
DRAFT
Co-Evolving Application Code and Design Models by

Exploiting Meta-Data

Walter Cazzola
Dept. of Informatics and

Communication,
Università degli Studi di Milano

cazzola@dico.unimi.it

Sonia Pini
Dept. of Informatics and

Computer Science,
Università degli Studi di Genova

pini@disi.unige.it

Ahmed Ghoneim, Gunter Saake
Institute für Technische und

Betriebliche Informationssysteme,
Otto-von-Guericke-Universität Magdeburg

{ghoneimjsaake}@iti.cs.uni-
magdeburg.de

ABSTRACT
Evolvability and adaptability are intrinsic properties of today’s soft-
ware applications. Unfortunately, the urgency of evolving/adapting
a system often drives the developer to directly modify the appli-
cation code neglecting to update its design models. Even, most of
the development environments support the code refactoring without
supporting the refactoring of the design information.

Refactoring, evolution and in general every change to the code
should be reflected into the design models, so that these models
consistently represent the application and can be used as docu-
mentation in the successive maintenance steps. The code evolution
should not evolve only the application code but also its design mod-
els. Unfortunately, to co-evolve the application code and its design
is a hard job to be carried out automatically, since there is an evi-
dent and notorious gap between these two representations.

We propose a new approach to code evolution (in particular to
code refactoring) that supports the automatic co-evolution of the
design models. The approach relies on a set of predefined meta-
data that the developer should use to annotate the application code
and to highlight the refactoring performed on the code. Then, these
meta-data are retrieved through reflection and used to automatically
and coherently update the application design models.

Keywords
Software Evolution, Co-Evolution, Refactoring, Meta-Data, Re-
flection.

1. INTRODUCTION
Software maintenance covers most part of the software life cycle.

Software maintenance takes place to tackle software flaws (correc-
tive maintenance) and to adapt the application to new requirements
(software evolution and refactoring). Normally, the software main-
tenance should follow exactly the same steps followed during the
software development: starting by planning the maintenance on the
application design models and then applying it on the code. This
seldom happens since adapting the design models to satisfy the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’07, March 11-15, 2007, Seoul, South Korea.
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

new requirements and then update the code takes more time than
directly modify the code. Sometimes, the design models are suc-
cessively modified to match the changes performed on the code.

Unfortunately, adapting the design models from the evolved code
is difficult and prone to erroneous interpretations. Whereas de-
scending through the different levels of abstraction is relatively
straightforward and well supported by methods and tools, the syn-
thesis of design information from an evolving implementation is
far from obvious in particular if it should be automatically done.
The development process is not a bijective function or better by re-
versing the implemented code we got a set of design models differ-
ent from the original one. The developer implementing the design
models interprets them and adopts programming techniques and
patterns derived from his/her experience and skilling that cannot be
replicated by any reverse engineering technique. Moreover, the de-
sign models rarely detail every aspect of the application that need
the developer’s cleverness to be realized. These facts contribute to
form a design/implementation gap [3] between the two representa-
tions (design models and code) that become wider when the code
has been modified hampering the detection of the changes in the
code and the corresponding updating of the design models.

It is fairly evident that software maintenance and evolution im-
pact on both the application code and design models. Since the de-
sign/implementation gap the code evolution should not precede the
design models evolution but they should evolve together (software
co-evolution [4]: software evolution requires the synchronization
between different views in the software development process). At
least, the gap should be filled during the code evolution by pro-
viding the necessary data to connect the evolved code to how the
design models should evolve to match the evolution.

In this paper, we propose a technique, based on our previous
work [2], that permits to automatically update the application de-
sign models after the code adaptation. In practice, when the devel-
oper changes the application code, he/she decorates the code with
a set of pre-defined meta-data describing how the design should be
adapted after the code evolution. These meta-data will be succes-
sively retrieved through reflection and used to automatically update
the application design models. In this way, the developer can focus
on the code evolution, saving time, and with a little effort achieving
also the evolution of the application design models.

