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Abstract

We consider the problem of bounding the maximum possible number fk,d(n) of k-
simplices that are spanned by a set of n points in R

d and are similar to a given simplex.
We first show that f2,3(n) = O(n13/6), and then tackle the general case, and show
that fd−2,d(n) = O(nd−8/5) and1 fd−1,d(n) = O∗(nd−72/55), for any d. Our technique
extends to derive bounds for other values of k and d, and we illustrate this by showing
that f2,5(n) = O(n8/3).

1 Introduction

Let P be a set of n points in R
d, and let ∆ be a prescribed k-dimensional simplex (k-simplex,

for short), for some 2 ≤ k ≤ d− 1. Let f(P,∆) denote the number of k-simplices spanned
by P that are similar to ∆. Set

fk,d(n) = max f(P,∆),

where the maximum is taken over all sets P of n points in R
d and over all k-simplices

∆ in R
d. We wish to obtain sharp bounds on fk,d(n). It suffices to consider cases with

2 ≤ k ≤ d− 1, since, trivially, f0,d(n) = n, f1,d(n) =
(n
2

)

, and fd,d(n) ≤ 2fd−1,d(n).

The problem of obtaining sharp bounds on fk,d(n) is motivated by exact pattern match-

ing: We are given a set P of n points in R
d and a “pattern set” Q of m ≤ n points (in most

applications m is much smaller than n; let us assume m ≥ d+1), and we wish to determine
whether P contains a similar copy of Q, under some allowed class of transformations, or,
alternatively, to enumerate all such copies, See [12] for a comprehensive review of this and
related problems. A commonly used approach to this problem is to take a d-simplex ∆
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spanned by some points of Q, and find all congruent copies of ∆ that are spanned by points
of P . For each such copy ∆′, take the similarity transformation(s) that map ∆ to ∆′, and
check whether all the other points of Q map to points of P under that transformation.
The efficiency of such an algorithm depends on the number of similar copies of ∆ in P .
Using this approach for congruences, de Rezende and Lee [19] developed an O(mnd)-time
algorithm to determine whether E contains a congruent copy of P . For d = 3, Brass [10]
developed an O(mn7/4β(n) log n+n11/7+ε)-time algorithm, which improves an earlier result
by Boxer [9]. See also [8, 11] for related work. To recap, for applications of this kind, the
main quantity of interest is fd−1,d(n).

In the recent monograph [12, pp. 265–266], Brass et al. review the known bounds on
fk,d(n) and state various conjectures and open problems. There are practically no known
upper bounds, especially in d ≥ 3 dimensions, with the sole exception of a bound of O(n2.2)
on f2,3(n) (and f3,3(n)), given by Akutsu et al. [5].

The case of congruent simplices has also been studied; see Agarwal and Sharir [4] and
references therein. Denote by gk,d(n) the maximum number of k-simplices that are spanned
by a set of n points in R

d and are congruent to a given simplex ∆. Agarwal and Sharir
have shown that g2,3(n) = O∗(n5/3) (and Ω(n4/3)), g2,4(n) = O∗(n2) (and Ω(n2)), g2,5(n) =
Θ(n7/3), and g3,4(n) = O∗(n9/4). A simple construction, attributed to Lenz [16], shows that
gk,d(n) = Ω(nd/2), for even values of d and for sufficiently large k. Erdős and Purdy [15]
conjectured that this construction is asymptotically best possible, namely, that gk,d(n) =
O(nd/2). Agarwal and Sharir also derive a recurrence for gk,d(n), for general values of k
and d. The solution of this recurrence is O(nζ(d,k)+ε), where ζ(d, k) is a rather complicated
function of d and k. They show that ζ(d, k) ≤ d/2 for d ≤ 7 and k ≤ d− 2, and conjecture
that ζ(d, k) ≤ d/2 for all d and k ≤ d− 2, in accordance with the Erdős-Purdy conjecture
just mentioned.

Returning to the case of similar simplices, we note that the only known lower bounds for
fk,d(n) are the same bounds for gd,d(n), namely Ω(nd/2) for d ≥ 4 even, and Ω(nd/2−1/6),
for d ≥ 3 odd; see also [1, 2, 4].

Our results. We first obtain the bound O(n13/6) for f2,3(n), improving upon the bound
of Akutsu et al. [5]. We note that Brass conjectures that f3,3(n) = o(n2) [12, p. 265], but
f2,3(n) = Ω(n2) (in fact, f2,2(n) is already Θ(n2)).

We then tackle the general case, obtaining the first nontrivial bounds for fd−2,d(n)
and fd−1,d(n) (and thus also for fd,d(n)); the trivial bounds are, respectively, fd−2,d(n) =
O(nd−1) and fd−1,d(n) = O(nd)). Specifically, we show:

fd−2,d(n) = O(nd−8/5) and fd−1,d(n) = O∗(nd−72/55).

The above results imply that f2,4(n) = O(n12/5). Finally, we prove that f2,5(n) = O(n8/3).
Note that this is the last interesting case for triangles because, by Lenz’ construction,
f2,6(n) = g2,6(n) = Ω(n3).

Needless to say, none of these bounds is known (nor conjectured) to be tight. Our
techniques are strongly based on bounds on the number of incidences between points and
spheres (or circles). Considerable progress has been made on these problems in recent years;
see [3, 6, 7, 17] and also [18] for a comprehensive survey of these and related results. We
also use the recent bound of Elekes and Tóth [14] on the number of so-called rich non-
degenerate hyperplanes. In this regard, our work can be regarded as an application of
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the recent developments in incidence problems, which raises several interesting basic open
problems in this area, as discussed at the end of the paper.

2 Similar Triangles in R
3

In this section we prove an improved bound on f2,3(n). Let ∆0 be a fixed triangle, and
let S(∆0) denote the set of all triangles spanned by P and similar to ∆0. As a warm-up
exercise, we first derive a simple upper bound that is weaker, and then prove a tighter
bound whose proof is considerably more involved.

2.1 A simpler and weaker bound

For each pair a, b of points of P , any triangle abc in S(∆0), with c ∈ P \ {a, b}, has the
property that c lies on a circle γa,b, which is orthogonal to ab and whose center lies at a
fixed point on ab. Moreover, given a circle γ, there exist at most two (unordered) pairs
a, b, such that γ = γa,b (if there are two pairs, one is the reflection of the other through the
center of γ). Hence, ignoring the multiplicity factor 2, |S(∆0)| is at most the number of
incidences between the points of P and the (at most)

(

n
2

)

distinct circles γa,b.

