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ABSTRACT

Prolog, which stands for PROgramming in LOGic, is
the most widely used language in the logic programming
paradigm. One of its main concepts is unification. It rep-
resents the mechanism of binding the contents of variables
and can be seen as solving conjunctions of equations over
finite or infinite trees. We present in this paper an idea of a
first-order extension of Prolog’s unification by giving a gen-
eral algorithm for solving any first-order constraint in the
theory T of finite or infinite trees, extended by a relation
which allows to distinguish between finite and infinite trees.
The algorithm is given in the form of 16 rewriting rules
which transform any first-order formula ¢ into an equiva-
lent disjunction ¢ of simple formulas in which the solutions
of the free variables are expressed in a clear and explicit
way. We end this paper describing a CHR implementation
of our algorithm. CHR (Constraint Handling Rules) has
originally been developed for writing constraint solvers, but
the constraints here go much beyond implicitly quantified
conjunctions of atomic constraints and are considered as ar-
bitrary first-order formulas built on the signature of T. We
discuss how we implement nested local constraint stores and
what programming patterns and language features we found
useful in the CHR implementation of our algorithm.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and Constraints Programming;
1.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving— Deduction, Logic Programming

General Terms
Algorithms, Theory
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1. INTRODUCTION

Prolog, which stands for PROgramming in LOGic [17, 4],
is the most widely used language in the logic programming
paradigm. Prolog is based on first-order predicate calculus
over Horn clauses and the execution of a Prolog program
is an application of theorem proving by first-order resolu-
tion. The fundamental concepts behind Prolog are unifica-
tion, tail recursion and backtracking.

The core of Prolog, namely Alan Robinson’s unification
algorithm [16] is a mechanism of binding the contents of
variables and can be viewed as a one-time assignment. This
operation is represented in Prolog by the symbol "=". For
example, the unification f(g(a)) = f(x) is possible by bind-
ing the variable x to the term g(a). A. Colmerauer has
then incorporated into the first extension of Prolog, known
as Prolog 11, the unification of infinite terms [3, 5] and has
shown that unifications of the form z = f(x) are possible by
binding the variable x to the infinite term f(f(f(...))).

One of the most significant innovations in Prolog was done
in Prolog III and IV [6, 2] where the concept of unification
was replaced by the concept of constraint solving over finite
or infinite trees. However, the internal solvers of Prolog III
and IV are not able to solve arbitrary quantified first-order
constraints over finite or infinite trees.

In this paper, we present two contributions:

(1) A theoretical contribution: First of all, we extend the
signature of Maher’s theory of finite or infinite trees [14]
by the relation finite(t) which forces the term ¢ to be a fi-
nite tree. Then, we extend Maher’s axiomatization by two
new axioms and show its completeness by giving, not only
a decision procedure, but a full first-order constraint solver
which for every first-order formula gives an equivalent solved
formula in which the solutions of the free variables are ex-
pressed in a clear and explicit way. The main ideas behind
this solver come from the works of T. Dao [8] on the theory
of finite or infinite trees.

(2) A practical contribution which consists in a full CHR
implementation of our algorithm. Constraint Handling
Rules (CHR) [11, 12, 20] is a concurrent committed-
choice constraint logic programming language consisting of



guarded rules that transform multi-sets of atomic formu-
las (constraints) into simpler ones until exhaustion. CHR
was initially developed for solving constraints, but has ma-
tured into a general-purpose concurrent constraint language
over the last decade, because it can embed many rule-based
formalisms and describe algorithms in a declarative way.
Moreover, the clean semantics of CHR facilitates non-trivial
program analysis and transformation. The power and com-
plexity of the 16 rules of our solver posed a challenge for
CHR and its programmer. We show how to implement
nesting of local constraint stores in CHR, as well as the de-
bated negation-as-absence (the correspondence to negation-
as-failure in Prolog). We distinguish between operation and
data constraints and encode necessary control (phases of the
algorithm) in constraints relying on the refined operational
semantics of CHR systems.

