
Please do not remove this page

Enhancing adaptive random testing in high
dimensional input domains
Kuo, Fei Ching; Chen, Tsong Yueh; Liu, Huai; Chan, Wing
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Enhancing-adaptive-random-testing-in-high/9921858791401341/filesA
ndLinks?index=0

Kuo, F. C., Chen, T. Y., Liu, H., & Chan, W. (2007). Enhancing adaptive random testing in high dimensional
input domains. Proceedings of the 22nd Annual ACM Symposium on Applied Computing (SAC2007),
1467–1472. https://doi.org/10.1145/1244002.1244316

Published Version: https://doi.org/10.1145/1244002.1244316

Document Version: Accepted Manuscript

Downloaded On 2024/05/15 07:09:27 +1000
© 2007 ACM
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Enhancing-adaptive-random-testing-in-high/9921858791401341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Enhancing-adaptive-random-testing-in-high/9921858791401341
http://doi.org/doi:https://doi.org/10.1145/1244002.1244316
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Kuo, F, Chen, T, Liu, H and Chan, W 2007, 'Enhancing adaptive random testing in high
dimensional input domains', in Yookun Cho, Roger L. Wainwright, Hisham M. Haddad, Sung
Y. Shin, Yong Wan Koo (ed.) Proceedings of the 22nd Annual ACM Symposium on Applied
Computing (SAC2007), Seoul, Republic of Korea, March 11 - 15, 2007, pp. 1467-1472.

http://researchbank.rmit.edu.au/view/rmit:21275

Accepted Manuscript

2007 ACM

http://dx.doi.org/10.1145/1244002.1244316

http://researchbank.rmit.edu.au/

Enhancing Adaptive Random Testing in High Dimensional
Input Domains

ABSTRACT
Adaptive random testing (ART) is an enhancement of ran-
dom testing (RT). It can detect failures more effectively than
RT when failure-causing inputs are clustered. Having test
cases both randomly selected and evenly spread is the key to
the success of ART. Recently, it has been found that the di-
mensionality of the input domain could have an impact on
the effectiveness of ART. The effectiveness of some ART
methods may deteriorate when the dimension is high. In
this paper, we work on one particular ART method, namely
Fixed-Sized-Candidate-Set ART (FSCS-ART) and show how
it can be enhanced for high dimensional domains. Since the
cause of the problems for FSCS-ART may also be valid for
some other ART methods, our solutions to the high dimen-
sion problems of FSCS-ART may be applicable for improving
other ART methods.

1. INTRODUCTION
A major challenge of software development is to establish
the correctness of the software. Software testing is a major
activity of software quality assurance. It assures software
quality by actively and systematically detecting faults in
order to reduce occurances of software failures.

There exist many testing methods to guide the selection
of inputs for test (known as the test cases). One simple
method is called Random Testing (RT), in which test cases
are selected in a random manner from the input domain
(that is, the set of all possible inputs) [11, 18]. There are
many merits of using RT in software testing. For example, it
can generate numerous test cases automatically at low cost.
Its generation of test cases do not need to involve software
specifications or source code. It brings “randomness” into
the testing process, so it can detect certain failures unable to
be revealed by deterministic approaches. Because of these
merits, RT has been widely used in industry for detecting
failures [7, 8, 10, 15, 16, 17, 19, 20, 21, 22]. In [15, 16],
for example, Miller et al. used RT techniques to investigate
the reliability of standard UNIX utilities. In 1990 [15], they

reported that 25% to 30% of these utilities could be crashed.
They repeated and extended the study five years later [16],
and found that a large number of utility programs were still
crashed. RT has also been applied on different software, such
as websites [17] and SQL database systems [21]. In [21], a
system so-called Random Generation of SQL was developed
and it was indicated that the system could “generate valid
SQL statements 1 million times faster than a human and
execute them”.

Despite of the popularity, there are still some critisms against
RT. Since it does not make use of any information to gener-
ate test cases, it has been regarded by some researchers as
ineffective. However, as reported in [1, 2, 9], failure-causing
inputs tend to cluster together, and it has been proposed
that in such a situation, the fault-detection effectiveness of
RT can be enhanced by enforcing an even spread of random
test cases [13]. This approach was named as Adaptive Ran-
dom Testing (ART). There are various methods to evenly
spread test cases, and all studies conducted [3, 5, 6, 14] so
far confirmed that ART has used fewer test cases to reveal
the first failure than RT when failure-causing inputs do clus-
ter into contiguous regions (known as the failure regions [1]).
Since both RT and ART use randomly generated inputs as
test cases, it is intuitive to consider ART as an alternative
to RT.

