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ABSTRACT 
Development of Domain Specific Languages (DSLs) in the 
context of Model Driven Engineering is gaining more and more 
popularity. As evolution lies in the heart of every software 
system, the major requirement for DSLs is that they should be 
modular and resilient to changes. MDE-based DSL frameworks 
should enable a modular specification of language translational 
semantics and the composition of the modules into languages. 
Ultimately, the availability of such techniques should make the 
DSL development faster. Separation of concerns is a sound 
software engineering principle used to obtain better modularity, 
reusability, and adaptability of systems. However, this principle 
must be supported by proper tools that allow the separation 
achieved at a conceptual level to be preserved in the language 
specification. In MDE, the mainstream tools for specifying 
translations are model transformation languages. In this paper we 
evaluate a class of model transformation languages regarding their 
applicability for capturing the translational semantics of DSLs in 
a modular way. We found that the concepts in the domain of 
translational semantics significantly mismatch with the language 
constructs of the transformation language. We suggest that this 
problem may be better approached by a domain-specific 
transformation language. 

Categories and Subject Descriptors 
D.3.2 [Language Classifications]: Specialized Application 
Languages – model transformation languages. D.3.3 
[Programming Languages]: Language Constructs and Features – 
modules, packages. D.2.13 [Reusable Software]: Reusable 
Libraries.  

General Terms 
Design, Languages 

Keywords 
Modular translational semantics, Model-based DSLs, Separation 
of concerns, model transformations, Model engineering 

1. INTRODUCTION 
Model Driven Engineering (MDE) is organized around the 
unifying concept of model. A model is expressed in a modeling 
language: a formal notation that allows automatic or semi-
automatic manipulation of models, for example, by applying 
model transformations. Models may be expressed in a general-
purpose modeling language such as UML or in a well-scoped 
domain-specific modeling language (DSML or just DSL). Since 
various aspects of different nature need to be modeled there is a 
need for variety of DSLs. Therefore, implementing domain-
specific modeling languages in an efficient way is of a primary 
importance in MDE. 

One particular problem in such an implementation is dealing with 
changes in the language. The changes are driven by the dynamic 
nature of the underlying problem domain. Emerging domains tend 
to change over time reflecting the dynamic nature of the real 
world phenomenon under study. Therefore, the DSL definition 
must follow these changes and needs to be adapted accordingly. 

In the context of MDE we perceive a DSL as a set of coordinated 
models as proposed in [16]. One model specifies the domain 
concepts and it is known as domain ontology or metamodel. 
Another model may specify a particular concrete syntax for the 
DSL. The semantics of DSLs may be specified in multiple ways. 
There is no commonly agreed formalism for semantics 
specification of DSLs. In this paper we are interested in a specific 
type of semantics known as translational semantics. The 
translational semantics specifies how a sentence in a language 
may be translated to a sentence in another language. 

It is clear that the evolution of a DSL affects all of its 
components. For example, adding new domain concepts affects 
both the metamodel and the translational semantics. Furthermore, 
a language is hardly developed from scratch. Existing language 
fragments may be reused across multiple DSLs. A DSL 
specification or a DSL fragment should be reusable and 
adaptable. 

In this paper we focus on the problem of specifying a translational 
semantics for DSLs in MDE. The major requirement for such a 
specification is that it should be modular and resilient to changes. 
The ultimate goal is to develop a technique that allows modular 
incremental development of DSLs in which new constructs are 
added and composed with the existing ones. 
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Separation of concerns (SOC) [7] is a powerful technique to 
tackle the complexity and improve the reusability and evolvability 
of systems. Applied to DSL translational semantics this technique 
requires the identification and the specification of the translation 
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for each language concern in a separate module and a mechanism 
to integrate the loosely coupled modules in a complete language.  

The most commonly used technique for specifying translations in 
MDE is by using model transformation languages. Several 
languages were proposed based on different paradigms 
[1][4][11][17][24]. The research question we aim to answer in this 
paper is whether currently proposed model transformation 
languages can be used to express a modular specification of 
translational semantics based on separation of concerns. It is not 
possible to explore all the languages in a single paper. Therefore, 
we focus on a class of model transformation languages that 
possess certain set of common features. We consider a case study 
that illustrates the typical problems when modularizing 
translational semantics. We use ATL [11] as a representative 
transformation language to implement the example. 