As shown by Aronov et al. [6] (see also Agarwal et al. [3], and Marcus and Tardos [17]),
the number of incidences between n points and c distinct circles in R

3 (or, for that matter,
in any dimension) is

O(n2/3c2/3 + n6/11c9/11 log2/11(n3/c) + n + c). (1)

Substituting c = O(n2), the second term dominates, and we obtain

f2,3(n) = O(n24/11 log2/11 n) = O∗(n24/11) = O(n2.182).

We remark that a similar approach was taken by Akutsu et al. [5], except that they used
a weaker bound on point-circle incidences (albeit the best known at that time). Finally,
taking ∆0 to be an isosceles right triangle and P to be the set of vertices of a 2-dimensional
grid, it is easy to verify that f2,2(n) = Θ(n2), which implies that f2,d(n) = Ω(n2) for any
2 ≤ d ≤ 5 (as already noted, f2,d(n) = Θ(n3) for d ≥ 6).

Remark: A consequence of (1) is the following useful variant, which will be used throughout
the paper: The number of circles that contain at least k points of P is O∗(n3/k11/2) +
O(n2/k3 + n/k), and the number of incidences between the points of P and these circles is
O∗(n3/k9/2) + O(n2/k2 + n).

2.2 An improved bound

To simplify the presentation, let us assume2 that ∆0 is not isosceles, so its edges have
distinct lengths. We denote by S(∆0) the set of all triangles similar to ∆0 and spanned by
P . For each such triangle ∆abc, we can order its vertices in a unique order, say a, b, c, so
that a is incident to the two longest edges of the triangle, and b is the other endpoint of

2The proof is unaffected by this assumption, but the presentation is simplified.
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the longest edge. We call a the main vertex of the triangle. Denote the sphere centered at
a and containing b by σ = σa,b, and the sphere centered at a and containing c by τ = τa,c.
Let γ = γa,b be the circle that lies on τ and contains all the points c′ such that ∆abc′ ∼ ∆0.
Clearly, c ∈ γ (γ is the same circle constructed in the preceding proof).

Let Σ (resp., T ) denote the set of all spheres σa,b (resp., τa,c) obtained from triangles
∆abc ∈ S(∆0). Define a relation Π between Σ and T , which contains all pairs (σa,b, τa,c) of
spheres for which ∆abc ∈ S(∆0). By construction, each sphere σ is associated with a unique
sphere τ = Π(σ). We denote by Γ the set of all circles γa,b (note that the pair (a, b) uniquely
determines γa,b). In addition, we use the notation Σa, Ta and Πa to denote, respectively,
the subsets of Σ, T , and Π that are generated by triangles with a as the main vertex. For
an integer i ≤ n, let Π≤i ⊆ Π denote the set of pairs of spheres (σ, τ) such that either σ or
τ contains at most i points of P , and let Π>i = Π \ Π≤i denote those pairs in which each
of the spheres contains more than i points. Define

Σ≤i = {σ ∈ Σ | (σ, Π(σ)) ∈ Π≤i}

and Σ>i = Σ \Σ≤i. Similarly define T≤i and T>i.

The discussion above implies that each triangle ∆abc ∈ S(∆0) corresponds to an inci-
dence between the point c and the circle γa,b. As already noted, the same circle γa,b can
arise for at most two pairs (a, b). Hence we have

1

2
|S(∆0)| ≤ I(P,Γ) ≤ |S(∆0)|,

where I(P,Γ) is the number of incidences between the points of P and the circles of Γ. It
therefore suffices to bound I(P,Γ).

Fix a threshold parameter k. We call a pair in Π≤k light and a pair in Π>k heavy.
We claissfy the heavy pairs into non-degenerate and degenerate pairs, as follows: A heavy
sphere σ (i.e., a sphere containing more than k points) is degenerate if there exists a circle
γ ⊂ σ (not necessarily from the family Γ) such that |γ ∩P | ≥ β|σ∩P |, for some sufficiently
small constant β > 0; otherwise it is non-degenerate. A pair in Π>k is called non-degenerate

if both the spheres in the pair are non-degenerate, and degenerate otherwise.

We bound separately the number of incidences between the points of P and the circles
determined by each of these three types of pairs. Let IL (resp., IN , ID) denote the number
of incidences between P and the circles induced by light (resp., non-degenerate, degenerate)
pairs. Then I(P,Γ) = IL + IN + ID.

Handling light pairs. Let a ∈ P and put

Π′
a = Πa ∩Π≤k, Σ′

a = Σa ∩ Σ≤k, and T ′
a = Ta ∩ T≤k.

For a sphere pair (σ, τ) ∈ Π′
a, put

Pσ = P ∩ σ, Pτ = P ∩ τ, and Γτ = {γa,b | b ∈ Pσ}.

Recall that either |Γτ | = |Pσ| ≤ k, or |Pτ | ≤ k. All the circles of Γτ lie on τ and have the
same radius. Hence, as follows, e.g., from [20], the number of similar triangles associated
with the pair (σ, τ) is bounded by

I(Pτ ,Γτ ) = O
(

(|Pσ ||Pτ |)
2/3 + |Pσ|+ |Pτ |

)

.
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Summing over all (σ, τ) ∈ Π′
a, we get

I ′a :=
∑

(σ,τ)∈Π′
a

I(Pτ ,Γτ )

= O





∑

(σ,τ)∈Π′
a

(|Pσ ||Pτ |)
2/3





+ O





∑

(σ,τ)∈Π′
a

|Pσ|





+ O





∑

(σ,τ)∈Π′
a

|Pτ |



 .

The last two sums are clearly O(n). As for the first sum, in each term one of |Pσ |, |Pτ | is
at most k. We may assume, without loss of generality, that |Pτ | ≤ k, and then obtain

∑

(σ,τ)∈Π′
a

(|Pσ||Pτ |)
2/3 ≤ k1/3

∑

|Pσ|
2/3|Pτ |

1/3

≤ k1/3
(

∑

|Pσ|
)2/3 (∑

|Pτ |
)1/3

= O(nk1/3).

