
Querying and Browsing XML and Relational Data Sources ∗

James J. Lu
Mathematics and Computer
Science, Emory University,

Atlanta, GA, U.S.A.

jlu@mathcs.emory.edu

Chia-Hsin Huang
Institute of Information Science
Academia Sinica, Taipei, Taiwan

jashing@iis.sinica.edu.tw

Tyng-Ruey Chuang
Institute of Information Science
Academia Sinica, Taipei, Taiwan

trc@iis.sinica.edu.tw

Abstract
A lightweight method for querying and browsing multiple relational
and XML data sources is presented. The approach is based on a
simple abstraction of relational and XML data models. A query
language for the abstraction to which XPath and SQL map to natu-
rally is introduced. A unique feature of the query language is that it
unifies structured queries and keyword-based searches.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases—Data
translation

General Terms
Schemaless Data Model, XML, Query Processing

1 Introduction
Most modern database applications require the simultaneous man-
agement of diverse types of data. In particular, the need to access
both relational and XML data is ubiquitous, and numerous tech-
niques for extending RDBMS as well as native XML and hybrid
systems have been developed to address this need. With the excep-
tion of the System RX [2], most approaches to integrating XML and
relational data are to translate data in one form to data in another,
or to extend one data model with new data types to accommodate
the other data model (e.g. [5, 6, 18, 20], Tamino1, Oracle2). The
goal of these techniques and systems is to provide a full range of
data management features for theprecisehandling of both XML
and relational data.

In many practical settings, however, a more lightweight approach
to interfacing the data sources may suffice. In medical and public-
health informatics, for instance, it is often the case that researchers
perform focused browsingof both relational data (e.g., Electronic
Medical Records) along with medical reports structured as XML
documents [8]. The researchers do not necessarily know, a pri-
ori, the kinds of information for which they are searching. Con-
sequently, they do not demand the precise querying capabilities of
XQuery or SQL, nor do they require an “integrated” database of the

∗Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.
SAC’07, March 11–15, 2007, Seoul, Korea.
Copyright 2007 1-59593-480-4/07/0003...$5.00.

1www.softwareag.com/corporate/products/tamino
2www.oracle.com

two sources. At the same time, researchers often wish to perform
keyword searches that take into account certain contextual informa-
tion (e.g., structural or domain specific knowledge of the reports or
relations).

In this paper, we present a simple technique for viewing/browsing
existing data as a conceptually integrated database, but that can
be implemented without the explicit transformation of the data
sources. The technique provides a unifying view of XML and rela-
tional data, and enables the use of an existing source query over
other sources. In particular, existing SQL queries may be exe-
cuted over XML data sources, and XPath queries over relational
data sources.

The key to the approach is a schemaless data model, the Universal
Data Model (UDM), in which the purpose of metadata is to de-
scribe, not prescribe, the information that exist in the data sources.
The same assumption has been adopted elsewhere for data inte-
gration and modeling (e.g., [16]). The basic unit of data in the
UDM is a generalization of relational tuples, and we introduce a
relational-like algebraic language, the UDA, to extract information
from the UDM. A unique aspect of the UDA is that it encompasses
both structured queries as well as keyword-based search queries
naturally. We show how the data model abstracts XML and rela-
tional data, and present transformations from SQL and XPath to the
UDA. It is through these transformations that the UDM can be im-
plemented as a lightweight abstraction of relational and XML data
sources without the need for an explicit materialization of the data
sources.

The work is a continuation of our investigation into data integration
methods for heterogeneous data models [13] and efficient query
processing techniques for XML data [9]. The next section intro-
duces the basics of our data model — the universal data model, in-
cluding an algebraic language for data manipulation. In Section 3,
mappings from relational and XML data are defined. Section 4 de-
tails sound and mostly complete translations of relational and XPath
queries to the UDA, and a simple implementation for storing data
units of the UDM is outlined in Section 4.4. Section 5 concludes
with some discussion of related work.

