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Abstract

Poly-Controlled Partial Evaluation (PCPE) is a powerful approach
to partial evaluation, which has recently been proposed. PCPE
takes into account sets of control strategies instead of a single one.
Thus, different control strategies can be assigned to different call
patterns, possibly obtaining results that cannot be obtained using
a single control strategy. PCPE can be implemented as a search-
based algorithm, producing sets of candidate optimized programs.
The quality of each of these programs is assessed through the use
of a fitness function, which can be resource aware, in the sense
that it can take multiple factors into account, such as run-time and
code size. Unfortunately, PCPE suffers from an inherent blowup
of its search space when implemented as an all-solutions, search-
based algorithm. Thus, in order to use it in practice we must be
able to prune its search space without losing the (most) interesting
solutions. In this work we explore several techniques for pruning
the search space of PCPE. Some of these techniques are based on
heuristics, while others are based on branch and bound and are
guaranteed to obtain an optimal solution. Our experimental results
show that, when combined with the proposed pruning techniques,
PCPE can cope with realistic programs. Also, that the solutions
obtained by PCPE outperform the solutions found by PE under
similar conditions.

Keywords Partial Evaluation, Resource-Aware Specialization,
Logic Programming

1. Introduction

The aim of partial evaluation (PE) [9] is to optimize programs by
specializing them w.r.t. part of their input, which is known as the
static data. The quality of the code generated by partial evaluation
greatly depends on the control strategy used. Unfortunately, the
existence of sophisticated control strategies which behave (almost)
optimally for all programs is still far from reality, especially when
we take factors such as size of the residual code into account. Poly-
controlled partial evaluation [18] (PCPE) is a powerful approach to
partial evaluation which has recently been proposed in the context
of on-line partial evaluation of logic programs (LP). Among the
main advantages of PCPE we can mention:

It can obtain better solutions than traditional PE Preliminary
experiments in [18] show that PCPE can produce hybrid solutions
with better fitness value than any of the solutions achievable by
traditional PE, for a number of different resource-aware fitness
functions.

It is a resource-aware approach In traditional PE, existing con-
trol strategies generally focus on time-efficiency by trying to reduce
the number of resolution steps which are performed in the residual
program. Other factors such as the size of the residual program,
and the memory required to run it are most often neglected. Some
relevant exceptions are the works in [6],[4]. Also, it is well known
that partial evaluation can slow-down programs due to lower level
issues, such as clause indexing, cache sizes, etc.

It is not yet another control strategy The topic of control strate-
gies for partial evaluation has received considerable attention. As
already mentioned, finding an optimal control strategy is not trivial.
However, it is important to note that PCPE is not a control strategy,
but a new framework allowing the co-existence and cooperation of
any set of control strategies. In fact, PCPE will benefit from any
further research on control strategies.

It is more user-friendly Often, partial evaluators provide a good
number of parameters which affect the quality of the obtained so-
lution. It can be extremely hard to find the right combination of
parameters in order to achieve the desired results (reduction of size
of compiled code, reduction of execution time, etc.). PCPE allows
the user to simultaneously experiment with different combinations
of parameters.

It performs on-line partial evaluation As opposed to other ap-
proaches (e.g. [4]), PCPE performs on-line partial evaluation, and
thus it can take advantage of the great body of work available for
on-line partial evaluation of logic programs.

In [18], two algorithms for PCPE were introduced. Given a set
of control strategies, the first algorithm uses a function called pick
to decide a priori which control strategy (among those in the set)
should be used for each call pattern. The second algorithm, which
we will refer to as the all-solutions PCPE, applies all the con-
trol strategies in the set to each call pattern, thus possibly gener-
ating several candidate partial evaluations, and decides a posteriori
which partial evaluation is the best one by empirically comparing
the final configurations (candidate partial evaluations) using a fit-
ness function. The process can be resource-aware by taking into
account factors such as the size and time- and memory-efficiency
of the partial evaluations. Since choosing a good pick function is a
very hard task, and in the need of a proof of concept, in [18] a pre-



liminary experimental evaluation was performed based on the all-
solutions algorithm whose conclusions are two-fold. First, PCPE
can obtain better results than traditional partial evaluation. This is
encouraging, since it actually indicates that it is worth pursuing the
idea of PCPE. Second, all-solutions PCPE is too costly in prac-
tice. Thus, the main question which we address in this work is:
is it possible to obtain an algorithm for PCPE which is capable of
achieving results comparable to those computed by the all-solutions
algorithm while staying within reasonable cost?

2. Background

We assume some basic knowledge on the terminology of logic
programming. See for example [15] for details. Very briefly, an
atom A is a syntactic construction of the form p(t1, . . . , tn), where
p/n, with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms.
The function pred applied to an atom A, i.e., pred(A), returns the
predicate symbol for A. A clause is of the form H ← B where
its head H is an atom and its body B is a conjunction of atoms.
A definite program is a finite set of clauses. A goal (or query) is a
conjunction of atoms.

We denote by {X1 7→ t1, . . . , Xn 7→ tn} the substitution σ
with σ(Xi) = ti for all i = 1, . . . , n (with Xi 6= Xj if i 6= j)
and σ(X) = X for any other variable X, where ti are terms. A
unifier for a finite set S of simple expressions is a substitution θ if
Sθ is a singleton. A unifier θ is called most general unifier (mgu)
for S, if for each unifier σ of S, there exists a substitution γ such
that σ = θγ. Two terms t and t′ are variants, denoted t ≡ t′, if
there exist substitutions θ and σ s.t. t = t′θ and t′ = tσ.

2.1 Basics of On-Line Partial Evaluation in LP

On-line partial evaluation of LP is traditionally presented in terms
of SLD semantics. We briefly recall the terminology here. The
concept of computation rule is used to select an atom within a goal
for its evaluation.