Altogether, summing over all points a ∈ P , the number of point-circle incidences with circles
generated by light pairs is

IL =
∑

a∈P

I ′a = O(n2k1/3). (2)

Handling non-degenerate heavy pairs. Let ΠN ⊆ Π>k denote the set of non-
degenerate heavy pairs. We bound the number of incidences between the points of P
and the circles generated by ΠN . Note that both spheres in each pair of ΠD contain more
than k points of P . Set ΣN = {σ | (σ,Π(σ)) ∈ ΠN}. Note that |ΠN | = |ΣN |. We first
obtain an upper bound on |ΠN |.

Lemma 2.1 |ΠN | = O

(

n4

k5
+

n3

k3

)

.

Proof: We apply to P and ΣN the standard lifting transform to 4-space [13], so that each
point (x, y, z) ∈ P is mapped to (x, y, z, x2 + y2 + z2), and each sphere of ΣN , centered at
(x0, y0, z0) and having radius r, is mapped to the hyperplane w = 2x0x+2y0y+2z0z+

(

r2−
x2

0 − y2
0 − z2

0

)

. The lifting preserves the incidence relation, and has the additional property
that cocircular points of P (on a circle that lies on one of the lifted spheres σ) are lifted
to coplanar points in 4-space lying on a sub-2-plane of the hyperplane image of σ. Thus,
a non-degenerate sphere is lifted to what Elekes and Tóth call a β-degenerate hyperplane
[14] (with respect to the lifted image P+ of the set P ). We can therefore apply the result
of [14], which asserts that the number of β-degenerate hyperplanes that contain at least k
points of P+, and hence, the number of spheres in ΣN (and the number of pairs in ΠN ),
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is bounded by O(n4/k5 + n3/k3), provided that the constant β is chosen sufficiently small.
This completes the proof of the lemma. 2

We next partition ΠN into O(log n) classes, Π
(1)
N ,Π

(2)
N , . . ., where Π

(i)
N consists of those

pairs (σ, τ) ∈ ΠN such that

2i−1k < max
{

|σ ∩ P |, |τ ∩ P |
}

≤ 2ik,

for i = 1, . . . , log2(n/k). We sum the incidence bounds within each class separately. Fix

a class Π
(i)
N , and put ki = 2ik. Each pair (σ, τ) ∈ Π

(i)
N , σ induces on τ a set of at most

ki congruent circles, and the number of points on τ is also at most ki. Hence the number

of incidences between these points and circles is O(k
4/3
i ). By Lemma 2.1, the number of

such pairs of spheres is O(n4/k5
i + n3/k3

i ). Hence, summing over i, the overall number of
incidences involving spheres in ΣN is

IN = O

(

∑

i

k
4/3
i ·

(

n4

k5
i

+
n3

k3
i

)

)

= O

(

n4

k11/3
+

n3

k5/3

)

. (3)

Handling degenerate heavy pairs. Let ΠD = Π>k \ΠN be the set of degenerate pairs.
We apply the following pruning process on each pair (σ, τ) ∈ ΠD. Suppose τ is a degenerate
sphere containing more than k points of P (the case where σ is the heavy sphere is handled
in an essentially symmetric manner). Then there is a circle γ1 ⊂ τ containing at least β|Pτ |
points of Pτ = P ∩ τ . If we remove the points of P ∩ γ1, then one of the following may
happen:

1. τ is incident to at most k of the remaining points of P \ γ1.

2. τ becomes non-degenerate with respect to the remaining points.

3. τ is still degenerate and contains more than k points.

In the third case, we continue with the pruning process, until one of the first two events
occurs, which will happen after at most log1/β n iterations. At the end of the process, if τ
contains k or fewer points, we include it, together with its remaining incidences, and with
the sphere σ, as one of the pairs of Π≤k, meaning that we only consider the remaining points
when bounding the number of point-circle incidences on τ . Otherwise, τ is non-degenerate
with respect to the set of at least k remaining points. In other words, when considering only
the surviving points on τ (or the surviving circles, if σ was the heavy sphere), at the end of
the pruning process, either (σ, τ) becomes a light pair, or (σ, τ) becomes a non-degenerate
pair. Lemma 2.1 still holds for these latter pairs, because it relies on the bound of [14], and
this bound still applies, as is easily verified.

We still have to count the incidences involving the removed points and/or circles on
each of these spheres τ . Such a (yet uncounted) incidence p ∈ γ, on a degenerate sphere τ ,
is uncounted either because (a) γ was one of the circles whose points were removed from
Pτ , or (b) γ was not such a circle, but p was removed because it lies on another circle γ′ ⊂ τ
that has been removed.

For an incidence of type (a), we have γ ∈ Γτ . There can be at most two spheres τ for
which this situation arises. Thus, the number of uncounted incidences of type (a) is at most
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twice the number of incidences between the points of P and the removed circles. Using the
fact that each of these circles contains at least βk points, the results of [3, 7, 17] imply, as
noted above, that the number of these incidences is O∗(n3/k9/2) + O(n2/k2 + n).

To bound the number of incidences of type (b), we observe that, for each pair (σ, τ) ∈
ΠD, the number of removed circles on τ is O(log n), and each γ ∈ Γτ can lose at most
two incidences for each removed circle. Thus, the number of such incidences on τ is
O(|Γτ | log n). Summing over all degenerate spheres, the overall number of type (b) in-
cidences is O(n2 log n).

A similar analysis applies to the case where the degenerate sphere in the pair (σ, τ) is
σ rather than τ . Here each pruning step removes circles from Γτ , whose centers lie on a
common circle. It is easily checked that, for any point p ∈ τ , at most two such circles can
pass through p, so each pruning step loses at most 2|Pτ | incidences, for a total of O(|Pτ | log n)
incidences. Summing over all spheres τ , we obtain the same bound O(n2 log n) as above.
Hence,

ID = O∗

(

n3

k9/2

)

+ O

(

n2

k2
+ n

)

+ O(n2 log n) (4)

= O∗

(

n3

k9/2

)

+ O(n2 log n). (5)

Adding (2)–(5), we get

I(P,Γ) ≤ IL + IN + ID

= O

(

n2k1/3 +
n4

k11/3
+

n3

k5/3
+ n2 log n

)

,

for any k. By choosing k = n1/2, we obtain the main result of this section:

Theorem 2.2 Let P be a set of n points in R
3, and let ∆0 be some fixed triangle. Then

the number of triangles similar to ∆0 spanned by P is O(n13/6) = O(n2.167).