2 The Universal Data Model
Let S denote a countably infinite set, calledproperties. A context
overS is any string overS (i.e., finite concatenation of properties).
Supposec is the contextp1.p2. · · · .pn, n ≥ 1. We writev(c) to
denotepn. We assume the existence of a binary relation,∼ — the
matching relation — on contexts. Adata unit (or simply unit) is
a finite set of contexts, and a universal database (UDB) is a pair
(U,∼) whereU is a finite set of data units.

A context is a variation of the notion of property in Parsons and

Wand’s data model [15]. First, it aggregates related properties, thus
enabling each property to be understood in the context of other
properties. For instance, the propertyname takes on distinctly
different meanings in the contextsname.firstname.John and
company.name.Microsoft. Second, the sequencing within each
context provides a rudimentary structuring mechanism for cap-
turing “is-a” and “has-a” relationships. For instance,firstname
“is-a” name in name.firstname.John, as well John ”is-a”
firstname. On the other hand,company “has-a” name in
company.name.Microsoft.

The above examples give a very simple intuition for the idea of
context. A contextc = p1. · · · .pn is a concatenation of “attributes”
(i.e., p1. · · · .pn−1) that describe a “value” (i.e.,pn). The philosoph-
ical distinction between attribute and value is not sharp; they cor-
respond, roughly, to what Parsons and Wand refer to asgeneric
andspecificproperties. The distinction may help to provide some
concreteness when reading, but it is not important in the formal de-
velopment of the UDM.

As in WHIRL [4], original local names (of both instance data and
metadata constants) are retained in a UDB consisting of data de-
rived from multiple sources. Collectively these names form the set
S . Determining whether two properties are co-referent is based the
matching relation∼ — an abstraction of some arbitrary but fixed
matching technique. Choices for the relation include information
retrieval techniques such as tf-idf: each context may be represented
as a vector of weights, with each weight denoting the relative im-
portance of the corresponding property. The contextname.John,
for instance, will be a (very sparse) vector of two weights, with
probably a higher value forJohn given its likely infrequent occur-
rence inS . Treating each context as a vector of weights ignores the
ordering among properties, and in this paper, we are interested uti-
lizing the ordering. To that end, we assume∼ to be string equality
in the remainder of the paper.

We may define familiar relational algebraic operations for the
UDM. We call the language UDA – the Universal Data Algebra.
First, we give the syntax of boolean expressions inductively. Define
a term to be any finite set of regular expressions overS . Singleton
sets are often written without braces.

1. A term is a boolean expression.

2. The expressionb1◦b2 is a boolean expression if eitherb1 (re-
spectivelyb2) is a term, andb2 (respectivelyb1) is a property
(written inside double quotes), and◦ is a comparison operator
(e.g.,=,<). We call this aselection expression.

3. The expressionb1 ◦b2 is a boolean expression if bothb1 and
b2 are terms, and◦ is a comparison operator. We call this a
join expression.

4. Expressions formed from boolean expressions and logical
connectives (e.g.,∧, ¬) in the standard ways are boolean ex-
pressions.

Some remarks on notation. We use the symbol? to stand for any
property. The operator* affixed to a contextc indicates zero or
more repetition ofc, but by itself denotes any string of properties.
For example,a*.b denotes strings with zero or morea’s followed
by b, while a.*.b consists of strings that begin witha, followed
by any context, and ends withb. As a special case, we often want
to write expressions that begin and end with* (e.g.,*.name.*).
For these, we introduce a new symbol,$, to simplify notation. For
example,$author.name denotes*.author.name.*.

Supposeb is a term. We say that a contextc satisfiesb if for each
elementb′ ∈ b, c∼ c′ for somec′ ∈ L(b′) — the language generated
by b′. For instance,a.b satisfies the terms{$a,$b}, a*.b, and

a.*.b. It neither satisfiesb.a nor{a,b}.

A unit u satisfies a boolean expressionb, writtenu |= b, if
1. b is a term, and there exists a contextc∈ u that satisfiesb.

