
Separation of Concerns in Translational Semantics for
DSLs in Model Engineering

Thomas Cleenewerck
PROG, Vrije Universiteit Brussel

Brussels, Belgium

tcleenew@vub.ac.be

Ivan Kurtev
ATLAS Group, INRIA, France (until Nov 2006)

SE Group, University of Twente, the Netherlands

ivan.kurtev@gmail.com

ABSTRACT
Development of Domain Specific Languages (DSLs) in the
context of Model Driven Engineering is gaining more and more
popularity. As evolution lies in the heart of every software
system, the major requirement for DSLs is that they should be
modular and resilient to changes. MDE-based DSL frameworks
should enable a modular specification of language translational
semantics and the composition of the modules into languages.
Ultimately, the availability of such techniques should make the
DSL development faster. Separation of concerns is a sound
software engineering principle used to obtain better modularity,
reusability, and adaptability of systems. However, this principle
must be supported by proper tools that allow the separation
achieved at a conceptual level to be preserved in the language
specification. In MDE, the mainstream tools for specifying
translations are model transformation languages. In this paper we
evaluate a class of model transformation languages regarding their
applicability for capturing the translational semantics of DSLs in
a modular way. We found that the concepts in the domain of
translational semantics significantly mismatch with the language
constructs of the transformation language. We suggest that this
problem may be better approached by a domain-specific
transformation language.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Specialized Application
Languages – model transformation languages. D.3.3
[Programming Languages]: Language Constructs and Features –
modules, packages. D.2.13 [Reusable Software]: Reusable
Libraries.

General Terms
Design, Languages

Keywords
Modular translational semantics, Model-based DSLs, Separation
of concerns, model transformations, Model engineering

1. INTRODUCTION
Model Driven Engineering (MDE) is organized around the
unifying concept of model. A model is expressed in a modeling
language: a formal notation that allows automatic or semi-
automatic manipulation of models, for example, by applying
model transformations. Models may be expressed in a general-
purpose modeling language such as UML or in a well-scoped
domain-specific modeling language (DSML or just DSL). Since
various aspects of different nature need to be modeled there is a
need for variety of DSLs. Therefore, implementing domain-
specific modeling languages in an efficient way is of a primary
importance in MDE.

One particular problem in such an implementation is dealing with
changes in the language. The changes are driven by the dynamic
nature of the underlying problem domain. Emerging domains tend
to change over time reflecting the dynamic nature of the real
world phenomenon under study. Therefore, the DSL definition
must follow these changes and needs to be adapted accordingly.

In the context of MDE we perceive a DSL as a set of coordinated
models as proposed in [16]. One model specifies the domain
concepts and it is known as domain ontology or metamodel.
Another model may specify a particular concrete syntax for the
DSL. The semantics of DSLs may be specified in multiple ways.
There is no commonly agreed formalism for semantics
specification of DSLs. In this paper we are interested in a specific
type of semantics known as translational semantics. The
translational semantics specifies how a sentence in a language
may be translated to a sentence in another language.

It is clear that the evolution of a DSL affects all of its
components. For example, adding new domain concepts affects
both the metamodel and the translational semantics. Furthermore,
a language is hardly developed from scratch. Existing language
fragments may be reused across multiple DSLs. A DSL
specification or a DSL fragment should be reusable and
adaptable.

In this paper we focus on the problem of specifying a translational
semantics for DSLs in MDE. The major requirement for such a
specification is that it should be modular and resilient to changes.
The ultimate goal is to develop a technique that allows modular
incremental development of DSLs in which new constructs are
added and composed with the existing ones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

Separation of concerns (SOC) [7] is a powerful technique to
tackle the complexity and improve the reusability and evolvability
of systems. Applied to DSL translational semantics this technique
requires the identification and the specification of the translation

985

for each language concern in a separate module and a mechanism
to integrate the loosely coupled modules in a complete language.

The most commonly used technique for specifying translations in
MDE is by using model transformation languages. Several
languages were proposed based on different paradigms
[1][4][11][17][24]. The research question we aim to answer in this
paper is whether currently proposed model transformation
languages can be used to express a modular specification of
translational semantics based on separation of concerns. It is not
possible to explore all the languages in a single paper. Therefore,
we focus on a class of model transformation languages that
possess certain set of common features. We consider a case study
that illustrates the typical problems when modularizing
translational semantics. We use ATL [11] as a representative
transformation language to implement the example.

This paper is organized as follows. Section 2 presents background
information on DSLs, the principle of separation of concerns and
its application to obtain modular translational semantics. Section
3 presents known obstacles encountered in the existing
transformation systems when separating language concerns in
DSL specification. Section 4 presents a case study of translating
tuple calculus to SQL. Section 5 gives an overview of the related
work. Section 6 concludes the paper and outlines future research.

