
ar
X

iv
:c

s/
05

02
07

8v
1

 [c
s.

A
I]

 1
8

F
eb

 2
00

5

I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

Ab. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

SEMANTICAL CHARACTERIZATIONS AND

COMPLEXITY OF EQUIVALENCES IN

ANSWERSET PROGRAMMING

Thomas Eiter Michael Fink Stefan Woltran

INFSYS RESEARCHREPORT1843-05-01

FEBRUARY 2005

http://arxiv.org/abs/cs/0502078v1

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-05-01, FEBRUARY 2005

SEMANTICAL CHARACTERIZATIONS AND COMPUTATIONAL

ASPECTS OFEQUIVALENCES IN STABLE LOGIC PROGRAMMING

Thomas Eiter1 and Michael Fink2 and Stefan Woltran3

Abstract. In recent research on non-monotonic logic programming, repeatedly strong equivalence
of logic programsP andQ has been considered, which holds if the programsP ∪R andQ∪R have
the same answer sets for any other programR. This property strengthens equivalence ofP andQ
with respect to answer sets (which is the particular case forR = ∅), and has its applications in pro-
gram optimization, verification, and modular logic programming. In this paper, we consider more
liberal notions of strong equivalence, in which the actual form ofR may be syntactically restricted.
On the one hand, we consider uniform equivalence, whereR is a set of facts rather than a set of
rules. This notion, which is well known in the area of deductive databases, is particularly useful
for assessing whether programsP andQ are equivalent as components of a logic program which
is modularly structured. On the other hand, we consider relativized notions of equivalence, where
R ranges over rules over a fixed alphabet, and thus generalize our results to relativized notions of
strong and uniform equivalence. For all these notions, we consider disjunctive logic programs in
the propositional (ground) case, as well as some restrictedclasses, provide semantical characteriza-
tions and analyze the computational complexity. Our results, which naturally extend to answer set
semantics for programs with strong negation, complement the results on strong equivalence of logic
programs and pave the way for optimizations in answer set solvers as a tool for input-based problem
solving.

Keywords: answer set semantics, stable models, computational complexity, program optimization,
uniform equivalence, strong equivalence.

1Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11, A-1040
Vienna, Austria. E-mail: eiter@kr.tuwien.ac.at.

2Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11, A-1040
Vienna, Austria. E-mail: michael@kr.tuwien.ac.at.

3Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11, A-1040
Vienna, Austria. E-mail: stefan@kr.tuwien.ac.at.

Acknowledgements: This work was partially supported by the Austrian Science Fund (FWF) under project
P18019-N04, as well as by the European Commission under projects FET-2001-37004 WASP, IST-2001-
33570 COLOGNET, and IST-2001-33570 INFOMIX.

This report extends INFSYS RR-1843-03-08. The contents were partially published in Proceedings 19th
International Conference on Logic Programming (ICLP 2003), LNCS, Springer, 2003; and Proceedings 9th
European Conference on Logics in Artificial Intelligence (JELIA 2004), LNCS, Springer, 2004; see [16, 58].

Copyright c© 2018 by the authors

INFSYS RR 1843-05-01 I

Contents

1 Introduction 1

2 Preliminaries 5

3 Uniform Equivalence 7
3.1 A Characterization for Uniform Equivalence 7
3.2 Introducing UE-Models 9
3.3 Consequence under Uniform Equivalence 12

4 Relativized Notions of Strong and Uniform Equivalence 14
4.1 A Characterization for Relativized Strong Equivalence. 15
4.2 A Characterization for Relativized Uniform Equivalence 17
4.3 Properties of Relativized Equivalences 20

5 Restricted Classes of Programs 21
5.1 Positive Programs 21
5.2 Head-cycle free programs 24

6 Computational Complexity 26
6.1 Complexity of Uniform Equivalence 29
6.2 Complexity of Relativized Equivalence 34
6.3 Complexity of Bounded Relativization 40

7 Language Variations 43
7.1 Extensions in the Propositional Case 43
7.2 DATALOG programs 44

8 Conclusion and Further Work 45

A Proofs 50
A.1 Proof of Lemma 5 50
A.2 Proof of Theorem 11 51
A.3 Proof of Theorem 23 51
A.4 Proof of Theorem 24 51
A.5 Proof of Theorem 30 52
A.6 Proof of Theorem 32 53
A.7 Proof of Theorem 33 54

INFSYS RR 1843-05-01 1

1 Introduction

In the last decade, the approach to reduce finding solutions of a problem to finding “models” of a logical
theory has gained increasing importance as a declarative problem solving method. The idea is that a problem
at hand is encoded to a logical theory, such that the models ofthis theory correspond to the solutions of the
problem, in a way such that from an arbitrary model of the theory, the corresponding solution can be ex-
tracted efficiently. Given that the mappings can be computedin polynomial time, this facilitates polynomial
time problem solving modulo the computation of a model of theconstructed logical theory, for which an
efficient solver may be used. An example of a fruitful application of this approach is [33], which showed
that planning problems can be competitively solved by encodings to the classical propositional satisfiability
problem (SAT) and running efficient SAT solvers. Encodings of planning problems to nonclassical logics,
in particular to non-monotonic logic programs, have later been given in [55, 12, 36, 15]. Because of the fea-
tures of non-monotonic negation, such programs allow for a more natural and succinct encoding of planning
problems than classical logic, and thus are attractive froma declarative point of view.

Given this potential, encoding problems to non-monotonic logic programs under the answer set seman-
tics [24, 25], which is now known asAnswer-Set Programming (ASP)[50], has been considered in the
recent years for a broad range of other applications including knowledge-base updates [59, 30, 1, 18], lin-
guistics [23], security requirements engineering [26], orsymbolic model checking [28] as well, to mention
some of them. Many of these applications are realized via dedicated languages (see, for instance, [14])
using ASP solvers as back-ends in which a specified reasoningtask is translated into a corresponding logic
program. Thus, an ever growing number of programs isautomatically generated, leaving the burden of
optimizations to the underlying ASP system.

Despite the high sophistication of current ASP-solvers like [54, 35, 41, 2], their current support for
optimizing the programs is restricted in the sense that optimizations are mainly geared towards on-the-fly
model generation. In an ad-hoc manner, program optimization aims at simplifying an input program in a
way such that the resulting program has the same answer sets.This is heavily exploited in the systems
Smodels [54] and DLV [35], for instance, when variables are eliminated from programs via grounding.

However, such optimization can only be applied to the entireprogram. Local simplifications in parts of
the program may not be correct at the global level, since by the non-monotonicity of answer set semantics,
adding the same rules to equivalent programs may lead to programs with different models. This in particular
hampers an offline optimization of programs to which at run-time further rules are added, which is important
in different respects. Regarding code reuse, for instance,a program may be used as a “subprogram” or
“expanded macro” within the context of another program (forexample, to nondeterministically choose an
element from a set), and thus be utilized in many applications. On the other hand, a problem encoding in
ASP usually consists of two parts: a generic problem specification and instance-specific input (for example,
3-colorability of a graph in general and a particular graph); here, an offline simplification of the generic part
is desirable, regardless of the concrete input at run-time.

As pointed out by several authors [37, 16, 45], this calls forstronger notions of equivalence. As dis-
cussed below, there are different ways to access this problem, depending on the actual context of application
and optimization. Accordingly, different notions of equivalence may serve as a theoretical basis for op-
timization procedures. In this paper, we present a first systematic and thorough exploration of different
notions of equivalence for answer set semantics with respect to semantical characterizations and compu-
tational complexity. It provides a theoretical underpinning for advanced methods of program optimization
and for enhanced ASP application development, as well as a potential basis for the development of ASP
debugging tools. In the following, we recall some notions ofequivalence that have been considered for

2 INFSYS RR 1843-05-01

answer set semantics, illustrated with some examples.

Notions of Equivalence. A notion of equivalence which is feasible for the issues discussed above isstrong
equivalence[37, 56]: Two logic programsP1 andP2 are strongly equivalent, if by adding any set of rulesR
to bothP1 andP2, the resulting programsP1 ∪R andP2 ∪R are equivalent under the answer set semantics,
i.e., have the same answer sets. Thus, if a programP contains a subprogramQ which is strongly equivalent
to a programQ′, then we may replaceQ byQ′, in particular if the resulting program is simpler to evaluate
than the original one.

Example 1 The programsP1 = {a∨ b} andQ1 = {a∨ b; a← not b} are strongly equivalent. Intuitively,
the rulea← not b inQ is redundant since under answer set semantics,awill be derived from the disjunction
a ∨ b if b is false. On the other hand, the programsP2 = {a ∨ b} andQ2 = {a ← not b; b ← not a} are
not strongly equivalent:P2 ∪ {a ← b; b ← a} has the answer set{a, b}, which is not an answer set of
Q2 ∪ {a← b; b← a}.

Note that strong equivalence is, in general, suitable as a theoretical basis for local optimization. However,
it is a very restrictive concept. There are two fundamental options to weaken it and obtain less restrictive
notions. On the one hand, one can restrict the syntax of possible program extensionsR, or one can restrict
the set of atoms occurring inR.

The first approach leads us to to the well known notion ofuniform equivalence[52, 43]. Two logic
programsP1 andP2 are uniformly equivalent, if by adding any set offactsF to bothP1 andP2, the
resulting programsP1 ∪ F andP2 ∪ F have the same set of answer sets. That strong equivalence and
uniform equivalence are different concepts is illustratedby the following simple example.

Example 2 It can be checked that the programsP2 andQ2 from Example 1, while not strongly equivalent,
are uniformly equivalent. We note that by adding the constraint ← a, b to them, the resulting programs
P3 = {a ∨ b; ← a, b} andQ3 = {a ← not b; b ← not a; ← a, b}, which both express exclusive
disjunction ofa andb, are strongly equivalent (and hence also uniformly equivalent).

This example may suggest that disjunction is an essential feature to make a difference between strong
and uniform equivalence. In fact this is not the case, as shown by the following example.

Example 3 Let P4 = {a ← not b; a ← b} andQ4 = {a ← not c; a ← c}. Then, it is easily verified
thatP4 andQ4 are uniformly equivalent. However, they are not strongly equivalent: ForP4 ∪ {b← a} and
Q4 ∪ {b← a}, we have thatS = {a, b} is a answer set ofQ4 ∪ {b← a} but not ofP4 ∪ {b← a}.

As for program optimization, compared to strong equivalence, uniform equivalence is more sensitive to
a modular structure of logic programs which naturally emerges by splitting them into layeredcomponents
that receive input from lower layers by facts and in turn may output facts to a higher layer [39, 22]. In
particular, the applies to the typical ASP setting outlinedabove, in which a generic problem specification
component receives problem-specific input as a set of facts.

However, as mentioned before, a different way to obtain weaker equivalence notions than strong equiv-
alence is to restrict the alphabet of possible program extensions. This is of particular interest, whenever one
wants toexcludededicated atoms from program extensions. Such atoms may play the role of internal atoms
in program components and are considered not to appear anywhere else in the complete programP . This
notion of equivalence was originally suggested by Lin in [40] but not further investigated. We will formally

INFSYS RR 1843-05-01 3

definestrong equivalence relative to a given set of atomsA of two programsP andQ as the test whether,
for all sets of rulesS over a given set of atomsA, P ∪ S andQ ∪ S have the same answer sets.

Finally, we introduce the notion ofuniform equivalence relative to a given set of atomsA, as the property
that for two programsP andQ and for all setsF ⊆ A of facts,P ∪F andQ∪F have the same answer sets.
Note that relativized uniform equivalence generalizes thenotion of equivalence of DATALOG programs in
deductive databases [53]. There, DATALOG programs are called equivalent, if it holds that they compute
the same outputs on any set of external atoms (which are atomsthat do not occur in any rule head) given as
input. The next example illustrates that relativization weakens corresponding notions of equivalence.

Example 4 LetP5 = {a ∨ b} andQ5 = {a ← not b; b ← not a; c ← a, b; ← c}. The programsP5 and
Q5 have the same answer set, but are neither uniformly equivalent nor strongly equivalent. In particular, it
is sufficient to add the factc. Then,P5 ∪ {c} has{a, b, c} as an answer set, whileQ5 ∪ {c} has no answer
set. However, if we excludec from the alphabet of possible program extensions, uniform equivalence holds.
More specifically,P andQ are uniformly equivalent relative to for any set of atomsA such thatc /∈ A. On
the other hand,P andQ are not strongly equivalent relative to anyA which includes botha and b. The
reason is that addinga← b andb← a leads to different answer sets (cf. Example 1).

Main Contributions. In this paper, we study semantical and complexity properties of the above notions
of equivalence, where we focus on the propositional case (towhich first-order logic programs reduce by
instantiation). Our main contributions are briefly summarized as follows.

• We provide characterizations of uniform equivalence of logic programs. To this aim, we build on the
concept ofstrong-equivalence models (SE-models), which have been introduced for characterizing strong
equivalence [56, 57] in logic programming terms, resembling an earlier characterization of strong equiva-
lence in terms of equilibrium logic which builds on the intuitionistic logic of here and there [37]. A strong
equivalence model of a programP is a pair(X,Y) of (Herbrand) interpretations such thatX ⊆ Y , Y
is a classical model ofP , andX is a model of the Gelfond-Lifschitz reductP Y of P with respect toY
[24, 25]. Our characterizations of uniform equivalence will elucidate the differences between strong and
uniform equivalence, as illustrated in the examples above,such that they immediately become apparent.

• For the finitary case, we provide a mathematical simple and appealing characterization of a logic pro-
gram with respect to uniform equivalence in terms of itsuniform equivalence models (UE-models), which is
a special class of SE-models. Informally, those SE-models(X,Y) of a programP are UE-models, such that
eitherX equalsY or is a maximal proper subset ofY . On the other hand, we show that uniform equivalence
of infinite programs cannot be captured by any class of SE-models in general. Furthermore, the notion of
logical consequence from UE-models,P |=u Q, turns out to be interesting since programsP andQ are
uniformly equivalent if and only ifP |=u Q andQ |=u P holds. Therefore, logical consequence (relative to
UE-models) can be fruitfully used to determine redundancies under uniform equivalence.

• By suitably generalizing the characterizations of strong and uniform equivalence, and in particular SE-
models and UE-models, we also provide suitablesemantical characterizationsfor both relativized strong
and uniform equivalence. Our new characterizations thus capture all considered notions of equivalence
(including ordinary equivalence) in a uniform way. Moreover, we show that relativized strong equivalence
shares an important property with strong equivalence: constraining possible program extensions to sets of
rules of the formA ← B , whereA andB are atoms, does not lead to a different concept (Corollary 3).
The observation of Pearce and Valverde [49] that uniform andstrong equivalence are essentially the only

4 INFSYS RR 1843-05-01

concepts of equivalence obtained by varying thelogical form of the program extensions therefore generalizes
to relative equivalence.

• Besides the general case, we consider various major syntactic subclasses of programs, in particular
Horn programs, positive programs, disjunction-free programs, and head-cycle free programs [4], and con-
sider how these notions of equivalence relate among each other. For instance, we establish that for positive
programs, all these notions coincide, and therefore only the classical models of the programs have to be taken
into account for equivalence testing. Interestingly, for head-cycle free programs, eliminating disjunctions
by shifting atoms from rule heads to the respective rule bodies preserves (relativized) uniform equivalence,
while it affects (relativized) strong equivalence in general.

• We thoroughly analyze the computational complexity of deciding (relativized) uniform equivalence
and relativized strong equivalence, as well as the complexity of model checking for the corresponding
model-theoretic characterizations. We show that decidinguniform equivalence of programsP andQ is
ΠP2 -complete in the general propositional case, and thus harder than deciding strong equivalence ofP and
Q, which iscoNP-complete [47, 40, 57]. The relativized notions of equivalence have the same complexity
as uniform equivalence in general (ΠP2 -completeness). These results reflect the intuitive complexity of
equivalence checking using the characterizations we provide. Furthermore, we consider the problems for
subclasses and establishcoNP-completeness results for important fragments, includingpositive and head-
cycle free programs, and thus obtain a complete picture of the complexity-landscape, which is summarized in
Table 2. Some of the results obtained are surprising; for example, checking relativized uniform equivalence
of head-cycle free programs, iseasierthan deciding relativized strong equivalence. For an overview and
discussion of the complexity results, we refer to Section 6.

• Finally, we address extensions of our results w.r.t. modifications in the language of propositional pro-
grams, viz. addition of strong negation or nested expressions, as well as disallowing constraints. Moreover,
we briefly discuss the general DATALOG-case.

Our results extend recent results on strong equivalence of logic programs, and pave the way for opti-
mization of logic programs under answer set semantics by exploiting either strong equivalence, uniform
equivalence, or relativized notions thereof.

Related Work. While strong equivalence of logic programs under answer setsemantics has been consid-
ered in a number of papers [7, 11, 40, 37, 45, 47, 56, 57, 46, 48], investigations on uniform equivalence
just started with preliminary parts of this work [16]. Recent papers on program transformations [20, 19]
already take both notions into account. In the case of DATALOG, uniform equivalence is a well-known
concept, however. Sagiv [52], who coined the name, has studied the property in the context of definite Horn
DATALOG programs, where he showed decidability of uniform equivalence testing, which contrasts the
undecidability of equivalence testing for DATALOG programs [53]. Also Maher [43] considered uniform
equivalence for definite general Horn programs (with function symbols), and reported undecidability. More-
over, both [52, 43] showed that uniform equivalence coincides for the respective programs with Herbrand
logical equivalence. Maher also pointed out that for DATALOG programs, this result has been indepen-
dently established by Cosmadakis and Kanellakis [10]. Finally, a general notion of equivalence has also
been introduced by Inoue and Sakama [31]. In their framework, calledupdate equivalence, one can exactly
specify a set of arbitrary rules which may be added to the programs under consideration and, furthermore, a
set of rules which may be deleted. However, for such an explicit enumeration of rules for program extension,

INFSYS RR 1843-05-01 5

respectively modification, it seems to be much more complicated to obtain simple semantical characteriza-
tions.

The mentioned papers on strong equivalence mostly concern logical characterizations. In particular, the
seminal work by Lifschitzet al. [37] showed that strong equivalence corresponds to equivalence in the non-
classical logic of here-and-there. De Jongh and Hendriks [11] generalized this result by showing that strong
equivalence is characterized by equivalence in all intermediate logics lying between here-and-there (upper
bound) and the logic KC of weak excluded middle [34] (lower bound) which is axiomatized by intuitionistic
logic together with the schema¬ϕ ∨ ¬¬ϕ. In addition, [7] presents another multi-valued logic known as
L3 which can be employed to decide strong equivalence in the same manner. However, the most popular
semantical characterization was introduced by Turner [56,57]. He abstracts from the Kripke-semantics as
used in the logic of here-and-there, resulting in the above mentionedSE-models. Approaches to implement
strong equivalence can be found in [20, 32, 47]. Complexity characterizations of strong equivalence were
given by several authors [47, 40, 57]. Our work refines and generalizes this work by considering (relativized)
strong equivalence also for syntactic fragments, which previous work did not pay much attention to. As
well, we present a new syntactical criterion to retain strong equivalence when transforming head-cycle free
programs to disjunction-free ones, complementing work on program transformations [19, 20, 45, 49]. The
recent work by Pearce and Valverde [49] addresses strong equivalence of programs over disjoint alphabets
which are synonymous under structurally defined mappings.

Structure of the paper. The remainder of this paper is organized as follows. The nextsection recalls
important concepts and fixes notation. After that, in Section 3, we present our characterizations of uniform
equivalence. We also introduce the notions of UE-model and UE-consequence and relate the latter to other
notions of consequence. Then, Section 4 introduces the relativized notions of equivalence, and we present
our generalized characterizations in model-theoretic terms. Section 5 considers two important classes of
programs, in particular positive and head-cycle free logicprograms, which include Horn and normal logic
programs, respectively. The subsequent Section 6 is devoted to a detailed analysis of complexity issues,
while Section 7 considers possible extensions of our results to nested logic programs and answer set seman-
tics for programs with strong negation (also allowing for inconsistent answer sets), as well as to DATALOG
programs. The final Section 8 concludes the paper and outlines issues for further research.

2 Preliminaries

We deal with disjunctive logic programs, which allow the useof default negationnot in rules. A ruler
is a triple 〈H(r), B+(r), B−(r)〉, whereH(r) = {A1, . . . , Al}, B+(r) = {Al+1, . . . , Am}, B−(r) =
{Am+1, . . . , An}, where0 ≤ l ≤ m ≤ n andAi, 1 ≤ i ≤ n, are atoms from a first-order language.
Throughout, we use the traditional representation of a ruleas an expression of the form

A1 ∨ . . . ∨Al ← Al+1, . . . , Am,not Am+1, . . . ,not An.

We callH(r) the headof r, andB(r) = {Al+1, . . . , Am,not Am+1, . . . ,not An} the bodyof r. If
H(r) = ∅, thenr is aconstraint. As usual,r is adisjunctive factif B(r) = ∅, andr is a (non-disjunctive)
fact if B(r) = ∅ andl = 1, both also represented byH(r) if it is nonempty, and by⊥ (falsity) otherwise. A
rule r is normal (or non-disjunctive), ifl ≤ 1; definite, if l = 1; andpositive, if n = m. A rule isHorn if it
is normal and positive. A definite Horn rule is calledunary iff its body contains at most one atom.

A disjunctive logic program(DLP) P is a (possibly infinite) set of rules. A programP is a normal
logic program(NLP) (resp., definite, positive, Horn, or unary), if all rules inP are normal (resp., definite,

6 INFSYS RR 1843-05-01

positive, Horn, unary). Furthermore, a programP is head-cycle free(HCF) [4], if each eachr ∈ P is
head-cycle free (inP), i.e., if the dependency graph ofP (which is defined as usual) where literals of form
not A are disregarded, has no directed cycle that contains two atoms belonging toH(r).

In the rest of this paper, we focus on propositional programsover a set of atomsA – programs with
variables reduce to their ground (propositional) versionsas usual. The set of all atoms occurring in a program
P is denoted byAtm(P).

We shall deal with further variations of the syntax, where eitherstrongnegation is available or constraints
are disallowed in Section 7. There we shall also briefly discuss how to apply our results to programs with
nested expressions [38] or to non-ground programs directly.

We recall the answer set semantics for DLPs [25], which generalizes the answer set semantics for
NLPs [24]. AninterpretationI, viewed as subset ofA, models the head of a ruler, denotedI |= H(r), iff
A ∈ I for someA ∈ H(r). It modelsB(r), i.e.,I |= B(r) iff (i) eachA ∈ B+(r) is true inI, i.e.,A ∈ I,
and (ii) eachA ∈ B−(r) is false inI, i.e.,A 6∈ I. Furthermore,I models ruler, i.e.,I |= r iff I |= H(r)
wheneverI |= B(r), andI is a model of a programP , denotedI |= P , iff I |= r, for all r ∈ P . If I |= P
(resp.I |= r), I is called amodelof P (resp.r).

The reductof a ruler relative toa set of atomsI, denotedrI , is the positive ruler′ such thatH(r′) =
H(r) andB+(r′) = B+(r) if I ∩ B−(r) = ∅; otherwiserI is void. Note that a void rule has any
interpretation as its model. TheGelfond-Lifschitz reductP I , of a programP is P I = {rI | r ∈ P}. An
interpretationI is ananswer set(or a stable model[51]) of a programP iff I is a minimal model (under
inclusion⊆) of P I . ByAS(P) we denote the set of all answer sets ofP .

Several notions for equivalence of logic programs have beenconsidered, cf. [37, 43, 52]. In answer set
programming, two DLPsP andQ are regarded as equivalent, denotedP ≡ Q, iff AS(P) = AS(Q).

The more restrictive form of strong equivalence [37] is as follows.

Definition 1 LetP andQ be two DLPs. Then,P andQ are strongly equivalent, denotedP ≡s Q, iff for
any rule setR, the programsP ∪R andQ ∪R are equivalent, i.e.,P ∪R ≡ Q ∪R.

One of the main results of [37] is a semantical characterization of strong equivalence in terms of the non-
classical logic HT. For characterizing strong equivalencein logic programming terms, Turner introduced the
following notion of SE-models [56, 57]:

Definition 2 Let P be a DLP, and letX,Y be sets of atoms such thatX ⊆ Y . The pair(X,Y) is an
SE-model ofP , if Y |= P andX |= P Y . BySE (P) we denote the set of all SE-models ofP . For a single
rule r, we writeSE (r) instead ofSE ({r}).