The paper is organized in four sections followed by a con-
clusion. This introduction is the first section. In Section 2,
we present our extended theory T of finite or infinite trees
built on a signature containing not only an infinite set of
function symbols, but also a relation finite(t) which enables
to distinguish between finite or infinite trees. In section 3,
we present structured formulas that we call working formu-
las and show some of their properties. We end this section
by a general algorithm solving any first-order constraint in
T. This algorithm handles our working formulas and is given
in the form of 16 rewriting rules. It transforms any first-
order formula into a disjunction of simple formulas in which
the solutions of the free variables are expressed in a clear
and explicit way. The correctness of our algorithm implies
the completeness of T'. Finally, we present in Section 4 our
CHR implementation and show how to implement the com-
plex nested structure of our working formulas as well as the
different controls which enable the algorithm to move from
one phase to another.

2. THE THEORY T OF FINITE OR INFI-
NITE TREES

2.1 Syntax

We are given once and for all, an infinite countable
set 'V of wvariables and the set L of logical symbols: =
, true, false, =, \,V, —,—,¥,3,(,). We are also given once
and for all, a signature S, i.e. a set of symbols partitioned
into two subsets: the set of function symbols and the set
of relation symbols. To each element s of S is linked a
non-negative integer called arity of s. An n-ary symbol is
a symbol with arity n. A 0-ary function symbol is called
constant.

As usual, an expression is a word on L U S UV which is
either a term, i.e. of one of the two forms:

z, f(t1,...,tn), (1)
or a formula, i.e. of one of the eleven forms:

s=t, r(t1,...,tn), true, false,
e, (90 A w), (30 N '(/))7 (90 - 1/})7 (LP A 1/J)7 (Vl‘ 4,0), (3$ SO)'

(2)
In (1), x is taken from V, f is an m-ary function symbol
taken from S and the ¢;’s are shorter terms. In (2), s,t and
the t;’s are terms, r is an n-ary relation symbol taken from
S and ¢ and v are shorter formulas. The formulas of the
first line of (2) are known as atomic, and flat if they are

of one of the following forms: true, false, xo = x1,20 =
f(x1,.yxn), r(z1,..., T0n), where all the x;’s are possibly
non-distinct variables taken from V, f is an n-ary function
symbol taken from S and r is an n-ary relation symbol taken
from S. We will also use the quantifiers 37 (at most one)
and 3! (one and only one).

2.2 Axioms

Let I be a set of function symbols containing an infinity
of distinct n-ary function symbols which are not constants
and at least one constant. Let finite be an l-ary relation
symbol. The theory T of finite or infinite trees built on the
signature S = F U {finite} has as axioms the infinite set of
propositions of one of the five following forms:

vavy ~(f(@) = 9())

Vavy f@) = f(g) = Niwi =y
Vz3Iz /\Z zi = t; [2_2'2]

VZVu —(u = t[u, ] A finite(u))

VZVu (u = f(Z) A finite(u)) < (u = f(Z) A\, finite(z:))

where f and g are distinct function symbols taken from F', Z
is a vector of possibly non-distinct variables x;, 7 is a vector
of possibly non-distinct variables y;, Z is a vector of distinct
variables z;, t;[ZZ] is a term which begins with an element
of F followed by variables taken from Z or z, and t[u, Z] is a
term containing at least one occurrence of an element of F’
and the variable u and possibly other variables taken from
T.

This theory is an extension of the basic theory of finite or
infinite trees given by M. Maher in [14] and built on a signa-
ture containing an infinite set of function symbols. Maher’s
theory is composed of the three first axioms of T and its
completeness was shown using a decision procedure which
transforms each proposition into a Boolean combination of
existentially quantified conjunctions of atomic formulas. A
more general decision procedure was recently proposed by
K. Djelloul in the frame of decomposable theories [9].