2. BACKGROUND
Domain-specific languages have been studied in the context of
Grammarware [13] for years. Recently, they gained a lot of
attention by the MDE community. We present a possible view on
DSLs in the context of MDE. Furthermore, we briefly summarize
the well-known principle of separation of concerns and how it
may be applied to translational semantics.

2.1 DSLs in the Context of MDE
A DSL is a language designed to be useful for a delimited set of
tasks, in contrast to general-purpose languages that are supposed
to be useful for much more generic tasks, crossing multiple
application domains. Regardless the domain specific or general
nature of languages they share a common structure:

• They usually have a concrete syntax;
• They have an abstract syntax;
• They have a semantics, implicitly or explicitly defined;

There are several ways to define these syntaxes and semantics.
The most commonly used way for defining the concrete syntax is
via grammar-based systems. In contrast, there are multiple
semantics specification frameworks but none has been widely
established as a standard.

In MDE all the components in a DSL definition are captured in
models. We recognize the following components:

Domain Definition Metamodel. DSLs have a clearly identified
problem domain. Programs (sentences) in a DSL represent
concrete states of affairs in this domain, i.e. they are models. A
conceptualization of the domain is an abstract entity that captures
the commonalities among the possible state of affairs. It
introduces the basic abstractions of the domain and their mutual
relations. Once such an abstract entity is explicitly represented as
a model it becomes a metamodel for the language. We refer to
this metamodel as domain definition metamodel (DDMM). Such a
DDMM plays the role of the abstract syntax for a DSL.

Concrete Syntax. A DSL may have different concrete syntaxes.
Each one is defined by a transformation model that maps the
DDMM onto a "display surface" metamodel. Examples of display
surface metamodels may be SVG or GraphViz, but also XML.
Often, the concrete syntax is captured by a grammar. In that case
the relation between the grammar constructs and the metamodel
elements is of primary importance in order to handle the
necessary bidirectional translation between the textual
representation and the model structure. Some approaches to solve
this are described in [2][8][12].

Semantics. A DSL may have an execution semantics definition.
This semantics definition is also defined by a transformation
model that maps the DDMM onto another DSL having by itself a
precise execution or even to a GPL.
In addition to canonical execution, there are plenty of other
possible operations on programs based on a given DSL. Each may
be defined by a mapping represented as a transformation model.
As we already mentioned a particular type of semantics is
translational semantics: a mapping of the DDMM to another
DDMM. In that way models in one language are transformed in
another language that may possibly be executable.

2.2 Separation of Concerns in Translational
Semantics
In this section we detail the SOC for language implementations to
be able to understand better the challenges language
implementations pose to separate the different concerns. We
distinguish two kinds of concerns: basic concerns and special-
purpose concerns.

A basic language concern comprises a single language construct
accompanied by its translational semantics. In the context of our
view on DSLs a basic concern is related to an element from the
DDMM and specifies how it is translated to elements in the target
DDMM. Special-purpose concerns capture every kind of
involvement of another language concern (ranging from a direct
reference to other concerns, or any implementation decision that
is imposed by, or stems from, another concern). As such we can
study the implementation of the special-purpose concerns
separately.

We define a language module as a language construct
accompanied by its translational semantics that constitutes an
important design decision in the language. The translational
semantics is the semantics of the language construct that a module
hides. The interface should reveal as little as possible about its
translational semantics, in accordance to the definition of modules
given by Parnas [22].

Often, a language concern needs to use or compute additional
information extracted from other concerns or to produce results
used by another concerns. We consider these issues not as an
integral part of the basic concern since they all involve other
concerns. In our approach these issues are treated as separate
concerns. We refer to these concerns as the special-purpose
concerns. We adopted this terminology from Walter L. Hursh
et.al. [10], who first introduced this distinction in the context of
aspect languages.

986

3. CHALLENGES IN SEPARATING
CONCERNS IN TRANSLATIONAL
SEMANTICS
Various systems were proposed to specify modular translational
semantics (see section 5). The study of this domain in the context
of Grammarware systems led to the identification of several
challenges in separating and integrating basic and special-purpose
concerns.
In this section we present the challenges on the base of a case
study. Later on in section 4 we implement the case study in a
model transformation language and evaluate how the problems
are handled.

3.1 Case Study: Tuple Calculus to SQL
Assume we have to give a translational semantics of the Tuple
calculus language by specifying transformation to the SQL
language. Both languages are defined by their metamodels. Figure
1 shows the metamodel of the Tuple calculus. This language
defines expressions that are evaluated to sets. An expression is
instance of class Set. Every expression enumerates header
attributes and specifies a condition over the header attributes
(class BooleanExpression). To save space some classes are
omitted from the figure: the specializations of class Comparator,
the binary operations And and Or, and the classes for existential
and universal quantifiers that specialize class Quantifier.