This paper is organized as follows. Section 2 presents background 
information on DSLs, the principle of separation of concerns and 
its application to obtain modular translational semantics. Section 
3 presents known obstacles encountered in the existing 
transformation systems when separating language concerns in 
DSL specification. Section 4 presents a case study of translating 
tuple calculus to SQL. Section 5 gives an overview of the related 
work. Section 6 concludes the paper and outlines future research. 

2. BACKGROUND 
Domain-specific languages have been studied in the context of 
Grammarware [13] for years. Recently, they gained a lot of 
attention by the MDE community. We present a possible view on 
DSLs in the context of MDE. Furthermore, we briefly summarize 
the well-known principle of separation of concerns and how it 
may be applied to translational semantics. 

2.1 DSLs in the Context of MDE 
A DSL is a language designed to be useful for a delimited set of 
tasks, in contrast to general-purpose languages that are supposed 
to be useful for much more generic tasks, crossing multiple 
application domains. Regardless the domain specific or general 
nature of languages they share a common structure: 

• They usually have a concrete syntax; 
• They have an abstract syntax; 
• They have a semantics, implicitly or explicitly defined; 

There are several ways to define these syntaxes and semantics. 
The most commonly used way for defining the concrete syntax is 
via grammar-based systems. In contrast, there are multiple 
semantics specification frameworks but none has been widely 
established as a standard. 

In MDE all the components in a DSL definition are captured in 
models. We recognize the following components: 

Domain Definition Metamodel. DSLs have a clearly identified 
problem domain. Programs (sentences) in a DSL represent 
concrete states of affairs in this domain, i.e. they are models. A 
conceptualization of the domain is an abstract entity that captures 
the commonalities among the possible state of affairs. It 
introduces the basic abstractions of the domain and their mutual 
relations. Once such an abstract entity is explicitly represented as 
a model it becomes a metamodel for the language. We refer to 
this metamodel as domain definition metamodel (DDMM). Such a 
DDMM plays the role of the abstract syntax for a DSL. 

Concrete Syntax. A DSL may have different concrete syntaxes. 
Each one is defined by a transformation model that maps the 
DDMM onto a "display surface" metamodel. Examples of display 
surface metamodels may be SVG or GraphViz, but also XML. 
Often, the concrete syntax is captured by a grammar. In that case 
the relation between the grammar constructs and the metamodel 
elements is of primary importance in order to handle the 
necessary bidirectional translation between the textual 
representation and the model structure. Some approaches to solve 
this are described in [2][8][12]. 

Semantics. A DSL may have an execution semantics definition. 
This semantics definition is also defined by a transformation 
model that maps the DDMM onto another DSL having by itself a 
precise execution or even to a GPL. 
In addition to canonical execution, there are plenty of other 
possible operations on programs based on a given DSL. Each may 
be defined by a mapping represented as a transformation model. 
As we already mentioned a particular type of semantics is 
translational semantics: a mapping of the DDMM to another 
DDMM. In that way models in one language are transformed in 
another language that may possibly be executable. 

2.2 Separation of Concerns in Translational 
Semantics 
In this section we detail the SOC for language implementations to 
be able to understand better the challenges language 
implementations pose to separate the different concerns. We 
distinguish two kinds of concerns: basic concerns and special-
purpose concerns. 

A basic language concern comprises a single language construct 
accompanied by its translational semantics. In the context of our 
view on DSLs a basic concern is related to an element from the 
DDMM and specifies how it is translated to elements in the target 
DDMM. Special-purpose concerns capture every kind of 
involvement of another language concern (ranging from a direct 
reference to other concerns, or any implementation decision that 
is imposed by, or stems from, another concern). As such we can 
study the implementation of the special-purpose concerns 
separately. 

We define a language module as a language construct 
accompanied by its translational semantics that constitutes an 
important design decision in the language. The translational 
semantics is the semantics of the language construct that a module 
hides. The interface should reveal as little as possible about its 
translational semantics, in accordance to the definition of modules 
given by Parnas [22]. 