3. SOLVING FIRST-ORDER
STRAINTSIN T

CON-

3.1 Normalized and working formulas

Let us assume that the infinite set V is ordered by a strict
linear dense order relation without endpoints denoted by .
Starting from this section, we impose the following disci-
pline to every formula ¢ in T: The quantified variables of ¢
are renamed so that: (1) The quantified variable of ¢ have
distinct names that are different from those of the free vari-
ables. (2) For all variables z, y and all sub-formulas ¢; of ¢,
if y has a free occurrence in ¢; and z has a bound occurrence
in ¢; then « > y. We show that we can always transform
any formula ¢ into an equivalent formula ¢, which respects
the discipline of the formulas in 7', only by renaming the
quantified variables of .

DEFINITION 3.1.1. Let vi,...,Un, U1, ..., Um be wvariables.
A basic formula is a formula of the form

(/\ vi = ti) A ( )\ finite(u:)) 3)

in which all the equations vi = t; are flat. Note that if
n =m = 0 then (8) is reduced to true. The basic formula



(3) is called solved if all the variables vi, ..., Vn, U, ..., Um
are distinct and for each equation of the form x = y we have
x > y. If ais a basic formula then we denote by: (i) Lhs(ca)
the set of the variables which occur in the left hand sides of
the equations of «. (i) FINI(«) the set of the variables
which occur in a sub-formula of o of the form finite(x).

DEFINITION 3.1.2. Let « be a basic formula and T a vec-
tor of variables. The reachable variables and equations of o
from the variable xo are those which occur in a sub-formula
of a of the form:

To = to(ﬂ?l) ANx1 = tl(xg) N ANTp—1 = tnfl(a:n),

where xiy+1 occurs in the term t;(x;4+1). The reachable vari-
ables and equations of 3T o are those which are reachable in
a from the free variables of AT a. A sub-formula of o of the
form finite(u) is called reachable in IT o if u € T or u is a
reachable variable of 3% a.

DEFINITION 3.1.3. A normalized formula ¢ of depth d >
1 is a formula of the form =(3Ta A N\, i), with I a finite
(possibly empty) set, o a basic formula and the ;s normal-
ized formulas of depth d; with d =1+ max{0,d,...,dn}.

PROPERTY 3.1.4. Every formula ¢ is equivalent in T to
a normalized formula.

DEFINITION 3.1.5. A general solved formula is a normal-
ized formula of the form =(3z aAN]_, =(35: Bi)), withn > 0
and such that:

1. « and all the B;, with i € {1,...,n}, are solved basic
formulas.

2. If o is the conjunction of the equations of o then all
the conjunctions o’ A 3;, with i € {1,...,n}, are solved
basic formulas.

3. All the variables of T are reachable in 3T a.

4. For alli € {1,...,n}, all the variables of §; are reach-
able in 3y; B;.

5. If finite(u) is a sub-formula of « then for all i €
{1,...,n}, the formula B; contains either finite(u), or
finite(v) where v is a reachable variable from u in aAB;
and does not occur in a left hand side of an equation

of a N B;.

6. For all i € {1,...,n}, the formula B; contains at least
one atomic formula which does not occur in a.

PROPERTY 3.1.6. Let ¢ be a general solved formula. If ¢
has no free variables then ¢ is the formula —(3e true) else
neither T |= —¢ nor T = .

DEFINITION 3.1.7. A working formula is a normalized
formula in which all the occurrences of — are replaced by
=* with k € {0,...,5} and such that each occurrence of a

sub-formula of the form

p=-"3zaAq), with k>0, (4)

satisfies the k first conditions of the condition list bellow.
In (4) a is a basic formula, q is a conjunction of working
formulas of the form N]_, =% (3g; Bi A @), withn >0, B; a
basic formula, q; a conjunction of working formulas, and in
the below condition list o' is the basic formula of the imme-
diate top-working formula p’ of p if it exists.

1. If p' exists then T = o — o and T |E aeq — ity
where aeq and o, are the conjunctions of the equa-
tions of a respectively o. Moreover, the set of the
variables of Lhs(a') U FINI(a') is included in those
of Lhs(a) U FINI ().

2. The left hand sides of the equations of o are distinct
and for all equations of the form u = v we have u > v.

8. « is a basic solved formula.