3 Incidences Between Points and Spheres

Let P be a set of n distinct points in R
d, and let S be a set of s distinct k-spheres in R

d, for
some fixed 1 ≤ k ≤ d− 1. Let I(P, S) denote the number of incidences between the points
of P and the spheres of S, and let Ik,d(n, s) denote the maximum value of I(P, S), for P, S
as above. Clearly, for k > 1, we have Ik,d(n, s) = sn, since we can put all the points of P
on some circle, and make all the spheres in S pass through that circle. Our goal is to derive
a different bound, which, in the contexts that arise in this paper, leads to improved bounds
on the number of similar simplices.

We first note that the case k = 1 (i.e., S is a set of circles) has been solved by Aronov
et al. [6], who have shown that

I1,d(n, s) = O∗(n2/3s2/3 + n6/11s9/11 + n + s),

for any d ≥ 2. It therefore suffices to consider the case k ≥ 2.
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We fix some threshold parameter t, and classify each sphere in S as being either t-light
(or simply light) if it contains at most t points of P , and t-heavy (or just heavy) otherwise.
Clearly, the number of incidences with the light spheres is at most st.

Heavy spheres are further classified as follows. We say that a k-sphere σ is j-degenerate,
for 1 ≤ j ≤ k, if (i) there exists a j-sphere σ′ ⊆ σ which contains at least a β-fraction of
the points of P ∩ σ; i.e., |P ∩ σ′| ≥ β|P ∩ σ|, where β is some sufficiently small constant;
and (ii) j is the smallest integer with this property. If j = k, we also refer to σ as being
non-degenerate.

By the result of Elekes and Tóth [14], the number of non-degenerate heavy spheres in
S is

O

(

nk+2

tk+3
+

nk+1

tk+1

)

,

and the number of incidences between these spheres and the points of P is

O

(

nk+2

tk+2
+

nk+1

tk

)

.

A similar analysis holds for the j-degenerate spheres in S, for j < k. We replace each such
sphere σ by a j-sphere σ′ ⊂ σ that contains a β-fraction of the points of P ∩ σ, and reduce
the problem to that of bounding the number of incidences between the points of P and the
resulting j-spheres. Here however we face the problem that the j-spheres may appear with
multiplicity.

4 Anchored Congruent Simplices

In this section we consider the following auxiliary problem, which arises in the analysis of
similar simplices. Let P be a set of n points in R

d, let ∆1 be a fixed k-simplex, for k ≤ d, and
let ∆0 be a fixed (k − 1)-subsimplex of ∆1. Let h(P,∆1) denote the number of k-simplices
∆ that satisfy the following properties: (i) ∆ is spanned by P . (ii) ∆ is congruent to ∆0.
(iii) CH(∆ ∪ {o}) is congruent to ∆1, where o is the origin. We refer to such a simplex ∆
as (a congruent copy of ∆0) anchored at the origin. We denote by hk,d(n) the maximum
value of h(P,∆1), over all sets P and simplices ∆1 ⊃ ∆0, as above.

For a fixed d, we derive upper bounds on the quantities hk,d(n), for k = 1, 2, . . . , d, using
induction on k. We start with the trivial bound h1,d(n) = O(n).

Let P and ∆1 ⊃ ∆0 be as above, with dim(∆1) = k. Let a0, a1, . . . , ak denote the
vertices of ∆1, so that a1, . . . , ak are the vertices of ∆0. Put ri = |a0ai|, for i = 1, . . . , k.

Let ∆ = p1p2 · · · pk be an anchored congruent copy of ∆0 spanned by P , so that |opi| =
ri, for i = 1, . . . , k. Then, for each i, the point pi lies on a sphere σi of radius ri centered at
o. Fix one of these spheres, say σk, and fix the points p1, . . . , pk−1 ∈ P . Let γ(p1, . . . , pk−1)
denote the locus of all points q ∈ σk which form with p1, . . . , pk−1 an anchored congruent
copy of ∆0. We claim that γ(p1, . . . , pk−1) is a (d−k)-dimensional sphere within σ1. Indeed,
it is the intersection of k (d− 1)-spheres, one of which is σ1, and the others are centered at
the points pj , j < k. Hence, γ(p1, . . . , pk−1) is a sphere of dimension at least d− k, and it
cannot have a larger dimension because the centers o, p1, . . . , pk−1 are affinely independent.
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It follows that the number of anchored congruent copies of ∆0 is equal to the number
of incidences between the points of P on σk and the (d − k)-spheres γ(p1, . . . , pk−1), each
counted with multiplicity. Let γ = γ(p1, . . . , pk−1) be a fixed such sphere. Notice that
the points p1, . . . , pk−1 must all lie in the (k − 1)-flat f that is orthogonal to γ and passes
through its center o′, and they all lie at fixed distances from o′, and also at fixed distances
from o (which also belongs to f). A somewhat naive bound on the multiplicity of γ is
hk−2,k−1(n), but this bound is weak, because (i) the number of points of P in f is likely to
be much smaller than n, and (ii) the fact that p1p2 · · · pk−1 is “doubly anchored”, at both
o and o′, puts additional constraints on the possible locations of the points p1, . . . , pk−1.

Let us first explore the second property. Each point pj, for j = 1, . . . , k − 1, lies on a
(k− 3)-sphere σ′

j , which is the intersection of the two respective (k− 2)-spheres centered at
o and o′ and passing through pj . Fix the first k − 3 points p1, . . . , pk−3, and consider the
locus γ′ = γ′(p1, . . . , pk−3) of all points on σ′

k−1 that lie at distance |ajak−1| from pj, for

j = 1, . . . , k−3. Clearly, γ′ is the intersection of k−1 (k−2)-spheres in R
k−1, so it consists

of O(1) points. (Micha says: WHY??) Hence, we can bound the multiplicity of γ by the ←−
number of doubly-anchored congruent copies of a (k − 4)-simplex spanned by P ∩ f .

ZZZZZZZZZZZ

triangle. For each pair of points a, b ∈ P , let σa,b denote the 3-sphere orthogonal to
ab and containing all the points c for which abc ∼ ∆0. Let Σ be the set of resulting 3-
spheres. As above, it is easily checked that no 3-sphere can arise in this way more than
twice. Ignoring this constant multiplicity, we face the problem of bounding the number of
incidences between a set Σ of O(n2) spheres and P .

As in earlier sections, we fix a parameter t and a sufficiently small constant β > 0. We
define a 3-sphere to be light, heavy, non-degenerate, or degenerate as in the earlier sections.
The number of incidences involving light 3-spheres is O(n2t), so we concentrate on the
heavy 3-spheres.