Set
+tupleVariableName : String
+fieldName : String

Attribute

BooleanExpression

Binary
+tupleVariableName : String
+relationName : String

RelationComparator
+tupleVariableName : String

Quantifier Not

+left 1

+right

1

+left

1

+right 1

+expression

1

+expression1

+set

1

+attr

1..*

+expression1

Value

+stringValue : String
Literal

+tupleVariableName : String
+fieldName : String

HeaderAttribute

Figure 1 Metamodel of the Tuple calculus

Figure 2 shows the metamodel of the SQL language. Again, some
classes are omitted. The main construct is the Select class that
extracts number of columns (clause SELECT) from a set of tables
(clause FROM). A condition may be imposed on the column
values (clause WHERE).
Some of the informal translation rules are:

• A set expression in Tuple calculus is transformed to a
select SQL query;

• Header attributes are transformed to columns;

• Relation predicates are transformed to table declarations
enumerated in the FROM clause;

• Conditions are transformed to expressions specified in
the WHERE SQL clause;

For example, the following set expression in tuple calculus
{p.name | employee(p) and p.salary = ‘50000’}

will be translated to the following SQL query:

SELECT P.name
FROM EMPLOYEE as P
WHERE P.salary = ‘50000’

SQLQuery

Union Select

+left1

+right

1

+tableName : String
Column

+column1..*

+name : String
+alias : String

Table

+from1..*

BooleanExpression

Exists Not Binary Comparator

+query

1

+expression

1

+right

1

+left 1

Value

+value : String
Constant

+name : String
+tableName : String

ColumnName

+left 1

+right

1

+condition0..1

Figure 2 Metamodel of the SQL language

Furthermore, the header attributes may be unbounded. The
translation process must identify the bounding expressions for
such attributes. For example, the set expression
{t.supplier, t.article |
(∃ s)(supplier(s) and s.ssname=t.supplier and
(∃ p)(product(p) and p.pname=t.article and
(∃ a)(supplies(a) and s.s#=a.s# and a.p#=p.p#)))}

contains one unbound variable t. Unbound in this case means that
the variables are not predicated by a relation. However, the header
attributes are bound in the condition: t.supplier is bound to
s.sname and t.article is bound to p.pname. During the translation
these bindings must be identified and the header attributes must
be translated to the proper columns: s.sname and p.pname
respectively.
The resulting SQL query will be:
SELECT S.sname as supplier, P.pname as article
FROM PRODUCT as P, SUPPLIER as S, SUPPLIES as A
WHERE ……………………………………….

3.2 Challenges
In this section we identify the concerns in the translational
semantics and outline the challenges that must be met in order to
comply with the principle of separation of concerns.

First, we choose the major source language constructs as basic
concerns: Set, HeaderAttribute, Relation, Attribute, Quantifier,
etc. In the ideal situation the translation of each construct will be
isolated from the rest. However, this is possible only if the
structures of the source and target languages are congruent. This
is hardly possible in complex real life cases. Usually, we observe
structural mismatches that lead to concern interactions and
therefore to special-purpose concerns.

We have two types of structural mismatches that correspond to
two types of transformations identified by Wijngaarden and
Visser [27]. These types are called global-to-local (G2L) and
local-to-global (L2G) transformations. We clarify them below.

Global-to-local transformations. In this type of transformation
the source language construct is not enough to produce the output.
Additional information is needed that may be either external

987

configuration information or information that resides in other
language constructs, that is, in other concerns. In our example, to
translate unbound header attributes we have to look in the
condition expression which forms another concern. This requires
coordinated effort among more than one concern to produce the
result.

Local-to-global transformations. In this type of transformation
multiple results are produced by a single source construct that is
used by other concerns. In our example the source construct
Relation produces two target constructs: one is part of the
expression in which the relation is used and the second is a table
declaration that is integrated in another target construct i.e. the
from feature of class Select. The Select class is part of another
concern. The table declaration construct is known as a non-local
result since it pertains to another concern. Again, we have
concern interaction. Moreover, some of the produced tables may
be discarded depending on the expression context. This context
dependency requires a coordinated effort among more than one
concern to correctly integrate the non-local result. This is
exemplified in the next section.

In summary, in both types of G2L and L2G transformations we
are faced with interactions among concerns: querying for
additional information and integrating non-local target constructs
produced by different concerns. A major quality requirement to
achieve a good separation of concerns is that we specify the
translation in loosely coupled modules. Therefore, the major
challenge is to handle the concern interactions in a way that does
not increase the degree of coupling and does not break the
separation among the modules.