4. Ifp’ exists then the set of the equations of o’ is included
in those of a.

5. The variables of T, the equations of a and the con-
straints of the form finite(x) of a are reachable in 3T .
Moreover, if n > 0 then for all i € {1,...,n} the con-
junction B; contains at least one atomic formula which
does not occur in «.

An initial working formula is a working formula which begins
with —=* and such that k = 0 for all the other occurrences of
=k A final working formula is a working formula of depth
less or equal to 2 with k =5 for all the occurrences of —*.

PROPERTY 3.1.8. Let p be the final formula —°(3Z a A
A, =°(3w: Bi) The formula ~(3z e A NI, ~(37: B;)) is a
general solved formula equivalent to p in T, where 3] is the
basic formula B; from which we have removed all the equa-

tions which occur also in a.

3.2 The Rules

We present in Fig 1. the rewriting rules which transform
an initial working formula of any depth d to a conjunction of
final formulas, equivalent in 7T'. In these rules the letters u,
v and w represent variables, the letters Z, § and Z represent
vectors of variables, the letters a, b and c¢ represent basic
formulas, the letter ¢ represents a conjunction of working
formulas, the letter r represents a conjunction of flat equa-
tions, formulas of the form finite(x) and working formulas.
All these letters can be subscripted or have primes. More-
over, u > v, f and g are two distinct function symbols taken
from F. In rule (3), t is a flat term, i.e. either a variable
or a term of the form f(z1,...,zn) with f an n-ary function
symbol taken from F. In rule (6), the equations of a have
distinct left hand sides and for each equation of the form
u = v we have u > v. In rule (9), the variable u is reachable
from w in a. In rule (10), the variable u is non-reachable
from w in a. Moreover, if f is a constant then n = 0. In rule
(11), a is a solved basic formula. In rule (13), a and a” are
conjunctions of equations having the same left hand sides,
and a’ is a conjunction of formulas of the form finite(u). In
rule (15), n > 0 and for all ¢ € {1,...,n} the formula b; is
different from the formula a. The pairs (',a’) and (g;,b;)
are obtained by a decomposition of Z and a into Z'z"'z" and
a Aa’ ANad" as follows:

e o’ is the conjunction of the equations and the formulas
of the form finite(x) which are reachable in 3% a.

e 7’ is the vector the variables of Z which are reachable
in 3% a.

e a” is the conjunction of the formulas of the form
finite(x) which are non-reachable in 3Z a.
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Fig 1. Transformation of an initial working formula into a final working formula.

e 7' is the vector the variables of Z which are non-

reachable in 3Z a and do not occur in the left hand
sides of the equations of a.

e 7' is the vector the variables of # which are non-

reachable in 3% a and occur in the left hand sides of
the equations of a.

111 . . . . .
e ¢’ is the conjunction of the equations which are non-

reachable in 3% a.

e b7 is the formula obtained by removing from b; the
formulas of the form finite(u) which occur also in a”

e ., is the vector of the variables of 4;Z"” which are reach-
able in 3y;z7" b}.

e b} is the conjunction of the equations and the formulas
of the form finite(z) which are reachable in Jg;z"" b;.

o K C{1,...,n}is the set of the indices ¢ such that i € K
if and only if no variable of ' occurs in b}.

e The Nicx =" 3y b)* is  the
Niex —°(35;b;) in which we have renamed the
quantified variables so that they satisfy the discipline
of the formulas in T'.

formula formula

In rule (16), n > 0 and ¢o is the formula ¢ in which all the
occurrences of =* have been replaced by =°. The formula
Ny —|4(3i’ﬂii ciAqo)™ is the formula A}, -4(3z7z; ci A qo)
in which we have renamed the quantified variables so that
they satisfy the discipline of the formulas of T

The main idea behind this algorithm consists in (i) a top-
down simplification and propagation of constraints. In each
level, quantified basic formulas are locally solved by the rules
(1)...(11) and propagated to the embedded sub-formulas by
rule (12). Finiteness is checked by rule (9), inconsistent
sub-formulas are removed by rule (14) and basic formulas
are restored by rule (13). (ii) a bottom-up elimination of

quantifiers and reduction of the depth of working formulas
done by the rules (15) and (16).