At the moment, the work focuses on the refactoring techniques (a
special case of software evolution [5]) since they provide catalogs
of common and well defined evolutionary situations that can be
easily used as a basis for the definition of our set of meta-data. In
the future, the approach will be extended to support more general
software evolution activities. Analogously, we consider the UML as

1275

the modeling language and Java as the application programming
language but the approach can be easily applied to any modeling
language and programming language with meta-data support.

The rest of the paper is structured as follows: section 2, describes
how meta-data can be used to trace code evolution and introduces
our set of annotations. Section 3 shows on an example how to
annotate the application code to trace its refactoring. Section 4
shows how the meta-data are used to update the application design
models. Finally, in sections 5 and 6 we present some related work
and draw our conclusions.

2. REFACTORING AND META-DATA
Many refactoring catalogs have been presented in the last few

years. Martin Fowler in his book [5] has proposed one of the richest
and most used collection of refactoring actions.

It should be well known that refactoring actions are carried out
directly on the application code and that they are supported by most
of the development environments. Notwithstanding that the per-
formed changes often render obsolete and incoherent the applica-
tion design, the developer performing the code refactoring rarely
updates the design models as well.

A post-refactoring update of the design models is particularly
difficult since the refactoring actions change the code structure break-
ing the link with the original design models, if any. For example,
let us consider the extract method refactoring action, it promotes
some recurring piece of code to be the body of a new method and
replaces all the occurrences of that piece of code with a call to the
new method. From the point of view of the design models, this im-
pacts on the structural models by requiring the introduction of the
new method and on the behavioral models (such as the sequence
and the activity diagrams) by substituting the description of the pro-
moted code with a call to the new method or simply by requiring
the introduction of a new invocation in the actions involving the
new method. After the refactoring, the code is clean and the only
clue of the piece of code presence is the new method call but the
removed code could crosscut many use cases and from this quite
cryptic clue is not easy to go back to all these use cases. The de-
sign models update becomes still more difficult when the developer
performs several refactoring actions at once.

As stated before, the urgency requirement renders difficult to co-
evolve the design models contemporary to the code. At the same
time, to extract from the refactored code the necessary informa-
tion to evolve the design model is difficult as well because there is
not enough clues to reconstruct the whole history of the performed
code refactoring. What it is missing is a mechanism to document
the code refactoring against the design models without wasting too
much time in the operation and that can be supported by the de-
velopment environment. This mechanism should provide enough
details and clues to automatically update the design after the code
refactoring.

To this respect, we propose to decorate the code with meta-data
(our clues) tracing the performed refactoring. In the case of Ja-
va, we exploit the annotation mechanism provided by the program-
ming language. Each refactoring action differently affects the de-
sign models and specific data characterize each occurrence of the
action, e.g., a rename refactoring action applied to a field is dif-
ferent than when applied to a method and the old and new names
characterize each use of the action and must be reported to recon-
struct it on the design models. Not only the effect of the refactoring
can be scattered all around the code as in the case of the extract
method refactoring action and the annotations must describe the
role of the change, e.g., the new method and where the code has
been extruded. Therefore, to each refactoring action is associated a

set of annotation that permits of documenting all the aspects of the
performed refactoring actions. During the code refactoring, the de-
veloper simply annotates the code with the annotation correspond-
ing to the refactoring action he/she has performed and filling in the
data identifying the specific case. The annotations do not introduce
an overhead in the application execution and live inside the appli-
cation since a specific tool strip them of the code and update the
design models consequently.

2.1 Meta-Data: Java Annotations
Since Java 5 [7], the platform provides a general purpose and

customizable annotation mechanism that allows the developer to
define and use user-defined annotation types. The facility consists
of a syntactic mechanism to declare annotations and annotate dec-
larations, APIs to retrieve annotations through reflection, and of a
class file representation for annotations.

Each new annotation requires the definition of a corresponding
annotation type. Annotation types are interfaces of sorting with an
extra ’@’ (at) sign before the interface definition, then the annota-
tions can be specified in the program source by using the annotation
name prefixed by an ’@’ sign.

