
18
th
 International Conference on Production Research

DESIGN PATTERNS FOR MANAGING PRODUCT LIFECYCLE INFORMATION

K. Främling, J. Holmström
Helsinki University of Technology, PL5500, FI-02015 TKK, Finland

Abstract
As the number of companies participating in the manufacturing of products increases, the challenges on
managing the product life cycle also increase. A major challenge is how to manage product-related
information when it is spread on computer systems of multiple companies. It is possible to perform this task
in many ways ranging from centralised "portal" systems to distributed peer-to-peer (P2P) architectures. This
paper attempts to point out the advantages and drawbacks of these different approaches for managing of
product information through the products' whole lifecycle. Design Patterns from object-oriented
programming are presented as a potential model for organizing product information and operations
performed on it.

Keywords:
Product lifecycle management, Product agent, Peer-to-peer (P2P), Object-oriented programming, Design
Pattern

1 INTRODUCTION

The increasing technical sophistication of manufactured
products is a challenge for managing their design,
manufacturing, maintenance and disposal, i.e. the
product’s lifecycle. Availability of timely and accurate
product information is becoming a necessity during the
entire lifecycle. At the same time enterprises become
increasingly global and networked (the “virtual enterprise”),
which makes it even more difficult to handle product
information. A supplementary challenge comes from
customized products where every product item has its
item-specific information. When considering the entire
lifecycle, practically all products are customized products
due to different conditions of use, maintenance, spare
parts etc.

A product-centric approach has been seen as a solution to
handling product information during the product’s entire
lifecycle [1] [2]. The product-centric approach associates a
“virtual counterpart” or product agent with every product
item. The connection between the product item and the
product agent is maintained by a unique identifier that
(directly or indirectly) serves as a reference to the network
address of the product agent. A major advantage of the
product agent concept is that product information no longer
needs to be transmitted and copied between companies
that handle the product. As long as the identifier on the
product item serves as a reference to the product agent, it
is irrelevant where the product agent is hosted. The
product agent may also be distributed over several
computers.

In this paper, we argue that a reference between the
product item and the product agent is not sufficient for
developing universal product lifecycle management (PLM)
information systems. Many modern products contain an
embedded computer that is capable of storing data and
processing it autonomously. For such products the entire
product agent may be embedded into the product item. In
practice, it is application-dependent what parts of the
product agent are embedded in the product itself and what
parts are located in a backend system. A bottle of mineral
water will have no embedded product agent parts, while a

car will have embedded product agent parts for on-board
control and diagnosis and backend product agent parts at
least for design and manufacturing data. A paper factory
might embed the entire product agent.

In order to handle all these application scenarios in a
uniform way, we need to disconnect the representation of
how the product agent is organized from organisational
limits and the physical hardware where it resides. In order
to achieve this goal we propose using a general object-
oriented framework, where product agents can be
decomposed into general-purpose objects that are
connected by organisation- and hardware-independent
object references. In addition to making an abstraction of
the underlying hardware, this kind of representation makes
it possible to apply well-known methods from object-
oriented programming (OOP) such as design patterns and
frameworks.

The structure of this paper is as follows: section 2 gives an
overview of existing or evolving standards related to
product item identification and middleware. Section 3
describes how design patterns from the domain of object-
oriented programming could be used for creating
adaptable product information systems that are
independent of the underlying hardware architecture.
Section 4 gives an overview of existing standards and
technology for secure middleware communication.
Conclusions of the paper are presented in section 5.

2 OBJECT REFERENCES AND MIDDLEWARE FOR
HANDLING PRODUCT ITEM INFORMATION

The location of most product items changes at least during
some phase of their lifecycle. Therefore they tend to have
only intermittent network access (typically through
Internet). When they have network access, they may need
to communicate with the non-embedded parts of the
product agent, for instance for accessing additional
information or checking if the backend system has
detected a need for maintenance. The minimal
requirement for establishing this connection is that the
embedded part has to store some kind of reference to the
backend system. The communication between the

embedded part and the backend part of the product agent
is performed using so-called middleware software that
takes care of transmitting messages over the network.