PROPERTY 3.2.1. FEvery repeated application of our
rewriting rules on an initial working formula p terminates
and produces a conjunction of final formulas equivalent to p
mT.

3.3 The Solving Algorithm

Let p any formula. Solving p in T proceeds as follows:

(1) Transform the formula —p (the negation of p) into a
normalized formula p; equivalent to —p in T'.

(2) Transform p; into the following working formula ps

po = = (3e true A =° (e true A p1)),

where all the occurrences of — in p; are replaced by —°.

(3) Apply the preceding rewriting rules on p2 as many
time as possible. According to Property 3.2.1 we obtain
at the end a wnfv conjunction ps of final working formu-
las of the form A", =°(3%; a; A Nty —*(37:; Bis)). Accord-
ing to Property 3.1.8, the formula p3 is equivalent in 7" to
the following wnfv conjunction p4 of general solved formulas
Nz ~(3%i ai A NJL, =305 Bi;)), where §7; is the formula
Bi; from which we have removed all the equations which
occur also in ;. Since p4 is equivalent to —p in T, then
p is equivalent in T to ~ Ai_, ~(3%; as A \JL, ~(30i; B75))
which is equivalent to the following disjunction ps

\/(33—31' a; A /\ ~(39i; Bij))-
i=1 j=1

This is the solved form of the formula p where the solutions
of the free variables are expressed in a clear and explicit
way. Moreover, according to the form of p> and using the
properties 3.1.6 and 3.1.8, we show that if T = p then ps is
the formula Je true, and if T |= —p then ps is the formula
false (obtained with n = 0, i.e. the empty disjunction). We



can now present our main theorem, from which we deduce
the completeness of T':

THEOREM 3.3.1. Ewery formula is equivalent in T either
to true, or to false, or to a disjunction of gemeral solved
formulas which has at least one free variable, which is equiv-
alent neither to true nor to false, and where the solutions of
the free variables are expressed in a clear and explicit way.

4. IMPLEMENTATION OF OUR ALGO-
RITHM

Our CHR implementation was done using Christian
Holzbaur’s CHR library of Sicstus Prolog 3.11.0. It con-
sists of 18 CHR constraints and 73 CHR rules, almost all of
them belonging to computations for the complicated rules
(15) and (16) of our algorithm. We will be able to quickly
prototype optimizations and variations of our algorithm and
to parallelize it. For CHR, the implementation of this com-
plex solver helps to understand what programming patterns
and language features can be useful. Indeed for code size
and degree of abstraction it seems only possible and inter-
esting to describe the CHR implementation, and we do so in
the following. The reader can find our full CHR implemen-
tation at http://khalil.djelloul.free.fr/solver.txt
and can experiment with it online using webchr at
http://chr.informatik.uni-ulm.de/ webchr/.

4.1 Constraint Handling Rules (CHR) Imple-
mentation

4.1.1 Execution of CHR

CHR [11, 12, 20] manipulates constraints that reside in
a constraint store. It contains all information necessary for
computation. Let H, C' and B denote conjunctions of con-
straints. A simplification rule H < C'| B replaces instances
of the CHR constraints H by B provided the guard C' holds.
A propagation rule H = C | B instead just adds B to H
without removing anything. The hybrid simpagation rules
will come handy in the implementation: H;\H: < C | B
removes macthed constraints Hz but keeps constraints Hi.

The constraints of the store comprise the state of an ex-
ecution. Starting from an arbitrary initial store/state (also
called goal, query, problem), CHR rules are applied exhaus-
tively, until a fixpoint is reached. If new constraints arrive,
rules are reconsidered for application. A final store/state
(also called answer, solution) is one where either no rule ap-
plication is possible anymore or where the constraints are
inconsistent.