Annotations are the corner stone of our approach to the code and
design models co-evolution, but there is a significant limit into the
Java annotation model, that is, its granularity. It is possible to
annotate any kind of declarations (e.g., classes and fields declara-
tions) but it is impossible to annotate a generic statement or code
block, e.g., to put annotations inside the body of a method1.

Code block and statement annotations are useful to trace specific
aspects of some refactoring actions (e.g., to specify where the code
has been removed by the extract method refactoring without con-
flicts) and to reduce the data passed to the annotation by narrowing
the area affected by the refactoring action. @Java2 is a simple
extension of the Java programming language, we developed af-
ter our experience on [a]C# [1], that provides a Java 5 compliant
annotation model supporting code block and statement annotations.

The meta-data are strictly coupled with the refactoring action
they should trace. Depending on how a refactoring action impacts
on the design models, we have to trace different information. From
case to case the developer will have to use the appropriate set of
annotations. For sake of brevity we cannot explain all the cases but
just a couple of the refactoring actions present in the Fowler’s cata-
log [5], further details can be read in the package documentations.

Move Method. The move method refactoring action moves a
method from a class to another to simplify the class or to decou-
ple it from the other. The first effect on the application design is
quite evident: the method changes its position and the application
class diagram must reflect this fact. To post evolve the design after
this kind of refactoring we must know where the method is coming
from (sourceClassName()) and which class diagram should be
changed (classDiagramName()).

@Retention(RUNTIME)
@Target(METHOD)
public @interface MoveMethod {
String classDiagramName() default "Class Diagram";
String sourceClassName();

}

The attributes of the MoveMethod annotation stores these data.
The name of the moved method and the destination class are data
that can be retrieved from the annotated element (i.e., the moved
method declaration) by reflection.
1Note that the C# annotation model suffers of the same problem.
2The name @Java must be pronounced as at-java.

1276

A secondary and less evident effect on the application design
is represented by the changes to the calls to and from the moved
method. After the refactoring, different actors are involved and
sequence and activity diagrams must reflect this fact. It can be con-
sidered a secondary effect since not always the behavioral models
are so detailed but in the case they have to be accordingly updated.

To this respect, we need to know which calls were shown in the
design models and which ones should be shown after the refactor-
ing. To annotate each single method call does the trick since no
new method call is introduced by this refactoring action.

@Retention(RUNTIME)
@Target(BLOCK)3

public @interface MoveMethodTrail {
String[] BehavioralDiagramNames();
String oldTargetOID(); String oldTargetClassName();
boolean visible() default true;

}

This one is a specific @Java annotation3 and should embrace
all the calls that must change in the design models. Its param-
eters specify the necessary data that cannot be retrieved through
reflection from the code: the old target (oldTargetOID()) and
class (oldTargetClassName()), in which diagram can be found
(BehavioralDiagramsNames()) and if it must be visible or not
(visible()).

Extract Method. The extract method refactoring actions turns
fragments of redundant code into a method whose name explains
its purpose. After this refactoring action, the application structure
is enriched with a new methods and the design models (i.e., the
class diagram) should reflect this fact. To this respect, we need to
trace which is the new method (i.e., we have just to annotate it) and
which diagram is affected by the change (classDiagramName()).
Method name, declaring class, return type, and parameter names
are data that can be retrieved through reflection. In Java, the
parameter names are striped from the bytecode so if we want to
put them in the diagram we have to pass them to the annotation
(parameterNames()).

@Retention(RUNTIME)
@Target(METHOD)
public @interface ExtractMethod {
String classDiagramName() default "Class Diagram";
String[] parameterNames();

}

Similarly to the move method, the extract method refactoring ac-
tion does not exhaust its effects on the application class diagrams
but it also impacts on the dynamic part of the application design
models. The code extrusion leaves some gaps in the application
code that are filled with an invocation to the extruded method.

