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ABSTRACT
We introduce scalability for computer games as the next frontier
for techniques from data management. A very important aspect
of computer games is the artificial intelligence (AI) of non-player
characters. To create interesting AI in games today, developers or
players have to create complex, dynamic behavior for a very small
number of characters, but neither the game engines nor the style of
AI programming enables intelligent behavior that scales toa very
large number of non-player characters.

In this paper we make a first step towards truly scalable AI in
computer games by modeling game AI as a data management prob-
lem. We present a highly expressive scripting language SGL that
provides game designers and players with a data-driven AI scheme
for customizing behavior for individual non-player characters. We
use sophisticated query processing and indexing techniques to ef-
ficiently execute large numbers of SGL scripts, thus providing a
framework for games with a truly epic number of non-player char-
acters. Experiments show the efficacy of our solutions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—
Specialized application languages

General Terms
Languages, Processing

Keywords
Games, Scripting, Aggregates, Indexing

1. INTRODUCTION
Computer games are becoming the next frontier for social in-

teraction between humans. The Entertainment Software Associa-
tion estimates that computer and video game software sales in 2005
were $7.0 billion dollars [3]. While graphics have always motivated
the growth of the game industry, we believe that the databasecom-
munity also has the opportunity to make significant contributions
to this field.
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A computer game is a virtual environment where players interact
with digital objects or each other for entertainment. One ofthe keys
to developing rich playing experiences is the creation of complex
and interesting artificial intelligence (AI). In game development,
AI has a slightly different meaning than it does in the academic
context. Game AI is the system that controls the behavior of non-
player characters (NPCs) — entities created by the game designer
and controlled by the computer. While this system may use classic
AI algorithms, game AI includes all routines that control behavior,
be they intelligent or not.

Broadly speaking, there are two approaches to improving game
AI. The first is to create complicated, detailed, dynamic behav-
ior for a few particularly important NPCs, like the player’sarch-
nemesis or sidekick. This approach is ideal for games that donot
have many NPCs in need of interesting behavior. For this typeof
behavior, classic AI is relevant, and has been employed to various
degrees in existing games [14]. Expert systems have been used for
choosing plays in sports games; natural language processing has
been used for character interaction inFaçade[17]; machine learn-
ing has been used for creature behavior inBlack & White[12].

However, these techniques are often too computationally expen-
sive or labor intensive to be practical for more than a handful of
NPCs. Increasingly, having just a few intriguing NPCs is insuf-
ficient for many categories of games. Strategy games, massively
multiplayer online games, and open world games all frequently re-
quire large numbers of interesting characters. Hence, the second
approach to game AI is to enable interesting but relatively sim-
ple behavior for a large number of NPCs. For example, character
behavior may be controlled by a simple finite state machine. In
the aggregate, even simple game AI can lead to complex emergent
behavior, so populating a game world with many NPCs can cre-
ate compelling gameplay. However, there is a trade-off between
having complex NPCs and having many NPCs. When the game
demands too many NPCs, developers may have no choice but to
employ simple game AI. But if the AI is too simple, the game will
exhibit predictable uniformity. This trade-off is not addressed by
the classic areas of research in artificial intelligence.

A further complication in creating large numbers of NPCs is the
actual design of the AI for each NPC. Even if the processing power
is available, creating AI is very labor intensive. To solve the prob-
lem of content creation, developers employ the use ofdata-driven
AI. In this paradigm, the AI system is heavily parameterized by
data files stored outside the code. In the simplest case, these pa-
rameters may be numerical values affecting transitions in state ma-
chines. However, more generally, they are scripts that are read and
processed by the game’s AI engine. This approach works for de-
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Figure 1: Expressiveness versus Number of NPCs

signing large numbers of NPCs because these scripts are simple
but flexible enough to be adapted to many kinds of characters.In
addition, a data-driven AI scheme offloads much of the burdenof
creating AI from the programmers to the game designers, allowing
the game AI to be modified rapidly without recompiling.