The main requirement for an acceptable reference is that it
should be globally unique. In order to be practically usable,
the reference should also be easy to transform into a
network address without increasing network overhead. The
easiest way to accomplish this is to embed the internet
address of the backend product agent in the product item
itself. In the Dialog approach [3] [4] an ID@URI notation
has been used, where the ID part identifies the product
item at the URI (Uniform Resource Identifier [5]). The
uniqueness of the URI part is guaranteed by the DNS
(Domain Name System) infrastructure [6] [7] while the ID
part should be unique for that URI. At the minimal level
the ID@URI reference can be embedded as a barcode or
using a passive RFID (Radio Frequency Identification) tag.
In that case the URI should preferably remain the same
during the product’s entire lifecycle because changing it
requires physical access to the product item itself. For
more intelligent devices, e.g. smart cards, cars, etc., this
should not usually be an issue because they can update
the URI themselves if needed. It is also possible to have a
list of alternative ID@URI references if uninterrupted
access to the backend system is essential. Since the URI
part uses existing standards and since there exists many
possible standards for the ID part, this approach does not
need any new identifier standards. Middleware software
was implemented and used in two industrial pilots for
tracking shipments in project deliveries [8].

Another approach for creating references between product
items and the product agent is the Electronic Product Code
(EPC) [9]. An EPC makes it possible to access the URI
part through the Object Name Service (ONS) [10]. The
EPC is a compact coding that would typically use 96 (or
64) bits for identifying the product item. These bits are
converted into an ONS-compatible query that makes it
possible to map the EPC into one (or possibly more) URI
addresses where information about the product is
available. As for the ID@URI notation, the URI part can
indicate the format of the information as well as the
communication protocol that is used for retrieving it. The
main advantages of EPC/ONS are the compact coding of
the EPC and the possibility to modify the URI associated
with a product item without having physical access to the
product item. The major challenge of the EPC/ONS
approach is that many of the related standards are still
working drafts [11]. Other challenges are that the EPC
code still needs to be adopted by commercial actors
despite a strong industrial support and that the ONS
infrastructure needs to be created in order to be globally
usable. Because ONS is an extension of the DNS,
companies who want to use the EPC/ONS system will
need to register as information providers with an
administrating authority.

A different approach is offered by so-called peer-to-peer
(P2P) systems that are mainly known for file sharing of
music and movies. However, P2P also has many desirable
features for identifying nodes in the network as well as
individual items. New nodes and items can be dynamically
added at any time and are immediately integrated into the
network. The network protocol usually takes care of
assigning unique identifiers both for nodes and items
automatically. Therefore there is no need for an external
authority to manage codes as in the EPC approach. Other
advantages of P2P solutions is that all nodes can maintain
complete control of what data is distributed to whom (even
though most file sharing applications do not check or
restrict who gets access), good fault-tolerance (breakdown
of one node affects the whole network very little) and

possibilities to do load-balancing by using nodes that are
“close” (in the network communication sense). The World
Wide Article Information (WWAI) protocol [12] developed
by the company Stockway [13] is partially based on P2P
principles [14]. Existing company codes as issued by
EAN/UCC or other standardisation bodies identify nodes of
the network. When a node has obtained a certificate from
a certification authority it can autonomously issue
identifiers for individual items (e.g. product items). New
nodes are dynamically discovered when appropriate. The
WWAI protocol defines messages that enable nodes to
exchange any kind of information and link any kinds of
objects to each other by named relations (more about
named relations in the next section). From a P2P point of
view, the main criticism against WWAI is that it requires
certificates issued by a certification authority in a similar
way as EPC/ONS in order to become an information
provider in the network. It seems like this is motivated by
the need to find a compromise between existing coding
standards and ensuring the uniqueness of the codes.

In addition to these three approaches, emerging web
service discovery standards and infrastructure [15] [16]
might be a source of entirely different approaches. For
instance, a product item could launch a query for its own
product agent service at its current location and obtain it
dynamically. This is one of the reasons why data
structures and algorithms for handling product information
should be designed in a way that is not dependent on any
particular identification standard or middleware
architecture. In the next section the well-known design
pattern concept from OOP is presented as a potential
solution to reduce the dependency between how product
information is represented and the underlying
hardware/software platforms.