Consider first the non-degenerate heavy 3-spheres of Σ. In this case, by lifting the
points and 3-spheres into R

6, and then projecting them onto some generic 5-space, we can
apply, as before, the Elekes-Tóth bound [14], to conclude that the number of such 3-spheres
is O(n5/t6 + n4/t4), and that the number of incidences between these 3-spheres and the
points of P is O(n5/t5 + n4/t3).

Consider next the 3-spheres in Σ that are degenerate, so each of them contains a 2-
sphere that contains more than a β-fraction of the points on the 3-sphere. We replace the
3-spheres by the respective 2-spheres, bound the number of incidences with these 2-spheres,
counted with the appropriate multiplicity, and lose only a constant factor using this bound.
Consider first the case where the 2-spheres themselves are non-degenerate, in the sense that
none of them contains a circle that contains more than a β-fraction of the points on the
2-sphere. Since these 2-spheres are (βt)-heavy, the number of distinct such 2-spheres is, as
above, O(n4/t5 + n3/t3), and the number of incidences with them is O(n4/t4 + n3/t2).

Here however the 2-spheres may appear with multiplicity, but we claim that the maxi-
mum multiplicity of a 2-sphere is at most O(n). Indeed, given a 2-sphere σ′ with center o′,
if we fix one point a in the defining pair (a, b) of a 3-sphere σa,b containing σ′, the size of
the triangle is determined, and the center o of σa,b must then lie at a fixed distance from
a, within the 2-plane π orthogonal to σ′ and passing through its center o′. Also, o lies on
another fixed circle in π centered at o′. These two circles intersect at most twice (assuming
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a 6= o′, which can always be guaranteed), so at most two points b can form with a a pair
(a, b) for which σa,b ⊃ σ′. Hence, the number of triangles similar to ∆0 that fall into this
subcase is O(n5/t4 + n4/t2).

Finally, consider the subcase where the 2-spheres themselves are degenerate, so we
replace each of them by a respective (β2t)-heavy circle, and bound the number of incidences
between these circles and the points of P . The multiplicity of a circle is, trivially, at most
O(n2). Hence, arguing as above, the number of triangles that arise in this subcase is
O∗(n5/t9/2 + n4/t2). Hence, the overall number of triangles is O(n2t + n5/t4 + n4/t2).
Choosing t = n2/3, we thus obtain

Theorem 4.1 f2,5(n) = O(n8/3).

As already noted, d = 5 is the last interesting case for triangles, since, already for the
congruent case, g2,6(n) = Θ(n3) [4].

5 A General Bound for fk,d(n)

We next consider the general case of bounding the maximum number fk,d(n) of mutually
similar k-simplices in a set of n points in R

d. For simplicity of presentation, we assume that
d is even. The analysis proceeds by induction on k, where the base case is k = d/2 − 1,
where we use the trivial bound fd/2−1,d(n) = O(nd/2). Since R

d contains d/2 mutually
orthogonal 2-planes through the origin, it is easy to construct sets of n points (where we
place 2n/d points in each of these 2-planes, on some circle centered at the origin), with
Θ(nd/2) mutually similar (d/2 − 1)-simplices. To simplify the notation, put Mk = fk,d(n),
for k = d/2− 1, . . . , d− 1. So our induction base is Md/2−1 = O(nd/2).

Suppose we already have an upper bound for Mk−1, and consider the step of bounding
Mk. Let ∆0 be a fixed k-simplex, let ∆1 be some fixed ((k − 1)-dimensional) facet of ∆0,
and let z be the vertex of ∆0 not incident to ∆1. Let τ = (p1, . . . , pk) be a k-tuple of distinct
points in P that span a simplex similar to ∆1. The number of such tuples is at most Mk−1.

Any point q ∈ P that forms with τ a k-simplex similar to ∆0 must lie on a (d−k)-sphere
σ = στ orthogonal to the (k−1)-flat spanned by the points of τ . Moreover, let σ be a given
(d − k)-sphere. Any k-tuple τ for which σ = στ must be such that (i) the (k − 1)-simplex
s spanned by τ is determined up to congruence; (ii) s is contained in the (k − 1)-flat f
orthogonal to σ and passing through its center o; and (iii) o coincides with a fixed point
rigidly attached to σ (the point corresponding to the foot of the perpendicular to ∆1 from
z in ∆0).

In other words, given σ, its multiplicity (the number of times it arises as στ for an
appropriate tuple τ) can be estimated as follows. We have a set Q of m ≤ n points in R

k−1,
and we want to bound the number of congruent full-dimensional simplices that are spanned
by Q, where all these simplices are obtained from one another by rotation about (say) the
origin o. We refer to such simplices as being anchored at the origin, and denote the maximum
possible number of such mutually congruent anchored k-simplices by hk−1,k−1(m). We will
shortly generalize this notation to cases where the dimension of the simplex is smaller than
that of the ambient space.

10



To recap, we have a set S of at most Mk−1 (d− k)-spheres, each appearing with muti-
plicity at most hk−1,k−1(n) (but the bound Mk−1 counts the spheres with multiplicity), and
we need to bound the number of incidences between the points of P and the spheres in S,
counted with the appropriate multiplicities.

To do so, we fix some threshold parameter t, and distinguish between light spheres,
which contain at most t points of P , and heavy spheres, which contain more than t points
of P . The number of incidences with light spheres is, obviously, at most Mk−1t.

Heavy spheres are further classified as follows. We say that a (d−k)-sphere σ is (d− j)-
degenerate, for k ≤ j ≤ d − 1, if (i) there exists a (d − j)-sphere σ′ ⊆ σ which contains at
least a β-fraction of the points of P ∩σ; i.e., |P ∩σ′| ≥ β|P ∩σ|, where β is some sufficiently
small constant; and (ii) j is the largest integer with this property. If j = k, we also refer to
σ as being non-degenerate.