Recently, Chen et al. [6] have found that the effectiveness
of some ART methods may deteriorate with the dimension
of the input domain (that is, the number of input parame-
ters). This problem, known as the high dimension problem,
gets worse, when an ART method has a preference for its
test cases being generated more frequently in the edges and
corners than in the centre of the input domain. This pref-
erence is a by-product of some procedures that achieve an
even spread of test cases by enforcing them far apart from
each other. With such a preference, Chen et al. showed
that ART could perform even worse than RT when the fail-
ure rate is high. Their explanation to such phenomenon is
summarized as below. On one hand, when the failure rate is
high, the higher the dimension is, the more likely an input
in the centre is failure-causing (A detailed justification can
be found in [12]). On the other hand, the increase of cor-
ners and edges is exponential to the increase of dimensions.
Breifly speaking, ART may not be able to select test cases
around the centre until most of the corners and edges are
filled, and hence ART may take more test cases to detect
the first failure than RT.

In this paper, we work on one particular ART method,
Fixed-Sized-Candidate-Set ART (FSCS-ART) [13] which has
a preference of generating test cases in edges and corners,
and investigate how FSCS-ART can be enhanced in the high
dimensional case. The paper is organized as follows. Sec-
tion 2 introduces the algorithm of FSCS-ART and the ex-
perimental setup related to the study of ART. Section 3
discusses why the performance of FSCS-ART deteriorates
with dimensions of the input domain. Section 4 details our
approach to enhancing FSCS-ART, and reports our experi-
ment and findings. Section 5 concludes the paper.

2. BACKGROUND
FSCS-ART [13] maintains two sets of test cases, namely, the
executed set(E) and the candidate set(C), where E stores
all executed test cases that do not reveal failures, and C
stores k random inputs, from which the next test case will
be selected. The candidate with the longest distance to its
nearest neighbour in E is chosen as the next test case. The
algorithm of FSCS-ART is given in Figure 1.

Define n as the number of tests conducted so far.
{

1. Set n = 0 and E = { }.
2. Randomly select a test case, t, from the input domain

(according to uniform distribution).
3. Increment n by 1.
4. If t reveals a failure, go to Step 9; otherwise, store t in E.
5. Randomly generate k inputs to construct C (according to

uniform distribution).
6. For each ci ∈ C, calculate the distance di between ci and

its nearest neighbour in E.
7. Find cb ∈ C such that its db ≥ di where n ≥ i ≥ 1.
8. Let t = cb and go to Step 3.
9. Return n and t, and EXIT.

}

Figure 1: The algorithm of FSCS-ART

Any faulty program has at least two attributes: failure rate
(the ratio of the number of failure-causing inputs to the
number of all possible inputs) and failure pattern (the geo-
metric shapes of the regions formed by the failure-causing
inputs and the distribution of these regions within the input
domain). Both attributes are fixed upon completion of the
coding but unknown to testers before testing.

There are three commonly used metrics to measure the ef-
fectiveness of a testing method: E-measure (the expected
number of detected failures), P-measure (the probability of
detecting at least one failure) and F-measure (the number of
test cases required to reveal the first failure). Chen et al. [4]
have conducted a study on the statistical properties of these
metrics for ART. In this paper, we will use F-measure as the
effectiveness metrics in order to facilitate the comparison
with previous studies. Most of the experimental studies on
ART were carried out through simulations. For each simula-
tion study, failure rates and patterns are predefined, and the
failure regions are randomly placed in the input domain. A
failure is said to be found if a point inside the failure regions
is picked. ART is repeatedly applied to such a setting un-
til the simulation has been run a sufficient number of times
(S) to achieve a significantly reliable average F-measure (de-

noted as FART). The detailed method of obtaining S can
be found in [5]. Like all the previous studies, we assume
that all inputs have an equal chance of being selected with
replacement, and hence, the expected F-measure of RT (de-
noted as FRT) is theoretically known as 1/θ where θ denotes
the failure rate. In this paper, FART refers to the F-measure
of FSCS-ART, unless otherwise specified, and the ART F-
ratio (that is, FART /FRT)[6] is used as a measurement of
the improvement of ART over RT.

3. HIGH DIMENSION PROBLEM OF FSCS-
ART

In this paper, we aim to investigate the high dimension prob-
lem of FSCS-ART. We have identified two causes that affect
the performance of FSCS-ART. One is related to the pref-
erence of test case selection. The other is about the metric
(Euclidean distance) used for evenly spreading test cases.