@Retention(RUNTIME)
@Target(BLOCK)3

public @interface ExtractMethodTrail {
String diagramName();
String first(); String last();
boolean replace() default true;

}

The ExtractMethodTrail annotation should be used to anno-
tate those calls that should be modeled or should replace the previ-
ous modeling. The data related to the method call can be retrieved
3The BLOCK element type can be set only by using @Java, in this
case the annotation is a block annotation and can be used inside a
method body to embrace by braces one or more statements.

n
ext ren

tal

show figures

add bonuses

get charges

Figure 1: statement() and overprint activity diagram

by reflection whereas the data related to the diagrams to manipu-
late (diagramName()) such as their identities and where the new
action should be introduced in the diagram (first() and last())
have to be passed to the annotation.

3. META-DATA AT WORK
To show our approach in action, we use the Fowler’s example

(see chapter 1 in [5]). The program calculates and prints a state-
ment of a customer’s charges at a video store. The program tells
which movies a customer rented and for how long then it charges
them. The statement also computes frequent renter points, which
vary depending on whether the film is a new release.

In its first release, the program is mainly composed of three
classes: Movie, Rental, and Customer, whose names should be
self-explanatory of what they should represent. Customer also has
the method statement() that produces the statement. Figure 1
shows the code for the statement() method with overprint a draft
of the activity diagram that describes its behavior.

The statement() method tends to be too long, clumsy and dif-
ficult to extend. Fowler’s cuts down its complexity by performing
several refactoring actions from his catalog. In our example we are
just considering the first two steps:

– extract method | it separates the amount calculation from the
method by extruding the switch into a new method named
getCharge(), a rental should be passed to it;

– move method | getCharge() belongs to Customer but it
uses information from the rental and not from the customer,
the method should be moved to the right place.

Figure 2 shows the application code and design (an activity diagram
overprinted on the code) after these few steps of refactoring. It also
shows, emphasized by curly braces how our meta-data are used.
The first refactoring action has created the method:

1277

add bonuses

{ }

{ }

get charges

n
ext ren

tal

show figures

Figure 2: code and design after the refactoring

double getCharge(Rental aRental)

in the Customer class. The annotation @ExtractMethod traces all
the necessary data that could be used to add this method to the cor-
responding class diagram. Whereas, the @ExtractMethodTrail
traces the new call and the necessary data to update the correspond-
ing diagrams (mainly the anchors in the diagram for the new ac-
tion). The latter refactoring action moves the new method into the
Rental class adjusting also the method signature. A combinations
of the @MoveMethod and @ChangeSignature4 annotations traces
the change. In the same way of the refactoring actions, the annota-
tions refer to a context that depends on the effects of the previous
annotations, e.g., the MoveMethod annotation considers the con-
texts after the application of the ExtractMethod annotation.

From this small example, we can notice that the annotating pro-
cess is up to the developer that is updating the application. The

4The @ChangeSignature traces the change signature refactoring
actions since its obviousness we do not describe it further.

developer knows which refactoring actions has performed and the
relation between the application code and design models, so he/she
knows which data are relevant to successively update the design
models | not all the refactoring actions must have a visible effect
on the design models, e.g., we do not use the @MoveMethodTrail
annotation even if we move a method since it is not relevant. More-
over, the developer can exploit his/her skill to reduce the amount of
meta-data annotating the code even if the annotating process could
be automated by an IDE supporting this process.

4. META-DATA AT THE RESCUE
Up till now, we have explored how to fill the gap between the

refactored code and the original design model to allow a sound
refactoring of the design models as well. What it is still missing
is to show how the meta-data can be used to perform this task.

To this aim, we have developed a small tool, named refactor-
ing script generator, that looks at the application bytecode for our
annotations and collects them. This tool just exploits the Java re-
flection to get the annotations introduced during the code refactor-
ing. The gathered meta-data are used to builds a jRuby5 script that
when run updates the design models after the trails left during the
code refactoring. To finish the work, the tool strips all the meta-data
to avoid inconsistent situations at next code/design refactoring.