By the result of Elekes and Tóth [14], the number of non-degenerate heavy spheres in
S is

O

(

nd−k+2

td−k+3
+

nd−k+1

td−k+1

)

,

and the number of incidences between these spheres and the points of P is

O

(

nd−k+2

td−k+2
+

nd−k+1

td−k

)

. (6)

Multiplying this by the mutiplicity bound

hk−1,k−1(n) = O(nk−2),

we get an overall contribution of

O

(

nd

td−k+2
+

nd−1

td−k

)

. (7)

A similar analysis holds for the (d − j)-degenerate spheres in S, for j > k. We replace
each such sphere σ by a (d − j)-sphere σ′ ⊂ σ that contains a β-fraction of the points
of P ∩ σ, and reduce the problem to that of bounding the number of incidences between
the points of P and the resulting (d − j)-spheres. Ignoring for the moment the issue of
multiplicity, The Elekes-Tóth bound [14] implies, in complete analogy, that the number of
these (d− j)-spheres is

O

(

nd−j+2

td−j+3
+

nd−j+1

td−j+1

)

,

and the number of incidences between these spheres and the points of P is

O

(

nd−j+2

td−j+2
+

nd−j+1

td−j

)

. (8)

Here however we face the additional problem that the (d − j)-spheres may appear with
multiplicity (in addition to the multiplicity of the original (d− k)-spheres in S). We tackle
this issue as follows.

Let σ′ be a (d− j)-sphere, and let f denote the (j− 1)-flat orthogonal to σ′ and passing
through its center o′. Fix a point p1 ∈ P ∩f . Let τ be a k-tuple (p1, p2, . . . , pk) that contains
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p1 and generates σ′. The fixed distance from p1 to any point on σ′ determines the size of
the simplex that is similar to ∆0 and spanned by τ and by any point on σ′. Moreover, the
center o of the (d − k)-sphere σ generated by τ satisfies the following properties: (i) The
distances from o to p1, . . . , pk and to o′ are all fixed. (ii) ∠pjoo

′ = π/2, for each j = 1, . . . , k.

Note that, if we regard o′ as the origin (in f), and write x = ~o′o, then the constraints
can be expressed algebraically as

‖x− pj‖
2 = r2

j and (x− pj) · x = 0,

for j = 1, . . . , k, where rj is the fixed distance from pj to o. Hence

‖x‖2 = ‖pj‖
2 − r2

j ,

for each j, and x is orthogonal to the affine hull of τ .

For our analysis, it suffices to consider the cases j = k + 1, j = k + 2. For larger values
of j we use the naive bound O(nk) for the multiplicity, and get an overall bound of

d−1
∑

j=k+3

O

(

nd+k−j+2

td−j+2
+

nd+k−j+1

td−j

)

=
d−k−3
∑

q=1

O

(

nd−q

td−k−q
+

nd−q−1

td−k−q−2

)

.

Consider the case j = k + 1 (so the ambient orthogonal space is R
k). Fix the points

p1, p2, . . . , pk−2, in O(nk−2) ways. Each of the two last points pk−1, pk must lie on a
respective circle γk−1, γk, which is the intersection of k − 2 (k − 1)-spheres, centered at
the points p1, . . . , pk−2 and having radii equal to the corresponding appropriately scaled
edges of ∆0, and an appropriate (k − 1)-sphere centered at o′. Assuming that o′ 6= o, these
spheres do indeed intersect in a circle, because their centers are affinely independent. If
o′ = o then there is a unique choice for σ, and the analysis proceeds as in the preceding
case. Note that, once pk−1 has been determined, pk must lie at an intersection of γk and
another (k − 1)-sphere centered at pk−1, and again one can argue that there are at most
two such intersection points, using the affine independence of p1, . . . , pk−1, o

′.

Hence, the multiplicity of σ′ is at most the number of incidences between O(nk−2) circles
and n points in R

k. Unfortunately, these circles may also come with multiplicity. For each
such circle γ, the points p1, . . . , pk−2 and o′ must define a (k−2)-simplex which is congruent
to a fixed simplex, lies in the (k− 2)-flat orthogonal to γ and passing through its center oγ ,
and is anchored at oγ .

(Micha says: This is the doubly anchored situation.) ←−

A naive bound on the number of such simplices is O(nk−3), which we use as an upper
bound on the multiplicity of γ.

Now fix a threshold parameter s, and distinguish between light circles, containing fewer
than s points of P , and the other, heavy circles. The number of incidences with light
circles is at most O(nk−2s). By the result of [6], the number of distinct heavy circles is at
most O∗(n3/s11/2 + n2/s3 + n/s), and the number of incidences of these circles with the
points of P is at most O∗(n3/s9/2 + n2/s2 + n). Multiplying by the multiplicity bound, the
multiplicity of the (d− j)-sphere σ′ is at most

O∗

(

nk−2s +
nk

s9/2
+

nk−1

s2
+ nk−2

)

.
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Choosing s = n4/11, we get a multiplicity bound of O∗(nk−2+4/11). Combining this with
(8), we get that the contribution of the case j = k + 1 to the overall bound is

O∗

(

nd−7/11

td−k+1
+

nd−18/11

td−k−1

)

. (9)

The case j = k + 2 is handled similarly (now the ambient orthogonal space is R
k+1),

except that we now fix the points p1, p2, . . . , pk−1, in O(nk−1) ways, and this constrains the
last point pk to lie on a circle γk, which is the intersection of k−1 k-spheres, centered at the
points p1, . . . , pk−1 and having radii equal to the corresponding appropriately scaled edges
of ∆0, and an appropriate k-sphere centered at o′. Assuming that o′ 6= o, these spheres do
indeed intersect in a circle, because their centers are affinely independent. If o′ = o then
there is a unique choice for σ, and the analysis proceeds as in the preceding case.

Hence, the multiplicity of σ′ is at most the number of incidences between O(nk−1) circles
and n points in R

k+1. Again, these circles may come with multiplicity. For each such circle
γ, the points p1, . . . , pk−1 and o′ must define a (k− 1)-simplex which is congruent to a fixed
simplex, lies in the (k − 1)-flat orthogonal to γ and passing through its center oγ , and is
anchored at oγ .

(Micha says: Again, this is the doubly anchored situation.) ←−

Here too we use the naive bound O(nk−2) on the number of such simplices, as an upper
bound on the multiplicity of γ.

As above, fixing a threshold parameter s, and distinguishing between light and heavy
circles, we get the bound

containing fewer than s points of P , and the other, heavy circles. The number of
incidences with light circles is at most O(nk−2s). By the result of [6], the number of
distinct heavy circles is at most O∗(n3/s11/2 + n2/s3 + n/s), and the number of incidences
of these circles with the points of P is at most O∗(n3/s9/2 +n2/s2 +n). Multiplying by the
multiplicity bound, the multiplicity of the (d− j)-sphere σ′ is at most

O∗

(

nk−1s +
nk+1

s9/2
+

nk

s2
+ nk−1

)

.