Strong equivalence can be characterized as follows.

Proposition 1 ([56, 57]) For every DLPsP andQ, P ≡s Q iff SE (P) = SE(Q).

To check strong equivalence of two programsP andQ, it is obviously sufficient to consider SE-
interpretations(X,Y) over Atm(P ∪Q), i.e., withX ⊆ Y ⊆ Atm(P ∪Q). We implicitly make use
of this simplification when convenient.

Example 5 Reconsider the examples from the introduction. First take programsP = {a ∨ b} andQ =
{a← not b; b← not a}. We have1

SE (P) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)};
1To ease notation, we writeabc instead of{a, b, c}, a instead of{a}, etc.

INFSYS RR 1843-05-01 7

SE (Q) = {(∅, ab); (a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.

Thus,(∅, ab) is SE-model ofQ but not ofP . This is due to the fact thatP {a,b} = {a ∨ b} andQ{a,b} is
the empty program. The latter is modelled by the empty interpretation, while the former is not. Hence, we
deriveP 6≡s Q.

Example 6 For the second example,P = {a← not b; a← b} andQ = {a← not c; a← c}, we also get
P 6≡s Q. In this case, we have:

SE (P) = {(∅, ab); (∅, abc); (c, abc)} ∪ S;

SE (Q) = {(∅, ac); (∅, abc); (b, abc)} ∪ S;

with S = {(X,Y) | {a} ⊆ X ⊆ Y ⊆ {a, b, c}}. This showsP 6≡s Q.

Note that from the proofs of the results in [37, 57], it appears that for strong equivalence, only the
addition of unary rules is crucial. That is, by constrainingthe rules in the setR in the definition of strong
equivalence to normal rules having at most one positive atomin the body does not lead to a different concept.
This is encountered by restriction to facts (i.e., empty rule bodies), however.

As well, answer sets of a program can be characterized via itsSE-models as follows:

Proposition 2 For any DLPP , Y ∈ AS(P) iff (Y, Y) ∈ SE(P) and (X,Y) ∈ SE(P) impliesX = Y ,
for anyX.

Finally, we define a consequence relation associated to SE-models.

Definition 3 LetP be a DLP andr a rule. Then,r is a SE-consequence ofP , denotedP |=s r, iff for each
(X,Y) ∈ SE (P), it holds that(X,Y) ∈ SE(r). Furthermore, we writeP |=s Q iff P |=s r, for every
r ∈ Q.

Proposition 3 For any DLPP andQ, P ≡s Q iff P |=s Q andQ |=s P .

Thus, the notion of SE-consequence captures strong equivalence of logic programs.

3 Uniform Equivalence

After the preliminary definitions, we now turn to the issue ofuniform equivalence of logic programs. We
follow the definitions of uniform equivalence in [52, 43].

Definition 4 LetP andQ be two DLPs. Then,P andQ areuniformly equivalent, denotedP ≡u Q, iff for
any set of(non-disjunctive) factsF , the programsP ∪ F andQ ∪ F are equivalent, i.e.,P ∪ F ≡ Q ∪ F .

3.1 A Characterization for Uniform Equivalence

We proceed by characterizing uniform equivalence of logic programs in model-theoretic terms. As restated
above, strong equivalence can be captured by the notion of SE-model (equivalently, HT-model [37]) for a
logic program. The weaker notion of uniform equivalence canbe characterized in terms of SE-models as
well, by imposing further conditions.

We start with a seminal lemma, which allows us to derive simple characterizations of uniform equiva-
lence.

8 INFSYS RR 1843-05-01

Lemma 1 Two DLPsP andQ are uniformly equivalent, i.e.P ≡u Q, iff for every SE-model(X,Y), such
that (X,Y) is an SE-model of exactly one of the programsP andQ, it holds that (i) Y |= P ∪Q, and (ii)
there exists an SE-model(X ′, Y),X ⊂ X ′ ⊂ Y , of the other program.

Proof. For the only-if direction, supposeP ≡u Q. If Y neither modelsP , norQ, then(X,Y) is not an
SE-model of any of the programsP andQ. Without loss of generality, assumeY |= P andY 6|= Q. Then,
since in this caseY |= P Y and no strict subset ofY modelsP∪Y , Y ∈ AS(P∪Y), whileY 6∈ AS(Q∪Y).
This contradicts our assumptionP ≡u Q. Hence, (i) must hold.

To show (ii), assume first that(X,Y) is an SE-model ofP but not ofQ. In view of (i), it is clear that
X ⊂ Y must hold. Suppose now that for every setX ′, X ⊂ X ′ ⊂ Y , it holds that(X ′, Y) is not an
SE-model ofQ. Then, since no subset ofX modelsQY ∪X, (Y, Y) is the only SE-model ofQ∪X of form
(·, Y). Thus,Y ∈ AS(Q ∪X) in this case, whileY 6∈ AS(P ∪X) (X |= P Y impliesX |= (P ∪X)Y ,
so (X,Y) is an SE-model ofP ∪ X). However, this contradictsP ≡u Q. Thus, it follows that for some
X ′ such thatX ⊂ X ′ ⊂ Y , (X,Y) is an SE-model ofQ. The argument in the case where(X,Y) is an
SE-model ofQ but not ofP is analogous. This proves (ii).

For the if direction, assume that (i) and (ii) hold for every SE-model(X,Y) which is an SE-model
of exactly one ofP andQ. Suppose that there exist sets of atomsF andX, such that w.l.o.g.,X ∈
AS(P ∪ F) \ AS(Q ∪ F). SinceX ∈ AS(P ∪ F), we have thatF ⊆ X, and, moreover,X |= P .
Consequently,(X,X) is an SE-model ofP . SinceX 6∈ AS(Q∪F), eitherX 6|= (Q ∪F)X , or there exists
Z ⊂ X such thatZ |= (Q ∪ F)X .

Let us first assumeX 6|= (Q ∪ F)X . Then, since(Q ∪ F)X = QX ∪ F andF ⊆ X, it follows that
X 6|= QX . This impliesX 6|= Q and hence,(X,X) is not an SE-model ofQ. Thus,(X,X) is an SE-model
of exactly one program,P , but (X,X) violates (i) sinceX 6|= Q; this is a contradiction.

It follows thatX |= (Q∪F)X must hold, and that there must existZ ⊂ X such thatZ |= (Q∪F)X =
QX ∪ F . So we can concludeX |= Q and that(Z,X) is an SE-model ofQ but not ofP . To see the
latter, note thatF ⊆ Z must hold. So if(Z,X) were an SE-model ofP , then it would also be an SE-model
of P ∪ F , contradicting the assumption thatX ∈ AS(P ∪ F). Again we get an SE-model,(Z,X), of
exactly one of the programs,Q in this case. Hence, according to (ii), there exists an SE-model(X ′,X) of
P , Z ⊂ X ′ ⊂ X. However, because ofF ⊂ Z, it follows that (X ′,X) is also an SE-model ofP ∪ F ,
contradicting our assumption thatX ∈ AS(P ∪ F).

This proves that, given (i) and (ii) for every SE-model(X,Y) such that(X,Y) is an SE-model of
exactly one ofP andQ, no sets of atomsF andZ exists such thatZ is an answer set of exactly one of
P ∪ F andQ ∪ F . That is,P ≡u Q holds. ✷

From Lemma 1 we immediately obtain the following characterization of uniform equivalence of logic
programs.

Theorem 1 Two DLPs,P andQ are uniformly equivalent,P ≡u Q, iff, for interpretationsX, Y ,

(i) (X,X) is an SE-model ofP iff it is an SE-model ofQ, and

(ii) (X,Y), whereX ⊂ Y , is an SE-model ofP (respectivelyQ) iff there exists a setX ′, such that
X ⊆ X ′ ⊂ Y , and(X ′, Y) is an SE-model ofQ (respectivelyP).

Example 7 Reconsider the programsP = {a ∨ b} andQ = {a ← not b; b ← not a}. By Theorem 1, we
can easily verify thatP andQ are uniformly equivalent: Their SE-models differ only in(∅, ab), which is an

INFSYS RR 1843-05-01 9

SE-model ofQ but not ofP . Thus, items (i) and (ii) clearly hold for all other SE-models. Moreover,(a, ab)
is an SE-model ofP , and thus item (ii) also holds for(∅, ab).

Recall thatP andQ are strongly equivalent after adding the constraint← a, b, which enforces exclusive
disjunction (see Example 2). Uniform equivalence does not require such an addition.

From Theorem 1 we can derive the following characterizationof uniform equivalence.

Theorem 2 Two DLPsP andQ, such that at least one of them is finite, are uniformly equivalent, i.e.,
P ≡u Q, iff the following conditions hold:

(i) for everyX, (X,X) is an SE-model ofP iff it is an SE-model ofQ, and

(ii) for every SE-model(X,Y) ∈ SE (P)∪SE(Q) such thatX ⊂ Y , there exists an SE-model(X ′, Y) ∈
SE (P) ∩ SE(Q) (=SE (P ∪Q)) such thatX ⊆ X ′ ⊂ Y .

Proof. Since (i) holds by virtue of Theorem 1, we only need to show (ii). Assume(X,Y), whereX ⊂ Y ,
is in SE (P) ∪ SE (Q).

If (X,Y) ∈ SE(P)∩ SE (Q), then the statement holds. Otherwise, by virtue of Theorem 1, there exists
(X1, Y), X ⊆ X1 ⊂ Y , such that(X1, Y) is in SE(P) ∪ SE (Q). By repeating this argument, we obtain
a chain of SE-models(X,Y) = (X0, Y), (X1, Y), . . . ,(Xi, Y), . . . such that(Xi, Y) ∈ SE (P) ∪ SE(Q)
andXi ⊆ Xi+1, for all i ≥ 0. Furthermore, we may chooseX1 such thatX1 coincides withY on all atoms
which do not occur inP ∪Q (and hence allXi, i ≥ 1, do so). Since one ofP andQ is finite, it follows that
Xi = Xi+1 must hold for somei ≥ 0 and hence(Xi, Y) ∈ SE (P) ∩ SE (Q) must hold. This proves the
result. ✷

3.2 Introducing UE-Models

In the light of this result, we can capture uniform equivalence of finite programs by the notion of UE-models
defined as follows.

Definition 5 (UE-model) LetP be a DLP. Then,(X,Y) ∈ SE (P) is a uniform equivalence(UE) model
of P , if for every(X ′, Y) ∈ SE (P) it holds thatX ⊂ X ′ impliesX ′ = Y . ByUE(P) we denote the set of
all UE-models ofP .

That is, the UE-models comprise all total SE-models(Y, Y) of a DLP plus all itsmaximalnon-total
SE-models(X,Y), withX ⊂ Y . Formally,

UE(P) = {(Y, Y) ∈ SE (P)} ∪ max≥{(X,Y) ∈ SE (P) | X ⊂ Y };

where(X ′, Y ′) ≥ (X,Y) iff jointly Y ′ = Y andX ⊆ X ′.
By means of UE-models, we then can characterize uniform equivalence of finite logic programs by the

following simple condition.

Theorem 3 LetP andQ be DLPs. Then,

(a) P ≡u Q impliesUE (P) = UE(Q);

(b) UE(P) = UE (Q) impliesP ≡u Q, whenever at least one of the programsP ,Q is finite.

10 INFSYS RR 1843-05-01

Proof. For proving(a), let P ≡u Q. Then, by Theorem 1 (i), UE(P) andUE (Q) coincide on models
(X,X). Assume w.l.o.g. that(X,Y), X ⊂ Y , is in UE(P), but not inUE(Q). By Theorem 1 (ii), there
exists(X ′, Y), X ⊆ X ′ ⊂ Y , which is an SE-model ofQ, and by a further application, the existence of
(X ′′, Y),X ′ ⊆ X ′′ ⊂ Y , which is an SE-model ofP follows. SinceX ⊂ X ′′ contradicts(X,Y) ∈ UE(P),
let X ′′ = X ′ = X, i.e., (X,Y) is an SE-model ofQ as well, but it is not inUE(Q). Hence, there exists
(Z, Y) ∈ SE (Q), X ⊂ Z ⊂ Y and, again by Theorem 1 (ii), there exists(Z ′, Y), Z ⊆ Z ′ ⊂ Y , which is
an SE-model ofP . This again contradicts(X,Y) ∈ UE(P). Hence,UE(P) = UE(Q) must hold.

For (b), assumeUE(P) = UE(Q), and w.l.o.g. letP be finite. SinceUE(P) = UE(Q) implies
Theorem 1 (i), towards a contradiction, suppose that Theorem 1 (ii) is not satisfied, i.e., there existsX ⊂ Y ,
such that either (1)(X,Y) ∈ SE(P) and not existsX ⊆ X ′ ⊂ Y , (X ′, Y) ∈ SE (Q), or vice versa (2)
(X,Y) ∈ SE (Q) and not existsX ⊆ X ′ ⊂ Y , (X ′, Y) ∈ SE (P).
Case (1): We show the existence of a setZ,X ⊆ Z ⊂ Y , such that(Z, Y) ∈ UE(P). If (X,Y) ∈ UE(P),
or Y is finite, this is trivial. So let(X,Y) 6∈ UE(P) andY infinite. ThenYP = Y ∩ Atm(P) andXP =
X∩Atm(P) are finite,(XP , YP) ∈ SE (P), andXP ⊂ YP . (To see the latter, observe that otherwise we end
up in a contradiction by the fact that thenXP |= P , henceX |= P , and thus(X,X) ∈ UE (P) = UE(Q),
which implies(X,Y) ∈ SE(Q), since(Y, Y) ∈ UE(Q) = UE(P) holds.) SinceYP is finite, there
exists a setZP , XP ⊆ ZP ⊂ YP , such that(ZP , YP) ∈ UE(P). Now, letZ = ZP ∪ (Y \ YP). Then
X ⊆ Z ⊂ Y holds by construction. Furthermore(Z, Y) ∈ UE(P), sinceY \ Z = YP \ ZP , P Y = P YP ,
and(ZP , YP) ∈ UE(P). By our assumption(Z, Y) ∈ UE(Q) follows. Contradiction.
Case (2): We show the existence of a setZ,X ⊆ Z ⊂ Y , such that(Z, Y) ∈ UE(Q). If (X,Y) ∈ UE(Q),
or Y is finite, this is trivial. So let(X,Y) 6∈ UE(Q), andY infinite. Futhermore,Y \X ⊆ Atm(P) must
hold. (To see the latter, observe that otherwise we end up in acontradiction by taking any atoma ∈ Y \X,
such thata 6∈ Atm(P), and consideringZ = Y \ {a}. ThenX ⊆ Z ⊂ Y holds by construction and since
(Y, Y) ∈ UE(P) = UE (Q), Y |= P and so doesZ, i.e., (Z, Y) ∈ SE(P), a contradiction.) However,
sinceAtm(P) is finite, this means thatY \X is finite, i.e., there cannot exist an infinite chain ofSE -models
(X,Y) = (X0, Y), (X1, Y), . . . , (Xi, Y), . . ., such thatXi ⊂ Xj ⊂ Y , for i < j, and(Xi, Y) ∈ SE (Q).
Thus, there exists a maximal model(Z, Y) ∈ UE(Q). By our assumption(Z, Y) ∈ UE (P) follows.
Contradiction. Thus, Theorem 1 (ii) holds as well, provingP ≡u Q in Case (b). ✷

This result shows that UE-models capture the notion of uniform equivalence for finite logic programs, in
the same manner as SE-models capture strong equivalence. That is, the essence of a programP with respect
to uniform equivalence is expressed by a semantic conditiononP alone.

Corollary 1 Two finite DLPsP andQ are uniformly equivalent, i.e.,P ≡u Q, if and only ifUE(P) =
UE(Q).

Example 8 Each SE-model of the programP = {a ∨ b} satisfies the condition of an UE-model, and thus
UE(P) = SE (P). The programQ = {a ← not b; b ← not a} has the additional SE-model(∅, ab), and
all of its SE-models except this one are UE-models ofQ. Thus,

UE(P) = UE(Q) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.

Note that the strong equivalence ofP andQ fails because(∅, ab) is not an SE-model ofP . This SE-model
is enforced by the intersection property ((X1, Y) and(X2, Y) in SE (P) implies(X1 ∩X2, Y) ∈ SE (P)).
This intersection property is satisfied by the Horn programQY , but violated by the disjunctive programP Y

(=P). The maximality condition of UE-models eliminates this intersection property.

INFSYS RR 1843-05-01 11

Example 9 ReconsiderP = {a ← not b; a ← b}, which has classical models (over{a, b, c}) of form
{a} ⊆ Y ⊆ {a, b, c}. Its UE-models are(X,Y) whereX ∈ {Y, Y \ {b}, Y \ {c}}. Note that the atoms
b andc have symmetric roles inUE (P). Consequently, the program obtained by exchanging the roles ofb
andc,Q = {a← not c; a← c} has the same UE models. Hence,P andQ are uniformly equivalent.

The following example shows why the characterization via UE-models fails if both compared programs
are infinite. The crucial issue here is the expression of an “infinite chain” resulting in an infinite number of
non-total SE-models. In this case, the concept of maximal non-total SE-models does not capture the general
characterization from Theorem 1.

Example 10 Consider the programsP andQ overA = {ai | i ≥ 1}, defined by

P = {ai ← | i ≥ 1}, and Q = {ai ← not ai, ai ← ai+1 | i ≥ 1}.

BothP andQ have the single classical modelA = {ai | i ≥ 1}. Furthermore,P has no “incomplete” SE-
model(X,A) such thatX ⊂ A, whileQ has the incomplete SE-models(Xi,A), whereXi = {a1, . . . , ai}
for i ≥ 0. BothP andQ have the same maximal incomplete SE-models (namely none), and hence they have
the same UE-models.

However,P 6≡u Q, since e.g.P has an answer set whileQ has obviously not. Note that this is caught by
our Theorem 1, item (ii): for (X0,A), which is an SE-model ofQ but not ofP , we cannot find an SE-model
(X,A) of P between(X0,A) and(A,A).

In fact, uniform equivalence of infinite programsP andQ cannot be captured by a selection of SE-
models:

Theorem 4 LetP andQ be infinite DLPs. There is no selection of SE-models,σ(SE (·)), such thatP and
Q are uniformly equivalent,P ≡u Q, if and only ifσ(SE (P)) = σ(SE (Q)).

Proof. Consider programs overA = {ai | i ≥ 1} as follows. The programP = {ai ← | i ≥ 1} in
Example 10, as well as

Q = {ai ← not ai, ai ← ai+1, a2i ← a2i−1 | i ≥ 1},

R = {ai ← not ai, ai ← ai+1, a2i+1 ← a2i, a1 ←| i ≥ 1}, and

S = {ai ← , ← a1 | i ≥ 1}.

Considering corresponding SE-models, it is easily verifiedthatSE (P) = {(A,A)}, SE (S) = ∅, as well as

SE (Q) = {(∅,A), (a1a2,A), . . . , (a1a2 · · · a2i,A), . . . , (A,A) | i ≥ 0}, and

SE (R) = {(a1,A), (a1a2a3,A), . . . , (a1a2 · · · a2i+1,A), . . . , (A,A) | i ≥ 0}.

Hence, we have thatSE (Q) ∩ SE (R) = {(A,A)}. Observe also thatQ ∪ X andR ∪X do not have an
answer set for any proper subsetX ⊂ A, whileA is (the only) answer set of bothQ ∪A andR ∪A. Thus,
Q ≡u R. However,S ∪ A does not have an answer set and we getQ 6≡u S andR 6≡u S. SinceP has the
answer setA, we finally conclude thatP 6≡u Q, P 6≡u R, andP 6≡u S.

Towards a contradiction, let us assume that there exists a selection functionσ(SE (·)), such thatPi ≡u
Pj iff σ(SE (Pi)) = σ(SE (Pj)), for Pi, Pj ∈ {P,Q,R, S}. Then,σ(SE (S)) = ∅ and, sinceP 6≡u S,
σ(SE (P)) = {(A,A)}. Furthermore,Q ≡u R impliesσ(SE (Q)) = σ(SE (R)) and bySE (Q)∩SE (R) =
{(A,A)} we conclude eitherσ(SE (Q)) = σ(SE (R)) = ∅, orσ(SE (Q)) = σ(SE (R)) = {(A,A)}. From
P 6≡u Q, the former follows, i.e.,σ(SE (Q)) = σ(SE (R)) = ∅. However, thenσ(SE (Q)) = σ(SE (S))
whileQ 6≡u S, which is a contradiction. ✷

12 INFSYS RR 1843-05-01

3.3 Consequence under Uniform Equivalence

Based on UE-models, we define an associated notion of consequence underuniform equivalence.

Definition 6 (UE-consequence)A rule, r, is an UE-consequenceof a programP , denotedP |=u r, if
(X,Y) ∈ SE (r), for all (X,Y) ∈ UE (P).

Clearly,P |=u r for all r ∈ P , and∅ |= r iff r is a classical tautology. The next result shows that the
UE-models of a program remain invariant under addition of UE-consequences.

Proposition 4 For any programP and ruler, if P |=u r thenUE(P) = UE(P ∪ {r}).

Proof. Let P |=u r, we show thatUE(P) = UE(P ∪ {r}).
“⊆”: Let (X,Y) ∈ UE(P). Then, by hypothesisY |= r andX |= rY . Hence,Y |= P ∪ {r} and
X |= (P ∪ {r})Y . Suppose(X,Y) 6∈ UE(P ∪ {r}). Then there exists a setX ′, X ⊂ X ′ ⊂ Y , such
that (X ′, Y) |= (P ∪ {r})Y . But thenX ′ |= P Y , which contradicts(X,Y) ∈ UE(P). It follows that
(X,Y) ∈ UE(P ∪ {r}) .
“⊇”: Let (X,Y) ∈ UE(P ∪ {r}). ThenX |= P Y andY |= P . Suppose(X,Y) /∈ UE (P). Then,
some(X ′, Y) ∈ UE(P) exists such thatX ⊂ X ′ ⊂ Y . By hypothesis,(X ′, Y) ∈ SE(r) (otherwise
P 6|=u r), henceX ′ |= (P ∪ {r})Y . But then(X,Y) ∈ UE(P ∪ {r}), which is a contradiction. It follows
(X,Y) ∈ UE(P). ✷

As usual, we writeP |=u R for any set of rulesR if P |=u r for all r ∈ R. As a corollary, taking
Theorem 3(b) into account, we get the following.

Corollary 2 For any finite programP and set of rulesR, if P |=u R thenP ∪R ≡u P .

From this proposition, we also obtain an alternative characterization of uniform equivalence in terms of
UE-consequence.

Theorem 5 LetP andQ be DLPs. Then,

(a) P ≡u Q impliesP |=u Q andQ |=u P ;

(b) P |=u Q andQ |=u P impliesP ≡u Q, whenever at least one of the programsP ,Q is finite.

Proof. In Case(a), we haveUE(P) = UE(Q) if P ≡u Q by Theorem 3(a), and thusP andQ have
the same UE-consequences. Since(X,Y) |= P (resp.(X,Y) |= Q), for all (X,Y) ∈ UE (P) (resp.
(X,Y) ∈ UE(Q)), it followsQ |=u P andP |=u Q. For(b), we apply Proposition 4 repeatedly and obtain
UE(P) = UE (P ∪Q) = UE(Q). By Theorem 3(b) P ≡u Q. ✷

Rewriting this result in terms of SE- and UE-models gives thefollowing characterization (which has
also been derived for finite programs in [19]; Proposition 5).

Proposition 5 LetP andQ be DLPs. Then,

(a) P ≡u Q impliesUE(P) ⊆ SE (Q) andUE(Q) ⊆ SE (P);

(b) UE(P) ⊆ SE(Q) andUE(Q) ⊆ SE (P) impliesP ≡u Q, whenever at least one of the programsP ,
Q is finite.

INFSYS RR 1843-05-01 13

We note that with respect to uniform equivalence, every programP has a canonical normal form,P ∗,
given by its UE-consequences, i.e.,P ∗ = {r | P |=u r}. Clearly,P ⊆ P ∗ holds for every programP ,
andP ∗ has exponential size. Applying optimization methods builton UE-consequence,P resp.P ∗ may be
transformed into smaller uniformally equivalent programs; we leave this for further study.