3 DATA STRUCTURES AND ALGORITHMS FOR
PRODUCT LIFECYCLE MANAGEMENT

In software engineering, the organization of data structures
and the algorithms that operate on them is a thoroughly
studied area. This wealth of existing knowledge and
experience should also be used for managing product
information. The main challenge in managing product
information is that product information is located in
computer systems of different companies and
organizations, whereas software engineering methods are
initially conceived for computer programs running on a
single computer (or at least inside a company network).

In this section we will study how standard data structures
and algorithms could be used in the context of product
information management. Especially the concept of Design
Patterns will be studied. A design pattern in OOP is a
“well-known” solution model to a given design task that has
been tested and documented by experienced
programmers [17]. The goals of a design pattern are
typically related to reducing redesign and improving
adaptability in changing circumstances. Two main
principles for improving adaptability are 1) prefer object
references rather than hard-coded class structures and 2)
program to an interface, not an implementation [17, p. 18].
The reference types presented in the previous section can
be used when referring to objects on remote computers,
thereby making it easy to turn a local object into a remote
one. The same is true for using interfaces instead of direct
implementations; if the interface is identical, the only
difference between communicating with a local object and
a remote object is that middleware software is needed in
the case of a remote object.

18
th
 International Conference on Production Research

3.1 Data structures

One of the most basic design patterns is called “Observer”.
The intent of the “Observer” design pattern is to define
one-to-many dependencies between objects so that when
one object (the “Observable”) changes state, all its
dependents (the “Observers”) are notified and updated
automatically. The “Observable” interface of the pattern
defines methods for adding and removing observers while
the “Observer” interface defines at least one method for
receiving state update messages. One of the most
common uses of this design pattern is in graphical user
interfaces (GUI), where user actions on one GUI element
also affect other GUI elements. Standard GUI classes of
the Java programming language are an example of this,
where the observer pattern is used in numerous “listener”
interfaces.

In the PLM context, tracking of shipments is a typical
implementation of the Observer pattern. In shipment
tracking, product agents of different companies can
express their interest to receive location updates from the
observed shipment’s product agent. Figure 1 illustrates the
propagation of a LocationUpdate event to two observers
using ID@URI references. Product agents at “comp2.com”
and “comp3.com” have added themselves as observers for
location updates of the shipment ID1@comp1.com (the
“Observable” in this case). The identifiers ID2 and ID3 may
be the same as ID1 or different. Examples of other PLM
application scenarios where the Observer pattern is
applicable are for transmitting sensor measurements or
breakdown messages of a machine to different product
agents. The Observer pattern is in fact a general
mechanism for performing synchronized updates of most
kinds of information.

The Observer pattern is applicable for communicating
state changes of a single product item. In practice, most
products are assembled from parts that come from
different companies. The different subassemblies typically
form a hierarchical structure with “part-of” relations
between the subassemblies. This situation corresponds to
one of the most important design patterns, the “Composite”
pattern. The intent of the Composite pattern is to compose
objects into tree structures to represent part-whole
hierarchies, where individual objects and compositions can
be treated uniformly. One of the most common uses of this
design pattern is in drawing programs, where graphical
objects may be grouped together to form new objects,
which can then be grouped together with others etc. A set
of operations is then applicable both to groups and objects,
e.g. moving a group of graphical objects in a drawing
program also moves all the individual objects. This pattern
defines methods for adding and removing “part-of”
relations and for navigating through the Composite
hierarchy.

Figure 1: Updating location of a shipment to two Observers
in different companies.

Figure 2: Illustration of Composite hierarchy. Only “parent”
references are shown here even though the Composite

pattern recommends using bi-directional references, i.e. a
list of “children”.

Figure 3: Beginning of sequence for fetching product
information for the Composite object in Figure 2.

In the PLM context, information about subassemblies
made by different companies need to be linked together.
Using object references (e.g. ID@URI) as described in
section 2 makes it possible to avoid copying the product
information between all the companies in the supply chain.
Figure 2 shows an example of a small “Composite” object,
where the “parent” references are in ID@URI notation.
Figure 3 illustrates how the operation “GetInfo” is
performed for the Composite object in Figure 2. The
procedure for fetching product information of composite
products is an example of an algorithm that can be
programmed in many ways. Another algorithm could make
it possible to fetch product information from any node in
the hierarchy by using “parent” references instead of using
lists of children. Structural patterns such as Composite are
designed in a way that makes it easy for different
algorithms to use them in various ways. Another example
of the use of Composite is to define an operation for
accessing sensor data or diagnostics information from all
subassemblies of the Composite object, independently of
the actual type of the subassembly. This is the subject of
the next section, where we will use the special case of fault
detection and preventive maintenance as an example.

