationally heavy part, it takes
100-650 seconds per 10,000 merges.

5.3 Modularity
It is our concern that use of heuristics reduces modularity

of the resulting community structure. Figure 8 and Table 2
presents modularity of the community structures obtained
from the experiments. The vertical shaft is Q ·m2, where Q
is modularity as defined in [3] and m is the number of edges
in the graph. In our implementation (including implemen-
tation of the original algorithm), we use ∆Q ·m2, instead of
∆Q because the former takes integer values and allows us to
replace costly floating-point arithmetics by cheaper integer
arithmetics.

To our surprise, HE’ performs slightly better than the
original algorithm. The original algorithm attempts to opti-
mize on ∆Q solely but it is known that greedy optimization
does not necessarily lead to fully optimized result. Heuris-
tics HE’ is our proof of the fact that CNM algorithm can be
improved in both speed and modularity. It processes G500K

mixi

data set 7 times faster, improves modularity by 8-11%, and
can process much larger data set that are incapable for the
original proposal to process.

Heuristics HN performs slightly better in speed than HE
but the community structures they produce exhibit rather
poor modularity: they were lower than the modularity re-
sulted from the original algorithm by 21-28%.

It is interesting to see how modularity is improved as the
community analysis progresses (Figure 9). The horizontal
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Figure 9: Growth of modularity as community anal-
ysis progresses. The data set used is G500K

mixi
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Figure 10: Sizes of communities: both shafts are in
log-scale.

shaft is normalized to the elapsed time of each community
analysis.

In the original algorithm, modularity gradually improves.
Though it attempts greedily optimize on modularity, modu-
larities of community structures computed by using heuris-
tics are superior during the first half of the computation.
This chart also suggests that greedy optimization does not
successfully optimize modularity.

Heuristics HE’ demonstrates steep growth of modularity
in the very early stage and it grows steadily up to the end
of analysis. The growth of HN is similar to the original al-
gorithm. In HE, modularity grows rather steeply but its
growth almost stops shortly. It might be possible to in-
terpret this fact that HE forms core structure in its earlier
stage and that we can stop community analysis at the early
stage which produces an approximation of the community
structure.

So far we have mainly discussed the quality of community
clusterings in terms of their modularities as defined in [11].
It is an important issue to compare the structures produced
by four flavors of CNM algorithm. Figure 10 depicts a his-
togram of community size in a log-scale chart. All methods
find a few large (> 10, 000) communities and a lot of small
(< 10) ones. Also they find almost no middle-sized com-
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Figure 11: Scalability

munities. The original algorithm finds larger communities
(> 20, 000 members) than our heuristics.

An important question to answer is “existence of corre-
spondence between communities found using different flavor
of CNM algorithm”. If it is not the case, reliability of the
results produced by CNM algorithm may need to be re-
considered. At this moment, this remains to be an open
question.

5.4 Scalability
Figure 11 is obtained from applying proposed heuristics on

larger data sets, ranging from 1M nodes up to 5.5M nodes.
HE and HN demonstrates almost linear speed up. Scala-
bility of HE’, on the other hand, is slowly declining but we
estimate that it is applicable to networks that has up to
10M nodes. Scalability of the algorithm is bound by mem-
ory size for standard PC. HE and HN failed to process a
network that consists of 5.5M nodes due to lack of physical
memory.

Our current implementations of CNM algorithm are not
optimized for reduction of memory usage. We plan to re-
implement it and achieve better use of memory. Hopefully
we achieve to analyse larger networks with 10M nodes, soon.
Further acceleration of the algorithm requires use of paral-
lelism.

6. SUMMARY
The paper identified a bottleneck of a community analysis

algorithm proposed by Clauset, Newman, and Moore [3]. Its
inefficiency was caused from unbalanced structuring of com-
munities. The paper proposes three heuristics that attempt
to balance the size of communities being merged. We have
removed the bottleneck and successfully obtained commu-
nity structures of large scale social networks that contain
over 5,000,000 nodes. Our approach is scalable. It is ex-
pected to scale to a SNS network that contains 10,000,000
nodes.

There still remain unanswered interesting issues. How
are community structures found by different algorithm re-
late with each other? How algorithmically found cyber-
community structures relate to human communities. Is it
possible to explain the dynamics of SNS community growth
in terms of the progress of community analysis?

From a technical stand point, we are interested in how

8



much faster and how scalable are our proposals. We are
interested in parallelization of community analysis. The im-
pact of our research to middle-scale social network is large.
Our research has made it possible to analyse a middle scale
social network (with 100,000 nodes) in a few minutes on a
standard laptop computer and we are freed from waiting re-
sponse from community analysis performed on a server for
days and hours.

We are currently working on visual presentation of clus-
ter structures with Dr. Hiroshi Hosobe and Mr. Minato
Koshida. We are also working on analysis of cyber-communities
found in social networking services and their dynamics.
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