As for the relationship of UE-consequence to classical consequence and cautious consequence under
answer set semantics, we note the following hierarchy. Let|=c denote consequence from the answer sets,
i.e.,P |=c r iff M |= r for everyM ∈ AS(P).

Proposition 6 For any finite programP and ruler, (i) P |=u r impliesP ∪ F |=c r, for each set of facts
F ; (ii) P ∪ F |=c r, for each set of factsF , impliesP |=c r; and (iii) P |=c r impliesP |= r.

Proof. Since each answer set is a classical model, it remains to show(i). SupposeP |=u r. Then,
P ≡u P ∪ {r} by Corollary 2, i.e.,AS(P ∪F) = AS(P ∪ {r} ∪F), for each set of factsF . SinceX |= r
for eachX ∈ AS(P ∪ {r} ∪ F), it follows thatP ∪ F |=c r, for each set of factsF . ✷

This hierarchy is strict, i.e., none of the implications holds in the converse direction. (For (i), note that
{a← not a} |=c a but{a← not a} 6|=u a, since the UE-model(∅, {a}) violatesa.)

We next present a semantic characterization in terms of UE-models, under which UE- and classical
consequence and thus all four notions of consequence coincide.

Lemma 2 Let P be a DLP. Suppose that(X,Y) ∈ UE(P) impliesX |= P (i.e.,X is a model ofP).
Then,P |= r impliesP |=u r, for every ruler.

Proof. Consider(X,Y) ∈ UE(P). By hypothesis,X |= P andP |= r, thusX |= r, which implies
X |= rX . Furthermore,Y |= r sinceY |= P . We need to show thatX |= rY . Note that eitherrY is void,
or, sinceX ⊆ Y , we haverY = rX . In both casesX |= rY follows, which proves(X,Y) ∈ SE (r). Thus,
P |=u r. ✷

Theorem 6 LetP be any DLP. Then the following conditions are equivalent:

(i) P |=u r iff P |= r, for every ruler.

(ii) For every(X,Y) ∈ UE(P), it holds thatX |= P .

Proof.
(ii)⇒ (i). Suppose (ii) holds. The only-if direction in (i) holds immediatly by Lemma 2. The if direction in
(i) holds in gerenal, sinceP |=u r iff UE (P) ⊆ SE(r). The latter clearly implies that each total SE-model
of P is a total SE-model ofr. Consequently,P |= r.
(i) ⇒ (ii). SupposeP |=u r iff P |= r, for every ruler, but there exists some UE-model(X,Y) of P
such thatX 6|= P . HenceX 6|= r for some ruler ∈ P . Let r′ be the rule which results fromr by shifting
the negative literals to the head, i.e.,H(r′) = H(r) ∪ B−(r), B+(r′) = B+(r), andB−(r′) = ∅. Then,
X 6|= r′. On the other hand,r ∈ P implies (X,Y) |= r. Hence,Y |= r and thusY |= r′. Moreover,
B−(r′) = ∅ implies thatr′ ∈ P Y , and henceX |= r′. This is a contradiction. It follows thatX |= P for
each UE-model(X,Y) of P . ✷

An immediate corollary to this result is that for finitepositiveprograms, UE-consequence collapses
with classical consequence, and hence uniform equivalenceof finite positive programs amounts to classical
equivalence. We shall obtain these results as corollaries of more general results in Section 5.1, though.

14 INFSYS RR 1843-05-01

4 Relativized Notions of Strong and Uniform Equivalence

In what follows, we formally introduce the notions of relativized strong equivalence (RSE) and relativized
uniform equivalence (RUE).

Definition 7 LetP andQ be programs and letA be a set of atoms. Then,

(i) P andQ arestrongly equivalent relative toA, denotedP ≡As Q, iff P ∪R ≡ Q∪R, for all programs
R overA;

(ii) P andQ are uniformly equivalent relative toA, denotedP ≡Au Q, iff P ∪ F ≡ Q ∪ F , for all
(non-disjunctive) factsF ⊆ A.

Observe that the range of applicability of these notions covers ordinary equivalence (by settingA = ∅)
of two programsP ,Q, andgeneralstrong (resp. uniform) equivalence (wheneverAtm(P ∪Q) ⊆ A). Also
the following relation holds: For any setA of atoms, letA′ = A ∩ Atm(P ∪Q). Then,P ≡Ae Q holds, iff
P ≡A

′

e Q holds, fore ∈ {s, u}.
Our first main result lists some properties for relativized strong equivalence. Among them, we show

that RSE shares an important property with general strong equivalence: In particular, from the proofs of the
results in [37, 57], it appears that for strong equivalence,only the addition of unary rules is crucial. That is,
by constraining the rules in the setR in Definition 7 to unary ones does not lead to a different concept.

Lemma 3 For programsP ,Q, and a set of atomsA, the following statements are equivalent:

(1) there exists a programR overA, such thatAS(P ∪R) 6⊆ AS(Q ∪R);

(2) there exists a unary programU overA, such thatAS(P ∪ U) 6⊆ AS(Q ∪ U);

(3) there exists an interpretationY , such that (a)Y |= P ; (b) for eachY ′ ⊂ Y with (Y ′∩A) = (Y ∩A),
Y ′ 6|= P Y holds; and (c)Y |= Q implies existence of anX ⊂ Y , such thatX |= QY and, for each
X ′ ⊂ Y with (X ′ ∩A) = (X ∩A),X ′ 6|= P Y holds.

Proof. (1)⇒ (3): Suppose an interpretationY and a setR of rules overA, such thatY ∈ AS(P ∪ R)
andY /∈ AS(Q ∪ R). FromY ∈ AS(P ∪ R), we getY |= P ∪R and, for eachZ ⊂ Y , Z 6|= P Y ∪ RY .
Thus (a) holds, and sinceY ′ |= RY holds, for eachY ′ with (Y ′ ∩ A) = (Y ∩ A), (b) holds as well.
FromY /∈ AS(Q ∪ R), we get that eitherY 6|= Q ∪ R or there exists an interpretationX ⊂ Y , such that
X |= QY ∪ RY . Note thatY 6|= Q ∪ R impliesY 6|= Q, since from above, we haveY |= R. Thus, in the
case ofY 6|= Q ∪ R, (c) holds; otherwise we get thatX |= QY . Now sinceX |= RY , we know that, for
eachX ′ ⊂ Y with (X ′ ∩A) = (X ∩A), X ′ 6|= P Y has to hold, otherwiseY /∈ AS(P ∪R). Hence, (c) is
satisfied.

(3)⇒ (2): Suppose an interpretationY , such that Conditions (a–c) hold. We have two cases: First,
if Y 6|= Q, consider the unary programU = (Y ∩ A). By Conditions (a) and (b), it is easily seen that
Y ∈ AS(P ∪ U), and fromY 6|= Q, Y /∈ AS(Q ∪ U) follows. So suppose,Y |= Q. By (c), there exists
anX ⊂ Y , such thatX |= QY . Consider the programU = (X ∩ A) ∪ {p ← q | p, q ∈ (Y \X) ∩ A}.
Again,U is unary overA. Clearly,Y |= Q ∪ U andX |= QY ∪ U . ThusY /∈ AS(Q ∪ U). It remains
to show thatY ∈ AS(P ∪ U). We haveY |= P ∪ U . Towards a contradiction, suppose aZ ⊂ Y , such
thatZ |= P Y ∪ U . By definition ofU , Z ⊇ (X ∩A). If (Z ∩ A) = (X ∩ A), Condition (c) is violated; if

INFSYS RR 1843-05-01 15

(Z ∩ A) = (Y ∩ A), Condition (b) is violated. Thus,(X ∩ A) ⊂ (Z ∩ A) ⊂ (Y ∩ A). But then,Z 6|= U ,
since there exists at least one rulep← q in U , such thatq ∈ Z andp /∈ Z. Contradiction.

(2)⇒ (1) is obvious. ✷

The next result is an immediate consequence of the fact that Propositions (1) and (2) from above result
are equivalent.

Corollary 3 For programsP , Q, and a set of atomsA, P ≡As Q holds iff, for each unary programU over
A, P ∪ U ≡ Q ∪ U holds.

We emphasize that therefore also for relatived equivalences, it holds that restricting the syntax of the
added rules, RSE and RUE are the only concepts which differ. Note that this generalizes an observation
reported in [49] to relativized notions of equivalence, namely that uniform and strong equivalence are the
only forms of equivalence obtained by varying the logical form of expressions in the extension.

4.1 A Characterization for Relativized Strong Equivalence

In this section, we provide a semantical characterization of RSE by generalizing the notion of SE-models.
Hence, our aim is to capture the problemP ≡As Q in model-like terms. We emphasize that the forthcoming
results are also applicable to infinite programs. Moreover,having found a suitable notion ofrelativized SE-
models, we expect that a corresponding pendant for relativized uniform equivalence can be derived in the
same manner as general UE-models are defined over general SE-models. As in the case of UE-models, we
need some restrictions concerning the infinite case, i.e., if infinite programs are considered.

We introduce the following notion.

Definition 8 LetA be a set of atoms. A pair of interpretations(X,Y) is a (relativized)A-SE-interpretation
iff eitherX = Y orX ⊂ (Y ∩A). The former are called total and the latter non-totalA-SE-interpretations.

Moreover, anA-SE-interpretation(X,Y) is a (relativized)A-SE-modelof a programP iff

(i) Y |= P ;

(ii) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), Y ′ 6|= P Y ; and

(iii) X ⊂ Y implies existence of aX ′ ⊆ Y with (X ′ ∩A) = X, such thatX ′ |= P Y holds.

The set ofA-SE-models ofP is given bySEA(P).

Compared to SE-models, this definition is more involved. This is due to the fact, that we have to take
care of two different effects when relativizing strong equivalence. The first one is as follows: Suppose a
programP has among its SE-models the pairs(Y, Y) and(Y ′, Y) with (Y ′ ∩A) = (Y ∩ A) andY ′ ⊂ Y .
Then,Y never becomes an answer set of a programP ∪ R, regardless of the rulesR overA we add toP .
This is due to the fact that eitherY ′ |= (P ∪R)Y still holds for someY ′ ⊂ Y , or,Y 6|= (P ∪R)Y (the latter
is a consequence of finding anR such thatY ′ 6|= (P ∪ R)Y , for (Y ′ ∩ A) = (Y ∩ A), Y ′ ⊂ Y modelling
P). In other words, for the construction of a programR overA, such thatAS(P ∪ R) 6= AS(Q ∪ R), it
is not worth to to pay attention to any original SE-model ofP of the form(·, Y), whenever there exists a
(Y ′, Y) ∈ SE(P) with (Y ′ ∩ A) = (Y ∩ A). This motivates Condition (ii). Condition (iii) deals witha
different effect: SupposeP has SE-models(X,Y) and(X ′, Y), with (X ∩ A) = (X ′ ∩ A) ⊂ (Y ∩ A).

16 INFSYS RR 1843-05-01

Here, it is not possible to eliminate just one of these two SE-models by adding rules overA. Such SE-models
which do not differ with respect toA, are collected into a singleA-SE-model((X ∩A), Y).

The different role of these two independent conditions becomes even more apparent in the following
cases. On the one hand, settingA = ∅, theA-SE-models of a programP collapse with the answer sets of
P . More precisely, all such∅-SE-models have to be of the form(Y, Y), and it holds that(Y, Y) is an∅-SE-
model of a DLPP iff Y is an answer set ofP . This is easily seen by the fact that underA = ∅, Conditions
(i) and (ii) in Definition 8 exactly coincide with the characterization of answer sets, following Proposition 2.
Therefore,A-SE-model-checking for DLPs is not possible in polynomial time in the general case; otherwise
we get that checking whether a DLP has some answer set isNP-complete; which is in contradiction to known
results [21], provided the polynomial hierarchy does not collapse. On the other hand, if each atom fromP
is contained inA, then theA-SE-models ofP coincide with the SE-models (overA) of P . The conditions
in Definition 8 are hereby instantiated as follows: A pair(X,Y) is anA-SE-interpretation iffX ⊆ Y , and
by (i) we getY |= P , (ii) is trivially satisfied, and (iii) statesX |= P Y .

The central result is as follows. In particular, we show thatA-SE-models capture the notion of≡As in
the same manner as SE-models capture≡s.

Theorem 7 For programsP ,Q, and a set of atomsA, P ≡As Q holds iffSEA(P) = SEA(Q).

Proof. First supposeP 6≡As Q and wlog consider for someR overA, AS(P ∪ R) 6⊆ AS(Q ∪ R). By
Lemma 3, there exists an interpretationY , such that (a)Y |= P ; (b) for eachY ′ ⊂ Y with (Y ′ ∩ A) =
(Y ∩A), Y ′ 6|= P Y ; and (c)Y 6|= Q or there exists an interpretationX ⊂ Y , such thatX |= QY and, for each
X ′ ⊂ Y with (X ′ ∩A) = (X ∩A),X ′ 6|= P Y . First supposeY 6|= Q, orY |= Q and(X ∩A) = (Y ∩A).
Then (Y, Y) is anA-SE-model ofP but not ofQ. Otherwise, i.e.,Y |= Q and (X ∩ A) ⊂ (Y ∩ A),
((X ∩A), Y) is anA-SE-model ofQ. But, by Condition (c),((X ∩A), Y) is not anA-SE-model ofP .

For the converse direction of the theorem, suppose a pair(Z, Y), such that wlog(Z, Y) is anA-SE-
model ofP but not ofQ. First, letZ = Y . We show thatAS(P ∪R) 6⊆ AS(Q ∪R) for some programR
overA. Since(Y, Y) is anA-SE-model ofP , we get from Definition 8, thatY |= P and, for eachY ′ ⊂ Y
with (Y ∩A) = (Y ′ ∩A), Y ′ 6|= P Y . Thus, Conditions (a) and (b) in Part (3) of Lemma 3 are satisfied for
P by Y . On the other hand,(Y, Y) is not anA-SE-model ofQ. By Definition 8, eitherY 6|= Q, or there
exists aY ′ ⊂ Y , with (Y ′ ∩A) = (Y ∩A), such thatY ′ |= QY . Therefore, Condition (c) from Lemma 3 is
satisfied by eitherY 6|= Q or, if Y |= Q, by settingX = Y ′. We apply Lemma 3 and get the desired result.
Consequently,P 6≡As Q. So suppose,Z 6= Y . We show that thenAS(Q ∪ R) 6⊆ AS(P ∪ R) holds, for
some programR overA. First, observe that whenever(Z, Y) is anA-SE-model ofP , then also(Y, Y) is an
A-SE-model ofP . Hence, the case where(Y, Y) is not anA-SE-model ofQ is already shown. So, suppose
(Y, Y) is anA-SE-model ofQ. We haveY |= Q and, for eachY ′ ⊂ Y with (Y ′∩A) = (Y ∩A), Y ′ 6|= QY .
This satisfies Conditions (a) and (b) in Lemma 3 forQ. However, since(Z, Y) is not anA-SE-model of
Q, for eachX ′ ⊂ Y with (X ′ ∩ A) = Z, X ′ 6|= QY holds. Since(Z, Y) in turn is anA-SE-model ofP ,
there exists anX ⊂ Y with (X ∩A) = Z, such thatX |= P Y . These observations imply that (c) holds in
Lemma 3. We apply the lemma and finally getP 6≡As Q. ✷

AltoughA-SE-models are more involved than SE-models, they share some fundamental properties with
general SE-models. On the other hand, some properties do notgeneralize toA-SE-models. We shall discuss
these issues in detail in Section 4.3. For the moment, we listsome observations, concerning the relation
between SE-models andA-SE-models, in order to present some examples.

INFSYS RR 1843-05-01 17

A A-SE-models ofQ A-SE-models ofQ′

{a, b, c} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, b} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, c} (abc, abc), (a, abc), (∅, abc) (abc, abc), (a, abc), (∅, abc)
{b, c} (abc, abc), (∅, abc), (b, abc) (abc, abc), (b, abc), (∅, abc)
{a} - -
{b} - -
{c} (abc, abc), (∅, abc) (abc, abc), (∅, abc)
∅ - -

Table 1: Comparing theA-SE-models for Example ProgramsQ andQ′.

Lemma 4 Let P be a program andA be a set of atoms. We have the following relations betweenA-SE-
models and SE-models.

(i) If (Y, Y) ∈ SEA(P), then(Y, Y) ∈ SE(P).

(ii) If (X,Y) ∈ SEA(P), then(X ′, Y) ∈ SE (P), for someX ′ ⊆ Y with (X ′ ∩A) = X.

Example 11 Consider the programs

Q = {a ∨ b←; a← c; b← c; ← not c; c← a, b};

Q′ = {a← not b; b← not a; a← c; b← c; ← not c; c← a, b}.

Thus,Q′ results fromQ by replacing the disjunctive rulea ∨ b← by the two rulesa← not b; b← not a.
Table 1 lists, for eachA ⊆ {a, b, c}, theA-SE-models ofQ andQ′, respectively. The first row of

the table gives the SE-models (over{a, b, c}) for Q andQ′. From this row, we can by Definition 8 and
Lemma 4, obtain the other rows quite easily. Observe that we haveQ 6≡s Q′. The second row shows that,
for A = {a, b}, Q 6≡As Q′, as well. Indeed, addingR = {a ← b; b ← a} yields{a, b, c} as answer set of
Q∪R, whereasQ′∪R has no answer set. For all otherA ⊂ {a, b, c}, theA-SE-models ofQ andQ′ coincide.
Basically, there are two different reasons. First, forA = {a, c}, A = {b, c}, or A = {c}, Condition (iii)
from Definition 8 comes into play. In those cases, at least oneof the SE-interpretations(a, abc) or (b, abc) is
“switched” to (∅, abc), and thus the original difference between the SE-models disappears when considering
A-SE-models. In the remaining cases, i.e.,A ⊂ {a, b}, Condition (ii) prevents any(·, abc) to be anA-SE-
model ofQ or Q′. Then, neitherQ norQ′ possesses anyA-SE-model.

4.2 A Characterization for Relativized Uniform Equivalence

In what follows, we consider the problem of checking relativized uniform equivalence. Therefore, we shall
make use of the newly introducedA-SE-models in the same manner as Section 3 provided characterizations
for uniform equivalence using SE-models.2

We start with a generalization of Lemma 1. The proof is similar to the proof of Lemma 1 and thus
relegated to the Appendix.

2For a slightly different way to prove the main results on RUE,we refer to [58].

18 INFSYS RR 1843-05-01

Lemma 5 Two DLPsP andQ are uniformly equivalent wrt to a set of atomsA, i.e.P ≡Au Q, iff for every
A-SE-model(X,Y), such that(X,Y) is anA-SE-model of exactly one of the programsP andQ, it holds
that (i) (Y, Y) ∈ SEA(P) ∩ SEA(Q), and (ii) there exists anA-SE-model(X ′, Y), X ⊂ X ′ ⊂ Y , of the
other program.

From Lemma 5 we immediately obtain the following characterization of relativized uniform equiva-
lence.

Theorem 8 Two programs,P andQ are uniformly equivalent wrt to a set of atomsA, P ≡Au Q, iff

(i) for eachY , (Y, Y) ∈ SEA(P) iff (Y, Y) ∈ SEA(Q), i.e., the totalA-SE-models ofP andQ coincide;

(ii) for each(X,Y), whereX ⊂ Y , (X,Y) is anA-SE-model ofP (respectivelyQ) iff there exists a set
X ′, such thatX ⊆ X ′ ⊂ Y , and(X ′, Y) is anA-SE-model ofQ (respectivelyP).

In contrast to uniform equivalence, we can obtain further characterizations for≡Au also for infinite
programs, provided thatA is finite.

Theorem 9 LetP andQ be programs,A a set of atoms, such thatP , Q, or A is finite. ThenP ≡Au Q, iff
the following conditions hold:

(i) for eachY , (Y, Y) ∈ SEA(P) iff (Y, Y) ∈ SEA(Q), i.e., the totalA-SE-models ofP andQ coincide;

(ii) for each(X,Y) ∈ SEA(P) ∪ SEA(Q) such thatX ⊂ Y , there exists an(X ′, Y) ∈ SEA(P) ∩
SEA(Q) such thatX ⊆ X ′ ⊂ Y .

The result is proved by the same argumentation as used in the proof of Theorem 2. The only additional
argumentation is needed for the cases thatP andQ are both infinite, butA is finite. Recall that in this case
there is also only a finite number of non-totalA-SE-interpretations(X,Y) for fixedY , sinceX ⊆ A holds
by definition ofA-SE-interpretation. Therefore, any chain (as used in the proof of Theorem 2) of different
A-SE-models(X,Y) with fixedY is finite.

As mentioned before, we aim at defining relativizedA-UE-models overA-SE-models in the same man-
ner as general UE-models are defined over general SE-models,following Definition 5.

Definition 9 LetA be a set of atoms andP be a program. A pair(X,Y) is a (relativized)A-UE-modelof
P iff it is anA-SE-model ofP and, for everyA-SE-model(X ′, Y) of P ,X ⊂ X ′ impliesX ′ = Y . The set
ofA-UE-models ofP is given byUEA(P).

An alternative characterization ofA-UE-models, which will be useful later, is immediately obtained
from Definitions 8 and 9 as follows.

Proposition 7 AnA-SE-interpretation(X,Y) is anA-UE-model of a programP iff

(i) Y |= P ;

(ii) for eachX ′′ ⊂ Y with either(X ∩A) ⊂ (X ′′ ∩A) or (X ′′ ∩A) = (Y ∩A),X ′′ 6|= P Y ; and

(iii) if X ⊂ Y , there exists aX ′ ⊆ Y with (X ′ ∩A) = (X ∩A), such thatX ′ |= P Y .

Next, we derive the desired characterization for relativized uniform equivalence, generalizing the results
in Theorem 3.

INFSYS RR 1843-05-01 19

Theorem 10 LetP andQ be DLPs, andA a set of atoms. Then,

(a) P ≡Au Q impliesUEA(P) = UEA(Q);

(b) UEA(P) = UEA(Q) impliesP ≡Au Q, whenever at least one ofP ,Q, orA is finite.

Proof. Proving(a) is basically done as for Theorem 3, applying Theorem 8 instead of Theorem 1.
We proceed with the more interesting part(b). First assume thatP orA is finite. The case whereQ (or

A) is finite is analogous. AssumeUEA(P) = UEA(Q). Then Property (i) of Theorem 8 holds, and towards
a contradiction, suppose that Theorem 8 (ii) is not satisfied, i.e., there existsX ⊂ Y , such that either (1)
(X,Y) ∈ SEA(P) and not existsX ⊆ X ′ ⊂ Y , (X ′, Y) ∈ SEA(Q), or vice versa (2)(X,Y) ∈ SEA(Q)
and not existsX ⊆ X ′ ⊂ Y , (X ′, Y) ∈ SEA(P).
Case (1): We show the existence of a setZ, X ⊆ Z ⊂ Y , such that(Z, Y) ∈ UEA(P). If (X,Y) ∈
UEA(P), or eitherY orA is finite, this is trivial. So let(X,Y) 6∈ UEA(P) and bothY andA be infinite.
ThenYP = Y ∩ Atm(P) andXP = X ∩ Atm(P) are finite, and(XP , YP) ∈ SEA(P). The latter holds
by the observations that (i)Y |= P impliesYP |= P ; (ii) for eachY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A),
Y ′ 6|= P Y implies that, for eachY ′′ ⊂ YP with (Y ′′ ∩ A) = (YP ∩ A), Y ′′ 6|= P Y ; and (iii)X ′ |= P Y for
some(X ′ ∩A) = X implies that(X ′ ∩ Atm(P)) |= P Y = P YP . Moreover,XP ⊂ YP , otherwise we end
up in a contradiction by the fact that then(X ′′,X ′′) ∈ UEA(P) = UEA(Q) for some(X ′′ ∩ A) = XP ,
implying (X,Y) ∈ SEA(Q), since(Y, Y) ∈ UEA(Q) = UEA(P) holds. SinceYP is finite, there exists
a setZP , XP ⊆ ZP ⊂ YP , such that(ZP , YP) ∈ UEA(P). Now, letZ = A ∩ (ZP ∪ (Y \ YP)). Then
X ⊆ Z ⊂ Y holds by construction. Furthermore(Z, Y) ∈ UEA(P), sinceY \ Z = YP \ZP , P Y = P YP ,
and(ZP , YP) ∈ UEA(P). By our assumption(Z, Y) ∈ UEA(Q) follows. Contradiction.
Case (2): We show the existence of a setZ, X ⊆ Z ⊂ Y , such that(Z, Y) ∈ UEA(Q). If (X,Y) ∈
UEA(Q), or one ofA, Y is finite, this is trivial. So let(X,Y) 6∈ UE(Q), and bothY andA infinite. If
(X,Y) 6∈ UEA(Q), ((Y ∩A)\X) ⊆ Atm(P) must hold; otherwise we end up in a contradiction by taking
any atoma ∈ (Y ∩ A) \ X. (ConsiderZ = (Y ∩ A) \ {a}. ThenX ⊆ Z ⊂ Y holds by construction
and since(Y, Y) ∈ UEA(P) = UEA(Q), as well as someZ ′ with (Z ′ ∩ A) = Z modelsPZ

′

= P Y

we get(Z, Y) ∈ SEA(P), a contradiction). Now, sinceAtm(P) is finite, this means that(Y ∩ A) \X is
finite, i.e., there cannot exist an infinite chain ofSE -models(X,Y) = (X0, Y), (X1, Y), . . . , (Xi, Y), . . .,
such thatXi ⊂ Xj ⊂ (Y ∩ A), for i < j, and(Xi, Y) ∈ SEA(Q). Thus, there exists a maximal model
(Z, Y) ∈ UEA(Q). By our assumption(Z, Y) ∈ UEA(P) follows. Contradiction. Thus, Theorem 8 (ii)
holds as well, provingP ≡Au Q in Case (b). ✷

Example 12 Recall our example programsQ andQ′ from above. Via the first row in the table (i.e., for
A = {a, b, c}, yielding the respective SE-models), it is easily checked by Proposition 3 thatQ andQ′ are
uniformly equivalent. In fact, the SE-model(∅, abc) ofQ′ is not a UE-model ofQ′, due to the presence of
the SE-model(a, abc), or alternatively because of(b, abc). Note thatQ ≡u Q′ impliesQ ≡Au Q

′ for anyA.
Inspecting the remaining rows in the table, it can be seen that for anyA, the sets ofA-UE-models ofQ and
Q′ are equal, as expected.