Often, a language concern needs to use or compute additional 
information extracted from other concerns or to produce results 
used by another concerns. We consider these issues not as an 
integral part of the basic concern since they all involve other 
concerns. In our approach these issues are treated as separate 
concerns. We refer to these concerns as the special-purpose 
concerns. We adopted this terminology from Walter L. Hursh 
et.al. [10], who first introduced this distinction in the context of 
aspect languages. 
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3. CHALLENGES IN SEPARATING 
CONCERNS IN TRANSLATIONAL 
SEMANTICS 
Various systems were proposed to specify modular translational 
semantics (see section 5). The study of this domain in the context 
of Grammarware systems led to the identification of several 
challenges in separating and integrating basic and special-purpose 
concerns. 
In this section we present the challenges on the base of a case 
study. Later on in section 4 we implement the case study in a 
model transformation language and evaluate how the problems 
are handled. 

3.1 Case Study: Tuple Calculus to SQL 
Assume we have to give a translational semantics of the Tuple 
calculus language by specifying transformation to the SQL 
language. Both languages are defined by their metamodels. Figure 
1 shows the metamodel of the Tuple calculus. This language 
defines expressions that are evaluated to sets. An expression is 
instance of class Set. Every expression enumerates header 
attributes and specifies a condition over the header attributes 
(class BooleanExpression). To save space some classes are 
omitted from the figure: the specializations of class Comparator, 
the binary operations And and Or, and the classes for existential 
and universal quantifiers that specialize class Quantifier. 

Set
+tupleVariableName : String
+fieldName : String

Attribute

BooleanExpression

Binary
+tupleVariableName : String
+relationName : String

RelationComparator
+tupleVariableName : String

Quantifier Not

+left 1

+right

1

+left

1

+right 1

+expression

1

+expression1

+set

1

+attr

1..*

+expression1

Value

+stringValue : String
Literal

+tupleVariableName : String
+fieldName : String

HeaderAttribute

 
Figure 1 Metamodel of the Tuple calculus 

Figure 2 shows the metamodel of the SQL language. Again, some 
classes are omitted. The main construct is the Select class that 
extracts number of columns (clause SELECT) from a set of tables 
(clause FROM). A condition may be imposed on the column 
values (clause WHERE).  
Some of the informal translation rules are: 

• A set expression in Tuple calculus is transformed to a 
select SQL query; 

• Header attributes are transformed to columns; 

• Relation predicates are transformed to table declarations 
enumerated in the FROM clause; 

• Conditions are transformed to expressions specified in 
the WHERE SQL clause; 

For example, the following set expression in tuple calculus 
{p.name | employee(p) and p.salary = ‘50000’} 

will be translated to the following SQL query: 

SELECT P.name 
FROM EMPLOYEE as P 
WHERE P.salary = ‘50000’ 

SQLQuery

Union Select

+left1

+right

1

+tableName : String
Column

+column1..*

+name : String
+alias : String

Table

+from1..*

BooleanExpression

Exists Not Binary Comparator

+query

1

+expression

1

+right

1

+left 1

Value

+value : String
Constant

+name : String
+tableName : String

ColumnName

+left 1

+right

1

+condition0..1

 
Figure 2 Metamodel of the SQL language 

Furthermore, the header attributes may be unbounded. The 
translation process must identify the bounding expressions for 
such attributes. For example, the set expression 
{t.supplier, t.article | 
(∃ s)(supplier(s) and s.ssname=t.supplier and 
(∃ p)(product(p) and p.pname=t.article and 
(∃ a)(supplies(a) and s.s#=a.s# and a.p#=p.p#)))} 

contains one unbound variable t. Unbound in this case means that 
the variables are not predicated by a relation. However, the header 
attributes are bound in the condition: t.supplier is bound to 
s.sname and t.article is bound to p.pname. During the translation 
these bindings must be identified and the header attributes must 
be translated to the proper columns: s.sname and p.pname 
respectively. 
The resulting SQL query will be: 
SELECT S.sname as supplier, P.pname as article 
FROM PRODUCT as P, SUPPLIER as S, SUPPLIES as A 
WHERE ………………………………………. 

3.2 Challenges 
In this section we identify the concerns in the translational 
semantics and outline the challenges that must be met in order to 
comply with the principle of separation of concerns. 

First, we choose the major source language constructs as basic 
concerns: Set, HeaderAttribute, Relation, Attribute, Quantifier, 
etc. In the ideal situation the translation of each construct will be 
isolated from the rest. However, this is possible only if the 
structures of the source and target languages are congruent. This 
is hardly possible in complex real life cases. Usually, we observe 
structural mismatches that lead to concern interactions and 
therefore to special-purpose concerns. 