With respect to the first cause, Chen et al. [6] have pointed
out that FSCS-ART prefers to select test cases from the
edges and corners rather than from the centres. We con-
ducted a simple simulation to experimentally verify their
hypothesis. If a point is from an edge or corner of the input
domain, at least one of its coordinates will be very close to
the border of the input domain. Therefore, in this simula-
tion, we only need to check one coordinate of a point to judge
its location. Sequences of test cases were generated based
on one-, two-, three- and four-dimensional FSCS-ART. The
position of a certain coordinate, say the first coordinate, of
the nth test case, where n = {2, 5, 10, 20, 50, 100} were
separately recorded. We performed such runs for 100,000
times and then got six groups of values. Figure 2 shows
the frequency distributions for various test cases in one-,
two-, three-, and four-dimensional FSCS-ART, respectively.
Points generated randomly and according to uniform distri-
bution were also plotted for comparison. The x- and y-axes
in the figure denote the first coordinate of a point and the
nomalized frequency for the first coordinate value, respec-
tively. Here, the range value of one coordinate is [0,1], so a
point is said to reside in an edge or corner if its coordinate is
very close to 0 or 1. It is clearly shown that for FSCS-ART,
the probability of selecting test cases from the edges and
corners are higher than those from the centre, especially for
the high-dimensional cases.

The second cause is explained as follows. When D is 1 di-
mensional, no matter where points (inputs) are located, they
will all appear on one line as such, so merely keeping test
cases apart in distance is sufficient to achieve an even spread
of test cases. However, when D is N dimensional, the spatial
distribution of points is more complicated. If FSCS-ART
only aims at keeping test cases apart, it cannot fully assure
an even spread of test cases all over the input domain. An
example is illustrated in Figure 3. Obviously, the test cases
in Figure 3(a) are farther apart from one another than those
in Figure 3(b). However, it may be controversial to argue
that the former is more evenly spread than the latter.

Consider Figure 4 where C = {c1, c2} (so k = 2) and N = 2.
Assume that c1 and c2 have identical distance from their
nearest neighbour in E. In other words, they both are en-
titled to be the next test case according to the existing se-
lection criterion used in FSCS-ART. Further assume there

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.2 0.4 0.6 0.8 1

Points' first coordinate

N
or

m
al

iz
ed

 F
re

qu
en

cy

2nd TC 5th TC 10th TC 20th TC 50th TC
100th TC Uniform

(a) 1D

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

Points' first coordinate

N
or

m
al

iz
ed

 F
re

qu
en

cy

2nd TC 5th TC 10th TC 20th TC 50th TC
100th TC Uniform

(b) 2D

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.2 0.4 0.6 0.8 1

Points' first coordinate

N
or

m
al

iz
ed

 F
re

qu
en

cy

2nd TC 5th TC 10th TC 20th TC 50th TC
100th TC Uniform

(c) 3D

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.2 0.4 0.6 0.8 1

Points' first coordinate

N
or

m
al

iz
ed

 F
re

qu
en

cy

2nd TC 5th TC 10th TC 20th TC 50th TC
100th TC Uniform

(d) 4D

Figure 2: Frequency distribution of the first coordi-
nate of points for FSCS-ART

e2
e1

e3

e2

e1

e3

(a) (b)

Figure 3: Different locations of test cases

exists an element ei of E such that ei and c1 have the same
value on y-axis, while no such a relationship exists between
c2 and any element in E. We argue that c2 should be prefer-
able to c1 as the next test case. Two reasons are given as
below.

ei c1

c2

x

y

Figure 4: Different candidates with identical dis-
tance to ei

• In addition to keeping test cases apart, intuitively speak-
ing, getting test cases dissimilar in all dimensions should
cover larger parts of the input space than allowing test
cases to be similar in some dimensions. From a testing
coverage point of view, c2 should be preferable to c1.

• Consider the case where the program failures depend
on only part of program input parameters (like Pro-
gram 1). Since failures are only sensitive to Y in Pro-
gram 1, if we have failed to detect a failure by a test

case t, we know that it is better for the follow up test
cases different from t with respect to Y. Since it is
normally unknown in advance which input parameter
(dimension) program failures depend on, to effectively
detect failures in all kinds of programs, it is better for
the next test case to be different from E (its elements
are the inputs unable to reveal failures) as much as
possible, not just with respect to the “Euclidean dis-
tance” but also with respect to the “value in each in-
put parameter”. From this perspective, c2 should be
preferable to c1.

Program 1 Program failures depend on only one parame-
ter.
INPUT X, Y

IF (Y <= 0)

/* ERROR: Should be IF (Y <= 1) */

{ Z = X - Y }

ELSE

{ Z = X + Y }

OUTPUT Z

In summary, it has been shown that when N > 1, using only
“distance” as the selection criterion may generate test cases
which are neither evenly spread nor effective in detecting
failures. In next section, we will present our solutions to
address this problem.