DEFINITION 2.1 (computation rule). A computation rule is a func-
tion R from goals to atoms. Let G be a goal of the form ←
A1, . . . , AR, . . . , Ak, k ≥ 1. If R(G) =AR we say that AR is
the selected atom in G.

The operational semantics of definite programs is based on
derivations [15].

DEFINITION 2.2 (derivation step). Let R be a computation rule,
let G be ← A1, . . . , AR, . . . , Ak, and let R(G) =AR. Let C =
H ← B1, . . . , Bm be a renamed apart clause in P . Then G′ is
derived from G and C viaR if the following conditions hold:

θ = mgu(AR, H)

G′
is the goal ← θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)

As customary, given a program P and a goal G, an SLD deriva-
tion for P ∪ {G} consists of a possibly infinite sequence G =
G0, G1, G2, . . . of goals, a sequence C1, C2, . . . of properly re-
named apart clauses of P , and a sequence θ1, θ2, . . . of mgus such
that each Gi+1 is derived from Gi and Ci+1 using θi+1.

A derivation step can be non-deterministic when AR unifies
with several clauses in P , giving rise to several possible SLD
derivations for a given goal. Such SLD derivations can be organized
in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is called
successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the
computed answer for goal G. Such a derivation is called failed if it
is not possible to perform a derivation step with Gn.

In partial evaluation, SLD semantics is extended in order to
also allow incomplete derivations which are finite derivations of
the form G = G0, G1, G2, . . . , Gn and where no atom is selected

in Gn for further resolution. This is needed in order to avoid (local)
non-termination of the specialization process. Also, the substitution
θ = θ1θ2 . . . θn is called the computed answer substitution for
goal G. An incomplete SLD tree possibly contains incomplete
derivations.

In order to compute a partial evaluation (PE) [14], given an
input program and a set of atoms (goals), the first step consists
in applying an unfolding rule to compute finite incomplete SLD
trees for these atoms. Then, a set of resultants or residual rules is
systematically extracted from the SLD trees.

DEFINITION 2.3 (unfolding rule). Given an atom A, an unfolding
rule computes a set of finite SLD derivations D1, . . . , Dn (i.e., a
possibly incomplete SLD tree) of the form Di = A, . . . , Gi with
computer answer substitution σi for i = 1, . . . , n whose associated
resultants are σi(A)← Gi.

Therefore, this step returns the set of resultants, i.e., a program,
associated to the root-to-leaf derivations of these trees. The set of
resultants for the computed SLD tree is called a partial evaluation
for the initial goal (query). The partial evaluation for a set of goals
is defined as the union of the partial evaluations for each goal in the
set. We refer to [12] for details.

In order to ensure local termination of the PE algorithm while
producing useful specializations, the unfolding rule must incorpo-
rate some non-trivial mechanism to stop the construction of SLD
trees. Nowadays, well-founded orderings (wfo) [2, 16] and well-
quasi orderings (wqo) [19, 11] are broadly used in the context of
on-line partial evaluation techniques (see, e.g., [7, 13, 19]).

In addition to local termination, an abstraction operator is ap-
plied to properly add the atoms in the right-hand sides of resultants
to the set of atoms to be partially evaluated. This abstraction opera-
tor performs the global control and is in charge of guaranteeing that
the number of atoms which are generated remains finite. This usu-
ally implies some loss of precision (abstracting newly added atoms
by more general ones) in order to guarantee termination. The ab-
straction phase yields a new set of atoms, some of which may in
turn need further evaluation and, thus, the process is iteratively re-
peated while new atoms are introduced.

3. All-Solutions PCPE

In Algorithm 1 we recall the all-solutions algorithm of [18].
In this algorithm, a configuration Confi is a pair 〈Si, Hi〉 s.t. Si

is the set of atoms yet to be handled and Hi is the set of atoms
already handled by the algorithm. Indeed, in Hi we store tuples of
the form 〈Ai, A

′
i, Unfold〉 where in addition to each atom Ai we

also store the result A′
i of applying global control to Ai (i.e., A′

i

is an abstraction of Ai) and the unfolding rule Unfold which has
been used to unfold Ai. We store Unfold in order to use exactly
such unfolding rule during the code generation phase. Correctness
of the algorithm requires that each A′

i is an abstraction of Ai, i.e.,
Ai = A′

iθ for some substitution θ.
Algorithm 1 employs two auxiliary data structures. One is

Confs, which contains the configurations (or states) which are cur-
rently being explored. The other one is Sols, which stores the set of
solutions currently found by the algorithm. As it is well known, the
use of a stack results in a depth-first traversal of the search space.

Given a set of atoms S which describe the potential queries
to the program, the initial configuration is of the form 〈S, ∅〉. In
each iteration of the algorithm, a configuration 〈Si, Hi〉 is popped
from Confs (line 6), and an atom Ai from Si is selected (line
7). Then, all combinations of global control (Abstract ∈ G)
and local control (Unfold ∈ U) rules, respectively, are applied
(lines 11 and 12). Each application builds an SLD-tree for A′

i,
a generalization of Ai as determined by Abstract, using the cor-



Algorithm 1 Search-Based Poly-Controlled Partial Evaluation al-
gorithm

Input: Program P
Input: Set of atoms of interest S
Input: Set of unfolding rules U
Input: Set of generalization functions G
Output: Set of partial evaluations Sols

1: H0 = ∅
2: S0 = S
3: create(Confs); Confs = push(〈S0, H0〉, Confs)
4: Sols = ∅
5: repeat
6: 〈Si, Hi〉 = pop(Confs)
7: Ai = Select(Si)
8: Candidates = {〈Abstract, Unfold〉 | Abstract ∈