2. b is a selection expressionb1 ◦ b2 whereb1 is a term, that
there exists a contextc1 ∈ u that satisfiesb1, andv(c1) ◦ b2
holds. The case whereb2 is a term andb1 a property is defined
analogously.

3. b is join expressionb1◦b2, that there exist contextsc1,c2 ∈ u
that satisfyb1 andb2, respectively, andv(c1)◦v(c2) holds.

4. b consists of boolean sub-expressions and logical connec-
tives, and the recursive truth-functional evaluations of the sub-
expressions holds.

EXAMPLE 1. Consider the following unit (contexts numbered for
reference).

{ bib.author.name.firstname.’Karen’, (1)
bib.author.name.lastname.’Armstrong’, (2)
bib.book.title.’The Spiral Staircase’ (3)
bib.book.genre.’Biography’ (4)

}

The unit satisfies the boolean expressions$name (by con-
texts (1) and (2)), $author = "Karen" (by context (1)),
and{$title, $book} = "The Spiral Staircase" (by context
(3)). As the latter example shows, a set is useful for speci-
fying, without indicating order, properties that must appear in
the same context. The unit does not satisfy the expression
$title.book = "The Spiral Staircase", for instance.

The basic operations of relational algebra are easily generalized.
Selection The selection of a set of unitsU on the boolean expres-

sionb, σb(U), is the set{u∈U |u |= b}.
Projection Given a unit u and a set of termsb1, ...,bn,

(u|{b1, ...,bn}) is the unit{c∈ u|bi ∼ c, for some 1≤ i ≤ n}.
Then, the projection of a set of unitsU on termsb1, ...,bn,
πb1,...,bn(U), is the set{u∈U |(u|{b1, ...,bn})}.

Renaming Given a set of unitsU and contextsc1, c2, ρc1→c2 is the
set of units obtained fromU by replacing, for each unit inU ,
each occurrence ofc1 by c2. As a special case,c2 may be the
empty string.

Join The join of unit setsU1 andU2 on a boolean expressionb,
U1 ./b U2, is the set{u|u1 ∈U1,u2 ∈U2,u = u1∪u2,u |= b}.

Set Operation Given two sets of unitsU1 andU2, the standard set-
theoretic union, intersection, and difference of the two sets are
all well defined.

3 Abstracting Relational and XML Data
One may define data units directly in the UDM, but more impor-
tantly, the notion of a data unit abstracts familiar concepts such as
a tuple in relational databases and a document in XML databases.
A tuple t over the schemar(a1, ...,an) in a relational database maps
to the unit{r.a1.t(a1), ..., r.an.t(an)}. An XML document (tree)T
maps to a unit consisting of the set of all complete paths inT (i.e.
paths that originates at the root and terminates at a leaf).3 It follows
that the UDB provides a unifying view of relational and XML that
uses the names appearing in the sources.

As an example, the unit shown in Example 1 may be the result of
mapping the following XML bibliographic entry.

3For the purpose of our discussion, we do not distinguish be-
tween node types in the document, and PCDATA is regarded as a
leaf node.

<bib>
<author>

<name> <firstname> Karen </firstname>
<lastname> Armstrong </lastname>

</name>
</author>
<book genre = "Biography">

<title> The Spiral Staircase </title>
</book>

</bib>

A relational representation of similar information may take on one
of many designs. Some possibilities are,
Design A A single relation encompassing author names and book

title.
author(firstname,lastname,book,genre)

The tuple
<Karen,Armstrong,’The Spiral Staircase’,
Biography>

over the schema is represented as the unit
{ author.firstname.Karen,

author.lastname.Armstrong,
author.book.’The Spiral Staircase’,
author.genre.Biography

}

Design B Normalized relations that separates author and book in-
formation.

author(id,firstname,lastname)
book(title,genre,aid)

Design C A relation for each genre consisting of book title and
author name as attributes.

biography(firstname,lastname,title)

Represented as UDB data, we may write generic queries that re-
trieve relevant data from the XML format as well as each of the
above relational designs. The queries may be written without any
knowledge of the structural aspects of the schema designs. For ex-
ample, the query

π$book(U ./$author=$book∧$author = "Armstrong" U)

retrieves the title of all books written byArmstrong from Designs
A and B. HereU denotes the set of all units derived from the two
sources.