In the next section we apply this principle on the presented
example by using a model transformation language.

4. TRANSLATIONAL SEMANTICS
EXPRESSED IN MODEL
TRANSFORMATION LANGUAGE
In this section we implement the case study in a model
transformation language and evaluate how the problems are
handled.
This paper does not aim at exploring transformation languages
one by one. Instead, we focus on a class of languages that share
common features and select one language to illustrate the case
study. The basic assumptions about the class of model
transformation languages are detailed in section 4.1. Section 4.2
presents the major point of interest of the implementation
according to the challenges described in Section 3.2. The last
section lists our findings concerning the separation of concerns.

4.1 Basic Assumptions about Model
Transformation Languages
A number of model transformation languages have been
proposed. Some of them are based on graph transformation
techniques and others emerged as an answer to the OMG QVT
RFP [19]. In this paper we focus on the second type of languages.
We assume that the following features are supported by the
language:

• Transformation rule is the basic language construct. A
rule has a left-hand side that matches over source

models and a right-hand side that specifies metamodel
elements to be instantiated in the target model;

• The language is hybrid. Both declarative and imperative
styles are allowed.

• A rule may access the results produced by other rules.
Two forms of access are possible. The first is via
traceability links in which no explicit rule call is
involved. In this case the resolution algorithm of the
language is used. The second is by calling a rule by its
name and parameter passing. We assume that the reader
is familiar with these basic mechanisms. More info is
presented in [6][17][15];

• Navigation over models is done by using OCL
expressions [20];

• It is possible to separate navigation functionality in
helpers (e.g. ATL [11] and QVT Operational mappings
[21] support this feature). Usually, only source models
can be navigated;

4.2 Implementation of the Case Study in ATL
The space limitation does not permit us to present the complete
implementation of the case study. It may be downloaded from the
link given in [9]. Here we focus on parts of the transformation
that illustrate the solutions to the problems presented in section
3.2.

4.2.1 Local-to-global transformation
As we already mentioned an example of such a transformation is
the generation of SQL table declarations from the relational
predicates. This generation is captured by the two rules shown
below.
The rules produce two output elements: one table and the Boolean
constant true. The table is used by another target element and is
therefore considered as a non-local element. Since the predicate
relations participate in Boolean expressions they must be
translated to parts of the target expression. In SQL every variable
is bound to a table so the relation is always evaluated to true.
rule RelationTranslation

from s : RelationalCalculus!Relation
 to table : SQL!Table (
 name<-s.relationName,
 alias<-s.tupleVariableName
)
}

rule Relation2True
 from s : RelationalCalculus!Relation
 to true : SQL!True

The rule that uses the non-local table result specifies the
translational semantics of the Set language concern (the line that
sets the list of table declarations is underlined):
rule Set2SelectQuery {
 from s : RelationalCalculus!Set
 to t : SQL!Select(
 condition<-s.expression,
 column<-s.attr,
 from<-s.expression.getRelations
)

}

The generated tables must be collected and they become value of
the property table. However, the integration of the tables is not
that straightforward. Some tables may be discarded depending on
the expression in which the relation is used. We will give one
example of such situation. The full explanation of the algorithm

988

for discarding tables and integrating is related to the semantics of
expressions in tuple calculus and is beyond the scope of this
paper.

Consider the following expression:

{w.name | (∃w)(not works_on(w) and manager(w)...
)}

Two tables will be produced from this expression: works_on and
manager. However, the works_on relation may be discarded since
it does not change the result of the query. Existentially quantified
negated relations are expressions that are always true. This is due
to the semantics of the tuple calculus according to which there is
always at least one element in the universe that does not belong to
a given relation. Therefore, the table works_on should be
discarded and the table manager should be kept. It is not possible
to judge if a table is discarded only on the base of the source
relation predicate. The whole expression must be analyzed.

Here we are faced with a non-trivial concern interaction. In
general, there are two ways to solve the integration problem
depending on the “active” part. In the first way the concern that
needs the non-local result finds it and then the integration is
performed. In the second way the non-local result takes the
“active” role and locates the target elements in whose context it
has to be integrated. The identification may be done in many
ways, for example, by traversing the source model, by using a
global table, etc.

In model transformation languages usually the target element that
needs the non-local result takes the responsibility to find and
integrate it. The non-local result may be obtained by explicit rule
call or by using the resolution algorithm. The resolution algorithm
requires that the source element that produces the element is
found first and then it is resolved to the target element. In this
process it is not necessary to know the rule that has produced the
element. In our implementation we opt for the second option:
using the resolution algorithm. The challenging part is to
implement the navigation over the source model.