Choosing s = n4/11, we get a multiplicity bound of O∗(nk−1+4/11). Combining this with
(8), we get that the contribution of the case j = k + 2 to the overall bound is

O∗

(

nd−7/11

td−k
+

nd−18/11

td−k−2

)

. (10)

ZZZZZZZZZZZ

An easy bound on this quantity is O(nd−4). Indeed, if we fix d − 4 of the points that
span the simplex, then, together with o, they span a (d− 4)-simplex s′ (in R

d−3), and each
of the remaining two vertices can then be placed in at most two locations, depending on
the orientation of the full simplex with respect to s′, from which the bound follows.

To recap, we have a set Σ of O(nd−2) 2-spheres, each occurring with multiplicity at most
O(nd−4), and we need to bound the number of incidences between Σ and P . We follow an
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approach similar to Section 2.2. We fix a parameter t > 0 and a sufficiently small constant
β > 0 (that depends on d). As in Section 2.2, we call a 2-sphere light (resp., heavy) if it
contains at most (resp., more than) t points of P . A heavy 2-sphere σ is degenerate if more
than a β-fraction of the points of P ∩ σ are co-circular, and non-degenerate otherwise.

The number of incidences with the light 2-spheres is, trivially, at most O(nd−2t). We
therefore focus on the heavy 2-spheres.

Incidences on non-degenerate heavy 2-spheres. Let M be the number of distinct non-
degenerate 2-spheres in Σ. We can bound M by lifting the 2-spheres to R

d+1, as in the
proof of Theorem 2.2. We obtain a collection of M 3-flats, each containing at least t points
of the lifted set P+, and none of them contains a 2-plane with more than a β-fraction of
its points (for the same reason as in the preceding proof). Project the lifted collection of
points and 3-flats onto some generic 4-space E, and apply the Elekes-Tóth bound [14], to
conclude that the number M of the projected 3-flats (hyperplanes) is M = O(n4/t5+n3/t3).
Moreover, the number of incidences between the original 2-spheres and the points of P is
at most O(n4/t4 + n3/t2). Multiplying this bound by the maximum multiplicity O(nd−4)
of a 2-sphere, we obtain the bound O(nd/t4 + nd−1/t2).

Incidences on degenerate heavy 2-spheres. We can replace each degenerate 2-sphere σ ∈ Σ
by a circle γ that contains more than a β-fraction of the points on σ, so it contains at least
βt points. It then suffices to bound the number of incidences between these circles, counted

with multiplicity, and the points of P , as I(P, {γ}) ≥ βI(P, {σ}).

Let us first fix such a circle γ, and bound the multiplicity of γ, namely the number of
(d− 2)-tuples τ such that στ contains γ. Any such tuple τ , together with the center o of γ,
spans the (d − 2)-dimensional flat h orthogonal to γ and passing through o. The number
of such tuples is at most O(nd−3). Indeed, if we fix a sub-tuple τ ′ of d− 3 points of τ , then
the size of the simplex is determined (because the distance from any of the fixed points to
any point on γ is now fixed). Let o′ denote the center of στ . Then o′ has to lie on a fixed
(d − 3)-sphere in h centered at o. Moreover, since o′ is rigidly attached to the simplex, it
follows that it must lie on a circle orthogonal to the (d − 4)-flat spanned by τ ′, and this
circle intersects the sphere in at most two points,3 each of which corresponds to a unique τ .

Let Ct (resp., C≥t) denote the number of circles that are spanned by P and contain
exactly (resp., at least) t points of P . As remarked above, it follows from the analysis of [6]
that

C≥βt = O∗

(

n3

t11/2
+

n2

t3
+

n

t

)

,

and that the number of incidences with these circles is
O∗(n3/t9/2 + n2/t2 + n). The preceding argument implies that the number of (d − 2)-
simplices that correspond to heavy degenerate 2-spheres is at most

O(nd−3) ·O∗

(

n3

t9/2
+

n2

t2
+ n

)

= O∗

(

nd

t9/2
+

nd−1

t2
+ nd−2

)

.

Hence the overall number of simplices is O(nd−2t + nd/t4 + nd−1/t2). By choosing t = n2/5,
we obtain I(P,Σ) = O(nd−8/5), which also bounds the number of simplices similar to ∆0

spanned by the points of P . Hence, we obtain the following.

3It is easily checked that one can always choose τ
′ so that the circle is not contained in the 2-sphere; if

this were impossible, τ would not have spanned a (d − 3)-space.
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Theorem 5.1 fd−2,d(n) = O(nd−8/5).

A bound on fd−1,d(n). We can now obtain the main result of this section (and of the
paper). Let ∆0 be a fixed (d− 1)-simplex, let ∆1 be some fixed ((d− 2)-dimensional) facet
of ∆0, and let z be the vertex of ∆0 not incident to ∆1.

Let τ = (p1, . . . , pd−1) be a (d − 1)-tuple of distinct points in P that span a simplex
similar to ∆1. The number of such tuples is M ≤ fd−2,d(n) = O(nd−8/5).

Any point q ∈ P that forms with τ a (d − 1)-simplex similar to ∆0 must lie of a circle
γ = γτ orthogonal to the (d− 2)-flat spanned by the points of τ . Moreover, let γ be a given
circle. Any tuple τ for which γ = γτ must be such that (i) the (d−2)-simplex s spanned by
τ is determined up to congruence; (ii) s is contained in the (d− 2)-flat orthogonal to γ and
passing through its center o; and (iii) o is rigidly attached to s (it is the point corresponding
to the foot of the perpendicular to ∆1 from z in ∆0), and all possible simplices s are obtained
from one another by rotation about o.

In other words, given γ, to estimate its multiplicity, we need to bound the number of
congruent full-dimensional simplices that are spanned by a set Q of m ≤ n points in R

d−2,
where the simplex is unique up to rotation about (say) the origin o. Arguing as above,
this number is at most O(md−3), because any tuple of d − 3 points of Q, together with o,
determines a (d− 3)-simplex (in R

d−2), which can be completed into a full-dimensional one
in only two ways.

We thus proceed as before, fixing a threshold parameter t, and distinguishing between
light circles (those with at most t points), and the remaining heavy circles. The number of
incidences with light circles is at most Mt, and the number of incidences with heavy circles
is

O(nd−3) ·O∗

(

n3

t9/2
+

n2

t2
+ n

)

= O∗

(

nd

t9/2
+

nd−1

t2
+ nd−2

)

.