If we have additional knowledge about the structures of the designs,
then we may write more precise — and often more efficient —
queries. For example, assuming that our data sources consist of
the XML document above and Design A. Then the same query may
be writtenπ$book(σ$lastname = "Armstrong"U).

Lastly, we may write information retrieval type queries based
on keyword searches. A query to find information about
Armstrong, in any schema design, isσ$’Armstrong’(U), while
σ$Biography(U) retrieves all units pertaining to biography.

A SQL-like query language based on the UDA is under design and
will be reported in the full version of this paper. The language pro-
vides a friendlier interface to the UDB abstraction for users. As an
example, the UDA query that finds all books written byArmstrong
may be expressed:

retrieve $book
with $lastname = "Armstrong";

4 Query Processing
Operationalizing the UDM can be accomplished by explicitly ma-
terialing XML and relational data into units and implementing a
query processor for the UDA. A more lightweight approach is to
compile UDA queries into source query languages, and to combine
the results dynamically upon return. This is the approach that we
take in an ongoing prototype implementation effort. Clearly, while
any UDA query will return some answer over a set of units de-
rived from multiple data sources, the query will not, in general, have
meaningful interpretations over these data sources. Instead, we fo-
cus on cases where the UDA query is formed in some way, denoted
ψ, from an existing source SQL or XPath queryQi over sourceDi .
In addition to the answers retrieved fromDi , ψ(Qi) may be used to
compute potentially useful answers from other data sources. The
question is, what would be an appropriate definition forψ?

First, let φ denote the abstract, polymorphic mapping from data
sources to the UDB defined in Section 3. Then a UDBU consist-
ing of data derived from data sourcesD1, ...,Dn may be expressed
asU = φ(D1)∪ ...∪ φ(Dn). Two properties ofψ, soundnessand
completeness, can be studied.
SoundnessThe mappingψ is sound if for any queryQi over Di ,

∪u∈φ(Qi)u⊆∪u∈ψ(Qi)u. Paraphrased: the set of all contexts in
the result ofQi overDi mapped underφ is contained in the set
of all contexts in the result ofψ(Q) overU .

CompletenessThe mappingψ is complete if for any queryQi over
Di , ∪u∈ψ(Qi)u⊆ ∪u∈φ(Qi)u.

A sound and complete mapping is desirable since it allows one to
use a source query for exploring additional answers in the inte-
grated database, knowing that the mapping preserves the semantics
of the query with respect to the original data source. Note that the
two properties do not specify a one-to-one correspondence between
units ofψ(Qi) and units inφ(Qi). Below, we give an instance ofψ
for each of relational and XML queries.

4.1 Relational Queries
SupposeQ is a relational algebraic query over the relational
databaseD, andU is a UDB that containsφ(D). Thenψ(Q) is
the UDA query obtained fromQ as follows.

1. Replace each occurrence of a base relationr in Q by
ρr→ε(σr.∗(U)).

2. Replace each attributea in Q by a.*.
The renaming ofr to ε reflects the fact that querying a base relation
in the relational algebra results in an anonymous relation [10]. For
instance, the queryπbook(σlastname = "Armstrong"(author))
over the schema of Design A in Section 3 maps to the UDA query

πbook.*(σlastname.* = "Armstrong"(
ρauthor→ε(σauthor.*(U)))).

The soundness and completeness of the mapping for relational
queries follows by induction on the form of the given query under
a simple assumption.
THEOREM 1. Suppose D is a relational database in which no re-
lation name appears as either an attribute or a data value. Thenψ
is sound and complete for any query over D.
Indeed, for relational databases, we may prove the stronger property
that a one-to-one correspondence exists between units ofφ(Q) and
ψ(Q).