G, Unfold ∈ U}
9: repeat

10: Candidates = Candidates− {〈Abstract, Unfold〉}
11: A′

i = Abstract(Hi, Ai)
12: τi = Unfold(P, A′

i)
13: Hi+1 = Hi ∪ {〈Ai, A

′
i, Unfold〉}

14: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈
Hi+1 . B 6≡ A}

15: if Si+1=∅ then
16: Sols = Sols ∪ {Hi+1}
17: else
18: push(〈Si+1, Hi+1〉,Confs)
19: end if
20: until Candidates = ∅
21: i = i + 1
22: until empty stack(Confs)

responding unfolding rule Unfold. Once the SLD-tree τi is com-
puted, the leaves in its resultants, i.e., the atoms in the residual
code for A′

i are collected by the function leaves (line 14). Those
atoms in leaves(τi) which are not a variant (equal modulo vari-
able renaming) of any of the atoms handled in previous iterations
of the algorithm are added to the set of atoms to be considered
(Si+1) and pushed on Confs. The process terminates when Confs
is empty. A configuration 〈Si, Hi〉 is final if Si = ∅, otherwise
it is called an intermediate configuration. The residual program
which corresponds to a final configuration 〈∅, Hi〉 is obtained as
S

〈A,A′,Unfold〉∈Hn
resultants(A′, Unfold), where the function

resultants is parametric w.r.t. the unfolding rule.

4. Blowup of the Search Space

Given a configuration, a set of unfolding rules U , and a set of
abstraction functions G such that |U| = i and |G| = j, Algorithm 1
can generate i×j successor configurations in the worst case. Thus,
and as already mentioned, this represents an inherent exponential
blowup in the size of the search space, and it makes the algorithm
impractical for dealing with realistic programs.

Of course, several optimizations can be done to the base algo-
rithm shown above, in order to deal with this problem. A first obvi-
ous optimization is to eliminate equivalent configurations which are
descendants of the same node in the search tree. This optimization,
already proposed in [18], significantly reduces the search space.
However, even with this optimization, a simple experiment shows
the magnitude of this problem.

Let us consider the program in Figure 1, which implements a
naive reverse algorithm. In this experiment, let us choose the set
of global control rules G={dynamic, hom emb}. The hom emb

:- module(_,[rev/2] ,[]).
:- entry rev([_,_|L],R).

rev([] ,[]).
rev([H|L],R) :- rev(L,Tmp), app(Tmp ,[H],R).

app([],L,L).
app([X|Xs],Y,[X|Zs]) :- app(Xs,Y,Zs).

Figure 1. The nrev example

Input query #solutions

rev(L,R) 6

rev([ |L],R) 48

rev([ , |L],R) 117

rev([ , , |L],R) 186

rev([ , , , |L],R) 255

rev([1|L],R) 129

rev([1,2|L],R) 480

Table 1. Number of solutions generated by Alg. 1

global control rule is based on homeomorphic embedding [12, 11]
and flags atoms as potentially dangerous (and are thus general-
ized) when they homeomorphically embed any of the previously
visited atoms at the global control level. Then, dynamic is the
most abstract possible global control rule, which abstracts away
the value of all arguments of the atom and replaces them with dis-
tinct variables. Also, let us choose the set of local control rules
U={one step, hom emb aggr}. The rule one step is the sim-
plest possible unfolding rule which always performs just one un-
folding step for any atom. Finally, hom emb aggr is an unfolding
rule based on homeomorphic embedding. More details on this un-
folding rule can be found in [17] and in Section 7.

In CiaoPP [8], the description of initial queries —the set of
atoms of interest S in Algorithm 1— is obtained by taking into
account the set of predicates exported by the module, in this case
{rev/2}, possibly qualified by means of entry declarations. For
example, the entry declaration in Figure 1 is used to specialize the
naive reverse procedure for lists containing at least two elements.
Table 1 shows the number of candidate solutions generated by Al-
gorithm 1 (eliminating equivalent configurations in the search tree),
for several entry declarations. It can be observed in the table that as
the length of the list provided as entry grows, the number of can-
didate solutions computed quickly grows. Furthermore, if the el-
ements of the input list are static, then the number of candidates
grows even faster, as can be seen in the last two rows in Table 1,
where we provide the first elements of the list. From this small ex-
ample, it is clear that, in order to be able to cope with realistic pro-
grams, it is mandatory to reduce the search space. In the following
sections we propose different techniques for doing so.

5. Heuristic Pruning

Although PCPE is definitely appealing, we need to prune the search
space in order to deal with realistic programs, as already discussed.
This pruning can be performed using some heuristics—possibly
losing optimal solutions—, or we can try to preserve optimal so-
lutions, for instance, by means of branch and bound techniques. In
this section we explore some pruning techniques of the first kind,
and present a technique of the second kind in Sec. 6.



Atom Pred modesαSD
modesαSDL

p(X, a) p/2 p(D, S) p(D, S)
p(a, q(X, b), X) p/3 p(S, D, D) p(S,D, D)
p(a, [], [a, X]) p/3 p(S, S, D) p(S,S, L)
p(a, q(b, X, r(Y, []))) p/2 p(S, D) p(S,D)

Table 2. Abstraction of calls using different domains

5.1 Predicate-Consistency Heuristics

Given the selected atom Ai in the current configuration, rather than
trying all possible control strategies, herein we propose to consider
only those control strategies which are consistent with the choices
previously taken in previous configurations. The first notion of con-
sistency we are going to consider is that we must use the same
control strategy for all atoms which correspond to the same predi-
cate. We will refer to configurations which satisfy this restriction as
predicate-consistent. This restriction will often significantly reduce
the branching factor since handling of an atom Ai will become de-
terministic as soon as we have previously considered an atom for
the same predicate in any configuration which is an ancestor of the
current one in the search space, i.e., it is compulsory to use for Ai

exactly the same control strategy used before. Though this simpli-
fication may look too restrictive at first sight, the intuition behind it
is that though it is often a good idea to allow using different control
strategies for different predicates (i.e., allowing hybrid solutions) it
is also often the case that it is possible to obtain optimal solutions
where we consistently use the same control strategy for all atoms
of the same predicate. In other words, we believe that it is often the
case that, in the context of a given program, there exists a control
strategy which behaves well for all atoms which correspond to the
same predicate.