The ability to produce interesting data-driven AI depends on the
expressive power of these scripts. The scripting languagesused in
games vary widely, and are often customized to meet the specific
needs of a game. Generally, the more expressive the scripting lan-
guage, the smaller the number of NPCs that can be processed atany
given time. Figure 1 illustrates this trade-off in existingdata-driven
games.Neverwinter Nights, with its versatile Aurora [18] script-
ing engine, supports intricate behaviors but only for a handful of
units. The Sims 2, with a more restrictive system for its characters,
can support a few dozen Sims pursuing their lives’ objectives [24].
Warcraft III can support a couple hundred units, but it only al-
lows relatively simple battle decisions for each unit [2]. Finally,
Rome: Total Warsupports thousands of soldiers, but its system is
extremely limited, as large groups of soldiers must have identical
behavior [23]. If the expressiveness ofNeverwinter Nightswere
possible in a game on the scale ofRome: Total War, this would
provide new opportunities for gameplay not currently possible.

1.1 Scaling Data-Driven AI
Our goal is to create a data-driven AI system that is both highly

expressive and capable of supporting large numbers of NPCs.As
the number of NPCs with distinct behaviors grows, the maximal
complexity of those NPCs must decrease to maintain performance.
However, when large numbers of NPCs are making individual de-
cisions, they may be acting on distinct but very similar setsof in-
formation. By treating game AI as a data management problem,we
can leverage this fact to dramatically boost performance. In partic-
ular, we have developed a new functional scripting language, SGL
(Scalable Games Language), that allows us to analyze scripts writ-
ten by users and to use query rewrite techniques from the database
community to factor out expensive function evaluation thatis com-
mon to a large number of scripts. We use sophisticated query pro-
cessing techniques to pre-compute the results of these expensive
functions and we use indexing techniques to quickly access them
within the scripts. This novel type of multi-query optimization in
game AI significantly improves performance of the executionof the
scripts.

The language itself is functionally quite similar to those used in
existing games, and accessible to game designers. The AI system is
designed to fit with typical game architecture without disrupting the
usual structure of the other systems. Fundamentally, it is simply an
optimization and generalization of data-driven AI schemesalready
employed by developers, and integrating it should be natural for
both programmers and designers. As a result, designers are able to
add more and more intelligent NPCs to their games while retaining
the same development processes.
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Figure 2: Data-Driven Game System Architecture

Contributions and Outline of the Paper

In Section 2, we start by describing the basic architecture for
data-driven games, and identifying those subsystems for which data
management is most important. After this introduction, we make
the following contributions in this paper.

• In Section 3, we introduce a specific data management prob-
lem that must be solved in order to scale games to large num-
bers of interesting NPCs. We also present a case study using
real-time strategy (RTS) games to analyze the effectiveness
of our approach.

• In Section 4, we describe SGL, a novel and expressive script-
ing language for game AI. We demonstrate that the semantics
of SGL allows us to process non-player characters set-at-a-
time instead of individually.

• In Section 5, we show how to optimize SGL with rewrite
rules and specific query plans. We also present several index
structures to efficiently compute a large class of aggregate
functions used in games.

• In Section 6 we present an experimental evaluation demon-
strating the effectiveness of our query optimization and query
processing techniques.

We discuss related work in Section 7 and conclude in Section 8.

2. DATA-DRIVEN GAMES
Loosely defined, a data-driven game is any game that separates

the game content from the game code [10]. This design has several
advantages. It allows the game studio to separate development be-
tween the programmers and the game designers, two groups with
important but not necessarily overlapping skills.

Historically, games have long had some form of separation be-
tween content and code. Media such as character models, textures,
or sounds are often kept in data files separate from the game engine.
However, recently, the trend has been to move as much game con-
tent as possible out of the engine. The data used to define the char-
acters or story-line is increasingly being stored in XML files [25].
Modern design even separates logic specific to the game play from
the code, through the use of scripting languages; these scripting
languages may either be custom tailored to the game engine, or a
standard language like stackless Python [11, 8].

2.1 Architecture of Data-Driven Games
While data-driven games may have different architectures de-

pending on their genre, they all have roughly the same design.
Figure 2 represents the architecture of a typical data-driven game.
Three different groups of actors interact with this system.The
largest group of actors are the game players. They primarilyin-
teract with the game through the input and display devices.