Our implementation traverses the source Boolean expression and
applies the rules for detecting the relations that must be discarded.
Only the selected relations are used to generate table declarations.
Navigation over the source model in ATL can be encapsulated in
OCL helpers. We define helper per every element type used in
Boolean expressions. Every helper collects relations for that type.
Relations are kept in a sequence of tuples where every tuple
contains the source relation and two flags that indicate if the
relation is discarded and required. Two of the helpers are shown
below:
helper context RelationalCalculus!Relation
 def: getRelations : Sequence(TupleType(
 relation : RelationalCalculus!Relation,
 discard : Boolean,
 required : Boolean)) =
 Sequence{Tuple{relation = self,
 discard = false,

 required = true}};

helper context RelationalCalculus!Exists
 def: getRelations : Sequence(TupleType(
 relation : RelationalCalculus!Relation,
 discard : Boolean,
 required : Boolean)) =
 self.expression.getRelations->select(r|
 not(r.relation.tupleVariableName=self.tupleVariableName
 and r.discard)
);

helper context RelationalCalculus!Not

 def: getRelations : Sequence(TupleType(
 relation : RelationalCalculus!Relation,
 discard : Boolean,
 required : Boolean)) =
 self.expression->collect(r |
 Tuple{relation = r.relation,
 discard = true,
 required = r.required}
);

The helpers are named getRelations. In ATL, helpers with the
same name and type may be associated to different source
metamodel elements. In that way a polymorphic behavior is
achieved.

It can be seen that the helper defined in the context of Not
metaclass indicates that a relation may be discarded by turning the
flag discard to true. Furthermore, the helper associated to Exist
metaclass performs discarding of the negated relation predicates.
The remaining helpers are skipped in order to save space.

This helper is invoked from the rule Set2SelectQuery in the line
from<-s.expression.getRelations.

The right-hand side of the expression returns a set of source
relations. At that moment the resolution algorithm is applied and
the table declarations produced from the relations are collected
and assigned as value of the from feature.

4.2.2 Global-to-local transformation
To illustrate this type of transformation we take the example of
unbound header attributes. To produce the target element we have
to inspect the source model and to find a Comparator of type
Equal and to check if one of the operands is the same as the
header attribute. The following code snippet shows that:
helper context RelationalCalculus!HeaderAttribute
 def: Binding : TupleType(tableName : String,
 columnName : String,
 alias : String) =
 let name : String =
 self.set.expression.getTableName(self.tupleVariableName) in
 if name = '' then
 RelationalCalculus!Equal.allInstances()->
 asSequence()->collect(e |
 if e.left.oclIsKindOf(RelationalCalculus!Attribute) and
 e.right.oclIsKindOf(RelationalCalculus!Attribute)
 then
 if e.left.tupleVariableName = self.tupleVariableName and
 .left.fieldName = self.fieldName e
 then
 Tuple{tableName = e.right.tupleVariableName,
 columnName = e.right.fieldName,
 alias = self.fieldName}
 else
 if e.right.tupleVariableName = self.tupleVariableName
 and e.right.fieldName = self.fieldName
 then
 Tuple{tableName = e.left.tupleVariableName,
 columnName = e.left.fieldName,
 alias = self.fieldName}
 else
……
endif;

The query is defined in a helper, separating it from the
Set2SelectQuery rule. The result produced by the helper is used in
another helper that is not shown in the paper. Ultimately, the
name and the alias of the columns are assigned properly.

4.3 Discussion
In this section we evaluate the presented implementation. Several
points are of interest: mapping the conceptual elements in the
problem domain to the language syntactical constructs, and
achieving proper separation and integration of concerns for both
types of transformations: L2G and G2L.

989

4.3.1 Correspondence between Problem Domain
Concepts and Language Constructs
We have presented several concepts from the domain of
translational semantics: basic and special-purpose concerns, local
and non-local elements, etc. It is interesting to see how they are
mapped to the constructs provided by the transformation
language. In this discussion, the domain of translational semantics
is the problem domain, and the domain of transformation
languages is the solution domain.

ATL and other languages are general purpose transformation
languages whereas the transformations for translational semantics
are special purpose transformations i.e. they have distinct
characteristics (basic vs. special-purpose concerns, local vs. non-
local results). It is thus not a surprise that there is a mismatch
between the problem domain concepts and the solution language
constructs. First, there is no concept of a language module (see
section 2.1). A basic concern may be expressed in one or in
multiple rules. There is no distinction among rules. They are
equal from the point of view of the transformation language
whereas from the problem domain point of view they represent
different language concerns. Second, there is no distinction
between local and non-local elements. Both are represented as
targets in transformation rules. Third, some of the transformation
functionality is encoded in helpers. Again, it is not possible to
identify membership of a given helper to a given concern. This
membership is important in order to reuse the basic concerns in a
changing language definition.