We thus propose to modify Algorithm 1 so that only consistent
configurations are further processed. For this we need to store,
together with every atom in every configuration, the global control
rule used to generalize such an atom. We now provide a formal
definition of consistent configurations:

DEFINITION 5.1 (predicate-consistent configuration). Given a con-
figuration Conf = 〈S, H〉, we say that Conf is predicate-consistent
iff ∀ 〈A1, A

′
1, G1, U1〉, 〈A2, A

′
2, G2, U2〉 ∈ H, pred(A1) =

pred(A2)⇒ (G1 = G2 ∧ U1 = U2).

Note that this definition can be applied to both intermediate
and final configurations. Thus, if a given intermediate configuration
Conf is inconsistent, it will be pruned, i.e., it will not be pushed
on Confs. By doing this we are pruning not only Conf, but also
all the successor configurations that would have been generated
from Conf. This means that early prunings will achieve significant
reductions of the search space.

5.2 Mode-Consistency Heuristics

A possible improvement over predicate-consistency, in order to
increase accuracy, is to define consistency at the level of modes for
a predicate. This means that two calls to a predicate with similar
modes (instantiation level in their arguments) have to use the same
control strategy, but not if they have different modes.

In order to check whether two atoms A and A′ with pred(A)
= pred(A′) have the same modes, we apply to them a function
modes that abstracts their arguments one by one w.r.t. a given
abstract domain [3], i.e., given an abstraction function α, we de-
fine modesα(p(t1, . . . , tn)) as p(α(t1), . . . , α(tn)). Then, we say
that A and A′ have the same modes under α iff modesα(A) =
modesα(A′). In a way, this is similar to the binding types used in
the binding-time analysis (BTA) of offline partial evaluation [9]. In

BTA, each argument of a predicate is given a binding type that pro-
vides some information about the instantiation state of an argument
at specialization time.

The basic binding types in BTA are static, indicating that the
argument is completely known at specialization time, and dynamic,
indicating that the argument is possibly unknown at specialization
time. Thus, we define the αSD abstraction as follows:

DEFINITION 5.2 (αSD abstraction). Given a term t, the αSD ab-
straction over t is defined as follows:

αSD(t) =



S if vars(t) = ∅
D if vars(t) 6= ∅

A more precise binding type can be defined by means of regular
type declarations, and combined with basic binding types. For
example, one can define types such as list skeletons. We can define
the αSDL abstraction as follows:

DEFINITION 5.3 (αSDL abstraction). Given a term t, the αSDL

abstraction over t is defined as follows:

αSDL(t) =

8

<

:

S if vars(t) = ∅
L if t is bound to a list skeleton ∧ vars(t) 6= ∅
D otherwise

In Table 2 we can observe some examples of atoms, and how
they are abstracted using the definitions introduced above. We now
provide a formal definition of consistent configurations w.r.t. the
mode-consistent heuristics.

DEFINITION 5.4 (mode-consistent configuration). Let α be an
abstraction function. Then, given a configuration Conf = 〈S, H〉,
we say that Conf is mode-consistent iff ∀〈A1, A

′
1, G1, U1〉,

∀〈A2, A
′
2, G2, U2〉 ∈ H, pred(A1) = pred(A2)∧modesα(A1) =

modesα(A2)⇒ (G1 = G2 ∧ U1 = U2).

6. Branch and Bound Pruning

The main advantages of the heuristic-based pruning techniques
shown in Sec. 5 are twofold: they are simple to implement, and
they drastically reduce the search space of PCPE, thus reducing
the specialization time and memory requirements and making the
PCPE algorithm able to cope with many more programs than the
original all solutions algorithm. On the other hand, it is well known
that heuristics can perform well for some cases and not so well for
others. In the case of the heuristics just presented, this could mean
that, in particular situations, optimal solutions may be lost. In this
section we explore a different pruning technique, which guarantees
the preservation of an optimal solution. Ideally, the new pruning
technique should be applicable either in isolation or combined with
the heuristic pruning already presented. Our new pruning is based
on branch and bound [10] (BnB). Here, the basic idea is to store the
fitness value of the best solution found so far and prune away those
configurations which are guaranteed not to improve the (temporary)
optimal solution. In order to implement a BnB-based algorithm we
need:

• to devise a mechanism for computing an upper bound of the
fitness value of any intermediate configuration. This involves
the use of two components for estimating the fitness of inter-
mediate configurations. One which is actual and another which
maximizes the possible value in case of completing the config-
uration.

• to decide how often we should evaluate candidates and try to
prune. Clearly, if we evaluate very often we will be able to
prune more. However, evaluating introduces a non negligible
cost. Thus, evaluating too often can make branch and bound
even slower than the all-solutions algorithm. As a result, in



our implementation we do not evaluate every configuration.
Instead, the implementation is parametric w.r.t. a depth-level.
Those configurations which appear at a depth which is a multi-
ple of the depth-level are evaluated. All others are not.