3.2 Algorithms

Algorithms take a set of input data, perform operations with
it and produce some end result. In the previous section,
the algorithm for fetching product information for composite
products used the Composite data structure and the
methods defined for it with the goal to get a description of
the entire Composite object. There are many well-known

algorithms that perform similar tasks, e.g. Internet search
engines that go through the network of HTML links (i.e.
references) of web pages on the Internet in order to
produce an efficient search database. Another example is
different verifier algorithms that are used in CAD systems
for construction planning to verify the validity of the design
(e.g. resistance, non-collision etc.).

Similar needs also occur in various stages of the product
lifecycle. We will here consider the “middle-of-life” case of
fault detection and preventive maintenance. We assume
that we have a piece of equipment that contains several
different subassemblies. A modern car is a good example
if such an equipment; it is composed of subassemblies
made by a great number of companies. A car also has a
rather powerful embedded computer that is capable of
some fault detection. Real fault diagnosis still requires
using an external diagnosis computer that runs a test
algorithm to try to identify the fault and how it could be
corrected. The embedded computer has a data structure
that gives a partial information model of the parts it is
made of and their connections. The diagnosis computer
has a similar information model that should be identical to
the embedded one for the common parts but more
complete. Unfortunately most such information models are
constructor-dependent and programmed in an
implementation-specific way, i.e. in a way that may differ
even between different models made by the same
constructor. This means that it is usually possible only for
the constructor of the vehicle to program diagnosis tools
for them (this may be desired by many constructors but
that is not the issue here). If the information model of the
car would use patterns such as Composite it would be
easier to create generic diagnosis tools.

One of the basic patterns presented in [17] suits this kind
of situation: the “Visitor” pattern. The Visitor pattern makes
it possible to define new operations without changing the
object structure itself. This means that, in the same way as
different algorithms can be used for searching the Internet,
different algorithms could be used for fault diagnosis of a
car without modifying the information model of the car.
Visitor also makes it easy to replace only parts of an
operation, e.g. replacing the diagnosis part of the fuel
injection system without modifying the rest of the diagnosis
system. It is easy to imagine other PLM scenarios with
similar needs, e.g. accessing dismantling information or
identifying all subassemblies made by a given company.

Another example of adaptability and handling changing
circumstances is if the embedded car computer is replaced
with a much more powerful one, then how could we easily
transfer new functionality from the diagnosis computer to
the embedded one? And is it possible to use the same
data structures and algorithms in a generic way both for
embedded systems with very little memory and computing
power and for more powerful embedded systems? In this
and the previous subsections we suggested using design
patterns as a partial solution. The next section attempts to
give the rest of the solution by disconnecting the data
structures and algorithms from the hardware. This is
possible by using universal object references presented in
section 2 together with middleware that uses the same
design pattern interfaces as the rest of the system.

3.3 Where is the middleware?

A general definition of middleware is that it is software that
connects two otherwise separate applications. In this
paper we use middleware as a tool to connect software
components together in such a way that it becomes more
or less transparent whether the components are located on
the same physical computer or on another computer.

Product XYZW

Sub-assembly X Sub-assembly Y

Sub-assembly Z Sub-assembly W

Small or no embedded computing power (e.g.
RFID tag, barcode), fetch all information remotely

Embedded computing power (e.g. on-board
computer), some information local, some remote

Figure 4: Illustration of “Composite” product items with
different embedded computing power. The product

structure remains the same but the location of middleware
interfaces (indicated by dotted ovals) change.

Figure 4 illustrates why it is important for general-purpose
management of product information to make the physical
location of software components (and information) as
transparent as possible. If there is no embedded
computing power in product “XYZW” and subassembly “Z”
only has an RFID tag, then a middleware interface has to
be used in order to access information about subassembly
“Z”. On the other hand, if product “XYZW” has sufficient
embedded computing power, then it could host its own
product agent (or at least parts of it) as well as product
agents of subassemblies “X” and “Z” locally, so the
middleware interface would rather be at the product level.
The point of this illustration is that the product, the product
information and the data structure remain the same, only
their location changes (i.e. the computer where they
reside).