In more detail, a rule is applicable, if its head constraints
are matched by constraints in the current goal one-by-one
and if, under this matching, the guard of the rule is log-
ically implied by the constraints in the store. Any of the
applicable rules can be applied, and the application cannot
be undone, it is committed-choice. Trivial non-termination
of propagation rule applications is avoided by applying a
propagation rule at most once to the same constraints [1].

As in Prolog, almost all CHR implementations execute
queries from left to right and apply rules top-down in the
textual order of the program [10]. A CHR constraint in a
query can be understood as a procedure that goes efficiently
through the rules of the program in the order they are writ-
ten, and when it matches a head constraint of a rule, it will

look for the other, partner constraints of the head in the con-
straint store and check the guard until an applicable rule is
found. We consider such a constraint to be active. If the ac-
tive constraint has not been removed after trying all rules,
it will be put into the constraint store. Constraints from
the store will be reconsidered (woken) if newly added con-
straints constrain variables of the constraint, because then
rules may become applicable since their guards now hold.

4.1.2 CHR Constraints

The implementation consists of 18 constraints: 2 main
constraints that encode the tree data structure of the work-
ing formulas and the atomic formulas, 9 auxiliary constraints
that perform reachability analysis, variable renaming and
copying of formulas, and 7 constraints that encode execu-
tion control information, mainly for rules (15) and (16).

The two main constraints are nf/4 for the negated quanti-
fied basic formulas and of/2 for the equations and the rela-
tion finite. In more detail, nf (ParentId,Id,Phase,ExVars)
describes a negated quantified basic formula with its Id and
the Id of its parent node, the phase it is in and the list of exis-
tentially quantified variables. Var=FlatTerm of Id denotes
an equation between a variable and a flat term (a variable or
a function symbol applied to variables) that belongs to the
negated sub-formula with the identifier Id. finite(U) of
Id denotes the relation finite(U) that belongs to the negated
sub-formula with the identifier Id.

For identifiers and problem variables, logical variables are
used. The main reason is that most CHR implementations
index on logical variables and that new logical variables can
be introduced by just using them. The order on the problem
variables is implemented by using a built-in ordering mech-
anism of CHR in Sicstus Prolog, that will order the logical
variables chronologically in the order of their introduction.
This implies that the nf/4 constraints have to be introduced
in a top-down manner.

It is easy to represent any working formula ¢ using con-
junctions of nf/4 and of/2 constraints. For that, it is enough
to create one nf/4 constraint for each quantified basic for-
mula of ¢ and to use a conjunction of of/2 constraints to
enumerate the atomic formulas linked to each quantified ba-
sic formula. An example is given in Fig 2.

4.1.3 CHR Rules

In our algorithm, we can distinguish two main parts that
are iterated until a solved normal form is reached: (i) In
the first part, given a formula (local store), the equations
of its parent are copied into it by rule (12), then the local
store is simplified by rules (1) to (5), finiteness is checked by
rules (6) to (11), and finally rule (13) replaces certain local
equations by their counterpart equations from the parent.
(ii) In the second part, rule (14), (15) and (16) apply and
change the structure of the formula in a significant way by
copying sub-formulas.

In part 1, when we consider the phase labels of the nf/4
CHR constraint, in the initial formula, the top-most for-
mula will have phase 4 and all sub-formulas the level 0. The
computation is triggered by the presence of the top-most
formula together with a direct sub-formula. When rules (1)
to (13) have been applied to it, the sub-formula will also be
at phase 4 and can now in turn trigger the simplification of
the equations in its direct sub-formulas. This means that
in part 1, computation proceeds top-down in the tree repre-



Fig 2. An example of a working formula expressed using the constraints of/2 and nf/4.