4.2 XPath Queries
A complete translation of XPath queries is more difficult to pin
down due to XPath’s set of complex features for navigating a tree.
Moreover, the UDM offers very little in the way of structuring data.

Hence properties such as position and ordering cannot be deter-
mined when querying a UDB. We consider here a small but impor-
tant subset of XPath. The XPath subset, adapted from [1], is given
below.4 Other “core” subsets have been studied elsewhere (e.g.,
[7]).

path= step| step/path
step= axis::(m|*) | axis::(m|*)[p]

p = p or p| p and p| path| path op literal
axis= root| child | parent| descendent| ancestor| attribute

op= < | <= | = | > | >=

Call an XPath querysimpleif it contains no disjunctive predicates,
andlinear if it consists of only steps with axes in the same direction
(i.e., child, descendent and attribute, or parent and ancestor). To
translate an XPath queryQ, we first rewrite each boolean expression
in Q into an equivalent disjunctive normal form (DNF), and replace
Q with a set of simple queries, each obtained fromQ by replacing a
boolean expression in DNF by one of its disjuncts. Then, for each
simple query, we extract a set of a regular expressions that cor-
respond to labels associated with a maximal contiguous sequence
of forward steps embedded in the given query. This computation
can be performed via an abstract interpretation of the set of sim-
ple queries from the first step to produce a set of linear queries.
Outputs from the computation are combined to form a UDB query
in which the final sequence computed is used for projection, and
all sequences computed form a conjunctive boolean expression for
selection.5 Some example queries, outputs from the abstract inter-
pretation, and the eventual UDA queryψ(Q) are shown below.

InputQ: descendent:a/child:b[@c = "1"]/child:d
Output: $a.b.c

$a.b.d
ψ(Q): π$.a.b.d(σ$.a.b.d∧$a.b.c="1"(U))

InputQ: root:a/child:*/child:b/parent:*/child:c
Output a.?.b.*

a.?.c.*
ψ(Q) πa.?.c.*(σa.?.c.*∧a.?.b.*(U))

InputQ: descendent:a/ancestor:b/descendent:c
Output $a

$b.c
ψ(Q) π$b.c(σ$a∧$b.c(U))

THEOREM 2. The above translation of XPath queries to UDA
query is sound.

Completeness is not guaranteed. For XML documents and queries
that occur in practice, however, experiments below show that incor-
rect answers are rarely retrieved. For the experiments, we first use
two sets of data-centric XML documents. The first is auction data
created using XMark [17], and the second is a set of DBLP data
created by Christoph Koch:

www.infosys.uni-sb.de/teaching/dbs05/tests/

Queries for the experiments are obtained from the same source as
the dataset in each case. To illustrate, two example queries for the
auction data are
Q1: /site/regions/namerica/item[@id="item101"]/name/

4While the grammar gives no provision, we assume that root
may appear at most once in a query and at the beginning.

5Formal details of the algorithms will be included in the full
paper.

Q14: /site//item/name/text()[../../description//text
[contains(text(),"gold")]]

For each queryQ, the number of all contexts contained in the XML
fragments computed by an XPath processor and the number of con-
texts computed by the UDA query underψ are listed. From Theo-
rem 2, we know that any (and only) additional answers computed
by ψ(Q) are irrelevant answers.

Auction Data
Query Q ψ(Q)
Q1 1 1
Q2 55 60
Q6 108 108
Q14 4 5
Q15 1 1
Q17 61 61
Q20 1 1

DBLP
Query Q ψ(Q)
Q1 1 1
Q2 73 73
Q3 0 0
Q4 73 73
Q6 5 5

To validate the accuracy of the translated query further, we com-
pare in tableTreebank the result of five queries, executed over a
large and complex document-centric treebank of natural language
sentences [3]. The dataset contains 19,274 sentences with 223,281
nodes occupying 9.125MB. While the UDM had not been moti-
vated by querying document-centric data, the results show that its
simplistic representation of XML documents and the translation of
XPath to UDA queries produce, nevertheless, highly precise results.