6.1 Fitness Functions

As already mentioned, we need to obtain upper bounds on the
fitness value of intermediate configurations. The way we do it is
tightly coupled to the fitness function used. In all cases we assume
that the fitness function returns values in the interval [0,∞) and that
larger values are preferable to smaller values. In our framework, we
have implemented the following resource-aware fitness functions,
in the spirit of those in [4]:

speedup compares programs based on their time-efficiency, mea-

suring the run-time of the candidate program w.r.t. the original
one. In order to use this fitness function, the user needs to pro-
vide a set of run-time queries with which to time the execution
of the program. Such queries should be representative of the

real executions of the program1. This fitness function is com-
puted as

speedup=Torig /Tcandid,

where Tcandid is the execution time taken by the candidate
program to run the given run-time queries, and Torig the time
taken by the original program.

reduction compares programs based on their space-efficiency,
measuring the size of compiled bytecode of the candidate pro-
gram w.r.t. the original one. It is computed as

reduction=(Sorig − Sempty)/ (Scandid − Sempty),

where Scandid is the size of the compiled bytecode of the
candidate program, Sorig is the size of the compiled bytecode
of the original program, and Sempty is the size of the compiled

bytecode of an empty program2.

balance is a combination of the previous two. It is defined as

balance=speedup× reduction.

and thus it takes into account both the size and the efficiency of
the candidate programs. As it stands, it gives equal importance
to both factors. It is easy to obtain variations of this formula
which assign different weights to them, as best suited to each
situation.

6.2 Estimating Fitness Values

In the case of reduction—or for any fitness function that takes the
size of the resulting program as one factor—, for any intermediate
configuration conf =〈Si, Hi〉 we can take as current value the size
of the resultants in the atoms in Hi, and take 0 as estimate for the
size of the atoms in Si. In other words, the actual component of
the fitness value can be obtained by simply compiling the current
intermediate configuration, i.e., we obtain an incomplete program
out of the atoms contained in the set of already handled atoms Hi.

The fitness value thus computed is guaranteed to be an upper
bound on the fitness value of any possible final configuration reach-
able from the current state. This is because the size for the code of
the atoms in Si will definitely be greater than 0, which is the value

1 Though the issue of finding representative run-time queries is an interest-
ing research topic in its own right, it is out of the scope of this paper to
automate such process.
2 In the current framework, we have implemented also a similar function
that takes into account the memory taken by the residual program, i.e.,
including bytecode and data.

iH

iH

iH

r:−
s:−

t:−

centers

cost

main:−

p:−

Figure 2. Profiling an intermediate configuration

we have taken. Thus, if the size of the compiled incomplete pro-
gram resulting from the current configuration 〈Si, Hi〉 is already
larger than the bytecode of the current best solution, then we can
safely prune away the current node and all of its descendants, since
it will be impossible to obtain a program containing the already
visited atoms which is smaller than the best solution.

This approximation makes use of only the actual part of the
fitness value of the current intermediate configuration. A more
accurate approximation can make use of the atoms in Si to create
extra facts with different variables in the output program, and in
this way better approximate the real size of the residual program.

In the case of speedup, or for any fitness function that takes
execution time of the residual program into consideration, we can
make use of a profiler (see e.g. [5]) which allows defining cost
centers. The profiler splits the total execution time among the
different predicates in the program. When a cost center is defined,
it accumulates the execution time of all computations started from
such predicate.

The main challenge we must cope with when implementing this
approach is the fact that the profiler takes complete programs as
input. Instead, we want to use it with intermediate configurations
which correspond to incomplete programs. This poses a problem,
since the partial evaluation algorithm is not devised in such a way
that a consistent program can be obtained for any set of atoms. If
such set of atoms is not closed [14], then the union of the partial
deductions for the atoms in the set does not correspond to a self-
contained program.

The solution we propose in this case is to use the original pred-
icate definition for all atoms in Si, since we do not have a special-
ized version for them yet. This allows running the incomplete pro-
gram. However, the run-time thus obtained will in general not be a
lower bound of the execution time of the descendant final config-
urations. In order to solve this second problem we propose to use
cost centers for all predicates in the original program plus a cost
center for the main entry (exported predicate) of the program (see
Figure 2). Note that such exported atom must belong to Hi since it
is the first atom handled by Algorithm 1. This way, when running
the residual program, the time reported by the profiler for predi-
cates in Hi will not include the time actually required for atoms

which are not in Hi (represented by Hi in Figure 2).
Note that the execution time reported by the profiler for the main

entry is, modulo timing noise, a lower bound of the execution time
of any candidate solution reachable from the current configuration
since we are using 0 as an estimate for the execution of all atoms
in Si. Thus, if the time for the main entry is higher than the best
time already found, again there is no point in further expanding the
current configuration, and we can safely prune the corresponding
branch.

EXAMPLE 6.1. Figure 2 depicts an intermediate state where we
have processed a set of atoms Hi, including the initial predicate
main/0 and other atoms such as p/0, but the set Si of atoms



Benchmark
PCPE

Best

PEall
Heuristic

BnB
BnB+Heur

Name Size Preds Modes Preds Modes

datetime 17689 1.93 1.94 1.89 1.89 1.89 1.90 1.31

nrev 4623 - 3.65 3.71 3.65 3.64 3.66 1.98

qsortapp 5390 - 2.30 2.59 3.73 2.26 2.58 1.77

contains 5549 4.16 4.16 4.21 4.17 4.17 4.16 3.15

grammar 11381 8.41 8.42 8.43 8.42 8.44 8.44 4.71

groundunify simple 10368 - 3.02 - 2.96 2.95 2.97 2.95

liftsolve app 7111 1.17 1.16 1.19 1.18 1.17 1.17 1.17

match 4781 1.59 1.58 1.58 1.61 1.61 1.60 1.09

transpose 5005 2.46 2.46 2.45 2.44 2.44 2.46 2.46

Geom Mean 2.60 2.60 2.60 2.60 2.59 2.60 1.98

Table 3. Fitness for Several PCPE Algorithms and Traditional PE

to be processed is not empty, and in our case contains r/0 and
s/0, which in turn may call other atoms not yet processed such as
t/0. In such case, we take the original definitions of the predicates
pred(r/0), pred(s/0), and pred(t/0) and define a cost center for
each of these predicates. Thus, when profiling the execution of
main/0, the time reported will not include the time spent in the
execution of any of the predicates for which a cost center has been
defined. This guarantees that the time obtained is a lower bound of
the time that the residual program would take.