By choosing t = (nd/M)2/11, we obtaining the main result:

Theorem 5.2 fd−1,d(n) = O∗(nd−72/55).

6 Similar Triangles in R
5

Let P be a set of n points in R
5, and let ∆0 be a triangle. For each pair of points a, b ∈ P , let

σa,b denote the 3-sphere orthogonal to ab and containing all the points c for which abc ∼ ∆0.
Let Σ be the set of resulting 3-spheres. As above, it is easily checked that no 3-sphere can
arise in this way more than twice. Ignoring this constant multiplicity, we face the problem
of bounding the number of incidences between a set Σ of O(n2) spheres and P .

As in earlier sections, we fix a parameter t and a sufficiently small constant β > 0. We
define a 3-sphere to be light, heavy, non-degenerate, or degenerate as in the earlier sections.
The number of incidences involving light 3-spheres is O(n2t), so we concentrate on the
heavy 3-spheres.

Consider first the non-degenerate heavy 3-spheres of Σ. In this case, by lifting the
points and 3-spheres into R

6, and then projecting them onto some generic 5-space, we can
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apply, as before, the Elekes-Tóth bound [14], to conclude that the number of such 3-spheres
is O(n5/t6 + n4/t4), and that the number of incidences between these 3-spheres and the
points of P is O(n5/t5 + n4/t3).

Consider next the 3-spheres in Σ that are degenerate, so each of them contains a 2-
sphere that contains more than a β-fraction of the points on the 3-sphere. We replace the
3-spheres by the respective 2-spheres, bound the number of incidences with these 2-spheres,
counted with the appropriate multiplicity, and lose only a constant factor using this bound.
Consider first the case where the 2-spheres themselves are non-degenerate, in the sense that
none of them contains a circle that contains more than a β-fraction of the points on the
2-sphere. Since these 2-spheres are (βt)-heavy, the number of distinct such 2-spheres is, as
above, O(n4/t5 + n3/t3), and the number of incidences with them is O(n4/t4 + n3/t2).

Here however the 2-spheres may appear with multiplicity, but we claim that the maxi-
mum multiplicity of a 2-sphere is at most O(n). Indeed, given a 2-sphere σ′ with center o′,
if we fix one point a in the defining pair (a, b) of a 3-sphere σa,b containing σ′, the size of
the triangle is determined, and the center o of σa,b must then lie at a fixed distance from
a, within the 2-plane π orthogonal to σ′ and passing through its center o′. Also, o lies on
another fixed circle in π centered at o′. These two circles intersect at most twice (assuming
a 6= o′, which can always be guaranteed), so at most two points b can form with a a pair
(a, b) for which σa,b ⊃ σ′. Hence, the number of triangles similar to ∆0 that fall into this
subcase is O(n5/t4 + n4/t2).

Finally, consider the subcase where the 2-spheres themselves are degenerate, so we
replace each of them by a respective (β2t)-heavy circle, and bound the number of incidences
between these circles and the points of P . The multiplicity of a circle is, trivially, at most
O(n2). Hence, arguing as above, the number of triangles that arise in this subcase is
O∗(n5/t9/2 + n4/t2). Hence, the overall number of triangles is O(n2t + n5/t4 + n4/t2).
Choosing t = n2/3, we thus obtain

Theorem 6.1 f2,5(n) = O(n8/3).

As already noted, d = 5 is the last interesting case for triangles, since, already for the
congruent case, g2,6(n) = Θ(n3) [4].

7 Discussion

Examining the proof of the general bound in Section 2, we note that there are three sources
for potential improvements. First, the proof starts with the naive estimate fd−3,d(n) =
O(nd−2); one should be able to get a better, nontrivial bound. Indeed, the previous section
shows that this is the case of d = 5. Two other possibilities for improvements are in the
estimation of the multiplicities of the circles and 2-spheres (and 3-spheres for f2,5(n)) that
arise in the analysis. We look at the flat h orthogonal to the circle, 2-sphere, or 3-sphere,
and make the worst case assumption that |h ∩ P | = n. With a more careful analysis
(e.g., using the Elekes-Tóth bound), we expect to be able to improve this considerably.
Also, when counting multiplicities, we are probably not exploiting all the restriction on the
possible positions of the congruent sub-simplex. We are currently exploring these possible
improvements, and expect to include them in the full version.
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Another open problem is to improve the bound f2,3(n) = O(n13/6). A potential source
for such an improvement is the fact that, when we lift P into R

4, the resulting set P+ lies
on the convex 3-dimensional paraboloid, and the hope is that the Elekes-Tóth bound could
be improved for such point sets.

Another observation is that we can relate fk,d(n) to gk−2,d(n) (the maximum number
of (k− 2)-simplices congruent to a given simplex), as follows. Let ∆0 be a given k-simplex.
Fix a pair a, b of points in P . If we use a, b as two (fixed) vertices of a k-simplex similar
to ∆0, then the size of that simplex is fixed, so the number of such simplices is at most
gk−2,d(n), implying that

fk,d(n) = O(n2gk−2,d(n)).

(In fact, the bound is probably smaller, because all the possible (k − 2)-simplices that go
with a fixed edge ab are “anchored” about ab, so their number should be smaller.) Recall
the Erdős-Purdy conjecture that gk−2,d(n) = O(nd/2) (for even d). If the conjecture were
true then we would have fk,d(n) = O(n2+d/2), which, for large values of d, is significantly
smaller than the general bounds derived in this paper.

Another comment to observe is that the proof technique is essentially a careful analysis
of incidences between points and spheres of various dimensions. While the case of circles
has already been studied fairly intensively, the case of higher dimensional spheres has not
received much attention. The bounds that we obtain via the Elekes-Tóth bound seem to be
weak. For example, using this technique for estimating the number of k-rich circles would
yield a bound of O(n3/k4 + n2/k2), whereas the bound using (1) is O(n3/k11/2 + n2/k3).
One would hope that similar improvements could be obtained for incidences with higher-
dimensional spheres too. We propose to study this problem in more general settings, and
regard the present paper as an initial step in this direction.
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[1] B. M. Ábrego, G. Elekes, and S. Frenándes-Merchant, Structural results for plane sets
with many similar subsets, Combinatorica 24 (2004), 541–554.
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