We have two types of structural mismatches that correspond to 
two types of transformations identified by Wijngaarden and 
Visser [27].  These types are called global-to-local (G2L) and 
local-to-global (L2G) transformations. We clarify them below. 

Global-to-local transformations. In this type of transformation 
the source language construct is not enough to produce the output. 
Additional information is needed that may be either external 
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configuration information or information that resides in other 
language constructs, that is, in other concerns. In our example, to 
translate unbound header attributes we have to look in the 
condition expression which forms another concern. This requires 
coordinated effort among more than one concern to produce the 
result. 

Local-to-global transformations. In this type of transformation 
multiple results are produced by a single source construct that is 
used by other concerns. In our example the source construct 
Relation produces two target constructs: one is part of the 
expression in which the relation is used and the second is a table 
declaration that is integrated in another target construct i.e. the 
from feature of class Select. The Select class is part of another 
concern. The table declaration construct is known as a non-local 
result since it pertains to another concern. Again, we have 
concern interaction. Moreover, some of the produced tables may 
be discarded depending on the expression context. This context 
dependency requires a coordinated effort among more than one 
concern to correctly integrate the non-local result. This is 
exemplified in the next section.  

In summary, in both types of G2L and L2G transformations we 
are faced with interactions among concerns: querying for 
additional information and integrating non-local target constructs 
produced by different concerns. A major quality requirement to 
achieve a good separation of concerns is that we specify the 
translation in loosely coupled modules. Therefore, the major 
challenge is to handle the concern interactions in a way that does 
not increase the degree of coupling and does not break the 
separation among the modules. 

In the next section we apply this principle on the presented 
example by using a model transformation language. 

4. TRANSLATIONAL SEMANTICS 
EXPRESSED IN MODEL 
TRANSFORMATION LANGUAGE 
In this section we implement the case study in a model 
transformation language and evaluate how the problems are 
handled. 
This paper does not aim at exploring transformation languages 
one by one. Instead, we focus on a class of languages that share 
common features and select one language to illustrate the case 
study. The basic assumptions about the class of model 
transformation languages are detailed in section 4.1. Section 4.2 
presents the major point of interest of the implementation 
according to the challenges described in Section 3.2. The last 
section lists our findings concerning the separation of concerns. 

4.1 Basic Assumptions about Model 
Transformation Languages 
A number of model transformation languages have been 
proposed. Some of them are based on graph transformation 
techniques and others emerged as an answer to the OMG QVT 
RFP [19]. In this paper we focus on the second type of languages. 
We assume that the following features are supported by the 
language: 

• Transformation rule is the basic language construct. A 
rule has a left-hand side that matches over source 

models and a right-hand side that specifies metamodel 
elements to be instantiated in the target model; 

• The language is hybrid. Both declarative and imperative 
styles are allowed. 

• A rule may access the results produced by other rules. 
Two forms of access are possible. The first is via 
traceability links in which no explicit rule call is 
involved. In this case the resolution algorithm of the 
language is used. The second is by calling a rule by its 
name and parameter passing. We assume that the reader 
is familiar with these basic mechanisms. More info is 
presented in [6][17][15]; 

• Navigation over models is done by using OCL 
expressions [20]; 

• It is possible to separate navigation functionality in 
helpers (e.g. ATL [11] and QVT Operational mappings 
[21] support this feature). Usually, only source models 
can be navigated; 

4.2 Implementation of the Case Study in ATL 
The space limitation does not permit us to present the complete 
implementation of the case study. It may be downloaded from the 
link given in [9]. Here we focus on parts of the transformation 
that illustrate the solutions to the problems presented in section 
3.2. 