We conclude this section, with remarking that we do not have adirectly corresponding result to Theo-
rem 5 for relativized uniform equivalence (see also next subsection). A generalization of Proposition 5 is
possible, however. The proof is in the Appendix.

Theorem 11 LetP andQ be DLPs, andA a set of atoms. Then,

20 INFSYS RR 1843-05-01

(a) P ≡Au Q impliesUEA(P) ⊆ SEA(Q) andUEA(Q) ⊆ SEA(P);

(b) UEA(P) ⊆ SEA(Q) andUEA(Q) ⊆ SEA(P) impliesP ≡Au Q, whenever at least one ofP , Q, or
A is finite.

4.3 Properties of Relativized Equivalences

This section collects a number of properties ofA-SE-models andA-UE-models, respectively. Note that
there are situations whereA-SE-models andA-UE-models are the same concepts.

Proposition 8 For any programP , and a set of atomsA with card(A) < 2, SEA(P) = UEA(P) holds.

Corollary 4 For programsP ,Q and a set of atomsA with card (A) < 2, P ≡As Q iff P ≡Au Q.

The following results are only given in terms ofA-SE-models; the impact of the results on properties of
A-UE-models is in most cases obvious, and thus not explicitlymentioned.

First, we are able to generalize Proposition 2 to relativized SE-models.

Lemma 6 An interpretationY is an answer set of a programP iff (Y, Y) ∈ SEA(P) and, for eachX ⊂ Y ,
(X,Y) 6∈ SEA(P).

One drawback ofA-SE-models is that they are not closed under program composition. Formally,
SEA(P ∪ Q) = SEA(P) ∩ SEA(Q) does not hold in general; however, it holds wheneverA contains
all atoms occurring inP orQ. However, the fact that, in general,SEA(P ∪Q) 6= SEA(P) ∩ SEA(Q), is
not a surprise, since forA = ∅, A-SE-models capture answer sets; and if this closure property would hold,
answer set semantics would be monotonic.

Proposition 9 For programsP ,Q, and a set of atomsA, we have the following relations:

(i) (Y, Y) ∈ SEA(P) ∩ SEA(Q) implies(Y, Y) ∈ SEA(P ∪Q);

(ii) for X ⊂ Y , (X,Y) ∈ SEA(P ∪ Q) implies(X,Y) ∈ SEA(R), whenever(Y, Y) ∈ SEA(R), for
R ∈ {P,Q};

(iii) the converse directions of(i) and(ii) do not hold in general.

Proof. ad (i): Suppose(Y, Y) /∈ SEA(P ∪Q); then either (a)Y 6|= P ∪Q; or (b) there exists aY ′ ⊂ Y
with (Y ′ ∩ A) = (Y ∩ A), such thatY ′ |= (P ∪ Q)Y . If Y 6|= P ∪ Q, then eitherY 6|= P or Y 6|= Q.
Consequently,(Y, Y) /∈ SEA(P) or (Y, Y) /∈ SEA(Q). So, supposeY |= P ∪ Q and (b) holds. Then
neither,(Y, Y) ∈ SEA(P) nor (Y, Y) ∈ SEA(Q).

ad (ii): LetR ∈ {P,Q}. Suppose(Y, Y) ∈ SEA(R) and(X,Y) /∈ SEA(R). The latter implies that no
X ′ ⊂ Y with (X ′∩A) = (X∩A), satisfiesX ′ |= P Y . Consequently, no suchX ′ satisfiesX ′ |= (P ∪Q)Y ,
and thus(X,Y) /∈ SEA(P ∪Q).

ad (iii): Take the following example programs. Consider programs overV = {a, b, c} containing rules
R = { ← not a; ← not b; ← not c}. Note thatSE(R) = {(X,V) | X ⊆ V }. Let

Pa = R ∪ {a←; b← c; c← b};

Pb = R ∪ {b←; a← c; c← a};

Pc = R ∪ {c←; a← b; b← a}.

INFSYS RR 1843-05-01 21

Then, the SE-models ofPv are given by(v, abc) and(abc, abc), for v ∈ V .
Set now, for instance,A = {c}. Then, we haveSEA(Pa) = SEA(Pb) = {(∅, abc), (abc, abc)}, while

SEA(Pc) = ∅. However,SEA(Pa ∪ Pb) = SEA(Pa ∪ Pc) = SEA(Pb ∪ Pc) = {(abc, abc)}. This shows
that for both, (i) and (ii) in Proposition 9, the converse direction does not hold. ✷

The above result crucially influences the behavior of relativized consequence operators, i.e., generaliza-
tions of|=e as introduced in Definitions 3 and 6, respectively, to the relativized notions of equivalence.

To check rule redundancy in the context of relatived strong equivalence, we give the following result.

Definition 10 A rule,r, is anA-relativizedSE-consequenceof a programP , denotedP |=A
s r, if (X,Y) ∈

SEA({r}), for all (X,Y) ∈ SEA(P).

Lemma 7 For any set of atomsA, programP , and ruler with (B+(r)∪H(r)) ⊆ A, it holds that ifP |=A
s r

thenP ∪ {r} ≡As P .

Proof. We showSEA(P ∪ {r}) = SEA(P), givenP |=A
s r.

“⊆”: Let (X,Y) ∈ SEA(P ∪ {r}). We show(X,Y) ∈ SEA(P). First letX = Y . Then,Y |= P ∪ {r}
and, for eachY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ 6|= (P ∪ r)Y . SinceAtm(rY) ⊆ A, for each such
Y ′, Y ′ |= rY , and therefore,Y ′ 6|= P Y . Consequently,(Y, Y) ∈ SEA(P). So suppose,X ⊂ Y . Then,
(Y, Y) ∈ SEA(P ∪ {r}). We already know that then(Y, Y) ∈ SEA(P). We apply Proposition 9, and get
(X,Y) ∈ SEA(P).
“⊇”: Let (X,Y) ∈ SEA(P). Then, (Y, Y) ∈ SEA(P) and by assumption(Y, Y) ∈ SEA({r}). By
Proposition 9, we get(Y, Y) ∈ SEA(P ∪ {r}). Moreover, from(X,Y) ∈ SEA(P) andP |=A

s r, we get
(X,Y) ∈ SEA({r}). Hence, there existX ′,X ′′ with (X ′∩A) = (X ′′∩A) = (X ∩A) such thatX ′ |= P Y

andX ′′ |= rY . By assumptionAtm(rY) ⊆ A. SinceX ′ andX ′′ agree onA, we getX ′ |= rY ; and thus
X ′ |= (P ∪ r)Y . Consequently,(X,Y) ∈ SEA(P ∪ {r}). ✷

The result similarly applies to the notion of UE-consequence relative toA, i.e., the restriction(H(r) ∪
B+(r)) ⊆ A is also necessary in that case. However (as in Proposition 4), the result has to be slightly
rephrased forA-UE-models in order to handle the case of infinite programs properly.

In general, checking rule-redundancy with respect to relativized equivalences is a more involved task;
we leave it for further study.

5 Restricted Classes of Programs

So far, we discussed several forms of equivalence for propositional programs, in general. This section
is devoted to two prominent subclasses of disjunctive logicprograms, namely positive and head-cycle free
programs. Notice that these classes include the Horn logic programs and the disjunction-free logic programs,
respectively.

5.1 Positive Programs

While for programs with negation, strong equivalence and uniform equivalence are different, the notions
coincide for positive programs, also in the relativized cases. We start with some technical results.

Lemma 8 LetP be a program, andA,X ⊂ Y be sets of atoms. We have the following relations:

22 INFSYS RR 1843-05-01

1. If (Y, Y) ∈ SEA(P) and(X,X) ∈ SEA(P), then((X ∩A), Y) ∈ SEA(P).

2. If (X,Y) ∈ SEA(P), then(Y, Y) ∈ SEA(P) and, wheneverP is positive, there exists anX ′ ⊆ Y
with (X ′ ∩A) = X, such that(X ′,X ′) ∈ SEA(P).

Proof. (1) First, observe that(X ∩ A) ⊂ (Y ∩ A) holds. Otherwise, we get fromX |= PX , X |= P Y

(sinceP Y ⊆ PX , wheneverX ⊆ Y), and thus(Y, Y) /∈ SEA(P), by definition. Moreover, sinceX |= P Y

and(Y, Y) ∈ SEA(P), we derive((X ∩A), Y) ∈ SEA(P).
(2) Let (X,Y) ∈ SEA(P). Then,(Y, Y) ∈ SEA(P) is an immediate consequence of the definition of

A-SE-models. From(X,Y) ∈ SEA(P) we get that there exists anX ′ ⊆ Y with (X ′ ∩ A) = X, such
thatX ′ |= P Y . TakeX ′ as the minimal interpretation satisfying this condition. For positiveP , we have
PX

′

= P Y = P and we getX ′ |= PX
′

= P . Moreover, since we choseX ′ minimal, there does not exist
anX ′′ ⊂ X ′ with (X ′′ ∩A) = (X ′ ∩A), such thatX ′′ |= PX

′

= P . Hence,(X ′,X ′) ∈ SEA(P). ✷

In other words, the set of allA-SE-models of a positive programP is determined by its totalA-SE-
models. An important consequence of this result is the following.

Proposition 10 Let P , Q be programs,P be positive, and suppose the totalA-SE-models ofP andQ
coincide. Then,SEA(P) ⊆ SEA(Q).

Proof. Towards a contradiction, assume there exists anA-SE-interpretation satisfying(X,Y) ∈ SEA(P)
and (X,Y) /∈ SEA(Q). SinceP is positive, by Lemma 8 we get that there exists someX ′ ⊆ Y with
(X ′ ∩ A) = X, such that(X ′,X ′) ∈ SEA(P). By assumption, the totalA-SE-models coincide, and
thus we have(X ′,X ′) ∈ SEA(Q). Moreover, since(X,Y) ∈ SEA(P), we get(Y, Y) ∈ SEA(P) and
furthermore(Y, Y) ∈ SEA(Q). Hence,(X ′,X ′) ∈ SEA(Q) and(Y, Y) ∈ SEA(Q). By Lemma 8, we get
that((X ′ ∩A), Y) = (X,Y) isA-SE-model ofQ, which is in contradiction to our assumption. ✷

From this result, we get that deciding relativized strong and uniform equivalence of positive programs
collapses to checking whether totalA-SE-models coincide.

Theorem 12 LetP andQ be positive DLPs, andA a set of atoms. The following propositions are equiva-
lent:

(i) P ≡As Q;

(ii) P ≡Au Q;

(iii) (Y, Y) ∈ SEA(P) iff (Y, Y) ∈ SEA(Q), for each interpretationY .

Proof. (i) implies (ii) by definition; (ii) implies (iii) by Theorem10. We show (iii) implies (i). Applying
Proposition 10 in case of two positive programs immediatelyyields that (iii) impliesSEA(P) = SEA(Q).
Hence,P ≡As Q. ✷

Therefore, RSE and RUE are the same concepts for positive programs; we thus sometimes write gener-
ically ≡e for ≡s and≡u.

An important consequence of this result, is thatA-UE-models (and thus UE-models) are capable to deal
with infinite programs as well, provided they are positive.

Corollary 5 LetA be a (possibly infinite) set of atoms, andP ,Q (possibly infinite) positive program. Then,
P ≡Au Q holds iffUEA(P) = UEA(Q).

INFSYS RR 1843-05-01 23

Proof. The only-if direction has already been obtained in Theorem 10. For the if direction, note that
UEA(P) = UEA(Q) implies (iii) from Theorem 12, and sinceP andQ are positive we deriveP ≡Au Q
immediately from that Theorem. ✷

Concerning strong equivalence and uniform equivalence, Lemma 8 generalizes some well known obser-
vations for positive programs.

Proposition 11 For any positive programP , and sets of atomsX ⊆ Y , (X,Y) ∈ SE (P) iff (X,X) ∈
SE (P) and(Y, Y) ∈ SE (P).

In other words, the set of all SE-models of a programP is determined by its total SE-models (i.e., by
the classical models ofP). As known and easy to see from main results [37, 56, 57], on the class of positive
programs classical and strong equivalence coincide. UsingTheorem 12, we can extend this result:

Theorem 13 For positive programsP ,Q,P ≡e Q (e ∈ {s, u}) iff P andQ have the same classical models.

Note that Sagiv [52] showed that uniform equivalence of DATALOG programsΠ andΠ′ coincides with
equivalence ofΠ′ andΠ over Herbrand models; this implies the above result for definite Horn programs.
Maher [43] showed a generalization of Sagiv’s result for definite Horn logic programs with function sym-
bols. Furthermore, Maher also pointed out that for DATALOG programs, this result has been independently
established by Cosmadakis and Kanellakis [10].

Example 13 Consider the positive programsP = {a ∨ b ← a; b ← a} andQ = {b ← a}. Clearly,
P |= Q sinceQ ⊂ P , but alsoQ |= P holds (note thatb← a is a subclause ofa ∨ b← a). Hence,P and
Q are uniformly equivalent, and even strongly equivalent (which is also easily verified).

Example 14 Consider the positive programsP = {a ∨ b; c ← a; c ← b} andQ = {a ∨ b; c}. Their
classical models are{a, c}, {b, c}, and {a, b, c}. Hence,P and Q are uniformly equivalent, and even
strongly equivalent (due to Theorem 12).

Concerning the relativized notions, a result corresponding directly to Theorem 13 is not achievable.
However, this is not surprising, otherwise we would have that in case of emptyA, P ≡As Q (or P ≡Au Q)
collapses to classical equivalence. This, of course, cannot be the case since for positive programs,P ≡ Q
denotes the equivalence of theminimalclassical models ofP andQ, rather than classical equivalence.

Thus, while for strong and uniform equivalence total models(Y, Y) for a positive programP coincide
with the classical modelsY of P , the relativized variants capture a more specific relation,viz. minimal
models. We therefore define as follows.

Definition 11 AnA-minimal model of a programP is a classical modelY ofP , such that, for eachY ′ ⊂ Y
with (Y ′ ∩A) = (Y ∩A), Y ′ is not a classical model ofP .

Then, we can generalize Theorem 13 in the following manner:

Theorem 14 LetP andQ be positive DLPs, andA a set of atoms. Then,P ≡Ae Q (e ∈ {s, u}) iff P andQ
have the sameA-minimal models.

24 INFSYS RR 1843-05-01

Proof. By Theorem 12 it is sufficient to show that the totalA-SE-models of a programP equal itsA-
minimal models. This relation holds for positive programs,sinceP Y = P for any positive programP
and any interpretationY . In this case the conditions for(Y, Y) ∈ SEA(P) are the same as forY being
A-minimal forP . ✷

Note that forA = ∅ the theorem states thatP ≡Ae Q iff the minimal classical models ofP andQ
coincide, reflecting the minimal model semantics of positive programs. On the other hand, forA = U , the
theorem states thatP ≡Ae Q iff all classical models ofP andQ coincide, as stated above.

5.2 Head-cycle free programs

The class of head-cycle free programs generalizes the classof normal logic programs by permitting a re-
stricted form of disjunction. Still, it is capable of expressing nondeterminism such as, e.g., a guess for the
value of an atoma, which does not occur in the head of any other rule. For a definition of head-cycle free-
ness, we refer to Section 2. As shown by Ben-Eliyahu and Dechter [4], each head-cycle free program can
be rewritten to an ordinary equivalent normal program, which is obtained by shifting atoms from the head
to the body.

More formally, let us define the following notations.

Definition 12 For any ruler, let

r→ =

{

{a← B+(r),not (B−(r) ∪ (H(r) \ {a})) | a ∈ H(r)} if H(r) 6= ∅,
{r} otherwise

For any DLPP , letP→r = (P \ {r}) ∪ r→; andP→ =
⋃

r∈P r
→.

It is well-known that for any head-cycle free programP , it holds thatP ≡ P→ (cf. [4]). This result can
be strengthened to uniform equivalence as well as to its relativized forms.

Theorem 15 For any head-cycle free programP , and any set of atomsA, it holds thatP ≡Au P
→.

Proof. For any set of factsF ⊆ A, it holds that(P ∪F)→ = P→ ∪F and that this program is head-cycle
free iff P is head-cycle free. Thus,P ∪ F ≡ (P ∪ F)→ ≡ P→ ∪ F . Hence,P ≡Au P

→. ✷

We emphasize that a similar result for strong equivalence fails, as shown by the canonical counterexam-
ple in Example 1. Moreover, the programP = {a ∨ b ← .} is not strongly equivalent to any NLP. Thus,
we can not conclude without further consideration that a simple disjunctive “guessing clause” like the one
in P (such thata andb do not occur in other rule heads) can be replaced in a more complex program by
the unstratified clausesa ← not b andb ← not a (the addition of a further constraint← a, b is required).
However, we can conclude this under uniform equivalence taking standard program splitting results into
account [39, 22].

The following result provides a characterization of arbitrary programs which are relativized strongly
equivalent to their shift variant. A more detailed discussion of eliminating disjunction under different notions
of equivalences was recently published in [19].

First, we state a simple technical result.

Lemma 9 For any ruler, SE(r) ⊆ SE(r→).

INFSYS RR 1843-05-01 25

Proof. Indirect. Suppose(X,Y) ∈ SE(r) and(X,Y) /∈ SE (r→). Then,Y |= r and eitherY ∩B−(r) 6=
∅, X 6|= B+(r), or X ∩ H(r) 6= ∅. By classical logic,Y |= r iff Y |= r→. By assumption(X,Y) /∈
SE (r→), there exists a rule inr→ with a as the only atom in its head, such thata /∈ X, Y ∩ B−(r) = ∅,
X |= B+(r), andY ∩ (H(r) \ {a}) = ∅. Hence, from the above conditions for(X,Y) ∈ SE(r), only
X ∩ H(r) 6= ∅ applies. Then, someb from H(r) is contained inX. If a = b we get a contradiction to
a /∈ X; otherwise we get a contradiction toY ∩ (H(r) \ {a}) = ∅, sinceY ⊇ X and thusb ∈ Y . ✷

Next, we define the following set, which characterizes the exact difference betweenr andr→ in terms
of SE-models.

Definition 13 For any ruler, define

Sr = {(X,Y) | X ⊆ Y, X |= B+(r), Y ∩B−(r) = ∅, card (H(r) ∩ Y) ≥ 2, H(r) ∩X = ∅}.

Proposition 12 For any disjunctive ruler, SE (r→) \ SE (r) = Sr.

A proof for this result can be found in [19]. Hence, together with Lemma 9, we get that, for any
disjunctive ruler, Sr characterizes exactly the difference betweenr andr→ in terms of SE-models.

Theorem 16 LetP be a program, andr ∈ P . Then,P ≡As P
→
r iff for each SE-model(X,Y) ∈ SE (P→r)∩

Sr, exists aX ′ ⊂ Y , withX ′ 6= X and(X ′ ∩A) = (X ∩A), such that(X ′, Y) ∈ SE (P).

Proof. SupposeP 6≡As P→r . First, assume there exists anA-SE-interpretation(Z, Y) ∈ SEA(P) such
that(Z, Y) 6∈ SEA(P→r). By definition ofA-SE-models, Lemma 9 and the fact thatY |= P iff Y |= P→r ,
we get thatZ = Y . Since(Y, Y) 6∈ SEA(P→r) but Y |= P→r , there exists anX such that(X,Y) is SE-
model ofP→r . Moreover, by Proposition 12,(X,Y) ∈ Sr. On the other hand, from(Y, Y) ∈ SEA(P), we
get that, for eachX ′ ⊂ Y with (X ′ ∩ A) = (Y ∩ A) = (X ∩ A), (X ′, Y) is not SE-model ofP . Second,
assume there exists anA-SE-interpretation(Z, Y) ∈ SEA(P→r), such that(Z, Y) 6∈ SEA(P). One can
verify that using Lemma 9 this impliesZ ⊂ Y . Hence, there exists someX ⊆ Y with (X ∩A) = (Z ∩A)
such that(X,Y) is SE-model ofP→ but noX ′ with (X ′ ∩ A) = (X ∩ A) is SE-model ofP . Moreover,
(X,Y) ∈ Sr. This shows the claim. The converse direction is by exactly the same arguments. ✷

As an immediate consequence of this result, we obtain the following characterization for general strong
equivalence.

Corollary 6 LetP be any DLP. Then,P ≡s P→ if and only if for every disjunctive ruler ∈ P it holds that
P→ has no SE-model(X,Y) ∈ Sr (i.e.,SE (P→) ∩ Sr = ∅).

Example 15 ReconsiderP = {a ∨ b ←}. ThenP→ = {a ← not b, b ← not a} has the SE-model
(∅, ab) which satisfies the conditions forSa∨b←. Note that also the extended programP ′ = {a ∨ b←, a←
b, b← a} is not strongly equivalent to its shifted programP ′→. Indeed,(∅, ab) is also an SE-model ofP ′→.
Furthermore,P ′ is also not uniformly equivalent toP ′→, since(∅, ab) is moreover a UE-model ofP ′→, but
P ′ has the single SE-model (and thus UE-model)(ab, ab).

We already have seen that shifting is possible if the disjunction is made exclusive with an additional
constraint (see also Example 2).

26 INFSYS RR 1843-05-01

Example 16 Let P be a program containing the two rulesr = a ∨ b ← and r′ =← a, b. The ruler′

guarantees that no SE-model(X,Y) of P or of P→r with {a, b} ⊆ Y exists. But then,Sr does not contain
an element fromSE(P→r), and we get by Corollary 6,P ≡s P→r .

So far, we have presented a general semantic criterion for deciding whether shifting is invariant un-
der≡As . We close this section, with a syntactic criterion generalizing the concept of head-cycle freeness.

Definition 14 For a set of atomsA, a rule r is A-head-cycle free (A-HCF) in a programP , iff the depen-
dency graph ofP augmented with the clique overA, does not contain a cycle going through two atoms from
H(r). A program isA-HCF, iff all its rules areA-HCF.

In other words, the considered augmented graph ofP as used in the definition is given by the pair
(A ∪ Atm(P), E) with

E =
⋃

r∈P

{(p, q) | p ∈ B+(r), q ∈ H(r), p 6= q} ∪ {(p, q), (q, p) | p, q ∈ A, p 6= q}

and obviously coincides with the (ordinary) dependency graph of the programP ∪ R, whereR is the set
of all unary rules overA. Recall that following Corollary 3, unary rules characterize relativized strong
equivalence sufficiently. From this observation, the forthcoming results follow in a straight-forward manner.