The identified mismatches do not allow representing a single
language concern in a single transformation construct. An
important requirement for achieving good separation of concerns
is separate specification and encapsulation of the concern. The
lack of distinction between local and non-local elements prevents
us from specifying clear interface of every concern.

4.3.2 Local-to-global Transformations
We considered the translation of relation predicates as an example
of local-to-global transformation. Here we evaluate the degree in
which the implementation achieved separation of concerns.

It was possible to capture the translation of relations in a single
construct and to separate the generation of the local and the non-
local results in separate rules. Although in the example we gave
the separation seems quite successful, there are some subtle issues
that may have an impact on the degree of separation of concerns.

First, the target elements and properties where we integrate the
non-local results are statically defined and tangled within the
rules that produce these target elements. As these rules represent
different concerns, they therefore violate the separation of
concerns. Let us revisit the Set2SelectQuery. It contains a query
to collect the table declarations from the sub-expressions (from<-
s.expression.getRelations). This query is thus statically selected
and tangled with the language concern to handle relations. It is
statically selected because according to the metamodel we need to
set up certain properties of the target element. We know that the
table declarations must be in the select query. However, in cases
of multiple integration locations, statically deciding where the
results should be integrated is not the most elegant solution.

Second, as we mentioned before the challenge in L2G
transformations is how we integrate the non-local result. This is

achieved by defining helpers that perform navigation from the
element that needs the non-local results to the elements that
produce the result. We define several helpers, one per each type
of expression. In that way helpers are attached to other language
constructs and the integration algorithm as a whole can be
perceived as scattered across several concerns. It is not clear how
to interpret the helpers: as belonging to the basic concern of the
element to which they are attached or as belonging to the special-
purpose concern that integrates tables in the query.

Another possibility is to make the non-local result responsible for
finding the place where to integrate itself. This would lead to
specification of the algorithm in a single construct. Unfortunately
this is not possible because helpers can only be attached to source
elements and target elements cannot traverse the source model.

Another subtle issue is scheduling. A scheduling issue
arises when a non-local result has not yet been computed by a rule
and another rule tries to obtain it. A proper scheduling algorithm
is necessary to solve this problem. In ATL, the scheduling
algorithm has two steps: the first step instantiates all the target
model elements, the second step sets up all the target properties.
The target model cannot be navigated. This ensures that the
required information is always there. However, other
transformation languages may have different scheduling
algorithm that may pose problems.

4.3.3 Global-to-local Transformations
The problem of identification of bindings for unbound header
attributes demonstrates a global-to-local transformation. The main
challenge is to locate and query the required additional
information. ATL presents a good mechanism to encapsulate this
logic in a helper. However, the changes in the source structure
leads to changes in the navigation logic. To minimize this effect a
special type of queries was proposed in the context of Adaptive
programming and Demeter method [18] called structure-shy
queries.

A structure-shy query contains only the essential knowledge
about the structure that is navigated. Irrelevant structural
information is not included and therefore changes in it do not
affect the query.

In our implementation the navigation and query language is OCL.
OCL has not been designed with structure-shyness as a
requirement so we cannot claim for it that it is structure-shy
language as we can do for XPath, for example. However, it
contains some features that allow specification of such queries.
Consider the navigation to all the assignments that can serve as
bindings. Instead of traversing the whole expression tree we can
locate them by the following query:
RelationalCalculus!Equal.allInstances()

This is an example of structure-shy query that remains unchanged
when the structure definition of Boolean expressions changes.

Another point is how one can reuse the basic concern in another
context to provide other query logic. A basic concern embeds the
name of the helper function. So to reuse the basic concern one
needs to implement that specific helper. This basic scheme is
vulnerable to name clashes and prohibits the refinement of
existing helpers.

990

5. RELATED WORK
Each contemporary language implementation technique offers
built-in mechanisms to confine the impact of the implementation
of G2L transformations and L2G transformations on the other
language concerns. The mechanisms reduce the involvement of
the other concerns, hereby improving the separation of the basic
concerns. We refer to these mechanisms as language
implementation strategies. The most prominent strategies are to
the best of our knowledge propagation rules, attribute forwarding,
monads, structure-shy queries, traversals, dynamic rewrite
rules, and symbol tables. Let us briefly discuss these.

Attribute grammars [14] provide attribute propagation rules or
attribute copy rules. To be able to communicate attribute values
across larger tree fragments, all the intermediate terms must be
explicitly aware of that value. This requires copy rules for each of
the intermediate terms. In response to that problem, propagation
rules have been proposed to alleviate the developer of the tedious
copy rules [3].