4.2.1 Local-to-global transformation 
As we already mentioned an example of such a transformation is 
the generation of SQL table declarations from the relational 
predicates. This generation is captured by the two rules shown 
below. 
The rules produce two output elements: one table and the Boolean 
constant true. The table is used by another target element and is 
therefore considered as a non-local element. Since the predicate 
relations participate in Boolean expressions they must be 
translated to parts of the target expression. In SQL every variable 
is bound to a table so the relation is always evaluated to true. 
rule RelationTranslation 

from s : RelationalCalculus!Relation  
 to table : SQL!Table ( 
     name<-s.relationName, 
     alias<-s.tupleVariableName 
            ) 
} 

rule Relation2True 
 from s : RelationalCalculus!Relation 
 to true : SQL!True 

The rule that uses the non-local table result specifies the 
translational semantics of the Set language concern (the line that 
sets the list of table declarations is underlined): 
rule Set2SelectQuery { 
 from s : RelationalCalculus!Set 
 to t : SQL!Select( 
  condition<-s.expression, 
  column<-s.attr, 
  from<-s.expression.getRelations 
        )  

} 

The generated tables must be collected and they become value of 
the property table. However, the integration of the tables is not 
that straightforward. Some tables may be discarded depending on 
the expression in which the relation is used. We will give one 
example of such situation. The full explanation of the algorithm 
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for discarding tables and integrating is related to the semantics of 
expressions in tuple calculus and is beyond the scope of this 
paper. 

Consider the following expression: 

{w.name | (∃w)(not works_on(w) and manager(w)...  
)} 

Two tables will be produced from this expression: works_on and 
manager. However, the works_on relation may be discarded since 
it does not change the result of the query. Existentially quantified 
negated relations are expressions that are always true. This is due 
to the semantics of the tuple calculus according to which there is 
always at least one element in the universe that does not belong to 
a given relation. Therefore, the table works_on should be 
discarded and the table manager should be kept. It is not possible 
to judge if a table is discarded only on the base of the source 
relation predicate. The whole expression must be analyzed. 

Here we are faced with a non-trivial concern interaction. In 
general, there are two ways to solve the integration problem 
depending on the “active” part. In the first way the concern that 
needs the non-local result finds it and then the integration is 
performed. In the second way the non-local result takes the 
“active” role and locates the target elements in whose context it 
has to be integrated. The identification may be done in many 
ways, for example, by traversing the source model, by using a 
global table, etc. 

In model transformation languages usually the target element that 
needs the non-local result takes the responsibility to find and 
integrate it. The non-local result may be obtained by explicit rule 
call or by using the resolution algorithm. The resolution algorithm 
requires that the source element that produces the element is 
found first and then it is resolved to the target element. In this 
process it is not necessary to know the rule that has produced the 
element. In our implementation we opt for the second option: 
using the resolution algorithm. The challenging part is to 
implement the navigation over the source model. 

Our implementation traverses the source Boolean expression and 
applies the rules for detecting the relations that must be discarded. 
Only the selected relations are used to generate table declarations. 
Navigation over the source model in ATL can be encapsulated in 
OCL helpers. We define helper per every element type used in 
Boolean expressions. Every helper collects relations for that type. 
Relations are kept in a sequence of tuples where every tuple 
contains the source relation and two flags that indicate if the 
relation is discarded and required. Two of the helpers are shown 
below: 
helper context RelationalCalculus!Relation 
  def: getRelations : Sequence(TupleType( 
                           relation : RelationalCalculus!Relation, 
         discard : Boolean, 
         required : Boolean)) = 
  Sequence{Tuple{relation = self, 
               discard = false, 
 
 
              required = true}}; 

helper context RelationalCalculus!Exists 
  def: getRelations : Sequence(TupleType( 
                           relation : RelationalCalculus!Relation,    
                           discard : Boolean, 
                           required : Boolean)) = 
  self.expression.getRelations->select(r| 
      not(r.relation.tupleVariableName=self.tupleVariableName 
          and r.discard) 
  ); 

helper context RelationalCalculus!Not 

  def: getRelations : Sequence(TupleType( 
                           relation : RelationalCalculus!Relation, 
         discard : Boolean, 
         required : Boolean)) = 
  self.expression->collect(r |  
      Tuple{relation = r.relation, 
            discard = true, 
            required = r.required} 
  ); 

 

The helpers are named getRelations. In ATL, helpers with the 
same name and type may be associated to different source 
metamodel elements. In that way a polymorphic behavior is 
achieved. 

It can be seen that the helper defined in the context of Not 
metaclass indicates that a relation may be discarded by turning the 
flag discard to true. Furthermore, the helper associated to Exist 
metaclass performs discarding of the negated relation predicates. 
The remaining helpers are skipped in order to save space. 

This helper is invoked from the rule Set2SelectQuery in the line 
from<-s.expression.getRelations.  