Usually, the design models have a pictorical representation and
UML diagrams are not an exception. This is quite important for the
human understandings but it renders their automatic manipulation
a hard task. To overcome this problem, the OMG provided the
XMI representation for UML diagrams. In the RAMSES project6,
we have developed a Java library called reification library that rei-
fies UML diagrams (i.e., their XMI representation) and permits their
manipulation from Java programs. Scripting programming lan-
guages benefits when you have to generate code on-the-fly should
be notorious. Moreover jRuby embeds in Ruby the possibility of
interacting with Java code, characteristic that allows us of using
the reification library from the jRuby scripts.

To generate a script for updating the design model rather than
update them directly from the tool is a first step towards the inte-
gration of the approach with a versioning system such as CVS or
SVN. The XMI files could be stored in the versioning system to-
gether with the source and the jRuby scripts provide the delta from
the original and the refactored diagrams to pass from a release to
another of the diagrams as well as of the code.

Due to space limits we cannot show the whole jRuby script for
the example but we have to focus on the management of only one
situation | the extract method refactoring action.

r = ramses.reification.Reification.new ’FowlerEx.xmi’
mycldgr = r.getClassDiagram(’Class Diagram’)

3 myclass = mycldgr.getClass(’Customer’)
...

mtd = ’getCharge’
6 parnames =[’aRental’]
partypes =[mycldgr.getClass(’Rental’)]
rettype = UMLType.new

9 myclass.addMethod(mtd, partypes, parnames, rettype)
myactd = r.getActivityDiagram(’Activity diagram_1’)
previous = ActivitySimpleElement

12 nextt = ActivitySimpleElement
newAction = myactd.addCallAction(’getCharge’)
nextt = myactd.getCallAction(’getMovie’)

15 previous =
myactd.getDecisionActivityNode(’for each rentals’)

previous.addControlFlowTo(newAction, ’’, ’’, ’’)

5http://jruby.codehaus.org
6http://ramses.dico.unimi.it

1278

http://jruby.codehaus.org
http://ramses.dico.unimi.it

18 newAction.addControlFlowTo(nextt, ’’, ’’, ’’)
previous.removeControlFlowTo(nextt, ’’)

...

The first row loads the XMI files, the filename is passed to the
script generator as a parameter. Rows 2, 3, 7 and 10 reify the actors
involved in the refactoring | it should not be amazing to see the
names hardwired in the script since it has been generated from the
available meta-data. Rows from 5 to 9 prepare, and add to the
class diagram, the data related to the new method. Rows from 10
to 19 update the activity diagram after the data introduced by the
@ExtractMethodTrail annotation. In our example, they add a
new action call to the activity diagram for the extracted method
(row 13), and connect it to the right action calls (rows 14 and 16)
provided by the @ExtractMethodTrail annotation.

After this snippet, the script goes on dealing with the remaining
meta-data. As told, the script performs the updating from the inner
to the outer annotation when more then one is attached to the same
code element and the outer annotations must refer to the changes
performed by the inner ones. Finally, a save() method will re-
flect on file all the changes performed on UML diagrams getting
the desired co-evolution.

5. RELATED WORK
Although it is possible to do a manual refactoring, tool support

is considered crucial. Today, a wide range of tools are available
that automate various aspects of software evolution and refactoring.
Depending on the tool the degree of automation can vary. However,
a very small set of existing tools tackle the problem of co-evolving
the application design together with the code.

France et al. in [6] propose an approach to software evolution
based on transformations of object-oriented models and code, called
multi-view software evolution. Changes are performed by evolving
multiple views of a system represented as models, and propagating
those changes to the implementation. Propagating changes across
views requires well-defined relationships among the views and the
implementation defined by the programmer. This approach is not
compliant to standard UML CASE tools so it can be applied only if
the system adheres to this approach from the beginning.