Intentional Programming [23] provides attribute forwarding. The
strategy was also added later on to attribute grammars. When an
attribute is requested and it is not available in the term nor it is
explicitly provided by the implementing concern, the request is
forwarded to the results produced by the term’s translational
semantics. Similar mechanism is available in model
transformation languages where a target element may be obtained
from a given source on the base of the resolution algorithm in a
way that is blind for the actual rule that produces the result.

Functional programming languages provide monads [25]. Monads
allow the programmer to build computations using sequential
building blocks, which can themselves be sequences of
computations. The monad determines how combined
computations form a new computation and frees the programmer
from having to code the combination manually each time it is
required.

Structure-shy queries stem from structure-shy paths of the
Demeter method [18]. A structure shy query does not detail the
actual path that must be followed to reach a distant term, it
describes the path by a series of basic operators. The operators
improve the SOC as they reduce the involvement of the terms
between the requesting concern and the concerns that provide the
information. To the best of our knowledge the need for structure
shy queries is not studied in model transformation languages.

Rewrite rule formalisms provide traversals [26]. Traversals have
been added to the rewrite rule paradigm to alleviate the
programmer of the cumbersome programming needed to
distribute context information. The techniques proposed in [26]
allow a rewrite rule to descend into a subtree. During the descend,
information can be accumulated and/or terms can be rewritten at
an arbitrary depth. With traversals, the compilation of a language
construct requesting information only needs to interact with the
terms that influence the information. Dynamic rewrite rules are
rules which are locally created during the execution of a rule.
With these rules locally defined effects can be exported.
However, these rules need to be carefully scheduled during the
execution of the system.

Most language implementation techniques lack an explicit
concept to define a language module except Intentional

Programming and Delegating Compiler Objects [5]. The
strategies to reduce the involvement of other concerns are mainly
targeted to collect or retrieve information, not to distribute
information. Hence, local-to-global transformations are not well
supported. The dynamic rewrite rules is the sole strategy which
offers direct support for local-to-global transformations.

6. CONCLUSIONS AND FUTURE WORK
In this paper we studied the applicability of model transformation
languages to specify translational semantics for DSLs in the
context of MDE. The major requirement for such a specification
is to apply the principle of separation of concerns in order to
achieve a modular and composable translational semantics
specification.
The major contribution of this work is the study of the problems
identified for Grammarware systems in the context of MDE and
how model transformation languages can cope with them.
The specification of modular semantics is a topic extensively
studied in the context of Grammarware systems. As the related
work overview showed every language implementation technique
proposes its own way to cope with the main challenges in this
effort. We expect that the development of DSLs along the
principles of MDE will become more and more a common task.
Therefore, it is important to apply similar techniques for reusing
and composing language modules in order to achieve fast DSL
development.
General purpose model transformation languages are the main
tool for specifying translations in MDE. The results of the
presented case study revealed that the concepts in the problem
domain of modular translational semantics and the available
transformation language constructs demonstrate a significant
mismatch. This leads us to the idea that the problem of
translational semantics in MDE is better to be approached with a
domain-specific transformation language instead of with a general
purpose one. Gathering requirements for such a language and its
initial prototyping is the major goal for future research. We are
currently experimenting with a prototype of a transformation
system based on meta-object protocol.
This work helps for getting an insight about the problems that
must be solved by such a language. We have presented several
concepts from the domain of translational semantics: basic and
special-purpose concerns, local and non-local elements, which do
not match the language constructs of the transformation language.
This prevents us from specifying clear interface of every concern
i.e. a language module. Furthermore, we saw that the two major
challenges are related to two classes of transformation problems:
global-to-local and local-to-global transformations. For the first
problem we need to investigate the need for structure-shy
navigation and query languages over models. For the second
problem we need to study various mechanisms that address the
problem of composition of language modules.
Similarly to the existing Grammarware systems current
transformation languages provide a fixed set of constructs that
support separation and composition of concerns. It is clear that
these constructs will work for a limited set of problems. To
provide a more open and flexible approach for defining
integration strategies we plan to investigate the applicability of
reflection in model transformation languages. Two types of

991

computational reflection are necessary: structural and behavioral
reflection. Structural reflection allows strategies to reason about
the models at a meta-level. Behavioral reflection allows strategies
to reason and intervene on the semantics of the transformation.
The subject of reflection and the details exposed to the user
remain open issues.
The conclusions we draw are based on certain assumptions about
the transformation languages that are used. However, there exist
other types of languages not explored here, for example, graph
transformation languages. To extend the scope of the results of
our study it is necessary to perform experiments with other
languages as well.