The right-hand side of the expression returns a set of source 
relations. At that moment the resolution algorithm is applied and 
the table declarations produced from the relations are collected 
and assigned as value of the from feature. 

4.2.2 Global-to-local transformation 
To illustrate this type of transformation we take the example of 
unbound header attributes. To produce the target element we have 
to inspect the source model and to find a Comparator of type 
Equal and to check if one of the operands is the same as the 
header attribute. The following code snippet shows that: 
helper context RelationalCalculus!HeaderAttribute 
  def: Binding : TupleType(tableName : String, 
         columnName : String, 
         alias : String) = 
  let name : String =  
    self.set.expression.getTableName(self.tupleVariableName) in  
  if name = '' then 
    RelationalCalculus!Equal.allInstances()-> 
    asSequence()->collect(e |  
      if e.left.oclIsKindOf(RelationalCalculus!Attribute) and 
         e.right.oclIsKindOf(RelationalCalculus!Attribute) 
      then 
 if e.left.tupleVariableName = self.tupleVariableName and 
 .left.fieldName = self.fieldName    e
 then 
    Tuple{tableName = e.right.tupleVariableName,    
             columnName = e.right.fieldName, 
             alias = self.fieldName} 
 else 
    if e.right.tupleVariableName = self.tupleVariableName    
                and e.right.fieldName = self.fieldName 
    then 
       Tuple{tableName = e.left.tupleVariableName,   
                      columnName = e.left.fieldName, 
                      alias = self.fieldName} 
    else 
………………………………………………………………………………………………………………………………………………………… 
endif; 

The query is defined in a helper, separating it from the 
Set2SelectQuery rule. The result produced by the helper is used in 
another helper that is not shown in the paper. Ultimately, the 
name and the alias of the columns are assigned properly. 

4.3 Discussion 
In this section we evaluate the presented implementation. Several 
points are of interest: mapping the conceptual elements in the 
problem domain to the language syntactical constructs, and 
achieving proper separation and integration of concerns for both 
types of transformations: L2G and G2L. 
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4.3.1 Correspondence between Problem Domain 
Concepts and Language Constructs 
We have presented several concepts from the domain of 
translational semantics: basic and special-purpose concerns, local 
and non-local elements, etc. It is interesting to see how they are 
mapped to the constructs provided by the transformation 
language. In this discussion, the domain of translational semantics 
is the problem domain, and the domain of transformation 
languages is the solution domain. 

ATL and other languages are general purpose transformation 
languages whereas the transformations for translational semantics 
are special purpose transformations i.e. they have distinct 
characteristics (basic vs. special-purpose concerns, local vs. non-
local results). It is thus not a surprise that there is a mismatch 
between the problem domain concepts and the solution language 
constructs. First, there is no concept of a language module (see 
section 2.1). A basic concern may be expressed in one or in 
multiple rules. There is no distinction among rules. They are 
equal from the point of view of the transformation language 
whereas from the problem domain point of view they represent 
different language concerns. Second, there is no distinction 
between local and non-local elements. Both are represented as 
targets in transformation rules. Third, some of the transformation 
functionality is encoded in helpers. Again, it is not possible to 
identify membership of a given helper to a given concern. This 
membership is important in order to reuse the basic concerns in a 
changing language definition. 

The identified mismatches do not allow representing a single 
language concern in a single transformation construct. An 
important requirement for achieving good separation of concerns 
is separate specification and encapsulation of the concern. The 
lack of distinction between local and non-local elements prevents 
us from specifying clear interface of every concern. 

4.3.2 Local-to-global Transformations 
We considered the translation of relation predicates as an example 
of local-to-global transformation. Here we evaluate the degree in 
which the implementation achieved separation of concerns. 

It was possible to capture the translation of relations in a single 
construct and to separate the generation of the local and the non-
local results in separate rules. Although in the example we gave 
the separation seems quite successful, there are some subtle issues 
that may have an impact on the degree of separation of concerns. 

First, the target elements and properties where we integrate the 
non-local results are statically defined and tangled within the 
rules that produce these target elements. As these rules represent 
different concerns, they therefore violate the separation of 
concerns.   Let us revisit the Set2SelectQuery. It contains a query 
to collect the table declarations from the sub-expressions (from<-
s.expression.getRelations). This query is thus statically selected 
and tangled with the language concern to handle relations. It is 
statically selected because according to the metamodel we need to 
set up certain properties of the target element. We know that the 
table declarations must be in the select query. However, in cases 
of multiple integration locations, statically deciding where the 
results should be integrated is not the most elegant solution. 