Finally, in the case of balance, we can simply estimate the upper
bounds of speedup and reduction as above, and apply the balance
function to obtain an approximated fitness value which, as we need,
is guaranteed to be an upper bound of the fitness value reachable
from the current state.

Note that BnB can be combined with the predicate- and mode-
consistency heuristics presented in Section 5. In this case, we will
obtain a solution with a fitness value which is guaranteed to be
optimal among those final configurations which are consistent w.r.t.
the abstraction used.

7. Experimental Results

With the purpose of assessing the effectiveness of the different im-
provements proposed in this paper over the all-solutions algorithm
for PCPE, we have performed a series of experiments using several

benchmarks.3 The size in bytes of the compiled version of each
benchmark, using compilation to WAM bytecode, is indicated in
column Size of Table 3.

In all our experiments, we have used the following two global
control strategies: G={hom emb, dynamic} and two local con-
trol strategies U={hom emb aggr, hom emb cons}. The be-
haviour of the global control strategies hom emb and dynamic
has already been explained in Section 4. Also, hom emb aggr
and hom emb cons are unfolding rules which are both based on
homeomorphic embedding for flagging possible non-termination
(see [17] for more details). In both cases, non-leftmost unfolding is
performed only when it is guaranteed to be safe (see [1]). However,
the first one is more aggressive, whereas the second one is more
conservative. More precisely, they differ in two ways: 1) the first
one uses the binding-insensitive computation rule, whereas the sec-
ond uses the safe computation rule of CiaoPP. The former is more
aggressive, but it is only guaranteed to be correct in programs which
are well typed. The second is correct for all programs. 2) more im-
portantly, the second one only performs non-leftmost unfolding

3 The source code of these benchmarks (including the
partial evaluation and runtime queries) can be found at
http://www.clip.dia.fi.upm.es/Systems/pcpe.

steps which are determinate, i.e., the selected atom must unify at
most with one program rule. Note that this is important since it is
well known that performing non-determinate non-leftmost unfold-
ing can sometimes speedup the program but it often slowdowns the
program. Thus, conservative rules tend not to perform this kind of
unfolding steps.

7.1 Benefits of PCPE

Probably, the first question that we need to answer about PCPE is
whether it is actually able to improve the results of traditional PE.
With this aim, Table 3 compares the quality of the residual pro-
grams obtained using the different approaches to PCPE presented
in this paper. As a measure of the quality of programs we have
used the balance fitness function. We believe that this fitness func-
tion is particularly interesting since it is resource-aware: both time-
efficiency and size of the residual programs are taken into account.
Thus, it is a useful fitness function in the context of pervasive and
embedded systems, where it is important that the program does not
exceed the storage capabilities of the device. All our experiments
have been run using Ciao 1.13 over a 2.6 Linux kernel, on a Pen-
tium IV 3.4GHz processor, with 512Mb of RAM.

Since the balance fitness function takes into account run-times
of the residual programs, and there is always some noise associated
to time measurement, times are taken as the arithmetic mean of ten
consecutive runs. Nevertheless, when using the balance function,
is difficult to determine whether the selected solution is of optimal
fitness or not, since fitness cannot be computed with full accuracy,
in contrast to the reduction fitness function, which is exact.

In order to make a fair comparison of PCPE w.r.t. traditional PE,
we have run PE over all benchmarks with all four combinations of
the control strategies discussed above, looking for the combination
which achieves the best overall fitness. For these particular bench-
marks the best combination was (hom emb + hom emb cons).
Thus, we compare the different algorithms for PCPE against PE
using this particular control strategy.

In all our tables, the column all represents the all-solutions
mode, where no pruning is performed. The two following columns,
under the Heuristic label, show the results of using heuristic
pruning. The column Preds presents the case where the predicate-
consistency heuristics is used, and column Modes shows the results
when the modesαSD

heuristics is used. The following column,
labeled BnB shows the results for the branch and bound algorithm.
The next two columns, labeled BnB+Heur show the cases where
BnB is combined with each of the two heuristics considered. In
all our experiments we have set the parameter depth-level to 3.
This means that those configurations which appear at depths 3, 6,
9... are evaluated and pruned if possible, but not those which are



Benchmark
PCPE

Best

PEall
Heuristic

BnB
BnB+Heur

Preds Modes Preds Modes

States

datetime 21.2 3.6 5.0 16.1 3.0 4.4 21

nrev - 2.2 10.1 7.7 2.1 4.9 14

qsortapp - 3.3 10.6 8.4 2.5 4.9 32

contains 8.3 3.4 8.3 4.4 2.4 4.1 11

grammar 11.8 9.7 11.8 5.0 4.3 4.8 6

groundunify simple - 420.8 - 4.0 4.0 4.0 4

liftsolve app 223.7 31.7 178.3 4.3 2.7 4.3 3

match 9.2 3.8 3.8 4.0 2.6 2.6 5

transpose 4.5 3.5 4.5 2.5 2.5 2.5 2

Geom Mean 16.57 6.07 10.69 4.98 2.85 3.66 5.89

Evaluations

datetime 105 6 12 149 18 31 0

nrev - 4 24 52 7 25 0

qsortapp - 6 18 111 18 50 0

contains 12 4 12 16 7 15 0

grammar 16 12 16 12 10 12 0

groundunify simple - 85 - 6 6 6 0

liftsolve app 49 5 33 5 3 5 0

match 11 4 4 7 4 4 0

transpose 3 2 3 2 2 2 0

Geom Mean 17.87 4.75 9.85 11.23 5.51 7.73 0.00

Table 4. Normalized Size of Search Space and Number of Evaluations Performed

not multiples of 3. We have empirically determined that 3 is an
appropriate value for this parameter.