One important difference between local and remote object
references is that local references are typically just
memory addresses in the same computer, accessed
through a program variable. This is not possible for remote
object references. Remote object references (e.g.
ID@URI, EPC, WWAI, …) need to be persistent even
when the software that has created them is not running.
Therefore they need to be stored in databases that are
managed by the middleware software. Object relations in
such as those used in Observer and Composite are
characterized by a name (e.g. “part-of”, “observes” etc.)
and references to the two objects. Such relations can be
stored in three fields of a database table as
“relation_name;subjectReference:ObjectReference”. This
is how Observer and Composite relations are implemented
in the Dialog platform [18]. The WWAI protocol also
supports such named relations.

4 SECURITY

The security considerations associated with product
information depend largely on the application area. For
instance user instructions of a product may be available
without any validation of the product’s identity or the
identity of the person asking for the information. More
restrictive authentication mechanisms are needed when
updating product information in the system. Update of the
product’s maintenance records is an example of a situation
where both the identity of the physical item and the person
doing the update should be validated.

Several technologies for implementing the desired level of
security exist. It is possible to authenticate and verify the

18
th
 International Conference on Production Research

identity of different parties and to encrypt the data being
transmitted using standard Secure Sockets Layer (SSL)
communication [19]. SSL uses X509 certificates [20] for
verifying that all parties are the ones they pretend to be
and to initiate a secured communication. The PGP (Pretty
Good Privacy [21]) protocol is another alternative. Finally,
it is possible to use two-key validation and secure
communication directly as explained in [22] (X509 and
PGP also use these standards). These are well-known
standards that can be implemented by any middleware
software.

The main challenge related to security is the management
(storage, diffusion) of certificates or keys in a safe way.
The WWAI protocol handles certificate management in an
elegant way. When a node (a computer) in the network
contacts another node for the first time, they both
exchange their public keys. From then on they can validate
that they are indeed communicating with the same node
because only the original node can decrypt messages
encrypted with its own public key. When it comes to
validating the identity of product items, it becomes difficult
for low-range systems such as passive RFID tags. The
reason for this is that one encryption key may need to be
stored with the physical item itself, which increases the
need for storage and processing capacity, therefore also
increasing the cost of RFID tags. As a conclusion, security
issues can be solved by existing standards but when using
low-range systems there is a decision to take between the
level of security and the cost for implementing it.

5 CONCLUSIONS

Information systems for product lifecycle management are
particularly challenging due to the great number of actors
that use or update the product information during the
product’s lifetime. Focusing product information around the
product agent concept instead of trying to push it from one
actor to the other is a partial solution. The location of the
product agent is irrelevant as long as we have a way of
finding a network reference to it. However, the product
agent itself is not necessarily located in one single
computer system. In the case of composite products the
product information may need to be fetched from many
product agents that are hosted on different computer
systems. Parts of the product agent(s) may also be
embedded into the product item(s) itself.

In this paper we have proposed that the representation of
product information should be disconnected from
organizational limits and the physical hardware. Treating
pieces of product information as objects and object
references as in object-oriented programming gives
access to well known programming concepts called design
patterns. Design patterns are generally applicable
solutions to many situations. In this paper we have
concentrated on the representation of product information
for composite products and fault diagnosis algorithms,
where the appropriate design patterns offer a good
framework for data structures and method interfaces.
Finally, we have studied how to disconnect the
representation of product information from the physical
hardware using these interfaces and various middleware
systems.

Even though parts of the concepts presented here have
been implemented and tested in an industrial context, most
of them still need to be tested and proved operational in
practice. What works well in stand-alone programs is not
necessarily directly applicable in a multi-company
industrial context. Testing this is a major subject of
ongoing and future work. Another subject of future work is

to identify useful patterns for other product lifecycle
management tasks.

6 REFERENCES

[1] Kärkkäinen, M., Holmström, J., Främling, K., Artto,
K., 2003, Intelligent products - a step towards a more
effective project delivery chain, Computers in
Industry, Vol. 50, No. 2, 141-151.