To have more control over the software evolution, D’Hondt et
al. [4] introduce the logic-meta programming (LMP) as a develop-
ment framework to express and enforce the synchronization pro-
cess. The design is expressed as a logic meta program over the
implementation forcing the programmer to implement this repre-
sentation. The software development process needs a new phase:
after the classical design phase and implementation phase they re-
quire to translate the classical design into a logic meta-program. At
this time the two levels, implementation (base-level) and new de-
sign (meta-level) are causally connected and every changes in the
base level are mapped into the meta-level, but not on the classical
design information losing the co-evolution.

Mens et al. in [8] propose to use intensional source code views
and relations as an active documentation technique to keep applica-
tion code and design synchronized. In their approach design means
design documentation and the first version of the design documen-
tation remains a largely manual process, and the application re-
mains not coupled with design information such as UML.

Exploiting meta-data is not a new idea in the area of automatic
code documentation, e.g., [9], but in general they consider only the
static part of the design model (i.e., class and deployment diagrams)
and only as a mechanism for self-documenting the code and not

related to software evolution.
6. FUTURE WORKS AND CONCLUSIONS

This paper deals with the problem of co-evolving the application
design models after the code refactoring. As known, the two rep-
resentations are not tightly connected and it is quite hard to going
back from the code to the original design models since there is a
missing link between the code and the design models (design/im-
plementation gap). Unfortunately, the code continuously evolves
to face new requirements and its design models become soon obso-
lete and incoherent. The approach we have proposed and realized
is based on the key idea that the developer knows how to adapt the
application design models when evolves the code. This knowledge
should be stored in the code as meta-data and successively used to
evolve the design models as well without wasting time in updating
them during the code evolution/refactoring.

At the moment, even we have a working prototype, the approach
is in its early stages. In the future, we are going to extend it to
a more general case of software evolution than code refactoring
and to automate the annotation process by IDE support. Moreover,
we are planning to integrate this co-evolution mechanism with a
versioning system such as CVS or SVN to store the various code
versions together with the corresponding design models.

Acknowledgments
This work is part of the RAMSES project (SA 465/31-1) funded by
the DFG (German Science Foundation).

7. REFERENCES
[1] W. Cazzola, A. Cisternino, and D. Colombo. Freely

Annotating C#. Journal of Object Technology, 4(10):31–48,
Dec. 2005.

[2] W. Cazzola, A. Ghoneim, and G. Saake. Viewpoint for
Maintaining UML Models against Application Changes. In
Proc. of ICSOFT 2006, pages 263–268, Sétubal, Portugal,
Sept. 2006. Springer.

[3] W. Cazzola, S. Pini, and M. Ancona. The Role of Design
Information in Software Evolution. In Proc. of RAM-SE’05,
pp. 59–70, Glasgow, Scotland, July 2005.

[4] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts.
Co-Evolution of Object-Oriented Software Design and
Implementation. In Proc. of ISSACT 2000, pp. 207–224,
Twente, The Netherlands, Jan. 2000. Kluwer.

[5] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Reading, Massachusetts, June 1999.

[6] R. France and J. M. Bieman. Multi-View Software Evolution:
a UML-Based Framework for Evolving Object-Oriented
Software. In Proc. of ICSM 2001, pp. 386–397, Florence,
Italy, Nov. 2001. IEEE Computer Society.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, Reading,
Massachusetts, third edition, 2005.

[8] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
Code and Design Using Intensional Views - A Case Study.
Journal of Computer Languages, Systems and Structures,
32(2):140–156, July/Oct. 2006.

[9] M. Torchiano, F. Ricca, and P. Tonella. A Comparative Study
on the Re-Documentation of Existing Software: Code
Annotations vs. Drawing Editors. In Proc. of ISESE’05, pp.
277–286, Noosa Heads, Australia, Nov. 2005.

1279

	1 Introduction
	2 Refactoring and Meta-Data
	2.1 Meta-Data: Java Annotations

	3 Meta-Data at Work
	4 Meta-Data at the Rescue
	5 Related Work
	6 Future Works and Conclusions
	7 References