In order to have a global view of the values in the different
columns, in all tables we have included a row Geom Mean with
the geometric mean of (part of) the values in the corresponding
column. Since some columns do not have values for some bench-
marks (because the corresponding algorithm has run out of mem-
ory), and in order to make comparisons meaningful, we compute
the geometric mean only over those benchmarks which all algo-
rithms can handle without problems, i.e., nrev, qsortapp, and
groundunify simple are not considered in this calculation. It
should be noted that the specialization queries used in our runs con-
tain a good amount of static information, thus causing PCPE to run
out of memory in the original all-solutions mode (we indicate this
fact by a − in the table) for the programs mentioned above. For-
tunately, by using the heuristic-based pruning techniques presented
in this work, PCPE has finished in most cases, and when using the
branch-and-bound pruning PCPE has always finished.

Several important conclusions can be drawn from Table 3. We
can see that PCPE outperforms PE in most cases, achieving a mean
fitness value of about 2.60 (vs 1.98 achieved by PE). The ratio
PCPE/PE is around 1.31, which indicates that PCPE obtains resid-
ual programs which are about 31% better under the balance fitness
function than those achieved by traditional PE for this particular set
of benchmarks. However, there are some cases where PCPE does
not improve the results of PE because the optimal program is pure

rather than hybrid. This happens, for example, in transpose and
liftsolve app.

Also, it can be seen that heuristic pruning provides results
whose fitness values are identical in most cases to the fitness
obtained without pruning. An exception is qsortapp, where the
fitness obtained by BnB (3.73) is considerably larger than that
obtained by BnB+Preds (2.26). In turn, this fitness is lower than
that obtained by BnB+Modes (2.58), which is the only case where

the additional accuracy inherent to the mode-consistency heuristic
seems to be of interest.

Another interesting observation is that BnB allows handling all
considered benchmarks. This is because BnB reduces the search
space significantly, thus avoiding out of memory problems.

7.2 Search Space of PCPE

Once we have established that PCPE actually obtains better results
than PE and that the fitness value basically remains the same even
when the proposed pruning techniques are applied, the next ques-
tion we need to address is whether the pruning techniques proposed
can actually reduce the search space to levels which are comparable
to those of traditional PE.

The upper half of Table 4 shows the ratios of the number of
configurations generated by the different PCPE algorithms versus
those generated by traditional PE. Column Best PE shows the
actual number of configurations generated by traditional PE. As can
be seen, predicate-consistency achieves a significant reduction of
the search space. It requires to explore, on average (only) 6.07 times
the amount of states generated by PE, rather than 16.57 in the case
of the all-solutions algorithm. As regards the mode-consistency
heuristics, it can be seen that it generates around twice as many
states as predicate-consistency, and it even runs out of memory for
groundunify simple. This, together with the fact that the fitness
of the best solutions found using this heuristic are quite close to
those obtained using the predicate-consistency heuristics (with the
only exception of qsortapp), allows concluding that the latter
heuristics is preferable in practice. As regards BnB, we can see
that it allows a further reduction of the search space. On average,
we (only) need to explore 4.98 times as many configurations as in
traditional PE. This is an important advantage of this technique,
since it copes directly with the main problem of PCPE.

Another important conclusion which can be drawn from the
upper half of Table 4 is that, fortunately, the reduction of the search
space achievable by the proposed heuristics gets along very well



Benchmark
PCPE

Best

PEall
Heuristic

BnB
BnB+Heur

Preds Modes Preds Modes

Analysis

datetime 1466 472 511 3084 1306 1407 371

nrev - 166 329 1022 674 847 150

qsortapp - 227 583 2289 799 1195 116

contains 532 326 417 1092 880 966 267

grammar 626 458 553 1354 1288 1280 290

groundunify simple - 4275 - 819 789 778 121

liftsolve app 5924 418 1802 793 726 750 145

match 207 107 121 670 614 625 99

transpose 278 282 279 822 808 810 259

Geom Mean 741.71 310.10 439.14 1121.73 900.54 933.28 218.41

Code generation

datetime 11972 654 1273 0 0 0 143

nrev - 115 1025 0 0 0 58

qsortapp - 672 2503 0 0 0 180

contains 710 209 720 0 0 0 82

grammar 1491 1094 1508 0 0 0 59

groundunify simple - 14456 - 0 0 0 13

liftsolve app 4152 330 2665 0 0 0 30

match 266 93 108 0 0 0 32

transpose 55 34 53 0 0 0 15

Geom Mean 957.39 232.04 525.64 0.00 0.00 0.00 42.43

Evaluation

datetime 39704 2906 5016 100928 11298 18032 0

nrev - 1419 5135 17351 2148 8542 0

qsortapp - 2611 6404 71189 9543 34624 0

contains 3218 1516 3200 5822 2117 5543 0

grammar 4753 3670 4620 6117 5423 6092 0

groundunify simple - 45329 - 2585 2691 2694 0

liftsolve app 20305 2445 13427 2249 1239 2246 0

match 4202 1802 1777 2185 1239 1260 0

transpose 1296 1035 1322 504 507 498 0

Geom Mean 6375.71 2047.86 3643.59 4552.73 2157.94 3082.83 0.00

Table 5. Partial Execution Times of PCPE Algorithms (fitness = balance)