[2] Främling, K., Kärkkäinen, M., Ala-Risku, T.,
Holmström, J., 2004, Managing Product Information
in Supplier Networks by Object Oriented
Programming Concepts, Proc. of IMS Int. Forum,
Cernobbio, Italy, 17-19 May 2004, 1424-1431.

[3] Främling, K., 2002, Tracking of material flow by an
Internet-based product data management system (in
Finnish: Tavaravirran seuranta osana Internet-
pohjaista tuotetiedon hallintaa), Tieke EDISTY
magazine, No. 1, 2002 (Tieke: Finnish Information
Society Development Centre, Finland).

[4] Huvio, E., Grönvall, J., Främling, K., 2002, Tracking
and tracing parcels using a distributed computing
approach, Proc. of 14th Annual Conference for
Nordic Researchers in Logistics (NOFOMA'2002),
Trondheim, Norway, 12-14 June 2002, 29-43.

[5] Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter,
L., 1998, Uniform Resource Identifiers (URI): Generic
Syntax, available online (March 5th 2004):
"http://www.ietf.org/rfc/rfc2396.txt"

[6] Mockapetris, P., 1987, RFC 1034: Domain Names –
Concepts and Facilities, available online (March 22

nd

2005): http://www.ietf.org/rfc/rfc1034.txt

[7] Mockapetris, P., 1987, RFC 1035: Domain Names –
Implementation and Specification, available online
(March 22

nd
 2005): http://www.ietf.org/rfc/rfc1035.txt

[8] Kärkkäinen, M., Ala-Risku, T., Främling, K, 2004,
Efficient Tracking for Short-Term Multi-Company
Networks, International Journal of Physical
Distribution and Logistics Management, Vol. 34, No.
7, 545-564.

[9] Brock, D.L., 2001, The Electronic Product Code
(EPC) - A Naming Scheme for Physical Objects, MIT
Auto-ID Center White Paper, available online
(December 13

th
, 2002):

http://www.autoidcenter.org/research/MIT-AUTOID-
WH-002.pdf

[10] Auto-ID center, 2003, Auto-ID Object Name Service
(ONS) 1.0, available online (March 5

th
 2004):

http://www.epcglobalinc.org/standards_technology/S
ecure/v1.0/WD-ons-1.0-20030930.pdf

[11] EPCglobal Inc., 2005, EPCglobal home pages,
available online (March 22

nd
 2005):

http://www.epcglobalinc.org/

[12] WWAI, 2005, World Wide Article Information
protocol, available online (March 24

th
 2005):

http://www.wwai.org/

[13] Stockway, 2005, Stockway Oy home pages, available
online (March 24

th
, 2005): http://www.stockway.fi/

[14] RFID Journal, 2003, Peer-to-Peer: RFID's Killer
App?, available online (March 29

th
 2005):

http://www.rfidjournal.com/article/articleview/340/1/44

[15] OASIS Open, 2005, UDDI - Universal Description,
Discovery and Integration, available online (March
29

th
 2005): http://www.uddi.org/

[16] OASIS Open, 2005, ebXML - Electronic Business
using eXtensible Markup Language, available online
(March 29

th
 2005): http://www.ebxml.org/

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
1995, Design Patterns: elements of reusable object-
oriented software, Addison-Wesley, Reading,
Massachusetts.

[18] Dialog, 2001, Distributed information architectures for
collaborative logistics, available online (March 29

th

2005): http://dialog.hut.fi/

[19] Netscape, 1996, SSL 3.0 Specification, available
online (December 2

nd
, 2003):

http://wp.netscape.com/eng/ssl3/index.html

[20] CCITT, 1988, Recommendation X.509 - The
Directory-Authentication framework, available online
(March 22

nd
 2005):

http://www.nist.fss.ru/hr/doc/mstd/itu/x509.htm

[21] J. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.,
1998, RFC 2440: OpenPGP Message Format,
Available online (March 23

rd
 2005):

http://www.ietf.org/rfc/rfc2440.txt

[22] NIST, 2002, Digital Signature Standard (DSS) and
Secure Hash Standard (SHS), National Institute of
Standards and Technology, available online
(December 13

th
, 2002):

http://csrc.nist.gov/cryptval/dss.htm