Theorem 17 For any programP , r ∈ P , and a set of atomsA, P ≡As P
→
r , wheneverr isA-HCF inP .

Note that ifr isA-HCF inP , thenr is HCF inP ∪R, whereR is the set of unary rules overA. In turn,
r then is HCF in all programsP ∪ R′, with R′ ⊆ R. Thus,P ∪ R′ ≡ P→r ∪ R

′ holds for allR′ by known
results. Consequently,P ≡As P

→
r .

Corollary 7 For any programP , and a set of atomsA, P ≡As P
→ holds, wheneverP isA-HCF.

6 Computational Complexity

In this section, we address the computational complexity ofchecking various notions of equivalence for
logic programs. We start with uniform equivalence also taking the associated consequence operator into
account. Then, we generalize these results and consider thecomplexity of relativized equivalence. Finally,
we considerboundedrelativization, i.e., the problem of decidingP ≡Ae Q (e ∈ {s, u}), such that the number
of atomsmissingin A is bounded by a constant k, denotedP k≡Ae Q. For all three groups of problems we
provide a fine-grained picture of their complexity by takingdifferent classes of programs into account.

Recall thatΠP2 = coNPNP is the class of problems such that the complementary problemis nondeter-
ministically decidable in polynomial time with the help of an NP oracle, i.e., inΣP2 = NPNP. As well,
the classDP consists of all problems expressible as the conjunction of aproblem inNP and a problem in
coNP. Moreover, any problem inDP can be solved with a fixed number ofNP-oracle calls, and is thus
intuitively easier than a problem complete for∆P

2 .
Our results are summarized in Table 2. More precisely, the table shows the complexity of the considered

problemsP ≡As Q andP ≡Au Q in the general case; as well as in the bounded case (P k≡As Q andP k≡Au
Q). Moreover, we explicitly list the problem of uniform equivalence,P ≡u Q. Depending on the program
classesP andQ belong to, the corresponding entry shows the complexity (interms of a completness result)
for all five equivalence problems with respect to these classes. In fact, the table has to be read as follows.

INFSYS RR 1843-05-01 27

P ≡As Q / P ≡Au Q /

P k≡As Q / P k≡Au Q / P ≡u Q DLP positive HCF normal Horn

Horn ΠP2 coNP coNP coNP coNP

coNP coNP coNP coNP P

normal ΠP2 ΠP2 ΠP2 /coNP coNP

coNP coNP coNP coNP

HCF ΠP2 ΠP2 ΠP2 /coNP

coNP coNP coNP

positive ΠP2 ΠP2
coNP/ΠP2 /ΠP2 coNP

DLP ΠP2
coNP/ΠP2 /ΠP2

Table 2: Complexity of Equivalence Checking in Terms of Completeness Results.

For instance, the complexity of equivalence checking for DLPs in general is given by the entry in the last
line and the first column of Table 2. The entry’s first line refers to the problemsP ≡As Q andP ≡Au Q
(which are bothΠP2 -complete), and the entry’s second line refers to the problemsP k≡As Q, P k≡Au Q, and
P ≡u Q, respectively. The latter two showΠP2 -completenes whileP k≡As Q is coNP-complete. As another
example, the complexity of deciding equivalence of a head-cycle free program and a normal program is
reported by the entry in the second line of the third column.

We now highlight the most interesting entries of Table 2.

• (Unrelativized) uniform equivalence isharder than (unrelativized) strong equivalence; and this result
carries over to the case of bounded relativization. This difference in complexity is only obtained if
both programs involved contain head-cycles and at least oneof them contains default negation.

• For the case of relativization, uniform equivalence is in some caseseasierto decide than relativized
strong equivalence. This effect occurs only, if both programs are head-cycle free, whereby one of
them may be normal (but not Horn).

• Another interesting case amounts if two Horn programs are involved. Hereby, relativized equivalence
is harder than in the bounded case, but it is also harder thanordinary equivalence (see Theorem 33 in
Section 6.2 below). In each other case, relativization is never harder than ordinary equivalence.

• Finally, we list those cases where bounded relativizationsdecreases the complexity: As already men-
tioned for both RSE and RUE, this holds for comparing Horn programs. Additionally, in the case of
RSE, there is a proper decrease whenever one program is disjunctive and the other is not Horn, or
P contains negation as well as head-cycles andQ is Horn. In the latter situation, we also observe
a descrease in the case of RUE. Additionaly, such a decrease for RUE is present, ifP is normal or
HCF andQ is disjunctive and contains headcycles, or if two positive DLPs containing headcycles are
compared.

28 INFSYS RR 1843-05-01

A-SE-models A-UE-models UE-models

A bounded general card(A) = 1 A = ∅ general A bounded

DLP/positive in P DP DP coNP DP coNP coNP

HCF in P NP P P P P P

normal/Horn in P P P P P P P

Table 3: Complexity of Model Checking.

Some of the effects can be explained by inspecting the underlying decision problem of model checking.
For a set of atomsA, the problem ofA-SE-model checking (resp.A-UE-model checking) is defined as
follows: Given sets of atomsX, Y , and a programP , decide whether(X,Y) ∈ SEA(P) (resp.(X,Y) ∈
UEA(P)). We compactly summarize our results onA-SE-model checking, resp.A-UE-model checking, in
Table 3. This table has to be read as follows. The lines determine the class of programs dealed with and
the columns refer to model checking problems in different settings. From left to right we have: (i) bounded
A-SE-model checking of a programP , i.e., it is assumed thatAtm(P)\A contains a fixed number of atoms;
(ii) the generalA-SE-model checking problem; (iii) the special case ofcard (A) = 1, whereA-SE-model
checking andA-UE-model checking coincide; (iv) the special case ofcard(A) = 0, where bothA-SE-
model checking andA-UE-model checking coincide with answer set checking; (v) the generalA-UE-model
checking problem; (vi) boundedA-UE-model checking (analogously to boundedA-SE-model checking);
and finally, we explicitly list the results for (vii) UE-model checking. All results from Table 3 are proven in
detail in the subsequent sections, as well. All entries except the ones in the first column are completeness
results. Some interesting observations, which also intuitively explain the different results for≡As and≡Au
include: (1)A-SE-model checking is easier thanA-UE-model checking in the case of DLPs and bounded
A; Roughly spoken, in this case the additional test for maximality in A-UE-model checking is responsible
for the higher complexity; (2) for the case of head-cycle free programs,A-SE-model checking is harder than
A-UE-model checking, viz.NP-complete. This result is a consequence of Theorem 16, whichguarantees
that in terms of uniform equivalence, shifted HCF (and thus normal) programs can be employed; recall that
this simplification is not possible in the context of strong equivalence.

Towards showing all results in detail, we introduce the following notions used throughout this section.
We often reduce propositional formulas to logic programs using, for a set of propositional atomsV , an
additional set of atoms̄V = {v̄ | v ∈ V } within the programs to refer to negative literals. Consequently,
we associate to each interpretationI ⊆ V , an extended interpretationσV (I) = I ∪ {v̄ | v ∈ V \ I},
usually dropping subscriptV if clear from the context. The classical models of a formulaφ are denoted
by Mφ. Furthermore, we have a mapping(·)∗ defined asv∗ = v, (¬v)∗ = v̄, and(φ ◦ ψ)∗ = φ∗ ◦ ψ∗,
with v an atom,φ andψ formulas, and◦ ∈ {∨,∧}. A further mapping(·) is defined asv = v̄, ¬v = v,
φ ∨ ψ = φ ∧ ψ, and(φ ∧ ψ) = φ ∨ ψ. To use these mappings in logic programs, we denote rules also by
a1 ∨ . . . ∨ al ← al+1 ∧ . . . ∧ am ∧ not am+1 ∧ . . . ∧ not an.

Finally, we define, for a set of atomsY ⊆ U , the following sets of Horn rules.

Y U
⊆ = {← y | y ∈ U \ Y }

Y U
⊂ = Y U

⊆ ∪ {← y1, . . . , yn}

Y U
= = Y U

⊆ ∪ Y

Sometimes we do not write the superscriptU which refers to the universe. We assume that, unless stated

INFSYS RR 1843-05-01 29

P ≡u Q DLP positive HCF normal Horn

Horn coNP coNP coNP coNP P

normal coNP coNP coNP coNP

HCF coNP coNP coNP

positive ΠP2 coNP

DLP ΠP2

Table 4: Complexity of Uniform Equivalence in Terms of Completeness Results.

otherwise,U refers all the atoms occurring in the programs under consideration.

6.1 Complexity of Uniform Equivalence

In this section, we address the computational complexity ofuniform equivalence. While our main interest
is with the problem of deciding uniform equivalence of two given programs, we also consider the related
problems of UE-model checking and UE-consequence. Our complexity results for deciding uniform equiv-
alence of two given programs are collected from Table 2 into Table 4, for the matter of presentation. The
table has to be read as Table 2. Note that in general, uniform equivalence is complete for classΠP2 , and
therefore more complex than deciding strong equivalence, which is in coNP [47, 40, 57]. Thus, the more
liberal notion of uniform equivalence comes at higher computational cost in general. However, for important
classes of programs, it has the same complexity as strong equivalence.

In what follows, we prove all the results in Table 4. Towards these results, we start with the problem of
UE-model checking. Let‖α‖ denote the size of an objectα.

Theorem 18 Given a pair of sets(X,Y) and a programP , the problem of deciding whether(X,Y) ∈
UE(P) is (i) coNP-complete in general, and (ii) feasible in polynomial time with respect to‖P‖+ ‖X‖+
‖Y ‖, if P is head-cycle free. Hardness in Case (i) holds even for positive programs.

Proof. TestingY |= P andX |= P Y , i.e.,(X,Y) ∈ SE (P), for given interpretationsX, Y , is possible
in polynomial time. IfX ⊂ Y it remains to check that noX ′, X ′ |= P Y , exists such thatX ⊂ X ′ ⊂ Y .
This can be done via checking

P Y ∪X ∪ Y⊂ |= X=. (1)

In fact, each model,X ′, of P Y ∪ X ∪ Y⊂ gives a non-total SE-model(X ′, Y) of P with X ⊆ X ′ ⊂ Y .
On the other hand, the only model ofX= isX itself. Hence, (1) holds iff noX ′ with X ⊂ X ′ ⊂ Y exists
such that(X ′, Y) ∈ SE(P), i.e., iff (X,Y) ∈ UE(P). In general, deciding (1) is incoNP witnessed by the
membership part of (i).

If P is normal then the involved programs in (1) are Horn and, since classical consequence can be
decided in polynomial time for Horn programs, the overall check proceeds in polynomial time. Finally, if
P is head-cycle free, then alsoP Y is. Moreover, by Theorem 15 we haveP ≡u P→. Hence, in this case,
(1) holds iff (P→)Y ∪X ∪ Y⊂ |= X=. SinceP→ is normal, the latter test can be done in polynomial time
(with respect to‖P‖+ ‖X‖ + ‖Y ‖). This shows (ii).

30 INFSYS RR 1843-05-01

It remains to showcoNP-hardness of UE-model checking for positive programs. We show this by
a reduction from tautology checking. LetF =

∨m
k=1Dk be a propositional formula in DNF containing

literals over atomsX = {x1, . . . , xn}, and consider the following programP :

P = { xi ∨ x̄i← xj . xi ∨ x̄i← x̄j. | 1 ≤ i 6= j ≤ n }∪

{ xi← xj , x̄j . x̄i← xj, x̄j . | 1 ≤ i 6= j ≤ n }∪

{ xi← D∗k. x̄i← D∗k. | 1 ≤ k ≤ m, 1 ≤ i ≤ n },

whereD∗k results fromDk by replacing literals¬xi by x̄i.
SinceP is positive, the SE-models ofP are determined by its classical models, which are given by∅,

X ∪ X̄, andσ(I), for each interpretationI ⊆ X makingF false. Hence,(∅,X ∪ X̄) is an SE-model ofP
and(∅,X ∪ X̄) ∈ UE(P) iff F is a tautology. This provescoNP-hardness. ✷

In fact, also those UE-model checking problems which are feasible in polynomial time, are hard for the
classP.

Theorem 19 Given a pair of sets(X,Y) and a head-cycle free programP , the problem of deciding whether
(X,Y) ∈ UE(P) is P-complete. Hardness holds, even ifP is definite Horn.

Proof. Membership has already been shown in Theorem 18. We show hardness via a reduction from the
P-complete problem HORNSAT to UE-model checking for Horn programs. Hence, letφ = φf ∧ φr ∧ φc
a Horn formula over atomsV , whereφf = a1 ∧ · · · ∧ an; φr =

∧m
i=1(bi,1 ∧ · · · ∧ bi,ki → bi); and

φc =
∧l
i=1 ¬(ci,1∧· · ·∧ci,ki). Wlog supposen ≥ 1 (otherwiseφ would be trivially satisfiable by the empty

interpretation). Letu,w be new atoms, and take the program

P = {ai ← u | 1 ≤ i ≤ n} ∪

{bi ← bi,1, . . . , bi,ki | 1 ≤ i ≤ m} ∪

{w ← ci,1, . . . , ci,ki | 1 ≤ i ≤ l} ∪

{u← v; v ← w | v ∈ V } ∪ {u← w}.

We show thatφ is unsatisfiable iff(∅, V ∪ {u,w}) is UE-model ofP . Note that both∅ andV ∪ {u,w} are
classical models ofP for anyφ. SinceP is positive, it is sufficient to show thatφ is satisfiable iff a model
M of P exists, such that∅ ⊂M ⊂ (V ∪ {u,w}).

Supposeφ is satisfiable, andM is a model ofφ; then it is easily checked thatM ∪ {u} is a model ofP .
So supposeφ is unsatisfiable, and towards a contradiction let someM with ∅ ⊂ M ⊂ (V ∪ {u,w}) be a
model ofP . From the rules{v ← w | v ∈ V } ∪ {u ← w}, we getw /∈ M . Hence, the constraintsφc are
true underM . SinceM is not empty, eitheru ∈ M or somev ∈ V is in M . However, the latter implies
thatu ∈ M as well (by rules{u ← v | v ∈ V }). Recall thatφf is not empty by assumption, hence allai’s
from φf are inM . Then, it is easy to see thatM \ {u} satisfiesφ, which contradicts our assumption thatφ
is unsatisfiable. ✷

We now consider the problem of our main interest, namely deciding uniform equivalence. By the previ-
ous theorem, the following upper bound on the complexity of this problem is obtained.

Lemma 10 Given two DLPsP andQ, deciding whetherP ≡u Q is in the classΠP2 .

INFSYS RR 1843-05-01 31

Proof. To show that two DLPsP andQ are not uniformly equivalent, we can by Theorem 3 guess an SE-
model(X,Y) such that(X,Y) is an UE-model of exactly one of the programsP andQ. By Theorem 18,
the guess for(X,Y) can be verified in polynomial time with the help of anNP oracle. This provesΠP2 -
membership ofP ≡u Q. ✷

This upper bound has a complementary lower bound proved in the following result.

Theorem 20 Given two DLPsP andQ, deciding whetherP ≡u Q is ΠP2 -complete. Hardness holds even
if one of the programs is positive.

Proof. Membership inΠP2 has already been established in Lemma 10. To showΠP2 -hardness, we provide
a polynomial reduction of evaluating a quantified Boolean formula (QBF) from a fragment which is known
ΠP2 -complete to deciding uniform equivalence of two DLPsP andQ.

Consider aQBF 2,∀ of form F = ∀X∃Y φ with φ =
∧i=m
i=1 Ci, where eachCi is a disjunction of

literals over the boolean variables inX ∪ Y . Deciding whether a given suchF is true is well known to be
ΠP2 -complete.

For the moment, let us assume thatX = ∅, i.e., the QBF amounts to a SAT-instanceF overY . More
precisely, in what follows we reduce the satisfiability problem of the quantifier-free formulaφ to the problem
of deciding uniform equivalence of two programsP andQ. Afterwards, we take the entire QBFF into
account.

Let a andb be fresh atoms and define

P = {y ∨ ȳ ←| y ∈ Y } ∪ (2)

{b← y, ȳ; y ← b; ȳ ← b | y ∈ Y } ∪ (3)

{b← Ci | 1 ≤ i ≤ m} ∪ (4)

{a←}. (5)

Note thatP is positive. The second program is defined as follows:

Q = {y ∨ ȳ ← z | y ∈ Y ; z ∈ Y ∪ Ȳ ∪ {a}} ∪ (6)

{b← y, ȳ; y ← b; ȳ ← b | y ∈ Y } ∪ (7)

{b← Ci | 1 ≤ i ≤ m} ∪ (8)

{a← b; a← not b; a← not a}. (9)

The only differences between the two programsP andQ are located in the rules (2) compared to (6) as well
as (5) compared to (9). Note that (9) also contains default negation.

Let us first compute the SE-models ofP . SinceP is positive it is sufficient to consider classical models.
LetA = Y ∪ Ȳ ∪ {a, b}. First,A is clearly a classical model ofP , and so isσ(I) ∪ {a}, for each classical
model I ∈ Mφ. In fact, these are the only models ofP . This can be seen as follows. By rules (2), at
least oney or ȳ must be contained in a model, for eachy ∈ Y . By (3), if both y and ȳ are contained in
a candidate-model for somey ∈ Y or b is contained in the candidate, then the candidate is spoiledup to
Y ∪ Ȳ ∪ {b}. Hence the classical models of (2–3) are given by{σ(I) | I ⊆ Y } andY ∪ Ȳ ∪ {b}. Now, (4)
eliminates those candidates which makeφ false by “lifting” them toY ∪ Ȳ ∪ {b}. By (5) we finally have to
adda to the remaining candidates.

Hence, the SE-models ofP are given by

{(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ} ∪ {(σ(I) ∪ {a},A) | I ∈Mφ} ∪ (A,A).

32 INFSYS RR 1843-05-01

Obviously, each SE-model ofP is also UE-model ofP .
We now analyzeQ. First observe that the classical models ofP andQ coincide. This is due the

fact that (5) is classically equivalent to (9) and thus classically derivesa, making (6) and (2) do the same
job in this context. However, sinceQ is not positive we have to consider the respective reducts ofQ to
compute the SE-models. We start with SE-models of the form(X,A). In fact, (X,A) ∈ SE(Q) iff
X ∈ {∅,A} ∪ {σ(I) | I ∈ Mφ} ∪ {σ(I) ∪ {a} | I ∈ Mφ}. The remaining SE-models ofQ are all total
and, as forP , given by{(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ}.

Hence, the set of all SE-models ofQ is

{(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ} ∪ {(σ(I) ∪ {a},A) | I ∈Mφ} ∪ (A,A) ∪

{(σ(I),A) | I ∈Mφ} ∪ (∅,A);

having additional SE-models compared toP , namely(∅,A) and{(σ(I),A) | I ∈Mφ}. Note however, that
the latter SE-models never are UE-models ofQ, since clearlyσ(I) ⊂ (σ(I) ∪ {a}), for all I ∈Mφ.

Thus, ifMφ is not empty, the UE-models ofP andQ coincide; otherwise there is a single non-total
UE-model ofQ, namely(∅,A). Note that the latter is not UE-model ofQ in the caseMφ 6= ∅ since, for
eachI ∈ Mφ, σ(I) 6= ∅. Consequently, the UE-models ofP andQ coincide iffMφ is not empty, i.e., iffφ
is satisfiable.

So far we have shown how to construct programsP andQ, such that uniform equivalence encodes SAT.
To complete the reduction for the QBF, we now also takeX into account.

We add in bothP andQ the set of rules

{x ∨ x̄←; ← x, x̄ | x ∈ X}

where thēx’s are fresh atoms. The setA remains as before, i.e., without any atom of the formx or x̄.
This has the following effects. First the classical models of bothP andQ are now given byσX∪Y (I) ∪

{a}, for eachI ∈Mφ, and(σX∪Y (J)∪A) = (σX(J)∪A), for eachJ ⊆ X. Therefore, the SE-models of
P are given by

{(σX∪Y (I) ∪ {a}, σX∪Y (I) ∪ {a}) | I ∈Mφ} ∪ (10)

{(σX∪Y (I) ∪ {a}, σX (I) ∪ A) | I ∈Mφ} ∪ (11)

{(σX(J) ∪ A, σX(J) ∪ A) | J ⊆ X}. (12)

Again, each SE-model ofP is also UE-model ofP . ForQ the argumentation from above is used analo-
gously. In particular, for eachJ ⊆ X, we get an additional SE-model{(σX(J), σX (J) ∪ A)} for Q. Thus,
the UE-models ofP andQ coincide iff, none of these additional SE-models{(σX(J), σX(J) ∪ A)} of Q
is an UE-model ofQ, as well. This is the case iff, for eachJ ⊆ X, there exists a truth assignment toY
makingφ true, i.e., iff the QBF∀X∃Y φ is true.

SinceP andQ are obviously constructible in polynomial time, our resultfollows. ✷

For the construction ofP andQ in above proof we used—for matters of presentation—two additional
atomsa andb. However, one can resign onb; by replacing rules (3) and (4) in both programs by{y ←
C; ȳ ← Ci | y ∈ Y ; 1 ≤ i ≤ m}; and additionally rules (9) inQ by {a ← C; ā ← Ci | 1 ≤
i ≤ m} ∪ {← not a}. Hence, already a single occurrence of default negation in one of the compared
programs makes the problem harder. Note that equivalence oftwo positive disjunctive programs is among
thecoNP-problems discussed in the following.

INFSYS RR 1843-05-01 33

Theorem 21 LetP andQ be positive DLPs. Then, deciding whetherP ≡u Q is coNP- complete, where
coNP-hardness holds even if one of the programs is Horn.

Proof. By Theorem 12, uniform equivalence and strong equivalence are the same concepts for positive
programs. Since strong equivalence is incoNP in general, the membership part of the theorem follows
immediately.

We showcoNP-hardness for a positive DLPP and a Horn programQ by a reduction from UNSAT.
Given a propositional formula in CNFF =

∧m
i=1Ci over atomsX, let

P = {C∗i ∨ a← | 1 ≤ i ≤ m} ∪ {← x, x̄ | x ∈ X}; and

Q = {a←} ∪ {← x, x̄ | x ∈ X}.

By Theorem 13,P ≡u Q iff P andQ have the same classical models. The latter holds iff each model of P
contains the atoma. But then,F is unsatisfiable. ✷

We now turn to head-cycle free programs.

Theorem 22 LetP andQ be DLPs, andP head-cycle free. Then, decidingP ≡u Q is coNP- complete,
wherecoNP-hardness holds even ifP is normal andQ is Horn.

Proof. For the membership part, by Theorem 5,P ≡u Q iff P |=u Q andQ |=u P . Both tasks are in
coNP (see Theorem 24 below). Since the classcoNP is closed under conjunction, it follows that deciding
P ≡u Q is in coNP.

To showcoNP-hardness consider the programs from the proof of Theorem 21. Indeed,P is HCF and,
therefore,P ≡u P→ by Theorem 15. Using the same argumentation as above, yieldsP→ ≡u Q iff F is
unsatisfiable. This shows thecoNP-hardness result for comparing normal and Horn programs. ✷

Note that Sagiv showed [52] that decidingP ≡u Q for given definite Horn programsP andQ is
polynomial, which easily follows from his result that the property of uniform containment (whether the
least model ofP ∪ R is always a subset ofQ ∪ R) can be decided in polynomial time. As pointed out by
Maher [43], Buntine [5] has like Sagiv provided an algorithmfor deciding uniform containment.

Sagiv’s result clearly generalizes to arbitrary Horn programs, since by Theorem 13, decidingP ≡u Q
reduces to checking classical equivalence of Horn theories, which is known to beP-complete.

Corollary 8 Deciding uniform equivalence of Horn programs isP-complete.

This concludes our analysis on the complexity of checking uniform equivalence. Our results cover
all possible combinations of the classes of programs considered, i.e., DLPs, positive programs, normal
programs, head-cycle free programs, as well as Horn programs, as already highlighted in Table 4.

Finally, we complement the results on uniform equivalence and UE-model checking with addressing the
complexity of UE-consequence. The proofs of these results can be found in the Appendix.

Theorem 23 Given a DLPP and a ruler, decidingP |=u r is (i) ΠP2 -complete in general, (ii) coNP-
complete ifP is either positive or head-cycle free, and (iii) polynomial ifP is Horn.