4. ENHANCEMENT OF FSCS-ART
For ease of discussion, we introduce the following notations
and concepts. In N dimensional D (Ii denotes each of its
dimension), the co-ordinates of two points A and B are de-
noted as (a1, a2...aN) and (b1, b2...bN), respectively. dist(A,
B) denotes the Euclidean distance between point A and
point B, and disti(A, B) denotes |ai − bi| with respect to
Ii. Among all disti(A, B), the shortest and the longest dis-
tance are denoted as minDist(A, B) and maxDist(A, B),
respectively. Figure 5 illustrates the above concepts for a
2 dimensional space, with minDist(A, B) being dist2(A, B)
and maxDist(A, B) being dist1(A, B). Finally, we define Dis-
tRatio(A, B) as the ratio of minDist(A, B) to maxDist(A,
B). Obviously, the range value of DistRatio(A, B) is [0, 1].
Intuitively speaking, a larger DistRatio is preferable if other
criteria, such as distance, are the same. As an example
of illustration, refer to Figure 4 where c2 is more prefer-
able than c1. Note that dist(ei, c1) = dist(ei, c2), but 0 =
DistRatio(ei, c1) < DistRatio(ei, c2) ≤ 1.

��

�������	���

��

��

��
�����

�������	���

��

��

������	��

������	��

�����	��

Figure 5: Notations

4.1 Our method
Our enhanced FSCS-ART is basically the same as the origi-
nal FSCS-ART, but with one additional feature, that is, an
eligibility filtering process which is to ensure that the can-
didates are far apart from previously executed test cases in
terms of “input parameters”. An input c is eligible if for
every ei of E, DistRatio(c, ei) is greater than v where v is a
value chosen from the range of [0, 1]. For ease of discussion,
the condition that determines the eligibility of a candidate
is called eligibility criterion. In the following paragraphs, we
will elaborate our method (namely, FSCS-ART with filter-
ing by eligibility) in details. Without loss of generality, we
will illustrate this method using a 2 dimensional space.

As an example of illustrating the eligible inputs, consider
Figure 6 where e is the only element in E, which is inter-
sected by Lines A, B, C and D having the slope of v, −v,
−1

v
and 1

v
, respectively. In such a scenario, the eligible in-

puts occupy the dotted regions, and are separated from the
ineligible inputs by Lines A, B, C and D.

�
�

�
�

�
�

�
�

�����	

�����

������������

�����	

�����

������ ������

�

Figure 6: Eligible inputs (dotted regions), v and e
(an element of E)

Next, the impact of v and the size of E (|E|) on the number
of eligible inputs is investigated. Suppose D consists of 49
elements and |E| = 1 (Figure 7). There are 0, 20 and 36
elements out of 49 elements, which are eligible when v =
tan(45◦), tan(30◦) and tan(15◦), respectively. Obviously,
the number of eligible inputs increases as v decreases. On
the other hand, for a fixed v, the growth of E will “exclude”
more and more elements from being eligible. As an example
of illustration, refer to Figure 8 where v remains unchanged
but the number of elements in E is different (|E| = 1 or 2
in Figure 8(a) or 8(b), respectively). As shown, the number
of eligible inputs will decrease with the increase of |E| if v

keeps unchanged.

v = tan(45°) v = tan(30°) v = tan(15°)

Figure 7: The relationship between v and the num-
ber of eligible inputs (represented by triangles)

e1

(a) |E| = 1

e1

e2

(b) |E| = 2

Figure 8: The relationship between |E| and the num-
ber of eligible inputs (black spots)

The detailed algorithm of FSCS-ART with filtering by eli-
gibility is given in Figure 9 where Steps 6-14 are introduced
to replace Step 5 of Figure 1 (algorithm of FSCS-ART). Ba-
sically, we need to construct a candidate set C such that all
its elements are eligible. In C, the farthest element away
from E is chosen as the next test case.

To use FSCS-ART with filtering by eligibility, the tester
needs to set 2 parameters v and r. The role of v has been
explained above, and the role of r is explained as follows.
Since E grows along with the testing, we will eventually
reach a situation where it is impossible or too expensive to
construct C. To resolve this problem, we propose to dynami-
cally relax the eligibility criterion during the testing process
when insufficient number of eligible candidates has been gen-
erated after g attempts. The role of r, which is within the
range (0, 1), is to reduce the value of v (by resetting v to be
v · r) so that the eligibility criterion will be relaxed.