Benchmark
PCPE

Best

PEall
Heuristic

BnB
BnB+Heur

Preds Modes Preds Modes

datetime 53142 4032 6800 104012 12604 19439 514

nrev - 1700 6489 18373 2822 9389 208

qsortapp - 3510 9491 73479 10342 35819 296

contains 4460 2051 4337 6914 2997 6509 349

grammar 6870 5222 6681 7471 6711 7372 349

groundunify simple - 64060 - 3404 3480 3472 134

liftsolve app 30382 3193 17894 3042 1965 2996 175

match 4675 2002 2006 2855 1853 1885 131

transpose 1629 1351 1654 1326 1315 1308 274

Geom Mean 8498.84 2683.08 4764.77 6289.36 3266.22 4362.44 267.37

Table 6. Total Execution Times of PCPE Algorithms (fitness = balance)

with the reduction achieved by BnB. In fact, the best result in terms
of search space is the combination of BnB+predicate-consistency,
where on average it is only needed to explore less than thrice (2.85)
as many states as PE.

Another important difference between PCPE and PE is that
since the former allows computing several candidate residual pro-

grams, we need to evaluate them in order to choose which is the
best of them. The lower half of Table 4 shows the number of con-
figurations which need to be evaluated, i.e., the number of times we
need to compute or approximate fitness values. In the case of the
three leftmost algorithms, only final configurations are evaluated,
as a post-step of the PCPE algorithm. Thus, for this part of the ta-



ble, the number of evaluations actually coincides with the number
of solutions generated by PCPE. On the other hand, for the next
three columns, in which BnB is applied, only one solution is ob-
tained. However, the reported evaluations are actually performed
during the analysis phase of the PCPE algorithm, sometimes on
final configurations, sometimes on incomplete configurations with
the aim of pruning them.

Again, the results shown in the table indicate that both heuristic
pruning and BnB require an acceptable number of evaluations. One
important point is that the number of evaluations performed when
using BnB can sometimes be larger than when it is not. This is
because in the case of BnB, also intermediate configurations can
be evaluated. If little pruning is achieved, then more evaluations
are needed. However, this will often be compensated by pruning,
which reduces the number of configurations to be explored and of
final solutions to be evaluated.

All in all, we believe that the results shown in Table 4 are indeed
quite promising and show that the search space and the number of
evaluations required by PCPE are manageable, when the proposed
pruning techniques are applied.

7.3 Time Cost of PCPE

Tables 5 and 6 show the time required by PCPE. All figures are
in milliseconds. In order to have a clear understanding on how the
total time required by PCPE, shown in Table 6, is used, we have
separated in Table 5 such total time into different categories: i.e.,
analysis, code generation, and evaluation of the configurations. By
analysis we mean the time required to explore the search space,
code generation refers to the time required to generate code for the
final configurations. Finally, evaluation is the time needed to apply
the fitness function to the required configurations. Whereas in the
three leftmost algorithms these three phases take place sequentially
in the order mentioned, in BnB-based PCPE these stages are inter-
leaved. However, we discriminate the time spent in evaluating both
intermediate and final configurations during analysis, and show this
information in the evaluation part of the table. Note that code gen-
eration is also included in the evaluation part since it is required to
generate code prior to evaluating a configuration. As a result, the
generation phase has time zero for all BnB-based algorithms, since
all candidates are generated during the analysis phase.

When considering analysis and generation times, especially
when both predicate-consistency pruning and BnB are used, PCPE
performs around 4 times slower than PE. However, when com-
pared to PE, PCPE requires an additional phase to select the best
candidate. The time required for evaluating candidates can vary a
great deal from some fitness functions to others. In particular, if the
fitness function measures time-efficiency, then in order to obtain
accurate results several runs have to be performed. This is the case
with the fitness function used in our experiments. When evaluation
time is taken into account, PCPE is an order or magnitude slower
than PE. This however, can be improved in several ways. Also,
in many situations it can be argued that the cost of partial evalua-
tion is not crucial since it takes place at compile-time. In fact, we
believe that there can be a good number of cases where it is actu-
ally worthwhile to have the possibility of using a more powerful,
though more expensive (but also completely automatic) framework
for optimizing relevant code. This includes code which is going to
be executed very often or code which has to be executed on devices
with limited computing capabilities, as is the case in embedded
systems.

8. Conclusions

In this work we have presented a series of improvements over the
all-solutions algorithm for poly-controlled partial evaluation. Some
of the improvements are based on heuristics, with the advantage of

being easy to implement and the disadvantage of not guaranteeing
that an optimal solution is found. However, our experimental results
show that such heuristics work pretty well in practice since they
reduce the search space significantly and the resulting fitness value
is almost as high as in the all-solutions algorithm. Besides, we have
presented a branch and bound-based pruning technique, which is
more complex than the previous ones, but with the advantages
of achieving solutions which are guaranteed to be optimal, and
consuming much less memory than the rest of approaches, which
is PCPE’s main bottleneck. The experimental results show that this
technique is able to reduce the search space significantly and by
using an appropriate depth-level the time required for the combined
algorithm is reasonable. Interestingly, the branch and bound-based
pruning can be further enhanced by combining it with the heuristics
presented in this work.

Experimental results show that in many cases PCPE outper-
forms traditional PE for the balance fitness function, i.e., PCPE
is able to generate smaller and faster programs, which can be of in-
terest in the case of pervasive computing, for instance. In summary,
we believe that by using the optimized algorithms proposed in this
work, PCPE is a relevant technique in practice, since it allows ob-
taining important improvements at a reasonable cost.
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