Juu = 1A
—0(Feu = s(v))A
-4 =0(Fwr u = s(w1) Awi = s(v))A

=S(Fev=s(u) Au=1A

)
=*(Few = s(u) Au = 1A finite(wr))A )
=*(Fwz v = s(u) Au=1Aws = s(ws) A finite(ws))

The preceding working formula can be expressed using the following conjunction of constraints:

nf(Q,P1,4,[U]),U = 1of P1,

£(P1,P2,0,[]),U=S(V )ofP2

£(P1,P3,0 [w1]),U S(w
nf(P1,P4,5,[]),V=S(U) of P4,U = 1 0f P4
£(P4,P5,5,[]),V =3(U)

£(P4,P6, 5, [W3]), V = S(

senting the structure of the nested formulas. At the end of
part 1, all formulas will be in phase 4.

The rules of part 1, i.e. (1) to (13), have a rather direct
translation into CHR rules.

% 1 Locally simplify equations

(1) @ nf(Q,P,1,Xs) \ U=U of P <=> true.

(2) @ nf(Q,P,1,Xs) \ V=U of P <=> gt(U,V) | U=V of P.

(3) @ nf(Q,P,1,Xs),

(4) @ nf(Q,P,1,Xs), U=F of P, U=G of P <=>

notsamefunctor (F,G) | P=true.

(5) @ nf(Q,P,1,Xs), U=F of P \ U=G of P <=>
samefunctor(F,G) | same_args(F,G,P).

% 1-2 enter next phase after solving

(6) @ nf(Q,P,1,Xs) <=> nf(Q,P,2,Xs).

% rules for finite/2

(7) @ nf(PO,P,2,Xs), finite(U) of P \ finite(U) of P <=> true.

(8) @ nf(P0O,P,2,Xs), U=V of P \ finite(U) of P <=>
var(V) | finite(V) of P.

(9+10)@nf (PO,P,2,Xs),U=T of P \ finite(U) of P <=>
nonvar (T) |

% 2-3 enter next phase after finiteness check
(11) @ nf(Q,P,2,Xs) <=> nf(Q,P,3,Xs).

% 4/0-4/1 copy down before solving
(12a) @ nf(Q,P,4,Xs), A of P, nf(P,P1,0,Ys) ==
(12b) @ nf(Q,P,4,Xs)

> A of P1.

% 4/3-4/4 replace down after solving

(13a) @ nf(Q,P,4,Xs),U=V of P, nf(P,P1,3,Ys)\ U=G of P1 <=>

V\==G | U=V of P1.

(13b)@e nf(Q,P,4,Xs) \ nf(P,P1,3,Ys)

Note that rules (1) to (5) are a direct implementation of an
equation solver for flat rational trees [12, 15]. These rules
are similar to the more general rational tree solver that is a
classical example for CHR code. By applying results of [15],
we can show that the worst-case time complexity of the rules
in the first part of the algorithm is quadratic in the size of
the equations in the local formula.

In the rules (2) and (3), the predicate gt (U,V) is used to
check if we have U > V. In the rules (4) and (5), the pred-
icates samefunctor(F,G) and notsamefunctor(F,G) are
used to check if the terms F' and G start by same or distinct
function symbols. Note also that in rule (4) we let P=true.
Binding the identifier P removes all equations from the lo-
cal store associated with it using a simplification rule E of

\ nf(P,P1,0,Ys) <=> nf(P,P1,1,Ys)

<=> nf(P,P1,4,Ys).

1) of P3,W1 = S(V) of P3,

S(U) of P5,U = 1 of P5, finite(W1) of P5
S(U) of P6,U = 1 of P6, W2 = S(W3) of P6, finite(W3) of P6

true <=> true. Instead of relying on Prolog’s built-in syn-
tactic equality =, we could also have used a CHR constraint,
say remove (P) to the same effect.

In rule (9410) reach_args (U, T,P) checks reachability of U
from itself in P. If so, P wil be set to true and thus the local
store will be removed, implementing rule (9). Otherwise,
if P is still free, the subsequent finite_args(U,T,P) will

U=V of P \ U=G of P <=> gt(U,V) | V=G of Ppropagate down the finite relation from U to its arguments,

implementing rule (10).