Treebank
Query Q ψ(Q)
Q1 1 1
Q2 767 813
Q3 17603 17603
Q4 39 49
Q5 96 96

4.3 Querying Other Sources
Aside from returning answers from the original source, the query
ψ(Q) will not, in most cases, yield many answers from other
sources. For instance, lengths of contexts associated with XPath
queries will typically be larger than the lengths of contexts in data
units derived from relational data source. Some simplifications and
modifications of the query are thus useful if the query is posed
to other sources. We are currently developing a UDB system for
the domain of pathology reports and will experiment with different
query simplification/modification heuristics.

4.4 Unit Materialization
The purpose of UDM is to provide a lightweight solution for access-
ing relational and XML data sources. In particular, units need not
be materialized to process queries. In certain situations, however,
materializing a small set of computed units is useful. These may be
used to answer frequently executed queries more efficiently, or to
perform local joins of data subsets derived from several sources.

A simple storage approach is to represent all units as tuples over
the binary relationur(Id:integer,Context:string). Each unit
is identified by a unique integer, and each context in the unit is
represented as a value under the attributeContext. A set of mu-
tually recursive rewrite rules can been defined for compiling each
UDA query Q to an answer preserving relational query,α(Q), in
the sense thatu ∈ Q iff there exists an integeri such thatu =
∪c∈πContext(σId=i(α(Q)))c. An alternative implementation approach un-
der investigation is to adapt the indexing techniques developed in
[9] for prefiltering XML documents.

5 Related Work and Conclusion
The UDM adopts the principle suggested by [15, 16], namely data,
not metadata, are the primary objects of focus in a database. Our
work aims to provide a simple, unifying query interface for multiple
relational and XML data sources. We conclude with some summary
comments and discussions related work.

1. The UDM is parameterized by a matching relation that en-
ables similarity techniques to be used in determining co-
reference between properties. In this, our initial study of the
UDM, we have chosen string equality as the matching rela-
tion.

Other information retrieval-based querying techniques over
structured data have been considered. The most notable is the
system WHIRL by Cohen [4]. The key difference compared
to our approach is that matching in WHIRL is performed over
instance data, and writing queries in WHIRL still requires full
knowledge of the schemas of each data source.

2. The UDM provides property concatenation as a rudimentary
mechanism for structuring related properties. This allows
one to write UDA queries that are structure-aware with re-
spect to the data sources, but still retains the flexibility for
information-retrieval type queries that ignore structural con-
cerns.

While most relational database systems today offer special
operators (e.g.,contains) for keyword searching over desig-
nated columns, these are adhoc extensions, however, and they
provide no mechanism for uniformly searching over meta and
instance data.

3. Source relational and XPath queries may be meaningfully in-
terpreted over a UDB comprised of several data sources. Each
query maps naturally to a UDA query that computes either ex-
act (in the case of relational query) or highly precise answers
with respect to the original data source.

The use of source queries over multiple data sources is a rela-
tively unexplored area of research. To the best of our knowl-
edge, Norrie and Kerr’s Universal Contextual Query System
(UCQS) [14] is, conceptually, the closest work. The UCQS
heuristically translates queries written for one data source into
queries for other data sources without reference to a mediated
schema. No inter-model translation nor soundness and com-
pleteness studies exist, however.

Language studies for querying multiple data sources have empha-
sized providing relational interoperability [11, 12, 19]. They extend
relational query languages with higher-order features for extract-
ing and manipulating metadata. Special operators are often needed,
however, for restructuring due to the assumed separation of meta-
data and data.

Acknowledgement. This work was completed while J.J. Lu vis-
ited the Institute of Information Science, Academia Sinica, Taiwan
under the support of grant NSC94-2811-Z-001 from the National
Science Council of Taiwan.