Theorem 24 Let P , Q be DLPs. Then,P |=u Q is coNP-complete, whenever one of the programs is
head-cycle free.coNP-hardness holds, even ifP is normal andQ is Horn.

34 INFSYS RR 1843-05-01

P ≡As Q / P ≡Au Q DLP positive HCF normal Horn

Horn ΠP2 coNP coNP coNP coNP

normal ΠP2 ΠP2 ΠP2 /coNP coNP

HCF ΠP2 ΠP2 ΠP2 /coNP

positive ΠP2 ΠP2
DLP ΠP2

Table 5: Complexity of Relativized Equivalences in Terms ofCompleteness Results.

6.2 Complexity of Relativized Equivalence

We now generalize the complexity results to relativized forms of equivalence. In particular, we inves-
tigate the complexity ofA-SE/UE-model checking as well as of the equivalence problems ≡As and≡Au ,
respectively. Like in the previous section, we also consider different classes of programs. Our results are
summarized in Table 5 for both RSE and RUE at a glance by just highlighting where the complexity differs.
Note that the only differences between RSE and RUE stem from the entriesΠP2 /coNP in the column for
head-cycle free programs. Here we have that in the cases HCF/HCF and HCF/normal, checking≡As is in
general harder for RSE than for RUE. Another issue to mentionis that already for uniform equivalence,
the concept of relativization make things more difficult. One just needs to compare the first two columns
of Tables 4 and 5, respectively. Even worse for strong equivalence, which is incoNP in its unrelativized
version and now jumps up toΠP2 -completeness in several cases. Finally, also the comparison of two Horn
programs becomes intractable, viz.coNP-complete, compared to the polynomial-time result in the cases of
unrelativized strong and uniform equivalence.

To summarize, RSE and RUE (i) are harder to decide than in their unrelativized versions in several cases,
and (ii) both are generally of the same complexity except head-cycle free programs are involved. Note that
Observation (ii), on the one hand, contrasts the current view that notions of strong equivalence have milder
complexity than notions like uniform equivalence. On the other hand, the intuition behind this gap becomes
apparent if one takes into account that for HCF programsP , P ≡Au P

→ holds, whileP ≡As P
→ does not.

For an even more fine-grained picture, note that problems associated with equivalence tests relative to
an atom setA call for further distinctions between several cases concerning the concrete instanceA. We
identify the following ones:

• card(A) = 0: In this case, bothA-SE andA-UE-model checking collapse to answer set checking;
correspondingly, RSE and RUE collapse to ordinary equivalence;

• card(A) < 2: By Proposition 8 and Corollary 4,A-SE-models andA-UE-models coincide, and thus,
RSE and RUE are the same concepts.

Our results for≡Ae , e ∈ {s, u}, given in the following, consider arbitrary fixedA unless stated otherwise.
Moreover, we consider thatA contains only atoms which also occur in the programs under consideration.
In some cases the hardness-part of the complexity results isobtained only ifcard(A) > k for some constant
k. We shall make these cases explicit.

Another special case forA is to considerbounded relativization. This denotes the class of problems
where the cardinality of(V \A) is less or equal than a fixed constantk, with V being the atoms occurring in
the two programs compared. Note that this concepts containsstrong and uniform equivalence, respectively,

INFSYS RR 1843-05-01 35

as special cases, i.e., if(V \ A) = ∅. We deal with bounded relativization explicitly in the subsequent
section.

Towards deriving the results from Table 5, we first consider model checking problems. Formally, for a
set of atomsA, the problem ofA-SE-model checking (resp.A-UE-model checking) is defined as follows:
Given sets of atomsX, Y , and a programP , decide whether(X,Y) ∈ SEA(P) (resp.(X,Y) ∈ UEA(P)).
We start with the following tractable cases.

Theorem 25 Given a pair of sets(X,Y), a set of atomsA, and a programP , the problem of deciding
whether(X,Y) ∈ SEA(P) (resp.(X,Y) ∈ UEA(P)) is feasible in polynomial time with respect to‖P‖+
‖X‖ + ‖Y ‖, wheneverP is normal(resp. wheneverP is HCF).

Proof. We start with the test whether(X,Y) is A-SE-model of a normal programP . Note thatP Y is
Horn, and thatY is a model ofP Y iff Y is a model ofP . Consider the following algorithm

1. Check whetherY is a model ofP Y .

2. Check whetherPY = P Y ∪ (Y ∩A) ∪ Y⊂ is unsatisfiable.

3. If X ⊂ Y , check whetherPX = P Y ∪ (X ∩A) ∪ {← x | x ∈ (A \X)} ∪ Y⊆ is satisfiable.

Note that each step is feasible in polynomial time, especially since bothPX andPY are Horn. Hence, it
remains to proof that above algorithm holds, exactly if(X,Y) isA-SE-model ofP . This is seen as follows:
each step exactly coincides with one of the conditions of checking whether(X,Y) is anA-SE-model, i.e.,
(1) Y |= P ; (2) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), Y ′ 6|= P Y ; and (3)X ⊂ Y implies existence of a
X ′ ⊆ Y with (X ′ ∩A) = X, such thatX ′ |= P Y .

For the result onA-UE-model checking we use a similar argumentation. First suppose thatP is normal
and consider the algorithm from above but replacing the second step by

2a. Check whetherP Y ∪ (X ∩A) ∪ Y⊂ |= (X ∩A) ∪ {← x | x ∈ (A \X)}.

The desired algorithm then corresponds to the respective conditions forA-UE-model checking following
Proposition 7. To be more specific, the models ofP Y ∪ (X∩A)∪Y⊂ are thoseX ′ with (X ∩A) ⊆ X ′ ⊂ Y
such thatX ′ |= P Y . The set of models of the right-hand side is given by{Z | (Z ∩ A) = (X ∩ A)}.
Hence, the test in [2a.] is violated iff there exists anX ′ with (X ∩ A) ⊂ (X ′ ∩ A) andX ′ ⊂ Y such
thatX ′ |= P Y , i.e., iff (X,Y) /∈ UEA(P). Moreover, for HCF programs,P→ is A-UE-equivalent to
P , following Theorem 15, i.e., theA-UE-models forP andP→ coincide. ApplyingP→ to the presented
procedure thus shows thatA-UE-model checking is feasible in polynomial time also for HCF programs.✷

Without a formal proof, we mention that these tractable model checking problems are complete for the
classP. Indeed, one can re-use the argumentation from the proof of Theorem 19 and take, for instance,
A = {u}. Then,(∅, V ∪ {u,w}) ∈ SEA(P) = UEA(P) iff the encoded Horn formula is satisfiable. Note
thatP-hardness holds also for answer set checking (i.e.,A = ∅) by the straightforward observation that a
Horn programP has an answer set iffP is satisfiable.

Next, we consider the case ofA-SE-model checking for head-cycle free programs. Recall that for
card(A) < 2, A-SE-model checking coincides withA-UE-model checking, and thus in these casesA-
SE-model checking is feasible in polynomial time, as well. However, in general,A-SE-model checking is
harder thanA-UE-model checking for head-cycle free programs.

36 INFSYS RR 1843-05-01

Theorem 26 Let (X,Y) be a pair of interpretations, andP a head-cycle free program. Deciding whether
(X,Y) ∈ SEA(P) isNP-complete. Hardness holds for any fixedA with card (A) ≥ 2.

Proof. For the membership result we argue as follows. First we checkwhether(Y, Y) ∈ SEA(P). Note
that(Y, Y) ∈ SEA(P) iff (Y, Y) ∈ UEA(P). By Theorem 25 the latter test is feasible in polynomial time.
It remains to check whether there exists aX ′ ⊆ Y with (X ′ ∩A) = X, such thatX ′ |= P Y . This task is in
NP, and therefore, the entire test is inNP.

For the correspondingNP-hardness, consider the problem of checking satisfiabilityof a formulaψ =
∧m
j=1Cj in CNF given over a set of atomsV . This problem isNP-complete. We reduce it toA-SE-model

checking for a HCF program. Consider the following program with additional atomsa1, a2, V̄ = {v̄ | v ∈
V }, and letA = {a1, a2}.

P = {v ∨ v̄ ←| v ∈ V } (13)

{v ← a1; v̄ ← a1 | v ∈ V } (14)

{a2 ← Cj | 1 ≤ j ≤ m} (15)

{a2 ← v, v̄ | v ∈ V }. (16)

Note thatP is HCF. LetY = V ∪ V̄ ∪ A. We show that(∅, Y) ∈ SEA(P) iff ψ is satisfiable. It is clear
thatY |= P and noY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) satisfiesY ′ |= P Y = P due to Rules (14). This
shows(Y, Y) ∈ SEA(P). Now, (∅, Y) ∈ SEA(P) iff there exists aX ⊆ (V ∪ V̄) such thatX |= P Y = P .
SupposeX |= P . Sincea2 /∈ X,X must represent a consistent guess due to Rules (13) and (16).Moreover,
X has to represent a model ofψ due to Rules (15). Finally,X |= (14) holds by trivial means, i.e., since
a1 /∈ X. The converse direction is by analogous arguments. Hence,(∅, Y) ∈ SEA(P) iff there exists a
model ofψ, i.e., iff ψ is satisfiable.

This shows hardness forcard(A) = 2. To obtaincoNP-hardness for anyA with k = card(A) > 2
and, such that alla ∈ A are also occurring in the program, considerP as above augmented by rules
{ai+1 ← ai | 2 ≤ i < k} andA = {ai | 1 ≤ i ≤ k}. By analogous arguments as above, one can show that
then(∅, (V ∪ V̄ ∪A)) ∈ SEA(P) iff ψ is satisfiable. ✷

The next result concernsA-SE-model checking andA-UE-model checking of disjunctive logic programs
in general and positive DLPs. ForA = ∅, these tasks coincide with answer set checking which is known
to be coNP-complete (see, for instance, [21]). Already a single element in A yields a mild increase of
complexity.

Theorem 27 Let (X,Y) be a pair of interpretations, andP a DLP. Deciding whether(X,Y) ∈ SEA(P)
(resp. (X,Y) ∈ UEA(P)) is DP -complete. Hardness holds for any fixedA with card(A) ≥ 1 even for
positive programs.

Proof. We first showDP -membership. By Definition 8, a pair of interpretations(X,Y) is anA-SE-model
of P iff (1) (X,Y) is a validA-SE-interpretation; (2)Y |= P ; (3) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A),
Y ′ 6|= P Y ; and (4)X ⊂ Y implies existence of aX ′ ⊆ Y with (X ′ ∩ A) = X, such thatX ′ |= P Y

holds. Obviously, (1) and (2) can be verified in polynomial time. The complementary problem of (3) can
be verified by a guess forY ′ and a derivability check. As well, (4) can be verified by a guess forX ′ and a
derivability check. Hence, (3) is incoNP and (4) is inNP, which showsDP -membership. Similar in the
case ofA-UE-models. By Proposition 7,(X,Y) ∈ UEA(P) iff (1) (X,Y) is a validA-SE-interpretation;
(2) Y |= P ; (3) for eachX ′′ ⊂ Y with (X ∩A) ⊂ (X ′′ ∩ A) orX ′′ = (Y ∩A), X ′′ 6|= P Y holds; and (4)
X ⊂ Y implies that there exists aX ′ ⊆ Y with (X ′ ∩A) = X, such thatX ′ |= P Y . Similar as before one

INFSYS RR 1843-05-01 37

can verify that the first two conditions are feasible in polynomial time, whereas checking (3) is acoNP-test,
and checking (4) aNP-test.

For the matching lower bound, we consider the casecard(A) = 1. Therefore,DP -hardness of both
A-SE-model checking andA-UE-model checking are captured at once. We consider the problem of jointly
checking whether

(a) a formulaφ =
∨n
i=1Di in DNF is a tautology; and

(b) a formulaψ =
∧m
j=1Cj in CNF is satisfiable.

This problem isDP -complete, even if both formulas are given over the same set of atomsV . Consider the
following positive program

P = {v ∨ v̄ ←| v ∈ V } (17)

{v ← a1,D
∗
i ; v̄ ← a1,D

∗
i | v ∈ V, 1 ≤ i ≤ n} (18)

{a1 ← Cj | 1 ≤ j ≤ m} (19)

{a1 ← v, v̄ | v ∈ V }; (20)

wherea1 is a fresh atom. LetY = {a1} ∪ V ∪ V̄ andA = {a1}. We show that(∅, Y) is A-SE-model of
P iff (a) and (b) jointly hold. SinceP is positive, we can argue via classical models (overY). Rules (17)
have classical models{X | σ(I) ⊆ X ⊆ Y, I ⊆ V }. By (18) this set splits intoS = {X | σ(I) ⊆ X ⊆
(Y \ {a1})} andT = {σ(I) ∪ {a1} | I /∈Mφ} ∪ {Y }. By (20),S reduces to{σ(I) | I ⊆ V }, and by (19)
only those elementsσ(I) survive withI ∈Mψ. To summarize, the models ofP are given by

{σ(I) | I ⊆ V, I ∈Mψ} ∪ {σ(I) ∪ {a1} | I ⊆ V, I /∈Mφ} ∪ {Y }.

From this theA-SE-models are easily obtained. We want to check whether(∅, Y) ∈ SEA(P). We have
Y |= P . Further we have that noY ′ ⊂ Y with a1 ∈ Y ′ exists such thatY ′ |= P = P Y iff there exists no
I ⊆ V makingφ false, i.e., iffφ is a tautology. Finally, to show that(∅, Y) ∈ SEA(P), there has to exist an
X ⊆ (V ∪ V̄), such thatX |= P = P Y . This holds exactly ifψ is satisfiable. SinceP is always polynomial
in size ofφ plusψ, we deriveDP -hardness.

This shows the claim forcard(A) = 1. Forcard(A) > 1, we apply a similar technique as in the proof
of Theorem 26. However, since we deal here with bothA-SE-models andA-UE-models we have to be a bit
more strict. Letk = card (A) > 1. We add toP the following rules{ai+1 ← ai; ai ← ai+1 | 1 ≤ i < k}
and setA = {ai | 1 ≤ i ≤ k}. One can show that then, forY = A ∪ V ∪ V̄ , (∅, Y) ∈ SEA(P) iff
(∅, Y) ∈ UEA(P) iff (a) and (b) jointly hold. ✷

With these results for model checking at hand, we obtain numerous complexity results for deciding
relativized equivalence.

Theorem 28 For programsP ,Q, a set of atomsA, ande ∈ {s, u}, P ≡Ae Q is in ΠP2 .

Proof. We guess anA-SE-interpretation(X,Y). Then, by virtue of Theorem 27, we can verify that
(X,Y) is A-SE-model (resp.A-UE-model) of exactly one of the programsP , Q in polynomial time with
four calls to anNP-oracle (since the two model-checking tasks are inDP). Hence, the complementary
problem of deciding relativized equivalence is inΣP2 . This showsΠP2 -membership. ✷

38 INFSYS RR 1843-05-01

Theorem 29 Let P , Q be DLPs,A a set of atoms, ande ∈ {s, u}. Then,P ≡Ae Q is ΠP2 -complete.
ΠP2 -hardness holds even ifQ is Horn.

Proof. Membership is already shown in Theorem 28.
For the hardness part, we reduce theΣP2 -complete problem of deciding truth of a QBF∃X∀Y φ with

φ =
∨n
i=1Di a DNF to the complementary problemP 6≡As Q. We define

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y } ∪

{a← D∗i | 1 ≤ i ≤ n} ∪

{← not a};

and takeQ = {⊥}. Note that{⊥} has noA-SE-model, for anyA. It thus remains to show thatP has an
A-SE-model iff the QBF∃X∀Y φ is true.

P has an answer set (i.e., an∅-SE-model) iff∃X∀Y φ is true (see theΣP2 -hardness proof for the program
consistency problem in [21]). From this we get that ordinaryequivalence isΠP2 -hard. This shows the claim
for card(A) = 0. ForA of arbitrary cardinalityk it is sufficient to add “dummy” rulesai ← ai, for each
1 ≤ i ≤ k, to P . These rules do not have any effect on our argumentation. Whence, for any fixedA, ≡As
and≡Au areΠP2 -hard as well. ✷

A slight modification (see Appendix for details) of this proof gives us the following result.

Theorem 30 Let P be a positive program,A a set of atoms, ande ∈ {s, u}. Then, deciding whether
P ≡Ae Q isΠP2 -complete, whereΠP2 -hardness holds even ifQ is either positive or normal.

For head-cycle free programs, RSE and RUE have different complexities. We first consider RSE.

Theorem 31 LetP andQ be head-cycle free programs, andA be a set of atoms. Then, deciding whether
P ≡As Q isΠP2 -complete, whereΠP2 -hardness holds even ifQ is normal, and fixedA with card(A) ≥ 2.

Proof. As before, we reduce the problem of deciding truth of a QBF of the form∃X∀Y φ, with φ a DNF,
to the complementary problem ofP ≡As Q using forP a head-cycle free program and forQ a normal
program. We use similar building blocks as in the proofs of the previous results, but the argumentation is
more complex here. We need a further new atomb, and define

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a | y ∈ Y } ∪

{b← D∗i | 1 ≤ i ≤ n} ∪

{b← y, ȳ | y ∈ Y } ∪ {b← a}.

Note thatP is head-cycle free. For the matter of presentation, supposefirstX = ∅. We show thatφ is valid
iff P 6≡As P→ holds, forA = {a, b}. Afterwards, we generalize the claim to arbitraryX and show that
P 6≡As P

→ iff ∃X∀Y φ is true holds, for anyA of the form{a, b} ⊆ A ⊆ (X ∪ X̄ ∪ {a, b}).
Let us first compute theA-SE-models ofP under the assumption thatX = ∅. SinceP is positive, this

is best accomplished by first considering the classical models of P . These are given as follows:

(a) σ(I) for eachI ⊆ Y makingφ false;

INFSYS RR 1843-05-01 39

(b) σ(I) ∪ {b} for eachI ⊆ Y ;

(c) allM satisfying(σ(I) ∪ {b}) ⊂M ⊆ (Y ∪ Ȳ ∪ {b}) for someI ⊆ Y ; and

(d) A = Y ∪ Ȳ ∪ {a, b}.

Note that (a), (b), and (d) become totalA-SE-models ofP ; while the elements in (c) do not. In fact, for each
elementM in (c) there exists a corresponding elementM ′ from (b), such thatM ′ ⊂ M and(M ′ ∩ A) =
(M ∩ A) = {b}. It remains to consider non-totalA-SE-models ofP , by combining the elements from (a),
(c), (d). If there exists an element in (a) (i.e.,φ is not valid), then we get(∅, σ(I)∪{b}) ∈ SEA(P), for each
I ⊆ V ; as well we then have also(∅,A) ∈ SEA(P). Combining (b) and (c), yields({b},A) ∈ SEA(P).
Hence,

SEA(P) = {(σ(I), σ(I)) | I ⊆ V : φ is false underI} ∪

{(σ(I) ∪ {b}, σ(I) ∪ {b}) | I ⊆ V } ∪

{(∅, σ(I) ∪ {b}) | I ⊆ V , if φ is not valid} ∪

{(∅,A) | if φ is not valid} ∪

{({b},A), (A,A)}.

ForP→ we get a (possibly) additionalA-SE-model, viz.(∅,A), since(∅,A) ∈ SE (P→) holds in any case,
also ifφ is valid. Hence, theA-SE-models ofP andP→ coincide iffφ is not valid.

The extension toX 6= ∅ and deciding truth of QBF∃X∀Y φ via the complementary problem≡As
is similar to the argumentation in the proof of Theorem 20. Inparticular, we then can use anyA with
{a, b} ⊆ A ⊆ (X ∪ X̄ ∪ {a, b}). Recall that deciding∃X∀Y φ is ΣP2 -complete, and thus we get that
P ≡As Q isΠP2 -hard forP a HCF program,Q normal. ✷

This concludes the collection of problems which are locatedat the second level of the polynomial hier-
archy. Note that in the hardness part of the proof of Theorem 31, we used at least two elements inA. In
fact, for HCF programs andcard(A) ≤ 1 the complexity is different. Since forcard(A) ≤ 1, ≡As and≡Au
are the same concepts, this special case is implicitly considered in the next theorem. Another issue is to
decideP ≡As Q if both P andQ areA-HCF as introduced in Definition 14. In this case, we can employ
P→ ≡As Q→, and thus the complexity coincides with the complexity of≡As for normal programs. This is
also part of the next theorem.

Theorem 32 DecidingP ≡Ae Q is coNP-complete in the following settings:

(i) e ∈ {s, u}, P positive,Q Horn;

(ii) e = s, P head-cycle free andQ Horn;

(iii) e ∈ {s, u}, P andQ normal;

(iv) e = u, P andQ head-cycle free.

coNP-hardness ofP ≡Ae Q (e ∈ {s, u}) holds even ifP is normal or positive andQ is Horn.

Proof. We start with thecoNP-membership results. The cases (iii) and (iv) follow immediately from
Theorem 25, sinceA-SE/UE-model checking for the programs involved is feasible in polynomial time. The
more complicated cases (i) and (ii) are addressed in the Appendix.

40 INFSYS RR 1843-05-01

It remains to show thecoNP-hardness part of the theorem. We use UNSAT of a formulaF =
∧n
i=1Ci

in CNF over atomsX. Take

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪ {← Ci | 1 ≤ i ≤ n}

Note that this program is positive and HCF. The program has a classical model iffF is satisfiable, i.e., iff
it is not equivalent to the Horn programQ = {⊥}. In other words,SEA(P) 6= ∅ (or, resp.UEA(P) 6= ∅)
iff φ is satisfiable. Note thatA can thus be of any form. Since the rules← x, x̄ are present inP , we have
P ≡As P→. This provescoNP-hardness also for the case where one program is normal and the other is
Horn. ✷

A final case remains open, namely checking relativized equivalence of Horn programs. Unfortunately,
this task iscoNP-complete. However, whenever the cardinality ofA is fixed by a constant the problem gets
tractable. This is in contrast to the hardness results proved so far, which even hold in the case wherecard(A)
is fixed. The proof of the theorem is given in the Appendix.

Theorem 33 DecidingP ≡Ae Q, for e ∈ {s, u}, is coNP-complete for Horn programsP , Q. Hardness
holds whenevercard(A) is not fixed by a constant, and even for definite Horn programs.

Whenever the cardinality ofA is bounded, we can decide this problem in polynomial time.

Theorem 34 Let P , Q be Horn programs andA be a set of atoms such thatcard (A) ≤ k with a fixed
constantk. Then, decidingP ≡Ae Q is feasible in polynomial time with respect to‖P‖+ ‖Q‖+ k.

Proof. It is sufficient to show the claim fore = u. By explicitly checking whether(P ∪ S) ≡ (Q ∪ S)
holds for anyS ⊆ A. we obtain a polynomial-time algorithm, since checking ordinary equivalence of Horn
programs is polynomial and we need at most2k such checks. ✷

6.3 Complexity of Bounded Relativization

In this section, we pay attention to the special case of tests≡As and≡Au where the number of atoms from the
considered programsmissingin A, is bounded by some constantk (in symbolsP k≡As Q, and resp.,P k≡Au
Q). Hence, the respective problem classes apply to programsP , Q, only if card (Atm(P ∪Q) \ A) ≤ k.
Apparently, this class of problems contains strong and uniform equivalence in its unrelativized versions
(k = 0). The complexity results are summarized in Table 6. In particular, we get that in the case of RSE all
entries (except Horn/Horn) reduce tocoNP-completeness. This generalizes results on strong equivalence.
Previous work reported some of these results but not in form of this exhaustive list.

In what follows, we first give the respective results for model checking, and then we prove the entries in
Table 6.

Lemma 11 For a programP , and a set of atomsA, such thatcard (Atm(P) \ A) ≤ k, with k a fixed
constant,A-SE-model checking is feasible in polynomial time with respect to to‖P‖+ k.