Clearly, the larger the value g is, the longer time it takes to
decide whether adjusting v is required or not. In this study,
g was arbitrarily set to 4. Since the effect of the filtering
disappears when v = 0, v is adjusted slowly and only if
necessary. Also, we have arbitrarily set that if fewer than
70% candidates are eligible, the current eligibility criterion
is regarded to be too strict and hence there is a need to
reduce v.

4.2 Experiment 1
It is interesting to know how the effectiveness of FSCS-ART
with filtering by eligibility is affected by v and r. We inves-
tigate the impact by conducting some simulations. In these
simulations, θ was varied from 1 to 0.00005, and the failure
region was predefined as a single square which is randomly
placed within the input domain.

The results with respect to the setting v = 0.5(≈ tan(26.57◦))
and r = 0.5 for N = 2, 3 and 4 are reported in Figure 10.
Under this setting, the experimental data show that the pro-
cess of filtering does make our method more effective than
the original FSCS-ART.

We conducted further experiments with the following set-
tings. In these experiments, D is set to be 4 dimensional.

• v - 0.9 (≈ tan(41.99◦)), 0.5 (≈ tan(26.57◦)), and 0.1
(≈ tan(5.71◦)),

Define n as the number of tests conducted so far.
{

1. Input v and r, where 0 < r < 1 and 0 ≤ v ≤ 1
2. Set n = 0, E = { }, C = { }.
3. Randomly select a test case, t, from the input domain

(according to uniform distribution).
4. Increment n by 1.
5. If t reveals a failure, go to Step 18; otherwise, store t in E.
6. Randomly generate k inputs to construct C (according to

uniform distribution).
7. For each ci ∈ C, examine the eligibility of ci.

mark ci “eligible” or “ineligible” accordingly.
8. If all elements of C are eligible, go to Step 15.
9. Set nTrial = 0.
10. Do Steps 11-14 until all ci of C are eligible
11. Replace each ineligible ci by another random input.
12. Examine the eligibility of all replacements, and mark

them “eligible” or “ineligible” according to the updated
value of v.

13. Increment nTrial by 1.
14. After 4 attempts (when nTrial = 4),

if fewer than 70% of candidates are eligible, then set
nTrial = 0 and v = v·r.

15. For each ci ∈ C, calculate the distance di between ci and
its nearest neighbour in E.

16. Find cb ∈ C such that its d ≥ di where k ≥ i ≥ 1.
17. Let t = cb and go to Step 4.
18. Return n and t. EXIT.

}

Figure 9: The algorithm of FSCS-ART with filtering
by eligibility

• r - 0.9, 0.5 and 0.1

There are 9 different scenarios in total. We group the results
into Figure 11. Based on these data, we have the following
observations

• the higher r is, the smaller the ART F-ratio is

• when r is 0.5 or 0.1, v seems to have little or no im-
pact on the F-measure of FSCS-ART with filtering by
eligibility, but when r = 0.9, a small v like 0.1 will
not deliver an effective FSCS-ART with filtering by
eligibility.

• For a given r, any value of v higher than 0.5 will yield
similar F-measures.

The first observation is intuitively expected, because a higher
r means that v will be decreased more slowly, and hence
a more strict elgibility criterion has been imposed. As a
consequence, test cases will be enforced more evenly spread
over the input domain, and hence the ART F-ratio becomes
smaller. The second observation is also understandable be-
cause when r is small, no matter what v is used, v will be-
come small very soon (as v will be adjusted by r in Step 14
of the algorithm given in Figure 9). For the last observation,
a higher initial value of v yields a small number of eligible
inputs. Therefore, v will be reduced quickly until enough
eligible inputs are available, so higher values of v will have
similar performance. However, it should be noted that gen-
erally speaking, a higher v will have smaller F-measure than

a lower v. In summary, the above observations imply that
effective FSCS-ART with filtering by eligibility needs a high
initial value of v (say 0.9) and a large r (say 0.9) in order to
keep v large and its approaching to 0 at a slow rate during
its application.

4.3 Experiment 2
We conducted another experiment to investigate the F-measure
of FSCS-ART with filtering by eligibility for the situation
where failures depend on some but not all input param-
eters (this is the situation motivating the development of
FSCS-ART with filtering by eligibility). One single rect-
angular failure region is assumed to reside in a square N

dimensional D whose edge length is L. θ is either 0.01,
0.005, 0.001 or 0.0005, and N is either 2, 3 or 4. For a
given N dimensional D, the number m of failure dependent
input parameters (input parameters which cause program
failures) is set to be smaller than N and the failure region
is assumed to span across (N − m) axes. As an example
of illustration, consider a 3 dimensional D and let li denote
the edge length of the failure region in dimension i (or sim-
ply say, li is the value range of the failure-causing inputs
with respect to the ith parameter). Suppose θ is 0.01. If
failures are caused by the 3rd parameter (so m = 1), then
we have l1 : l2 : l3 = L : L : 0.01L. If failures are caused
by the 2nd and 3rd parameters (so m = 2), then we have
l1 : l2 : l3 = L : 0.1L : 0.1L.