Second, as we mentioned before the challenge in L2G 
transformations is how we integrate the non-local result. This is 

achieved by defining helpers that perform navigation from the 
element that needs the non-local results to the elements that 
produce the result. We define several helpers, one per each type 
of expression. In that way helpers are attached to other language 
constructs and the integration algorithm as a whole can be 
perceived as scattered across several concerns. It is not clear how 
to interpret the helpers: as belonging to the basic concern of the 
element to which they are attached or as belonging to the special-
purpose concern that integrates tables in the query. 

Another possibility is to make the non-local result responsible for 
finding the place where to integrate itself. This would lead to 
specification of the algorithm in a single construct. Unfortunately 
this is not possible because helpers can only be attached to source 
elements and target elements cannot traverse the source model. 

Another subtle issue is scheduling. A scheduling issue 
arises when a non-local result has not yet been computed by a rule 
and another rule tries to obtain it. A proper scheduling algorithm 
is necessary to solve this problem.  In ATL, the scheduling 
algorithm has two steps: the first step instantiates all the target 
model elements, the second step sets up all the target properties. 
The target model cannot be navigated. This ensures that the 
required information is always there. However, other 
transformation languages may have different scheduling 
algorithm that may pose problems. 

4.3.3 Global-to-local Transformations 
The problem of identification of bindings for unbound header 
attributes demonstrates a global-to-local transformation. The main 
challenge is to locate and query the required additional 
information. ATL presents a good mechanism to encapsulate this 
logic in a helper. However, the changes in the source structure 
leads to changes in the navigation logic. To minimize this effect a 
special type of queries was proposed in the context of Adaptive 
programming and Demeter method [18] called structure-shy 
queries.  

A structure-shy query contains only the essential knowledge 
about the structure that is navigated. Irrelevant structural 
information is not included and therefore changes in it do not 
affect the query. 

In our implementation the navigation and query language is OCL. 
OCL has not been designed with structure-shyness as a 
requirement so we cannot claim for it that it is structure-shy 
language as we can do for XPath, for example. However, it 
contains some features that allow specification of such queries. 
Consider the navigation to all the assignments that can serve as 
bindings. Instead of traversing the whole expression tree we can 
locate them by the following query: 
RelationalCalculus!Equal.allInstances() 

This is an example of structure-shy query that remains unchanged 
when the structure definition of Boolean expressions changes. 

Another point is how one can reuse the basic concern in another 
context to provide other query logic. A basic concern embeds the 
name of the helper function. So to reuse the basic concern one 
needs to implement that specific helper. This basic scheme is 
vulnerable to name clashes and prohibits the refinement of 
existing helpers. 
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5. RELATED WORK 
Each contemporary language implementation technique offers 
built-in mechanisms to confine the impact of the implementation 
of G2L transformations and L2G transformations on the other 
language concerns. The mechanisms reduce the involvement of 
the other concerns, hereby improving the separation of the basic 
concerns. We refer to these mechanisms as language 
implementation strategies. The most prominent strategies are to 
the best of our knowledge propagation rules, attribute forwarding, 
monads, structure-shy queries, traversals, dynamic rewrite 
rules, and symbol tables.  Let us briefly discuss these. 

Attribute grammars [14] provide attribute propagation rules or 
attribute copy rules. To be able to communicate attribute values 
across larger tree fragments, all the intermediate terms must be 
explicitly aware of that value. This requires copy rules for each of 
the intermediate terms. In response to that problem, propagation 
rules have been proposed to alleviate the developer of the tedious 
copy rules [3]. 

Intentional Programming [23] provides attribute forwarding. The 
strategy was also added later on to attribute grammars. When an 
attribute is requested and it is not available in the term nor it is 
explicitly provided by the implementing concern, the request is 
forwarded to the results produced by the term’s translational 
semantics. Similar mechanism is available in model 
transformation languages where a target element may be obtained 
from a given source on the base of the resolution algorithm in a 
way that is blind for the actual rule that produces the result. 