Proof. By the conditions in Definition 8, deciding(X,Y) ∈ SEA(P) can be done as follows: (i) checking
Y |= P ; (ii) checking whether for allY ′ ⊂ Y with (Y ′∩A) = (Y ∩A), Y 6|= P Y holds; and (iii) ifX ⊂ Y ,
checking existence of aX ′ ⊆ Y with (X ′ ∩ A) = X, such thatX ′ |= P Y holds. Test (i) can be done in
polynomial time; test (ii) is a conjunction of at most2k−1 independent polynomial tests (for each suchY ′),

INFSYS RR 1843-05-01 41

P k≡As Q / P k≡Au Q DLP positive HCF normal Horn

Horn coNP coNP coNP coNP P

normal coNP coNP coNP coNP

HCF coNP coNP coNP

positive coNP/ΠP2 coNP

DLP coNP/ΠP2

Table 6: Complexity of Equivalences with Bounded Relativization in Terms of Completeness Results.

while (iii) is a disjunction of at most2k polynomial tests (for eachX ′). Since we have fixedk the entire test
is feasible in polynomial time. ✷

Compared to the model checking problems discussed so far, the polynomial-time decidable problems of
A-SE-model checking in the bounded case do not belong to the class ofP-complete problems, but are easier.
This is best illustrated by SE-model checking, which obviously reduces to two (ordinary) independent model
checking tests; which in turn are in ALOGTIME [6] (see also [3, 29]). For boundedA-SE-model checking
the situation is basically the same, since it is sufficient toemploy a fixed number of independent model
checking tests.

Concerning UE-model checking we already established someP-hardness results in Theorem 19 which
generalize to the relativized case for arbitrary boundA. In general, forA-UE-model checking the decrease
of complexity is in certain cases only moderate compared to the corresponding decrease in the case of
A-SE-model checking.

Lemma 12 For a programP and a set of atomsA, such thatcard(Atm(P) \ A) ≤ k, with k a fixed
constant,A-UE-model checking iscoNP-complete. Hardness holds even for positive programs.

Proof. We showNP-membership for the complementary problem, i.e., checkingwhether a given pair
(X,Y) is not in UEA(P). We first check whether(X,Y) is A-SE-model ofP . This can be done in
polynomial time, by Lemma 11. If this is not the case we are done; otherwise, we guess anX ′ with
X ⊂ X ′ ⊂ (Y ∩ A) and check whether(X ′, Y) is A-SE-model ofP . This guess for(X ′, Y) can be
verified in polynomial time using anNP oracle. Therefore, the entire problem is inNP. The correctness of
the procedure is given by its direct reflection of Definition 9. This yieldscoNP-membership for bounded
A-UE-model checking.

Hardness is obtained via the casecard(Atm(P) \ A) = 0, i.e., ordinary UE-model checking and the
respective result in Theorem 18. ✷

Theorem 35 For programsP , Q and a set of atomsA, such thatcard (Atm(P ∪Q) \ A) ≤ k with k a
fixed constant,P ≡As Q is coNP-complete. Hardness holds providedP andQ are not Horn.

Proof. By Lemma 11,A-SE-model checking is feasible in polynomial time in the bounded case. Hence,
coNP-membership forP ≡As Q is an immediate consequence. The hardness result is easily obtained by the
hardness part from Theorem 32. ✷

For RUE some cases remain on the second level, however. This is not a surprise, since as we have seen
in Theorem 20, (unrelativized) uniform equivalence isΠP2 -complete in general.

42 INFSYS RR 1843-05-01

Theorem 36 For programsP , Q and a set of atomsA, such thatcard(Atm(P ∪Q) \ A) ≤ k with k a
fixed constant,P ≡Au Q isΠP2 -complete.ΠP2 -hardness holds even if one of the programs is positive.

Proof. Membership is obtained by the fact thatA-UE-model checking withA bounded iscoNP-complete
(see Lemma 12). Hardness comes from theΠP2 -hardness of uniform equivalence. ✷

For all other cases, RUE for boundedA is in coNP.

Theorem 37 For programsP ,Q and a set of atomsA, such thatcard(Atm(P ∪Q)\A) ≤ k with k a fixed
constant,P ≡Au Q is coNP-complete, if either (i) both programs are positive; or (ii)at least one program is
head-cycle free. Hardness holds, even ifP is normal or positive andQ is Horn.

Proof. We start withcoNP-membership. For (i) this is an immediate consequence of thefact that for
positive programs, RSE and RUE are the same concepts and since RSE iscoNP-complete as shown in
Theorem 35.

For (ii) we argue as follows. ConsiderP is HCF. By Theorem 11 it is sufficient to check (a)UEA(P) ⊆
SEA(Q) and (b)UEA(Q) ⊆ SEA(P). We show that both tasks are incoNP. ad (a): For the comple-
mentary problem we guess a pair(X,Y) and check whether(X,Y) ∈ UEA(P) and(X,Y) /∈ SEA(Q).
Both checks are already shown to be feasible in polynomial time. ad (b): We consider the complementary
problem and show that this reduces to the disjunction of twoNP problems. First, we consider totalA-SE-
interpretations. By guessingY and check whether(Y, Y) ∈ SEA(Q) and(Y, Y) /∈ SEA(P), we get obtain
NP-membership. If this holds, we secondly we consider non-total A-SE-interpretations. We claim that
existence of a(X,Y) ∈ SEA(Q), such that, for eachX ⊆ X ′ ⊂ (Y ∩A), (X ′, Y) /∈ UEA(P→), implies
UEA(Q) 6⊆ SEA(P). This can be seen as follows. GivenX, Y , suppose noX ⊆ X ′ ⊂ (Y ∩ A) satisfies
(X ′, Y) ∈ UEA(P→). Then, no such(X ′, Y) is A-UE-model of the originalP (by Theorem 15). By
definition, no such(X ′, Y) isA-SE-model ofP . On the other hand, either(X,Y) ∈ UEA(Q) or for some
suchX ′, (X ′, Y) ∈ UEA(Q). Hence,UEA(Q) 6⊆ SEA(P). Therefore, we guess a pair(X,Y) and check
(X,Y) ∈ SEA(Q) and whetherT = (P→)Y ∪X ∪ Y⊂ is unsatisfiable. Both can be done in polynomial
time. It remains to show thatT is unsatisfiable iff, for eachX ⊆ X ′ ⊂ (Y ∩ A), (X ′, Y) /∈ UEA(P→).
SupposeT is satisfiable and letX ′ be a maximal interpretation makingT true. Then(X ′ ∩A) ⊂ (Y ∩ A)
holds, since(Y, Y) ∈ UEA(P) (and thus(Y, Y) ∈ SEA(P→)) by assumption that the totalA-SE-models
of P andQ coincide. But then((X ′ ∩ A), Y) ∈ UEA(P→), sinceX ′ is a maximal model ofT . On the
other hand, ifT is unsatisfiable, no(X ′, Y) with X ⊆ X ′ ⊂ (Y ∩ A) can beA-SE-model ofP , and thus
no such(X ′, Y) isA-UE-model ofP and thus ofP→. This gives membership forNP. SinceNP is closed
under disjunction, the entire complementary problem is shown to be inNP.

The matching lower bound is obtained from the hardness result in Theorem 32. ✷

One final case remains to be considered.

Theorem 38 LetP ,Q be Horn programs and letA be a set of atoms such thatcard(Atm(P ∪Q)\A) ≤ k
with a fixed constantk. Then, decidingP ≡Ae Q is feasible in polynomial time with respect to‖P‖+‖Q‖+k.

Proof. We use the following characterization which can be derived from Theorem 14: For positive pro-
gramsP , Q, P ≡Ae Q holds, iff, for each modelY of P , there exists aX ⊆ Y with (X ∩ A) = (Y ∩ A)
being model ofQ; and vice versa. This can be done as follows. We show one direction, i.e., whether, for
each interpretationY , Y |= P impliesX |= Q for someX ⊆ Y , such that(X ∩ A) = (Y ∩ A). Let
V = (Atm(P ∪Q) \A). We test, for everyU ⊆ V and eachW ⊆ U , whether

P ′V ∪ (UV=)′ ∪ (W V
=) |= Q; (21)

INFSYS RR 1843-05-01 43

whereP ′ results fromP by replacing eachv ∈ V occurring inP by v′ and(UV=)′ is the set{v′ | v ∈ UV= }
with UV= as defined in the beginning of the section. Observe that both sides in the derivability test (21) are
Horn programs.

P ′V ∪(U
V
=)′ has a modelR∪S′ iff there exists aR ⊆ A and aS′ ⊆ V ′ such thatR∪S′ is a model ofP ′V ,

i.e., iff R∪S is a model ofP . Then, we check whether for oneW ⊆ U ,R∪W is model ofQ. This matches
the test whether for each modelR∪S of P , there exists aR∪W with ((R∪W)∩A) = ((R∪S)∩A) = R,
such thatR ∪ W modelsQ, i.e., the property to be tested. This yieldsO(2k × 2k) = O(2k+1) Horn-
derivability tests. The same procedure is done the other direction, i.e., exchangingP andQ. Wheneverk
is fixed, this gives us a polynomial time algorithm. (More efficient algorithms may be given, but we do not
focus on this here.) ✷

7 Language Variations

In this section, we briefly address how our results apply to variations of the language of logic programs.
First, we consider modifications within the case of propositional programs, and then discuss the general
DATALOG case.

7.1 Extensions in the Propositional Case

Adding Classical Negation. Our results easily carry over to extended logic programs, i.e., programs
where classical (also called strong) negation is allowed aswell. If the inconsistent answer set is disregarded,
i.e., an inconsistent program has no models, then, as usual,the extension can be semantically captured by
representing strongly negated atoms¬A by a positive atomA′ and adding constraints← A,A′, for every
atomA, to any program.

However, if in the extended setting the inconsistent answerset is taken into account, then the given
definitions have to be slightly modified such that the characterizations of uniform equivalence capture the
extended case properly. The same holds true for the characterization of strong equivalence by SE-models as
illustrated by the following example. Note that the redefinition of≡u and≡s is straightforward.

Let LitA = {A,¬A | A ∈ A} denote the (inconsistent) set of all literals using strong negation overA.
Note that an extended DLPP has an inconsistent answer set iffLitA is an answer set of it; moreover, it is
in the latter case the only answer set ofP . Call any DLPP contradiction-free, if LitA is not an answer set
of it, andcontradictoryotherwise.

Example 17 Consider the extended logic programsP = {a ∨ b ← ; ¬a ← a; ¬b ← b} andQ = {a ←
not b; b ← not a; ¬a ← a; ¬b ← b}. They both have no SE-model; hence, by the criterion of Prop.1,
P ≡s Q would hold, which impliesP ≡u Q andP ≡ Q. However,P has the inconsistent answer setLitA,
whileQ has no answer set. Thus formally,P andQ are not even equivalent ifLitA is admitted as answer
set.

Since [56, 37, 57] made no distinction between no answer set and inconsistent answer set, in [17] we
adapted the definition of SE-models accordingly and got moregeneral characterizations in terms of so-called
SEE-models for extended programs. Many results easily carry over to the extended case: E.g., for positive
programs, uniform and strong equivalence coincide also in this case and, as a consequence of previous
complexity results, checkingP ≡u Q (resp.P ≡s Q) for extended logic programs,P andQ, is ΠP2 -hard
(resp.coNP-hard).

44 INFSYS RR 1843-05-01

However, not all properties do carry over. As Example 17 reveals, in general a head-cycle free extended
DLP P is no longer equivalent, and hence not uniformly equivalent, to its shift variantP← (see [17] for a
characterization of head-cycle and contradiction free programs for which this equivalence holds).

We expect a similar picture for relativized equivalences ofextended logic programs but adapting corre-
sponding proofs is still subject of future work.

Disallowing Constraints. Sometimes, it is desirable to consider constraints just as abbreviations, in order
to have core programs which are definite, i.e., without constraints. The most direct approach is to replace
each constraint← B by w ← B,not w; wherew is a designated atom not occurring in the original pro-
gram. Obviously, this does not influence ordinary equivalence tests, but for notions as uniform and strong
equivalence some more care is required. Take the strongly equivalent programsP = {a ← not a} and
Q = {← not a}. By above rewritingQ becomesQ′ = {w ← not a,not w}. Then,(·, w) /∈ SE (P) but
(·, w) ∈ SE (Q′). Hence, this rewriting is not sensitive under strong equivalence. However, if we disalloww
to appear in possible extensions, i.e., employing≡As instead of≡s we can circumvent this problem. Simply
takeA = U \ {w} whereU is the universe of atoms. Observe that this employs bounded relativization,
and in the light of Theorem 35 this workaround does not resultin a more complex problem. For uniform
equivalence the methodology can be applied in the same manner.

However, this approach requires (unstratified) negation. If we want to get rid off constraints for compar-
ing positive programs, an alternative method is to use a designated (spoiled) answer set to indicate that the
original program had no answer set. The idea is to replace each constraint← B by w ← B, wherew is a
designated atom as above; additionally we add the collection of rulesv ← w for each atomv of the universe
to both programs (even if no constraint is present). This rewriting retains any equivalence notion, even ifw
is allowed to occur in the extensions.

The problem of comparing, say, a positive programP (with constraints) and a normal programQ is
more subtle, if we require to replace the constraints inP by positive rules themselves. We leave this for
further study, but refer to some results in [20], which suggest that these settings may not be solved in an easy
manner. To wit, [20] reports that the complexity for some problems of the form “Given a programP from
classC; does there exist a programQ from classC ′, such thatP ≡e Q?” differs with respect to allowing
constraints.

Using Nested Expressions. Programs with nested expressions [38] (also called nested logic programs)
extend DLPs in such a way that arbitrarily nested formulas, formed from literals using negation as failure,
conjunction, and disjunction, constitute the heads and bodies of rules. Our characterizations for uniform
equivalence are well suited for this class as was shown in [49]. Since the proofs of our main results are
generic in the use of reducts, we expect that all results (including relativized notions of equivalence) can
be carried over to nested logic programs without any problems. Note however, that the concrete definitions
for subclasses (positive, normal, etc.) have to be extendedin the context of nested logic programs (see [42]
for such an extension of head-cycle free programs). It remains for further work to apply our results to such
classes.

7.2 DATALOG programs

The results in the previous sections on propositional logicprograms provide an extensive basis for study-
ing equivalences of DATALOG programs if, as usual, their semantics is given in terms of propositional
programs. Basic notions and concepts for strong and uniformequivalence such as SE-models, UE-models,

INFSYS RR 1843-05-01 45

and the respective notions of consequence generalize naturally to this setting, using Herbrand interpretations
over a relational alphabet and a set of constants in the usualway (see [13]). Furthermore, fundamental results
can be lifted to DATALOG programs by reduction to the propositional case. In particular, the elementary
characterizationsP ≡e Q iff Me(P) = Me(Q) iff P |=e Q andQ |=e P carry over to the DATALOG
setting fore ∈ {s, u} andMs(·) = SE (·), respectivelyMu(·) = UE(·) (see also [13]). However, a detailed
analysis of the DATALOG case including relativized notionsof equivalence is subject of ongoing work.

Nevertheless, let us conclude this section with some remarks on the complexity of programs with vari-
ables. For such programs, in case of a givenfiniteHerbrand universe the complexity of equivalence checking,
resp. model checking, increases by an exponential. Intuitively, this is explained by the exponential size of
a Herbrand interpretation, i.e., the ground instance of a program over the universe. Note that [40] reported
(without proof) that checking strong equivalence for programs in this setting is incoNP, and thus would
have the same complexity as in the propositional case; however, for arbitrary programs, this is not correct.
Unsurprisingly, overinfinite domains, in the light of the results in [53, 27], decidability of equivalence and
inference problems for DATALOG programs is no longer guaranteed. While strong equivalence and SE-
inference remain decidable (more precisely complete for co-NEXPTIME), this is not the case for uniform
equivalence (respectively inference) in general. For positive programs, however, the two notions coincide
and are decidable (more precisely complete for co-NEXPTIME); see [13] for details. It remains as an issue
for future work to explore the decidability versus undecidability frontier for classes of DATALOG programs,
possibly under restrictions as in [27, 9].

8 Conclusion and Further Work

In this paper, we have extended the research about equivalence of nonmonotonic logic programs under
answer set semantics, in order to simplify parts (or modules) of a program, without analyzing the entire
program. Such local simplifications call for alternative notions of equivalence, since a simple comparison
of the answer sets does not provide information whether a program part can be replaced by its simplifi-
cation. To wit, by the non-monotonicity of the answer set semantics, two (ordinary) equivalent (parts of)
programs may lead to different answer sets if they are used inthe same global programR. Alternative no-
tions of equivalence thus require that the answer sets of thetwo programs coincide under differentR: strong
equivalence [37], for instance, requires that the comparedprograms are equivalent under any extensionR.

In this paper, we have considered further notions of equivalence, in which the actual form ofR is
syntactically constrained:

• Uniform equivalence of logic programs, which has been considered earlier for DATALOG and general
Horn logic programs [52, 43]. Under answer set semantics uniform equivalence can be exploited for
optimization of components in a logic program which is modularly structured.

• Relativized notions of both uniform and strong equivalencerestrict the alphabet of the extensions.
This allows to specify which atoms may occur in the extensions, and which do not. This notion of
equivalence for answer set semantics was originally suggested by Lin in [40] but not further investi-
gated. In practice, relativization is a natural concept, since it allows to specify internal atoms, which
only occur in the compared program parts, but it is guaranteed that they do not occur anywhere else.

We have provided semantical characterizations of all thesenotions of equivalence by adopting the con-
cept of SE-models [56] (equivalently, HT-models [37]), which capture the essence of a program with respect

46 INFSYS RR 1843-05-01

to strong equivalence. Furthermore, we have thoroughly analyzed the complexity of equivalence checking
and related problems for the general case and several important fragments. This collection of results gives
a valuable theoretical underpinning for advanced methods of program optimization and for enhanced ASP
application development, as well as a potential basis for the development of ASP debugging tools.

Several issues remain for further work. One issue is a characterization of uniform equivalence in terms
of “models” for arbitrary programs in the infinite case; as wehave shown, no subset of SE-models serves
this purpose. In particular, a notion of models which correspond to the UE-models in the case where the
latter capture uniform equivalence would be interesting.

We focused here on the propositional case, to which general programs with variables reduce, and we
just briefly mentioned a possible extension to a DATALOG setting [13]. Here, undecidability of uniform
equivalence arises if negation may be present in programs. Athorough study of cases under which uniform
equivalence and the other notions of equivalence are decidable is needed, along with complexity charac-
terizations. Given that in addition to the syntactic conditions on propositional programs considered here,
further ones involving predicates might be taken into account (cf. [9, 27]), quite a number of different cases
remains to be analyzed.

Finally, an important issue is to explore the usage of uniform equivalence and relativized equivalence
in program replacement and rewriting, and to develop optimization methods and tools for Answer Set Pro-
gramming; a first step in this direction, picking up some of the results of this paper, has been made in [20].
However, much more remains to be done.

Acknowledgments.

The authors would like to thank David Pearce for interestingdiscussions and comments about this work and
pointers to related literature, as well as Katsumi Inoue andChiaki Sakama for their valuable comments on
relativizing equivalence. We are also grateful to the anonymous reviewers of ICLP 2003 and JELIA 2004.
Their comments on submissions preliminary to this article helped to improve this work, as well.

References

[1] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dynamic Updates of Non-
Monotonic Knowledge Bases.Journal of Logic Programming, 45(1–3):43–70, 2000.

[2] C. Anger, K. Konczak, and T. Linke.NoMoRe: A System for Non-Monotonic Reasoning. In T. Eiter, W. Faber,
and M. Truszczyński, editors,Logic Programming and Nonmonotonic Reasoning — 6th International Confer-
ence, LPNMR’01, Vienna, Austria, September 2001, Proceedings, number 2173 in Lecture Notes in AI (LNAI),
pages 406–410. Springer Verlag, September 2001.

[3] D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer and System
Sciences, 41:274–306, 1990.

[4] R. Ben-Eliyahu and R. Dechter. Propositional Semanticsfor Disjunctive Logic Programs.Annals of Mathematics
and Artificial Intelligence, 12:53–87, 1994.

[5] W. Buntine. Generalised Subsumption and its Applications to Induction and Redundancy.Artificial Intelligence,
36(2):149–176, 1988.

[6] S. Buss. The boolean formula value problem is in alogtime. In 19th Annual ACM Symposium on Theory of
Computing, pages 123–131, 1987.

[7] P. Cabalar. A Three-Valued Characterization for StrongEquivalence of Logic Programs. InProceedings of the
18th National Conference on Artificial Intelligence (AAAI 2002), pages 106–111. AAAI Press/MIT Press, 2002.

INFSYS RR 1843-05-01 47

[8] M. Cadoli and M. Lenzerini. The Complexity of Propositional Closed World Reasoning and Circumscription.
Journal of Computer and System Sciences, 48(2):255–310, Apr. 1994.

[9] S. Chaudhuri and M. Y. Vardi. On the Equivalence of Recursive and Nonrecursive Datalog Programs. InPro-
ceedings of the 11th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS 1992), pages
55–66. ACM, 1992.

[10] S. Cosmadakis and P. Kanellakis. Parallel Evaluation of Recursive Rule Queries. InProceedings of the 5th ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems(PODS 1986), pages 280–293. ACM, 1986.

[11] D. de Jongh and L. Hendriks. Characterizations of Strongly Equivalent Logic Programs in Intermediate Logics.
Theory and Practice of Logic Programming, 3(3):259–270, 2003.

[12] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding Planning Problems in Nonmonotonic Logic Programs. In
S. Steel and R. Alami, editors,Proceedings of the European Conference on Planning 1997 (ECP’97), volume
1348 ofLNCS, pages 169–181. Springer Verlag, 1997.

[13] T. Eiter, W. Faber, M. Fink, G. Greco, D. Lembo, and H. Tompits. Methods and Techniques for Query Optimiza-
tion. Technical Report IST 2001-33570 (INFOMIX), D5-3., European Commission, June 2004.

[14] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to Knowledge-State
Planning, II: the DLVK System.Artificial Intelligence, 144(1-2):157–211, 2003.

[15] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to Knowledge-State
Planning: Semantics and Complexity.ACM Transactions on Computational Logic, 5(2):206–263, 2004.

[16] T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model Semantics. In
C. Palamidessi, editor,Proceedings 19th International Conference on Logic Programming (ICLP 2003), number
2916 in LNCS, pages 224–238. Springer Verlag, 2003.

[17] T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model Semantics. Techni-
cal Report INFSYS RR-1843-03-08, Institut für Informationssysteme, Technische Universität Wien, Austria,
May/September 2003.

[18] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A Framework for Declarative Update Specifications in Logic
Programs. In B. Nebel, editor,Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI’01), pages 649–654. Morgan Kaufmann, 2001.

[19] T. Eiter, M. Fink, H. Tompits, and S. Woltran. On Eliminating Disjunctions in Stable Logic Programming.
In D. Dubois, C. A. Welty, and M.-A. Williams, editors,Proceedings of the 9th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2004), pages 447–458. AAAI Press, 2004.

[20] T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying Logic Programs Under Uniform and Strong Equiv-
alence. In V. Lifschitz and I. Niemelä, editors,Proceedings of the Seventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2004), volume 2923 ofLNCS, pages 87–99. Springer
Verlag, 2004.

[21] T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming: Propositional Case.
Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323, 1995.

[22] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems, 22(3):364–
418, September 1997.

[23] E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe. Reconstructing the Evolutionary History of Indo-European
Languages Using Answer Set Programming. In V. Dahl and P. Wadler, editors,Proceedings of the 5th Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL 2003), New Orleans, LA, USA, January
13-14, 2003, volume 2562 ofLecture Notes in Computer Science, pages 160–176. Springer, 2003.

48 INFSYS RR 1843-05-01

[24] M. Gelfond and V. Lifschitz. The Stable Model Semanticsfor Logic Programming. In R. Kowalski and
K. Bowen, editors,Proceedings of the Fifth International Conference on LogicProgramming (ICLP 1988),
pages 1070–1080. The MIT Press, 1988.

[25] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.New Generation
Computing, 9:365–385, 1991.

[26] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineering meets Trust Management:
Model, Methodology, and Reasoning. InProceedings of the Second International Conference on Trust Manage-
ment (iTrust 2004), volume 2995 ofLNCS, pages 176–190. Springer Verlag, 2004.

[27] A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static Analysis in Datalog Extensions.Journal of the
ACM, 48(5):971–1012, 2001.

[28] K. Heljanko and I. Niemelä. Bounded LTL Model Checkingwith Stable Models. In T. Eiter, W. Faber, and
M. Truszczynski, editors,Proceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’01), volume 2173 ofLNCS, pages 200–212. Springer Verlag, 2001.

[29] N. Immerman.Descriptive Complexity. Springer, 1999.