The simulation results are reported in Tables 1, 2, 3 and
4, which compared FSCS-ART with filtering by eligibil-
ity and FSCS-ART with θ being 0.01, 0.005, 0.001 and
0.0005, respectively. In each table, the performances are
compared in terms of different combinations of N and m.
It is clearly shown that when m = 1, no matter how many
dimensions the input domain has, the new method has a
significant improvement over the original method. When
m > 1, the new method only marginally outperforms the
original method. In summary, our new method also has a
better fault-detection effectiveness than the original FSCS-
ART when the program failures only depend on part of the
input parameters.

5. DISCUSSION AND CONCLUSION
ART was originally proposed to improve the fault-detection
effectiveness of RT, especially when the failure-causing in-
put are clustered together. Recently, it was observed that
the performance of ART is not so good in higher-dimension
situation as that in lower-dimension situation. In this pa-
per, we analysed the high dimension problem of ART, and
proposed a new algorithm, FSCS-ART with filtering by el-
igibility. The results of simulation show that our method
improves FSCS-ART not only in high dimensional cases,
but also when program failures depend on part of the input
parameters. It should be noted that both cases are quite
common to occur in real life programs. Therefore, we sug-
gest that FSCS-ART with filtering by eligibility should be
used instead of the original FSCS-ART.

In addition, it should be noted that the causes that affect
the performance of FSCS-ART may be also applicable to
some other ART methods. Restricted Random Testing [3]
(RRT), for example, also has the preference of selecting test
cases from the boundary part of the input domain, as shown

0.60

0.80

1.00

1.20

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0
10

.5
0

11
.0

0
11

.5
0

12
.0

0
12

.5
0

13
.0

0
13

.5
0

14
.0

0
14

.5
0

A
R

T
F-

ra
tio

 =
 F

A
R

T
/ F

R
T

Original FSCS-ART FSCS-ART with filtering by eligibility

Log0.5 θ

(a) 2D

0.65

1.00

1.35

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0
10

.5
0

11
.0

0
11

.5
0

12
.0

0
12

.5
0

13
.0

0
13

.5
0

14
.0

0
14

.5
0

A
R

T
F-

ra
tio

 =
 F

A
R

T
/ F

R
T

Original FSCS-ART FSCS-ART with filtering by eligibility

Log0.5 θ

(b) 3D

0.75

1.00

1.25

1.50

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0
10

.5
0

11
.0

0
11

.5
0

12
.0

0
12

.5
0

13
.0

0
13

.5
0

14
.0

0
14

.5
0

A
R

T
F-

ra
tio

 =
 F

A
R

T
/ F

R
T

Original FSCS-ART FSCS-ART with filtering by eligibility

Log0.5 θ

(c) 4D

Figure 10: Comparison between the enhanced version and the original version of FSCS-ART under the
settings v = 0.5, r = 0.5 and k = 10

����

����

����

����

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
�

	
��
�

�
��
�

�
��
�

��
�

��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�
��
��
�
	

�
��
��

�

�
�
�
�

�

������ ����� ����� �����

��������

(a) v = 0.9

0.75

1.00

1.25

1.50

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0
10

.5
0

11
.0

0
11

.5
0

12
.0

0
12

.5
0

13
.0

0
13

.5
0

14
.0

0
14

.5
0

A
R

T
F-

ra
tio

 =
 F

A
R

T
/ F

R
T

Org-4D r=0.9 r=0.5 r=0.1

Log0.5 θ

(b) v = 0.5

����

����

����

����

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
�

	
��
�

�
��
�

�
��
�

��
�

��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�
��
��
�
	

�
��
��

�

�
�
�
�

�

������ ����� ����� �����

��������

(c) v = 0.1

����

����

����

����

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
�

	
��
�

�
��
�

�
��
�

��
�

��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�
��
��
�
	

�
��
��

�

�
�
�
�

�

������ ����� ����� �����

��������

(d) r = 0.9

0.75

1.00

1.25

1.50

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0
10

.5
0

11
.0

0
11

.5
0

12
.0

0
12

.5
0

13
.0

0
13

.5
0

14
.0

0
14

.5
0

A
R

T
F-

ra
tio

 =
 F

A
R

T
/ F

R
T

Org-4D v=0.9 v=0.5 v=0.1

Log0.5 θ

(e) r = 0.5

����

����

����

����

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
�

	
��
�

�
��
�

�
��
�

��
�

��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�
��
��
�
	

�
��
��

�

�
�
�
�

�

������ ����� ����� �����

��������

(f) r = 0.1

Figure 11: Comparison between the enhanced version and the original version of FSCS-ART