The next group are the game programmers, who have designed
the “game engine”. The engine is not specific to any one game, and
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can be reused for other games. In some cases, like Epic Games’
Unreal Engine 3[13], the engine may even be licensed to other
companies for development. The engine consists of several differ-
ent generic components common to all games. The rendering and
audio engines comprise the media experience of the game. The
physics engine is a library of algorithms that simulate physical ef-
fects like gravity and collisions. The AI engine is a libraryof algo-
rithms for solving classical AI problems like pathfinding ornatural
language processing. All of these are connected together through
the discrete simulation engine. This part of the game controls ac-
tions of the characters and objects, instructing the rendering and
audio engines how to generate output. The discrete simulation en-
gine takes cues from the physics and AI engines, but it is largely
directed by the content of the game.

The game content is created by the game designers. The design-
ers are responsible for creating the game world. This includes a
lot of the artistic elements like character models and sounds. How-
ever, it also includes any game specific logic. The characterobjects
are stored in data files outside of the game engine. The behavior
of these character objects is defined by the character scripts. These
scripts are read by either a compiler or an interpreter, and processed
by the discrete simulation engine.

This separation is particularly important for game AI, as char-
acter behavior must be constantly adjusted during game testing for
reasons of “game balance” (i.e. ensuring that there is no single opti-
mal strategy, so that game play does not become monotonous).For
example, seven years after its first publication, Blizzard continues
to updateStarcraftwith balance changes based upon observations
of games played on their BattleNet server [16].

This separation is also important to players, as they can also in-
teract with the content as game “modders”. A modder is playerwho
modifies a commercially released game to create a game variant.
The new and challenging experiences provided by modders canof-
ten extend the lifetime of a game. For example, bothStarcraftand
the subsequent 2002 strategy gameWarcraft III1 store their game
data and AI as scripts in MPQ files, a proprietary compressionfor-
mat that is similar to ZIP. The AMAI project [2] has tools for ex-
tracting the scripts from these MPQs and replacing them withnew
scripts to improve the combat AI inWarcraft III.

Games likeNeverwinter Nightsand Second-Lifeshow that
user-created content is a vibrant, growing aspect of the gaming
world [21]. Therefore, we believe that the boundary betweenplay-
ers and modders is closing, as more and more games embrace the
idea of user-created content.

While the entire data management layer is an interesting area
of research for the database community, our primary focus isthe
discrete simulation engine; before games can render large numbers
of characters, they first must process their behavior.The Sims 2is
an example of a game whose performance is determined primarily
by the simulation bottleneck. A character in a room with a large
number of objects can slow the game down perceptibly, even if
the screen is not rendering the room; this is because the gameis
querying each of the objects in the room to determine which one
currently satisfies the character’s needs. This performance problem
is so significant that the console version ofThe Sims 2introduced
a “feng shui meter” as a gameplay element to keep a player from
adding too many objects to a room [1].

2.2 The Discrete Simulation Engine
Almost all computer games are architected so that the AI en-

gine processes its objects in clock ticks [20]. Inturn-basedgames,

1Warcraft III was the inspiration for the famous massively multi-
player online gameWorld of Warcraft, but is not the same game.

these ticks are controlled by player input; the game will notpro-
ceed to the next tick until the player ends his or her turn. Inreal-
time games, these ticks are controlled entirely by the game, and
progress proportional to the frame-rate of the graphics engine.

Each clock tick, the simulation engine processes the actions of
one or more characters. Each character can perform at most one
action per tick, but since we want the number of NPCs to be deter-
mined by the data and not the game engine, our architecture should
allow more than one unit to act per clock tick. A particular action
may span more than an a single clock tick, as the game takes time
to render the action. However, this is modeled by performingthe
action in a single tick, and assigning the character a “cooldown”
period until it can act again. As a result, some characters may be
inactive during a clock tick, as they are still in the cooldown period
from their last action. Our model will assume that those charac-
ters just perform an empty action. Therefore, on each clock tick,
we process exactly one action for every character in the game. As
we show in Section 5, characters performing the empty actionare
eliminated by a selection operation, and so this assumptionwill
not have any adverse effect on performance, given the appropriate
index structures.

Each action, in turn, may produce severaleffects. An effect is
simply an update to the data which defines an object. For example,
movement is an action that has a single effect – it alters the position
of that unit. On the other hand, mortar-fire in a combat game isan
action that may affect several units, damaging every NPC in its
blast radius.