Part 2, on the contrary to part 1, proceeds bottom-up,
starting at the leaves (with n = 0 in rule (15)). Leaf for-
mulas go from phase 4 to 5. Each formula with a phase 4
formula as the top one and only phase 5 formulas as sub-
formulas are rewritten in part 2 (with n # 0 in rule (15))
into formula with phase 5 formula as top-formula and only
phase 5 formulas as sub-formulas. In rule (16), formulas may
be copied and the new formulas are introduced with phase 4
and 0 (all the n—" of ¢ are changed into =°) which causes a

reach_args(U,T,P), finite_args(U,T,P)local application of part 1 of the algorithm and so on. The

phase change continues going up in the tree structure of the
working formulas until all working formulas are in phase 5
and have a depth less or equal to 2.

A more or less direct translation of rules of the algorithm
was sufficient so far, but it is by far not sufficient for the

.rules (14) to (16) of part 2 of the algorithm. For rule (14):

-*(3za AgA-"(37a)) = true,

the implementation is easy when nested negation-as-absence
is used to verify that there is no constraint in the sub-
formula that is not in the main formula. Negation-as-
absence can be directly encoded in CHR implementations,
but then it requires two additional rules per negation.
Instead, we have chosen to use the CHR library built-
in find_constraint(Var,Pattern,Match) of the Sicstus-
Prolog CHR library that returns on backtracking all con-
straints Match that match the Pattern and that are indexed
on the variable Var together with negation-as-failure pro-
vided by the Prolog built-in \+.

4/5-true trivial satisfaction-each A of P1 occurs as A of P

(14) @ nf(Q,P,4,Xs), nf(P,P1,5,¥s) <=>
\+ (find_constraint(P1, (A of P1),_),
\+ find_constraint(P,(A of P),_) )
| P=true.

For the rules (15) and (16), all primed expressions have to be
computed, some quantified variables must be renamed and
many nf/4 constraints and their equations should be copied



and updated. Simpagation rules and auxiliary constraints
collect the nested nf/4 constraints, compute the reachable
variables and atomic formulas, rename the quantified vari-
ables and produce updated nf/4 and of/2 constraints. This
is by far the most complicated and extensive part of our
CHR implementation which was finally done using 40 CHR
rules. In order no to overburden the reader with techni-
cal details, we omit the description of those 40 rules in this
article.

S. CONCLUSION

We presented in this paper two contributions : (1) A gen-
eral algorithm solving any first-order constraint in an ex-
tended theory T of finite or infinite trees. The algorithm
is in the form of 16 rewriting rules and its correctness im-
plies the completeness of T. (2) A full CHR implementation
of our algorithm. We discussed programming patterns for
maintaining a hierarchy of local stores and for control using
phases by constraints, and desirable program features like
the debated negation-as-absence. Simpagation rules proved
useful to perform iterations that modify the constraint store.

A. Colmerauer and T. Dao [7] have shown that the com-
plexity of all algorithms solving first-order constraints over
finite or infinite trees has a non-elementary complexity. This
is why we have used two strategies in the algorithm: a top
down propagation of constraints and a bottom-up elimina-
tion of quantifiers and distribution. This technique enables
us to remove the inconsistent working formulas and to not
lose time with solving huge working formulas which contra-
dict their top-working formulas.

Future work will aim at an even more declarative im-
plementation that is directly amenable to established CHR
analysis techniques for termination, complexity and conflu-
ence properties. We think that we can minimize the use
of the debated negation-as-absence [18] by introducing ref-
erence counters for the two main constraints. This should
also give us the possibility to get a parallel implementation
that is derived from the existing one with little modification,
similar to what has been done for parallelizing the union-find
algorithm in CHR [13].

So far, the CHR implementation has not been optimized.
To improve efficiency we could enforce the data-only nature
of the equations (the constraint of/2) by declaring it passive
in each rule. This compiler pragma of CHR in Sicstus Pro-
log avoids to generate code for the occurrence of a passive
constraint in the head of the rule. Another direction would
be to enable input and output of formulas in latex, based
on the work of literate CHR. This will enable us to test
easily our algorithm on big examples and compare the per-
formances with those obtained using a decision procedure
for decomposable theories [9].
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