7. ACKNOWLEDGMENTS
This work has been partially supported by MODELPLEX IST
Project FP6-IP 034081.

8. REFERENCES
[1] Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., and

Vizhanyo, A. The Design of a Language for Model
Transformations, Journal of Software and System Modeling,
2005

[2] Alanen, M., Porres, I. A Relation Between Context-Free
Grammars and Meta Object Facility Metamodels. Technical
Report 606, Turku Centre for Computer Science, ISBN 952-
12-1337-X, 2003

[3] Backhouse, K., de Moor, O., Swierstra, D. First class
attribute grammars. Informatica: An International Journal of
Computing and Informatics, 24(2):329–341, June 2000.
Special Issue: Attribute grammars and Their Applications

[4] Balogh, A., Varro, D. Advanced Model Transformation
Language Constructs in the VIATRA2 Framework, ACM
SAC2006, Dijon, France, 2006

[5] Bosch, J. Delegating Compiler Objects: Modularity and
Reusability in Language Engineering. Nordic Journal of
Computing, N. 1, vol. 4, pp. 66-92, 1997

[6] Czarnecki, K., Helsen, S. Classification of model
transformation approaches. OOPSLA2003 Workshop on
Generative Techniques in the Context of MDA, Anaheim,
CA, USA, 2003

[7] Dijkstra, E. Executional Abstraction. Prentice-Hall, 1976
[8] Gargantini, A., Riccobene, E., Scandurra, P. Deriving a

textual notation from a metamodel: an experience on
bridging Modelware and Grammarware. European
workshop on Milestones, Models and Mappings for MDA.
Bilbao, Spain, 2006

[9] GMT web site at Eclipse project. ATL Transformations:
http://www.eclipse.org/gmt/atl/atlTransformations/

[10] Hursch, W., Lopes, C.V., Separation of concerns. Technical
Report NU-CCS-95-03, College of Computer Science,
Northeastern University, Boston, MA, February 1995.

[11] Jouault, F., and Kurtev, I., Transforming Models with ATL,
In proceedings of Model Transformations in Practice
Workshop, October 3rd 2005, part of the MoDELS 2005
Conference

[12] Jouault, F., Kurtev, I., Bezivin, J. TCS: a DSL for the
Specification of Textual Concrete Syntaxes in Model
Engineering. GPCE2006, Portland, Oregon, USA. To appear

[13] Klint, P., Lämmel, R. Kort, J., Klusener, S., Verhoef, C.,
Verhoeven, E.J. Engineering of Grammarware.
http://www.cs.vu.nl/grammarware/

[14] Knuth, D. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145, 1968.

[15] Kurtev, I., van den Berg, K., Jouault, F. Evaluation of Rule-
based Modularization in Model Transformation Languages
illustrated with ATL. ACM SAC 2006, Model
Transformations Track, Dijon, France, April 2006

[16] Kurtev, I., Bezivin, J., Jouault, F., Valduriez. Model-based
DSL Frameworks. OOPSLA Companion, Portland, Oregon,
USA, 2006

[17] Lawley, M., Steel, J. Practical Declarative Model
Transformation with Tefkat. MoDELS Satellite Events 2005:
139-150

[18] Lieberherr, K.J. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, 1996.

[19] OMG, MOF 2.0 Query/Views/Transformations RFP, OMG
document ad/2002-04-10 (2002)

[20] OMG. Object Constraint Language (OCL), OMG Document
ptc/03-10-14

[21] OMG, Revised Submission for MOF 2.0
Query/View/Transformations RFP (ad/2002-04-10), OMG
Document ad/2005-07-01 (2005)

[22] Parnas, D.L. A technique for software module specification
with examples. Communications of the ACM, 15(5):330–
336, May 1972.

[23] Simonyi. C. The death of computer languages, the birth of
Intentional Programming. In The Future of Software,
Proceedings of the Joint International Computers
Limited/University of Newcastle Seminar, University of
Newcastle, 1995.

[24] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L.,
Levendovsky, T., Prange, U., Varro, D., and Varro-Gyapay,
S., Model Transformation by Graph Transformation: A
Comparative Study. In Proc. Workshop Model
Transformation in Practice, Montego Bay, Jamaica, October
2005

[25] Wadler, P. Comprehending Monads. Mathematical
Structures in Computer Science, 2(4), 1992. (Special issue of
selected papers from 6’th Conference on Lisp and Functional
Programming.)

[26] van den Brand, M. G. J., Klint, P., Vinju, J.J. Term rewriting
with traversal functions. ACM Trans. Softw. Eng.
Methodol., 12(2):152–190, 2003.

[27] van Wijngaarden, J., Visser, E. Program Transformation
Mechanics. Technical Report UU-CS-2003-048, Universiteit
Utrecht, 2003.

992