At each clock tick, the simulation engine reads the data, deter-
mines the actions of each of the characters, and determines the ef-
fects of this actions, and then updates the game data for the next
tick. It is traditional practice in game design that when multiple
characters act during a clock tick, they act simultaneously. This
keeps the engine from having to read the data more than once dur-
ing a clock tick, as no action can depend on the action of another
character in the same tick. It also allows us to cleanly separate each
clock tick into three stages:

• A query stage, where we read the contents of the game data.

• A decision stage, where we choose the actions of each NPC
based on the data read.

• An update stage, where we update the game data according
to the effect of these actions.

Since the actions are all updating the game data simultaneously,
we need a transaction model for how these updates are processed.
In games, this is relatively easy, because effects typically incre-
ment or decrement numerical values in the character data. For ex-
ample, damage decrements an NPC’s health value, while healing
increments it. Games additionally separate effects intostackable
andnonstackable. In stackable effects, like damage, all of the ef-
fects for that tick are cumulative. For nonstackable effects, only
one effect of that kind can apply – typically the most beneficial
(or disadvantageous, depending on the context). InWarcraft III,
witch doctors can create healing wards that heal all units ina cer-
tain range; this is a nonstackable effect as a unit in range oftwo
wards is only healed once.

This design in games makes the update phase straightforward.
We just combine the effects of all the actions, usingsum for stack-
able effects andmax for the nonstackable ones, and increment or
decrement the data values accordingly. In a few instances, an effect
may set some character data to an absolute value. For example, a
freeze spell may set a character’s speed to 0. In these instances,
the effect is given a priority. Thus they are nonstackable effects
determined by maximum priority.
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3. INCREASING EXPRESSIVENESS IN
REAL-TIME STRATEGY GAMES

One of the challenges with trying to increase expressiveness in
game AI is that it must have a perceptible (positive) effect on the
gameplay. While we believe that our approach will apply to all sim-
ulation games (likeThe Sims 2), as demonstrated by the number of
units inRome: Total War, real-time strategy (RTS) games are the
ideal genre to scale to large numbers of characters2. In these games,
a player does not control a single character, but instead controls
armies of characters, which are calledunits. The player controls
units by selecting them and issuing commands, which they then
execute. However, the way in which a unit executes a command
is controlled by the game AI. For example, if a human player in-
structs a character to attack a specific enemy unit, the game AI may
first instruct it to attack other nearby enemy units just so that it
can maneuver into range. Most of the gameplay consists of issuing
a command to a unit, and then scrolling to another portion of the
map to command other units, while the first unit executes its or-
ders. Thus these games can scale by orders of magnitude without
advances in rendering technology.

Because of this gameplay, RTS games should ideally have scripts
defining the behavior of each individual. A player wants a unit to
execute its command correctly without further instruction; that way
the player can issue commands to large numbers of units, effec-
tively controlling massive armies. However, unit behaviorin RTS
games is relatively primitive; they are typically modeled as sim-
ple finite state machines [22]. As a result a player must directly
control the units if there is to be any coordination between units.
For example, a standard tactic in strategy games is to have archers
stay behind armored troops in order to protect them; if the armored
troops move, the archers need to move as well to retain their cover.
Even achieving this relatively simple level of coordination requires
the human player to neglect all other troops and repeatedly issue
instructions to these two.

The problem is that processing individual AI scripts can bevery
expensiveas each unit is typically processed separately. Game AI
is a main efficiency bottleneck in such games. Suppose the game
designer wants a certain type of unit to run in fear from a large
number of marching skeletons. If the number of skeletal troops is
on the order ofn, the total number of units, then it takesO(n) to
count the number of skeletons. Furthermore, if all the unitscan see
the skeletons, then each unit performs anO(n) count aggregate, for
a total time ofO(n2) to process all of the units.

3.1 Processing Units as a Group
The typical solution to this problem in RTS games is to handle

all coordination incentralized AI scripts. In centralized AI, a script
controls the actions of a large number of units. For example,each
computer player inWarcraft III has two invisible commanders to
control all the units: one for attacking, and one for defense. Cen-
tralized AI controls units by querying the environment, andthen
issuing a simple command to each unit. This solves the problem
in our skeleton example since the centralized script can count the
number of skeletal troops inO(n) time and issue the “run away”
instruction to each unit again inO(n) time.