Functional programming languages provide monads [25]. Monads 
allow the programmer to build computations using sequential 
building blocks, which can themselves be sequences of 
computations. The monad determines how combined 
computations form a new computation and frees the programmer 
from having to code the combination manually each time it is 
required. 

Structure-shy queries stem from structure-shy paths of the 
Demeter method [18]. A structure shy query does not detail the 
actual path that must be followed to reach a distant term, it 
describes the path by a series of basic operators. The operators 
improve the SOC as they reduce the involvement of the terms 
between the requesting concern and the concerns that provide the 
information. To the best of our knowledge the need for structure 
shy queries is not studied in model transformation languages. 

Rewrite rule formalisms provide traversals [26]. Traversals have 
been added to the rewrite rule paradigm to alleviate the 
programmer of the cumbersome programming needed to 
distribute context information. The techniques proposed in [26] 
allow a rewrite rule to descend into a subtree. During the descend, 
information can be accumulated and/or terms can be rewritten at 
an arbitrary depth. With traversals, the compilation of a language 
construct requesting information only needs to interact with the 
terms that influence the information. Dynamic rewrite rules are 
rules which are locally created during the execution of a rule. 
With these rules locally defined effects can be exported. 
However, these rules need to be carefully scheduled during the 
execution of the system. 

Most language implementation techniques lack an explicit 
concept to define a language module except Intentional 

Programming and Delegating Compiler Objects [5]. The 
strategies to reduce the involvement of other concerns are mainly 
targeted to collect or retrieve information, not to distribute 
information. Hence, local-to-global transformations are not well 
supported. The dynamic rewrite rules is the sole strategy which 
offers direct support for local-to-global transformations. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we studied the applicability of model transformation 
languages to specify translational semantics for DSLs in the 
context of MDE. The major requirement for such a specification 
is to apply the principle of separation of concerns in order to 
achieve a modular and composable translational semantics 
specification. 
The major contribution of this work is the study of the problems 
identified for Grammarware systems in the context of MDE and 
how model transformation languages can cope with them. 
The specification of modular semantics is a topic extensively 
studied in the context of Grammarware systems. As the related 
work overview showed every language implementation technique 
proposes its own way to cope with the main challenges in this 
effort. We expect that the development of DSLs along the 
principles of MDE will become more and more a common task. 
Therefore, it is important to apply similar techniques for reusing 
and composing language modules in order to achieve fast DSL 
development. 
General purpose model transformation languages are the main 
tool for specifying translations in MDE. The results of the 
presented case study revealed that the concepts in the problem 
domain of modular translational semantics and the available 
transformation language constructs demonstrate a significant 
mismatch. This leads us to the idea that the problem of 
translational semantics in MDE is better to be approached with a 
domain-specific transformation language instead of with a general 
purpose one. Gathering requirements for such a language and its 
initial prototyping is the major goal for future research. We are 
currently experimenting with a prototype of a transformation 
system based on meta-object protocol. 
This work helps for getting an insight about the problems that 
must be solved by such a language. We have presented several 
concepts from the domain of translational semantics: basic and 
special-purpose concerns, local and non-local elements, which do 
not match the language constructs of the transformation language. 
This prevents us from specifying clear interface of every concern 
i.e. a language module. Furthermore, we saw that the two major 
challenges are related to two classes of transformation problems: 
global-to-local and local-to-global transformations. For the first 
problem we need to investigate the need for structure-shy 
navigation and query languages over models. For the second 
problem we need to study various mechanisms that address the 
problem of composition of language modules. 
Similarly to the existing Grammarware systems current 
transformation languages provide a fixed set of constructs that 
support separation and composition of concerns. It is clear that 
these constructs will work for a limited set of problems. To 
provide a more open and flexible approach for defining 
integration strategies we plan to investigate the applicability of 
reflection in model transformation languages. Two types of 
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computational reflection are necessary: structural and behavioral 
reflection. Structural reflection allows strategies to reason about 
the models at a meta-level. Behavioral reflection allows strategies 
to reason and intervene on the semantics of the transformation. 
The subject of reflection and the details exposed to the user 
remain open issues. 
The conclusions we draw are based on certain assumptions about 
the transformation languages that are used. However, there exist 
other types of languages not explored here, for example, graph 
transformation languages. To extend the scope of the results of 
our study it is necessary to perform experiments with other 
languages as well. 
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