6 References
[1] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke. CTL Model

Checking for Processing Simple XPath Queries. InProceedings Tem-
poral Representation and Reasoning (TIME 2004). IEEE Computer
Society Press, 2004.

[2] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis,
G. Lohman, B. Lyle, F.̈Ozcan, H. Pirahesh, N. Seemann, T. Truong,
B. V. der Linden, B. Vickery, and C. Zhang. System RX: one part rela-
tional, one part XML. InSIGMOD ’05: Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages
347–358, New York, NY, USA, 2005. ACM Press.

[3] K.-J. Chen, C.-C. Luo, Z.-M. Gao, M.-C. Chang, F.-Y. Chen, C.-
J. Chen, and C.-R. Huang. The CKIP Chinese Treebank. InThe
Journees ATALA sur les Corpus annotes pour la syntaxe, Paris, 1999.

[4] W. W. Cohen. Data Integration Using Similarity Joins and a Word-
Based Information Representation Language.ACM Transactions on
Information Systems, 18(3):288–321, 2000.

[5] D. DeHaan, D. Toman, M. P. Consens, and M. T.Özsu. A compre-
hensive xquery to sql translation using dynamic interval encoding. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 623–634, New York, NY,
USA, 2003. ACM Press.

[6] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publishing
relational data in XML: the silkroute approach.IEEE Data Engineer-
ing Bulletin, 24(2):12–19, 2001.

[7] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Pro-
cessing XPath Queries.ACM Transactions on Database Systems,
30(2):444–491, 2005.

[8] M. Graiser, L. Hill, M. Keehan, J. Simons, and C. Flowers. Utiliza-
tion of an integrated information system linking legacy databases for
oncology outcomes research. InFrontiers in Oncology and Pathology
Informatics, 2006.

[9] C.-H. Huang, T.-R. Chuang, and H.-M. Lee. Prefiltering techniques
for efficient XML document processing. InDocEng ’05: Proceedings
of the 2005 ACM symposium on Document engineering, pages 149–
158, New York, NY, USA, 2005. ACM Press.

[10] P. C. Kanellakis. Elements of Relational Database Theory. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Science: Volume
B: Formal Models and Semantics, pages 1073–1156. Elsevier, Ams-
terdam, 1990.

[11] R. Krishnamurthy, W. Litwin, and W. Kent. Language Features for
Interoperability of Databases with Schematic Discrepancies. InSIG-
MOD Conference, pages 40–49, 1991.

[12] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL:
An extension to SQL for multidatabase interoperability.ACM Trans-
actions on Database Systems, 26(4):476–519, 2001.

[13] J. J. Lu. A data model for data integration.Electr. Notes Theor. Com-
put. Sci., 150(2):3–19, 2006.

[14] M. C. Norrie and D. Kerr. Universal Contextual Queries in Database
Networks. InCoopIS, pages 180–191, 1995.

[15] J. Parsons and Y. Wand. Emancipating Instances from the Tyranny
of Classes in Information Modeling.ACM Transactions on Database
Systems, 25(2):228–268, 2000.

[16] J. Parsons and Y. Wand. Property-based semantic reconciliation of
heterogeneous information sources. InER, pages 351–364, 2002.

[17] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu,
M. Carey, and R. Busse. The XML benchmark project. Technical
Report INS-R0103, CWI, April 2001.

[18] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In M. P. Atkinson, M. E. Orlowska,
P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors,VLDB’99, Pro-
ceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 302–314.
Morgan Kaufmann, 1999.

[19] C. M. Wyss and E. L. Robertson. Relational Languages for Meta-
data Integration.ACM Transactions on Database Systems, 30(2):1–
33, 2005.

[20] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemara. XRel: A
Path-Based Approach to Storage and Retrieval of XML Documents
Using Relational Databases.ACM Transactions on Internet Technol-
ogy, 1(1):110–141, August 2001.