However, centralized AI has three major problems. Because one
script controls all of the units of a faction, it is difficult to write
scripts that control more than one geographic cluster of units at a
time. The limitation ofWarcraft III to two commanders means the
computer is unable to defend and fight a multiple-front war atthe

2While massively multiplayer online games have more characters,
relatively few interact with each other at any moment.

same time; human players use limitations like this to their advan-
tage. Another problem is that it is difficult to separate individual
behavior from herd behavior. When the centralized AI scriptsees
the skeletal warrior, it issues the run away command to all units.
Thus the units flee uniformly, ignoring issues such as which units
can see the skeletons. Changing the centralized script to account
for this makes the script harder to design and read.

Most importantly, however, centralized AI is really only de-
signed to run the computer player. It is of no help to the human
player because he or she controls individual units, and not acentral
commander. Therefore, sophisticated individual AI scripts would
be a massive improvement to RTS games.

Note that centralized AI is a crude form of set-at-a-time process-
ing, explicitly implemented by the game designer. The designer
knows that all of the units will compute the same aggregate and
places this in the centralized script. However, it should not be nec-
essary for the game designer to do this explicitly. If we construct a
scripting language that allows us to use sophisticated rewrite rules
to group calculations together, then we can do this in the script
compiler.

The primary difficulty in designing such a query language is iter-
ation; if the language only has conditionals, we can easily convert
our language to a declarative language like SQL and optimizeit ac-
cordingly. Fortunately, an analysis of the scripts in RTS games like
Warcraft III [2] reveals that iteration is only used in the following
contexts.

• Computing an aggregate value about a set of units or the local
environment. Examples include summing up the strength of
visible units, or finding the weakest unit in range.

• Applying an update to a set of units or the environment.
• Processing an array whose size is fixed and determined at

compile time (e.g. an array representing the “strength” of
each troop type inWarcraft III).

• Reimplementing functionality that exists already in the
game, but is not open to modders (e.g. the pathfinding al-
gorithms in the AMAI filecommon.eai [2]).

The first two cases can easily be handled by a declarative language.
The third case is also either an aggregate computation or an up-
date to the array, and can be processed similarly. The final case
is simply a matter of opening up more of the API to the scripting
language, which is an orthogonal problem. Therefore, we canget
the most important functionality of these scripting languages with
a purely functional language with aggregate functions on sets. At
each step, the AI script performs a declarative query on the envi-
ronment and uses the result to perform an update. We define this
language explicitly in Section 4.

To provide true individualized behavior, it is not enough that our
optimization pull out common aggregate expressions. For exam-
ple, the units counting the number of skeletons may not be able to
see exactly the same number of skeletons. However, if the units
are clustered together – as they normally are in combat – the skele-
tons they see should overlap. To take advantage of this overlap, we
would like to construct indices that efficiently compute thenum-
ber of skeletons for each visible region, and process each script as
a look-up in this index. However, the type of index that we make
depends heavily on the type of aggregate and our query plan. We
investigate this further in Section 5.

3.2 Case Study: A Battle Simulation
RTS games have non-combat aspects to them such as economics

and building. However, in these games these aspects are highly-
abstracted and do not feature large numbers of individuals.There-
fore they are relatively easy to process. Hence, we will evaluate our
approach by focusing on the combat simulation of an RTS.
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Our battle simulation is structured like that of the typicalRTS.
The state of each unit consists of at least three values: thex andy
position of the unit, and its health. Health is modeled as an integer;
when it is reduced to 0, the unit is dead and is removed. There
are only three types of actions: a unit can either move (to change
its x andy value), damage an enemy unit (reducing its health), or
heal a friendly unit (restoring its health). Which of these actions
are available depends on the type of the unit.

• Knights: These units can only move and attack. They are
armored, and hence take less damage from the attacks of oth-
ers. They also do the most damage in their attacks. However,
they can only attack units that are in arm’s reach.

• Archers: These units can only move and attack. Unlike
knights, they are not armored, so they take more damage
from the attacks of others. Their arrows also do less dam-
age than the swords of the knights. However, they have a
much larger range in which they damage an enemy unit.

• Healers: These units can only move and heal. Like archers,
they are not armored, and so take more damage from the at-
tacks of others. They heal units by casting a “healing aura”
that restores health to all friendly units within the circleof
this aura. The health of a unit can never be restored beyond
the initial health of the unit. Healing auras are nonstackable,
so a unit can only be healed once per clock tick.