[30] K. Inoue and C. Sakama. Updating Extended Logic Programs through Abduction. In M. Gelfond, N. Leone, and
G. Pfeifer, editors,Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’99), volume 1730 ofLNCS, pages 147–161. Springer Verlag, 1999.

[31] K. Inoue and C. Sakama. Equivalence of Logic Programs under Updates. In J. J. Alferes and J. A. Leite, editors,
Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Proceedings, volume 3229 ofLNCS,
pages 174–186. Springer Verlag, 2004.

[32] T. Janhunen and E. Oikarinen. LPEQ and DLPEQ - Translators for Automated Equivalence Testing of Logic
Programs. In V. Lifschitz and I. Niemelä, editors,Proceedings of the Seventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-04), volume 2923 ofLNCS, pages 336–340. Springer
Verlag, 2004.

[33] H. Kautz and B. Selman. Planning as Satisfiability. InProceedings of the 10th European Conference on Artificial
Intelligence (ECAI ’92), pages 359–363, 1992.

[34] V. Kowalski. The Calculus of the Weak “Law of Excluded Middle”. Mathematics of the USSR, 8:648–658, 1968.

[35] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for Knowledge
Representation and Reasoning. Technical Report cs.AI/0211004, arXiv.org, Nov. 2002. To appear in ACM
TOCL.

[36] V. Lifschitz. Action Languages, Answer Sets and Planning. In K. Apt, V. W. Marek, M. Truszczyński, and D. S.
Warren, editors,The Logic Programming Paradigm – A 25-Year Perspective, pages 357–373. Springer Verlag,
1999.

[37] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Transactions on Computa-
tional Logic, 2(4):526–541, 2001.

[38] V. Lifschitz, L. Tang, and H. Turner. Nested Expressions in Logic Programs.Annals of Mathematics and
Artificial Intelligence, 25(3-4):369–389, 1999.

[39] V. Lifschitz and H. Turner. Splitting a Logic Program. In P. Van Hentenryck, editor,Proceedings of the Eleventh
International Conference on Logic Programming (ICLP 1994), pages 23–38, Santa Margherita Ligure, Italy,
June 1994. MIT-Press.

[40] F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Propositional Logic. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors,Proceedings of the 8th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pages 170–176. Morgan
Kaufmann, 2002.

http://arxiv.org/abs/cs/0211004

INFSYS RR 1843-05-01 49

[41] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. InProceedings of
the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), pages 112–117, Edmonton, Alberta,
Canada, 2002. AAAI Press / MIT Press.

[42] T. Linke, H. Tompits, and S. Woltran. On Acyclic and Head-Cycle Free Nested Logic Programs. In B. Demoen
and V. Lifschitz, editors,Proceedings of the 20th International Conference on Logic Programming (ICLP-04),
volume 3132 ofLNCS, pages 225–239. Springer-Verlag, 2004.

[43] M. J. Maher. Equivalences of Logic Programs. In Minker [44], pages 627–658.

[44] J. Minker, editor.Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers,
Inc., Washington DC, 1988.

[45] M. Osorio, J. Navarro, and J. Arrazola. Equivalence in Answer Set Programming. In A. Pettorossi, editor,Pro-
ceedings of the 11th International Workshop on Logic Based Program Synthesis and Transformation (LOPSTR
2001), Paphos, Cyprus, November 28-30, 2001, number 2372 in LNCS, pages 57–75. Springer Verlag, 2001.

[46] D. Pearce. Simplifying Logic Programs under Answer SetSemantics. In B. Demoen and V. Lifschitz, editors,
Proceedings of the 20th International Conference on Logic Programming (ICLP 2004), volume 3132 ofLNCS.
Springer Verlag, 2004.

[47] D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs with Nested
Expressions. In P. Brazdil and A. Jorge, editors,Progress in Artificial Intelligence, Knowledge Extraction,
Multi-agent Systems, Logic Programming and Constraint Solving, 10th Portuguese Conference on Artificial
Intelligence (EPIA 2001), volume 2258 ofLNCS, pages 306–320. Springer Verlag, 2001.

[48] D. Pearce and A. Valverde. Synonymous Theories in Answer Set Programming and Equilibrium Logic. In
R. L. de Mántaras and L. Saitta, editors,Proceedings of the 16th Eureopean Conference on Artificial Intelligence
(ECAI 2004), pages 388–392. IOS Press, 2004.

[49] D. Pearce and A. Valverde. Uniform Equivalence for Equilibrium Logic and Logic Programs. In V. Lifschitz
and I. Niemelä, editors,Proceedings of the Seventh International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2004), volume 2923 ofLNCS, pages 194–206. Springer Verlag, 2004.

[50] A. Provetti and T. C. Son, editors.Proceedings AAAI 2001 Spring Symposium on Answer Set Programming:
Towards Efficient and Scalable Knowledge Representation and Reasoning, Stanford, CA, March 2001. AAAI
Press.

[51] T. Przymusinski. Stable Semantics for Disjunctive Programs.New Generation Computing Journal, 9:401–424,
1991.

[52] Y. Sagiv. Optimizing Datalog Programs. In Minker [44],pages 659–698.

[53] O. Shmueli. Equivalence of Datalog Queries is Undecidable. Journal of Logic Programming, 15(3):231–242,
Feb. 1993.

[54] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model Semantics.Artificial
Intelligence, 138:181–234, June 2002.

[55] V. S. Subrahmanian and C. Zaniolo. Relating Stable Models and AI Planning Domains. In L. Sterling, editor,
Proceedings of the 12th International Conference on Logic Programming (ICLP’95), pages 233–247. MIT Press,
1995.

[56] H. Turner. Strong Equivalence for Logic Programs and Default Theories (Made Easy). In T. Eiter, W. Faber,
and M. Truszczynski, editors,Proceedings of the 6th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), volume 2173 ofLNCS, pages 81–92. Springer Verlag, 2001.

[57] H. Turner. Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.Theory and Practice of
Logic Programming, 3(4-5):602–622, 2003.

50 INFSYS RR 1843-05-01

[58] S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Programming. In J. J. Alferes
and J. A. Leite, editors,Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Proceedings,
volume 3229 ofLNCS, pages 161–173. Springer Verlag, 2004.

[59] Y. Zhang and N. Y. Foo. Updating Logic Programs. In H. Prade, editor,Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI’98), pages 403–407. Wiley, 1998.

A Proofs

A.1 Proof of Lemma 5

For the only-if direction, supposeP ≡Au Q. If (Y, Y) is neitherA-SE-model ofP , nor ofQ, then(X,Y) is
not anA-SE-model of any of the programsP andQ. Without loss of generality, assume(Y, Y) ∈ SEA(P)
and(Y, Y) /∈ SEA(Q). LetF = (Y ∩ A). We have the following situation by definition ofA-SE-models.
First, from (Y, Y) ∈ SEA(P), we getY |= P . Hence,Y |= P ∪ F . Second,(Y, Y) ∈ SEA(P) implies
that for eachY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ 6|= P Y . Hence, for each suchY ′, Y ′ 6|= (P ∪ F)Y .
Finally, for eachX ⊂ Y with (X ∩ A) ⊂ (Y ∩ A), X 6|= F and thusX 6|= P Y ∪ F . To summarize,
we arrive atY ∈ AS(P ∪ F). On the other hand,Y 6∈ AS(Q ∪ F). This can be seen as follows. By
(Y, Y) 6∈ SEA(Q), eitherY 6|= Q or there exists anY ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), such thatY ′ |= QY .
But then,Y ′ |= (Q ∪ F)Y . Hence, this contradicts our assumptionP ≡Au Q, sinceF is a set of facts over
A. Item (i) must hold.

To show (ii), assume first that(X,Y) is anA-SE-model ofP but not ofQ. In view of (i), it is clear
thatX ⊂ Y must hold. Moreover,X ⊆ A. Suppose now that for every setX ′, X ⊂ X ′ ⊂ Y , it holds
that (X ′, Y) is not anA-SE-model ofQ. Then, since no subset ofX modelsQY ∪ X, (Y, Y) is the only
A-SE-model ofQ ∪X of form (·, Y). Thus,Y ∈ AS(Q ∪X) in this case, whileY 6∈ AS(P ∪X). This
is seen as follows: Since(X,Y) ∈ SEA(P), there exists anX ′ ⊆ Y with (X ′ ∩ A) = (X ∩ A), such that
X ′ |= P Y . Moreover,X ′ |= (P ∪X)Y . Thus,Y /∈ AS(P ∪X). This contradictsP ≡Au Q, sinceX ⊆ A.
Thus, it follows that for someM such thatX ⊂M ⊂ Y , (M,Y) is anA-SE-model ofQ. The argument in
the case where(X,Y) is an SE-model ofQ but not ofP is analogous. This proves item (ii).

For the if direction, assume that (i) and (ii) hold for everyA-SE-interpretation(X,Y) which is anA-
SE-model of exactly one ofP andQ. Suppose that there exist sets of atomsF ⊆ A andZ, such that w.l.o.g.,
Z ∈ AS(P ∪ F), butZ /∈ AS(Q ∪ F). SinceZ ∈ AS(P ∪ F), we have thatF ⊆ Z, Z |= P , and, for
eachZ ′ ⊂ Z with (Z ′ ∩ A) = (Z ∩ A), Z ′ 6|= PZ . Consequently,(Z,Z) is anA-SE-model ofP . Since
Z 6∈ AS(Q ∪ F), eitherZ 6|= (Q ∪ F), or there exists aZ ′ ⊂ Z such thatZ ′ |= (Q ∪ F)Z .

Let us first assumeZ 6|= (Q ∪ F). However, sinceF ⊆ Z, we getZ 6|= Q. We immediately get
(Z,Z) /∈ SEA(Q), i.e., (Z,Z) violates (i). It follows thatZ |= (Q ∪ F) must hold, and that there must
exist aZ ′ ⊂ Z such thatZ ′ |= (Q ∪ F)Z = QZ ∪ F . We have two cases: If(Z ′ ∩ A) = (Z ∩ A), then,
by definition ofA-SE-models,(Z,Z) /∈ SEA(Q), as well. Hence, the following relations holdZ |= Q;
for eachZ ′ with (Z ′ ∩ A) = (Z ∩ A), Z ′ 6|= QZ , and there exists anZ ′′ with (Z ′′ ∩ A) ⊂ (Z ∩ A), such
thatZ ′′ |= QZ . We immediately get that((Z ′′ ∩ A), Z) ∈ SEA(Q). But (Z ′′, Z) /∈ SEA(P). To see the
latter, note thatF ⊆ Z must hold. So, if((Z ′′ ∩A), Z) were anA-SE-model ofP , then it would also be an
A-SE-model ofP ∪ F , contradicting the assumption thatZ ∈ AS(P ∪ F). Again we get anA-SE-model,
((Z ′′ ∩ A), Z), of exactly one of the programs,Q in this case. Hence, according to (ii), there exists an
A-SE-model(M,Z) of P , Z ′′ ⊂ M ⊂ Z. However, because ofF ⊆ Z, it follows that(M,Z) is also an
A-SE-model ofP ∪ F , contradicting our assumption thatZ ∈ AS(P ∪ F).

INFSYS RR 1843-05-01 51

This proves that, given (i) and (ii) for everyA-SE-model(X,Y) such that(X,Y) is anA-SE-model of
exactly one ofP andQ, no sets of atomsF ⊆ A andZ exists such thatZ is an answer set of exactly one of
P ∪ F andQ ∪ F . That is,P ≡Au Q holds. ✷

A.2 Proof of Theorem 11

For (a), by Theorem 10,P ≡Au Q impliesUEA(P) = UEA(Q). EachA-UE-model of a program is, by
definition, anA-SE-model of that program. We immediately getUEA(P) = UEA(Q) ⊆ SEA(Q) and
UEA(Q) = UEA(P) ⊆ SEA(P).

For (b), supposeP 6≡Au Q, and eitherP ,Q, orA is finite. By Theorem 10 we haveUEA(P) 6= UE(Q).
Wlog, assume interpretationsX, Y , such that(X,Y) ∈ UEA(P) and(X,Y) 6∈ UEA(Q). We have two
cases: If(X,Y) /∈ SEA(Q), we are done, since thenUEA(P) ⊆ SEA(Q) cannot hold. If(X,Y) ∈
SEA(Q), this implies existence of anX ′ with X ⊂ X ′ ⊂ Y , such that(X ′, Y) ∈ UEA(Q). However,
since(X,Y) ∈ UEA(P), for each suchX ′, (X ′, Y) /∈ SEA(P). Hence,UEA(Q) ⊆ SEA(P) cannot
hold. ✷

A.3 Proof of Theorem 23

The complementary problem,P 6|=u r, is inΣP2 for generalP and inNP for head-cycle freeP , since a guess
for a UE-model(X,Y) of P which violatesr can, by Theorem 18 be verified with a call to aNP-oracle
resp. in polynomial time. In case of a positiveP , by Theorem 6,P |=u r iff P |= r, which is incoNP for
generalP and polynomial for HornP .

The ΠP2 -hardness part for (i) is easily obtained from the reduction proving theΠP2 -hardness part of
Theorem 20. For the programQ constructed there, it holdsQ |=u a← if and only if none of the SE-models
{(σX(J), σX (J) ∪ A)} of Q is an UE-model ofQ as well, i.e., if and only ifP ≡u Q holds, which is
ΠP2 -hard to decide.

ThecoNP-hardness in case of (ii) follows easily from the reduction which proves thecoNP-hardness
part of Theorem 21: the positive programP constructed there satisfies, by Theorem 21,P |=u a← if and
only if P ≡u Q holds, which is equivalent to unsatisfiability of the CNFF there. SinceP is HCF we can, as
in the proof of Theorem 22, again useP→ and Theorem 15 in order to showcoNP-hardness for head-cycle
free (non-positive) programs. ✷

A.4 Proof of Theorem 24

First considerP is HCF. Then,coNP-membership ofP |=u Q is an immediate consequence of the result
in Theorem 23 by testingP |=u r, for eachr ∈ Q. Since the classcoNP is closed under conjunction,
coNP-membership forP |=u Q follows.

Next, supposeQ is HCF. We first show the claim for normalQ, using the complementary problem
P 6|=u Q. By inspecting the characterizations of uniform equivalence,P 6|=u Q iff (i) P 6|= Q, or (ii) there
exists an SE-model(X,Y) of P , such that no(X ′, Y) with X ⊆ X ′ ⊂ Y is SE-model ofQ. Test (i) is
obviously inNP. For containment inNP of Test (ii), we argue as follows: We guess a pair(X,Y) and check
in polynomial time whether it is SE-model ofP . In order to check that no(X ′, Y) with X ⊆ X ′ ⊂ Y is
SE-model ofQ we test unsatisfiability of the programQY ∪X ∪Y⊂, which is Horn, wheneverQ is normal.
Therefore, this test is is feasible in polynomial time. Hence,P |=u Q is in coNP for normalQ. Recall that

52 INFSYS RR 1843-05-01

for a HCF programQ, we haveQ ≡u Q→. This implies thatP 6|=u Q
→ iff P 6|=u Q. Therefore, the claim

holds for HCF programs as well.
We proceed with the matching lower bound. LetP andQ as in the proof of Theorem 21, thenP→ is

normal,Q is Horn, andP |=u Q iff P→ |=u Q iff P→ |=u a← , which iscoNP-hard. ✷

A.5 Proof of Theorem 30

Membership is due to Theorem 28.
The hardness part is by a similar construction as above, i.e., consider a QBF of the form∃X∀Y φ with

φ =
∨n
i=1Di a DNF. We take here the following programs, viz.

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y } ∪

{a← D∗i | 1 ≤ i ≤ n}

which is the same program as above, but without← not a, and thus positive. For the second program take

Q = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; ← y, ȳ | y ∈ Y } ∪

{← D∗i | 1 ≤ i ≤ n} ∪

{← a}.

We start computing the SE-models of the two programs. Let, for anyJ ⊆ X,

M [J] = σX(J) ∪ Y ∪ Ȳ ∪ {a},

and supposeA ⊆ X ∪ X̄. The set of classical models ofP is given by{M [J] | J ⊆ X} andσ(J ∪ I), for
eachI ⊆ Y , such thatφ is false underJ ∪ I. Thus, we get:

SE (P) = {(σ(J ∪ I), σ(J ∪ I)), (σ(J ∪ I),M [J]) | J ⊆ X, I ⊆ Y : J ∪ I 6|= φ} ∪

{(M [J],M [J]) | J ⊆ X};

SE(Q) = {(σ(J ∪ I), σ(J ∪ I)) | J ⊆ X, I ⊆ Y : J ∪ I 6|= φ}.

First, each pair(σ(J ∪ I), σ(J ∪ I)) ∈ SE (P) is A-SE-model of both,P andQ. Second,P possesses
additionalA-SE-models, if there exists at least oneJ ⊆ X with (M [J],M [J]) ∈ SEA(P). This is the
case, if noI ⊆ Y makesφ false underJ ∪ I, i.e., if the QBF∃X∀Y φ is true. This showsΣP2 -hardness of
decidingP 6≡As Q with P andQ positive. Consequently,P ≡As Q under this setting isΠP2 -hard. Note that
since the argumentation holds also forcard(A) < 2, we captured both≡As and≡Au .

It remains to showΠP2 -hardness forP ≡Ae Q, for the case whereP is positive andQ is normal,e ∈
{s, u}. As a consequence of Corollary 6 (see also Example 16), for a disjunctive ruler = v ∨ w ←,
Q ≡As Q

→
r holds for anyA ,whenever← v,w ∈ Q. Hence, we can shift each disjunctive rule inQ and get

Q ≡As Q
→. This showsΠP2 -hardness forP ≡As Q, for the case whereP is positive andQ is normal. Again,

we immediately get the respective result forP ≡Au Q, since the argumentation holds also forcard(A) < 2.
✷

INFSYS RR 1843-05-01 53

A.6 Proof of Theorem 32

It remains to showcoNP-membership for two cases, viz. (i) P ≡Ae Q with P positive andQ Horn; and
P ≡As Q with P HCF andQ Horn. Therefore, we first show the following additional result:

Lemma 13 For positive programsP ,Q, and a set of atomsA, P ≡Ae Q holds iff (i) eachA-minimal model
of P is a classical model ofQ; and (ii) for each interpretationY , Y |= Q implies existence of aY ′ ⊆ Y
with (Y ′ ∩A) = (Y ∩A), such thatY ′ |= P .

Proof. For the only-if direction, first suppose (i) does not hold. Itis easily seen, that then theA-minimal
models cannot coincide, and thusP 6≡Ae Q. So suppose (ii) does not hold; i.e., there exists an interpretation
Y , such thatY |= Q but noY ′ ⊆ Y with (Y ′ ∩ A) = (Y ∩ A) is a model ofP . Again, theA-minimal
models ofP andQ cannot coincide.

For the if direction, supposeP 6≡Ae Q. First letY beA-minimal for P but not forQ. If Y 6|= Q we
are done, since (i) is violated. Otherwise, there exists aY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) which is a
model ofQ but not a classical model ofP ; (ii) is violated. Second, suppose there exists anY which is
A-minimal for Q but not forP . If, eachY ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) does not modelP , (ii) is
violated. Otherwise, if there exists aY ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A) andY ′ |= P , then there exists aY ′′

with (Y ′′ ∩A) = (Y ∩A), which isA-minimal forP but not a classical model ofQ; whence (i) is violated.
✷

We proceed by proving (i) and (ii).

(i): Since bothP andQ are positive,e = s ande = u are the same concepts.coNP-membership is obtained
by applying Theorem 13. In fact, this result suggests the following algorithm:

1. Check whether eachA-minimal model ofQ is model ofP ;

2. Check whether, for each modelY of P , there exists aY ′ ⊆ Y with (Y ′ ∩A) = Y being model ofQ.

We show that, for both steps, the complementary problem is inNP. For Step 1, we guess aY and check
whether it isA-minimal for Q but not a classical model ofP . The latter test is feasible in polynomial
time. The former reduces to test unsatisfiability of the HorntheoryQ ∪ (Y ∩ A) ∪ Y⊂. For the second
step the argumentation is similar. Again, we guess an interpretationY , check whether it is a model ofP ,
and additionally, whether allY ′ ⊆ Y with Y ′ ∩ A = Y are not model ofQ. The latter reduces to test
unsatisfiability of the Horn programQ ∪ (Y ∩A) ∪ Y⊆.

(ii) In this setting,coNP-membership is obtained by the following algorithm:

1. Check whether the totalA-SE-models ofP andQ coincide;

2. Check whether, for eachX ⊂ Y , (X,Y) ∈ SEA(P) implies(X,Y) ∈ SEA(Q).

The correctness of this procedure is a consequence of Proposition 10, i.e., thatSEA(Q) ⊆ SEA(P) holds
for positiveQ, whenever the totalA-SE-models ofP andQ coincide. SinceQ is Horn and thus positive,
it is sufficient to checkSEA(P) ⊆ SEA(Q) which is accomplished by Step 2, indeed. The first step is
clearly incoNP, since for totalA-SE-interpretations,A-SE-model checking andA-UE-model checking is
the same task. By Theorem 25,A-UE-model checking is polynomial for HCF programs. For the second
step, we showNP-membership for the complementary task. We guess someX ′ andY , and test whether
(Y, Y) ∈ SEA(P),X ′ |= P Y , and((X ′ ∩A), Y) /∈ SEA(Q). All tests are feasible in polynomial time and
imply that(X,Y) ∈ SEA(P) but (X,Y) 6∈ SEA(Q), withX = (X ′ ∩A). ✷

54 INFSYS RR 1843-05-01

A.7 Proof of Theorem 33

Membership has already been obtained in Theorem 32. For the hardness-part we reduce UNSAT toP ≡Ae Q,
whereP andQ are Horn. The case of definite programs is discussed below.3 Hence, letF =

∧n
i=1 ci,1 ∨

· · · ∨ ci,ni
be given over atomsV and considerG = {g1, . . . , gn} as new atoms. Define

P = {← v, v̄ | v ∈ V } ∪ {gi ← c∗i,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ni};

and letA = V ∪ V̄ . Then,F is unsatisfiable iff

P ≡Ae (P ∪ {← g1, . . . , gn})

with e ∈ {s, u}. We show the claim fore = s. Recall that RSE and RUE are the same for Horn programs.
For the only-if direction supposeF is unsatisfiable. Then, there does not exist an interpretation I ⊆ V , such
thatσ(I) ∪ G is A-minimal forP . To wit, there exists at least aG′ ⊆ G such thatσ(I) ∪ G′ is model of
P as well. It is easily verified that under these conditions,P ≡Ae P ∪ {← g1, . . . , gn} holds. On the other
hand, ifF is satisfiable, there exists an interpretationI ⊆ V such thatσ(I) ∪ G is anA-minimal model of
P . However,σ(I) ∪G is not a model ofP ∪ {← g1, . . . , gn}. This proves the claim.

We show thatcoNP-hardness holds also for definite programs. Therefore, we introduce further atoms
a, b and changeP to

P = {a← v, v̄ | v ∈ V } ∪ {gi ← c∗i,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ni} ∪ {u← a | u ∈ A}

whereA = {b} ∪ V ∪ V̄ ∪G. Then,F is unsatisfiable iff

P ≡Ae P ∪ {b← g1, . . . , gn}

with A = {a, b} ∪ V ∪ V̄ . The correctness of the claim is by analogous arguments as above. ✷

3Our proof closely follows concepts used in [8] to establishcoNP-hardness results for closed world reasoning over Horn
theories.

	Introduction
	Preliminaries
	Uniform Equivalence
	A Characterization for Uniform Equivalence
	Introducing UE-Models
	Consequence under Uniform Equivalence

	Relativized Notions of Strong and Uniform Equivalence
	A Characterization for Relativized Strong Equivalence
	A Characterization for Relativized Uniform Equivalence
	Properties of Relativized Equivalences

	Restricted Classes of Programs
	Positive Programs
	Head-cycle free programs

	Computational Complexity
	Complexity of Uniform Equivalence
	Complexity of Relativized Equivalence
	Complexity of Bounded Relativization

	Language Variations
	Extensions in the Propositional Case
	DATALOG programs

	Conclusion and Further Work
	Proofs
	Proof of Lemma 5
	Proof of Theorem 11
	Proof of Theorem 23
	Proof of Theorem 24
	Proof of Theorem 30
	Proof of Theorem 32
	Proof of Theorem 33