Table 1: Results for the case where program failures depend on only part of input parameters with θ = 0.01

N m Method
No. of

Ave(F) StdDev
95% Confidence

Run - +

2 1
FSCS-ART with filtering by eligibility 1300 69.76 64.11 73.25 66.27
FSCS 1357 96.08 90.22 100.88 91.28

3 1
FSCS-ART with filtering by eligibility 1274 77.41 70.49 81.28 73.54
FSCS 1578 103.12 104.43 108.27 97.96

3 2
FSCS-ART with filtering by eligibility 1213 91.59 81.36 96.17 87.01
FSCS 1171 93.21 81.34 97.87 88.55

4 1
FSCS-ART with filtering by eligibility 1311 82.31 76.01 86.43 78.19
FSCS 1420 98.37 94.55 103.29 93.45

4 2
FSCS-ART with filtering by eligibility 1468 97.11 94.84 101.96 92.26
FSCS 1379 108.97 103.22 114.42 103.53

4 3
FSCS-ART with filtering by eligibility 1156 98.49 85.40 103.41 93.57
FSCS 1129 104.81 89.76 110.05 99.57

Table 2: Results for the case where program failures depend on only part of input parameters with θ = 0.005

N m Method
No. of

Ave(F) StdDev
95% Confidence

Run - +

2 1
FSCS-ART with filtering by eligibility 1203 144.00 127.32 151.20 136.80
FSCS 1506 189.48 187.53 198.95 180.01

3 1
FSCS-ART with filtering by eligibility 1400 154.63 147.59 162.36 146.90
FSCS 1357 197.64 185.63 207.52 187.76

3 2
FSCS-ART with filtering by eligibility 1119 175.50 149.76 184.27 166.73
FSCS 1164 192.79 167.63 202.43 183.15

4 1
FSCS-ART with filtering by eligibility 1386 160.94 152.78 168.99 152.90
FSCS 1470 197.98 193.61 207.88 188.08

4 2
FSCS-ART with filtering by eligibility 1576 196.27 198.63 206.07 186.46
FSCS 1490 214.50 211.16 225.22 203.78

4 3
FSCS-ART with filtering by eligibility 1195 195.59 172.35 205.37 185.81
FSCS 1155 208.93 181.07 219.38 198.48

Table 3: Results for the case where program failures depend on only part of input parameters with θ = 0.001

N m Method
No. of

Ave(F) StdDev
95% Confidence

Run - +

2 1
FSCS-ART with filtering by eligibility 1240 726.93 652.67 763.28 690.58
FSCS 1488 996.84 980.69 1046.68 947.00

3 1
FSCS-ART with filtering by eligibility 1423 793.34 763.40 833.00 753.67
FSCS 1543 1020.31 1022.11 1071.33 969.29

3 2
FSCS-ART with filtering by eligibility 1369 954.21 900.58 1001.91 906.50
FSCS 1425 973.18 937.13 1021.84 924.52

4 1
FSCS-ART with filtering by eligibility 1519 827.06 822.05 868.40 785.72
FSCS 1476 970.15 950.71 1018.66 921.64

4 2
FSCS-ART with filtering by eligibility 1549 1020.17 1023.71 1071.15 969.19
FSCS 1417 1044.55 1002.81 1096.76 992.34

4 3
FSCS-ART with filtering by eligibility 1316 970.50 897.62 1019.00 922.00
FSCS 1315 983.61 909.67 1032.77 934.44

Table 4: Results for the case where program failures depend on only part of input parameters with θ =
0.0005

N m Method
No. of

Ave(F) StdDev
95% Confidence

Run - +

2 1
FSCS-ART with filtering by eligibility 1319 1460.77 1353.13 1533.80 1387.74
FSCS 1490 1975.79 1944.23 2074.58 1877.00

3 1
FSCS-ART with filtering by eligibility 1342 1605.00 1498.74 1685.19 1524.81
FSCS 1578 2009.87 2036.24 2110.36 1909.38

3 2
FSCS-ART with filtering by eligibility 1457 1966.32 1913.77 2064.59 1868.05
FSCS 1491 1987.53 1957.68 2086.90 1888.16

4 1
FSCS-ART with filtering by eligibility 1449 1661.84 1613.08 1744.9 1578.78
FSCS 1497 2022.04 1994.80 2123.14 1920.94

4 2
FSCS-ART with filtering by eligibility 1548 2096.84 2103.30 2201.62 1992.06
FSCS 1518 2126.33 2111.64 2232.56 2020.10

4 3
FSCS-ART with filtering by eligibility 1290 1841.60 1686.60 1933.64 1749.56
FSCS 1213 1927.09 1711.16 2023.39 1830.79

in [12]. And RRT also uses Euclidean distance as the metric
of selecting the next test case. Therefore, our solutions to
the high dimension problem of FSCS-ART may be applica-
ble for improving other ART methods.