For modeling specifics such as determining damage, the effects
of armor, and so on, we use the game mechanics in the pen-and-
paper d20 system[27]. This system is the foundation for all com-
puter game combat simulations, and thus is a reasonable model.
This system has the added advantage that its rules are not designed
according to the limitations of computer games. InWarcraft III, a
typical unit can only see an area capable of holding 100 otherunits.
Therefore, processing a query like “count the number of skeletal
units” is really justO(1) with a large constant. On the other hand,
visibility in the d20 system allows characters to see and make judg-
ments about areas containing up to 25,000 other units. Thus these
mechanics allow for interesting scaling to large numbers ofunits.

In our case study, we want our scripting language to support in-
teresting coordination between units. For example, we wantthe
archers to use the knights as cover. To do this, the scripts compute
the centroids of the enemy, the knights, and the archers, andmoves
the archers so that these three points are in a line with the knights in
the center. As another example, we want the knights to close ranks
to keep the enemies from going through. To do this the knights
compute their approximate density by computing the standard de-
viation of all the troop positions, and then counting the number of
troops in two standard deviations. If they are too spread out, they
move towards their centroid.

In general, our scripting language will support a much larger
class of aggregates than these examples. However, they are enough
to exhibit interesting behavior not found in current RTS games.
Furthermore, they will serve as useful examples when we define
our language in the next section.

4. THE SGL LANGUAGE
Our game data is abstractly modeled as a relationE. We assume

that this table is amultiset; it need not have keys. Each row in
the table represents a unit or object, and contains information such
as the unit’s health, speed, attack damage, and so on. It may also
include data representing messages from other units of the system,
like the pathfinding subsystem, or the time remaining in the unit’s
cooldown period.

The language SGL (Scalable Gaming Language) is a scripting
language for specifying individual unit behavior. An SGL script

represents a single action for a single unit. Informally, anSGL
script is a function that, at each clock tick, takes the environment
E and returns a new environment tableEu. However, since there
are several individuals acting, we need to be able to combinethe
environmentsEu to produce the final environment at the end of
our clock tick.

We do this by separating the schema ofE into attributes repre-
senting the state of the each unit and the attributes representing the
effects on the unit. For example, one possible schema for ourbattle
simulation is

E(key,player,posx,posy,health,cooldown,

weaponused,movevect x,movevect y,

damage,inaura)

(1)

The attributeskey . . . cooldown in (1) represent the state of the
unit. These attributes cannot be modified directly by an SGL script.
The remaining (auxiliary) attributes represent the effects applied to
the unit, such as how far the unit will move, or the strength ofthe
nearest healing aura. These are the values altered by an SGL script;
we combine these values together to calculate the final effect on
each unit using the rules outlined in Section 2.2.

Only once we have combined all of the individual environments
Eu together into a single environment do we actually apply the
effects and change the state of the units. This is done by a post-
processing step outside of the SGL scripts, and is considered as
part of the game mechanics.

EXAMPLE 4.1. For the schema in (1) the post-processing step
consists of performing the following SQL query to get the newen-
vironment.

SELECT u.key, u.player,
u.posx + u.movevect_x * norm AS posx,
u.posy + u.movevect_y * norm AS posy,
u.health - u.damage + u.inaura AS health,
u.cooldown - 1

+ u.weaponused*_TIME_RELOAD AS cooldown,
0 AS weaponused,
0 AS movevect_x, 0 AS movevect_y,
0 AS damage, 0 AS inaura

FROM E u
WHERE u.health > 0; # remove the dead

where norm is a shortcut for WALK DIST PER TICK /
sqrt(u.movevect x2 + u.movevect y2). For example,
at the end of the tick, we take the total damage done to a unit and
subtract it from the health (as well as restore the amount provided
by the healing aura). It is also at this point that we remove units
with 0 health from the table.

We spend the rest of this section formalizing this processing
model so that we can optimize it in Section 5.

4.1 Syntax of SGL
Informally, SGL scripts consist of SQL together with condition-

als (if-then-else statements),let-statements to (temporar-
ily) add new attributes to the current unit, and a special keyword
perform for invoking other scripts or applying built-in actions.
A perform statement specifies an update to the environment. To
help with readability, the programmer can decompose a script into
several functions.