Acknowledgment
This research project is supported in part by an Australian
Research Council Discovery Grant (DP0557246).

6. REFERENCES
[1] P. E. Ammann and J. C. Knight. Data diversity: an

approach to software fault tolerance. IEEE
Transactions on Computers, 37(4):418–425, 1988.

[2] P. G. Bishop. The variation of software survival times
for different operational input profiles. In Proceedings
of the 23rd International Symposium on
Fault-Tolerant Computing (FTCS-23), pages 98–107.
IEEE Computer Society Press, 1993.

[3] K. P. Chan, T. Y. Chen, and D. Towey. Restricted
random testing: Adaptive random testing by
exclusion. Accepted to appear in International Journal
of Software Engineering and Knowledge Engineering,
2006.

[4] T. Y. Chen, F.-C. Kuo, and R. Merkel. On the
statistical properties of testing effectiveness measures.
The Journal of Systems and Software, 79(5):591–601,
2006.

[5] T. Y. Chen, F. C. Kuo, R. G. Merkel, and S. P. Ng.
Mirror adaptive random testing. Information and
Software Technology, 46(15):1001–1010, 2004.

[6] T. Y. Chen, F. C. Kuo, and Z. Q. Zhou. On the
relationships between the distribution of
failure-causing inputs and effectiveness of adaptive
random testing. In Proceedings of the 17th
International Conference on Software Engineering and
Knowledge Engineering (SEKE 2005)), pages 306–311,
Taipei, Taiwan, 2005.

[7] R. Cobb and H. D. Mills. Engineering software under
statistical quality control. IEEE Software, 7(6):45–54,
1990.

[8] T. Dabóczi, I. Kollár, G. Simon, and T. Megyeri.
Automatic testing of graphical user interfaces. In
Proceedings of the 20th IEEE Instrumentation and
Measurement Technology Conference 2003 (IMTC
’03), pages 441–445, Vail, CO, USA, 2003.

[9] G. B. Finelli. Nasa software failure characterization
experiments. Reliability Engineering and System
Safety, 32(1–2):155–169, 1991.

[10] J. E. Forrester and B. P. Miller. An empirical study of
the robustness of Windows NT applications using
random testing. In Proceedings of the 4th USENIX
Windows Systems Symposium, pages 59–68, Seattle,
2000.

[11] R. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering. John Wiley &
Sons, second edition, 2002.

[12] F.-C. Kuo. On adaptive random testing. PhD thesis,
Faculty of Information and Communication
Technologies, Swinburne University of Technology,
2006.

[13] I. K. Mak. On the effectiveness of random testing.
Master’s thesis, Department of Computer Science,
University of Melbourne, 1997.

[14] J. Mayer. Lattice-based adaptive random testing. In
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2005), pages 333–336, New York, USA, 2005. ACM.

[15] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32–44, 1990.

[16] B. P. Miller, D. Koski, C. P. Lee, V. Maganty,
R. Murthy, A. Natarajan, and J. Steidl. Fuzz
revisited: A re-examination of the reliability of UNIX
utilities and services. Technical Report
CS-TR-1995-1268, University of Wisconsin, 1995.

[17] E. Miller. Website testing.
http://www.soft.com/eValid/Technology/White.

Papers/website.testing.html, Software Research,
Inc., 2005.

[18] G. J. Myers. The Art of Software Testing. Wiley, New
York, second edition, 1979.

[19] N. Nyman. In defense of monkey testing: Random
testing can find bugs, even in well engineered software.
http:

//www.softtest.org/sigs/material/nnyman2.htm,
Microsoft Corporation.

[20] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for C. In ESEC/FSE-13:
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 263–272, New York, NY, USA,
2005. ACM Press.

[21] D. Slutz. Massive stochastic testing of SQL. In
Proceedings of the 24th International Conference on
Very Large Databases (VLDB 98), pages 618–622,
1998.

[22] T. Yoshikawa, K. Shimura, and T. Ozawa. Random
program generator for Java JIT compiler test system.
In Proceedings of the 3rd International Conference on
Quality Software (QSIC 2003), pages 20–24. IEEE
Computer Society Press, 2003.