Because individual unit behavior must be tailored to the unit,
each AI script has access to the current unit tupleu (which holds
its own state) from the environment. Furthermore, it has a function
Random for generating random values. To get a random num-
ber, the script provides a number as a seed. For any numberi,
Random(i) will always return the same number within a single
clock tick, but not necessarily between clock ticks.
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main(u) {
(let c = CountEnemiesInRange(u,u.range))
(let away_vector = (u.posx, u.posy) -

CentroidOfEnemyUnits(u, u.range)) {
if (c > u.morale) then
perform MoveInDirection(u,away_vector);

else if (c > 0 and u.cooldown = 0) then
(let target_key = getNearestEnemy(u).key) {

perform FireAt(u, target_key);
} } }

Figure 3: An SGL Script

In detail, the syntax of action functions is given by the grammar

action :: − (let attributename = term) action

| action; action

| if cond then action

| if cond then action else action

| perform actionfn name

Conditions are Boolean combinations of atomic conditions.
Atomic conditions are comparisons of two terms (using =,<, ≤,
6=). Terms are constructed using arithmetics over constants,at-
tributes of the unit, random numbers, and aggregate functions.

EXAMPLE 4.2. Figure 3 shows an example of a simple script
that fires an arrow if there is a unit in range, but runs away if
there are too many enemies. If neither case is true, or it is wait-
ing on the weapon cooldown, then it does nothing. Note that
CountEnemiesInRange, CentroidOfEnemyUnits, and
NearestEnemy are all aggregate functions that compute a value
from E. The functionsMoveInDirection andFireAt, on the
other hand, are action functions and update the environment. These
functions are provided as SGL built-ins, but we show how to define
them explicitly in Section 4.3.

4.2 Combining Effects in Environment Tables
As we described in Section 2.2, the way in which we combine

effects depends on whether they are stackable or nonstackable.
Therefore, we tag the attributes of our environmentE to keep track
of how we combine effects on this attribute (i.e. sum for stackable
effects,min or max for nonstackable effects). Formally, our envi-
ronmentE has schemaE(K, A1, . . . , Ak). Each attributeAi of E
is tagged as the typeτi which is either const,max, min, or sum.
Attributes of type “const” never change and can never be the direct
subject of an effect; the type ofK is always const. For example,
in the schema in (1), the first line of attributes are all of type const.
The attributeinaura has typemax, since healing auras are not
stackable; all other attributes have type sum.

To combine output of the SGL scripts, we define acombination
operation⊕ on a relationR whose schemaR(K, Ai1 , . . . , Aim)
is a subschema of that ofE. We letK, Ai1 , . . . , Ail be precisely
the const-typed attributes ofR. We define⊕R as

select K, fi1(Ai1) as Ai1 , . . . , fim (Aim) as Aim

from R group by K, Ai1 , . . . , Ail ;

where, abusing notation and identifying typeτj with the aggregate
function of the same name,

fj(AJ) :=



Aj . . . τj = const
τj(Aj) . . . otherwise

(2)

When attributeK is a key for tableR, we will sometimes writeR⊕

to highlight this; note that in this caseR = ⊕R. We useR ⊕ S
as a shortcut for⊕(R ⊎ S), where⊎ denotes the multiset union
operation.

Because⊕ is defined in terms ofmin, max, and sum, it is as-
sociative and commutative. Furthermore, given two environment
tablesE1 andE2,

⊕(E1 ⊎ E2) = ⊕(⊕(E1) ⊎ E2). (3)

In the caseE2 = ∅, this in particular implies idempotence of the
combination operator,⊕(⊕(E1)) = ⊕(E1), and by applying the
equivalence twice we obtain⊕(E1 ⊎ E2) = ⊕(⊕(E1) ⊎ ⊕(E2)).
This property will be useful in generating our query plans.

EXAMPLE 4.3. If the schema in (1) is tag with types as de-
scribed above, then
SELECT key, player, posx, posy, health, cooldown,

max(weaponused) AS weaponused,
sum(movevect_x) AS movevect_x,
sum(movevect_y) AS movevect_y,
sum(damage) as damage,
max(inaura) as inaura

FROM E
GROUP BY key, player, posx, posy, health, cooldown

computes the environment⊕E.

4.3 Semantics of SGL
The goal of the SGL language is to support the specification of

character actions. It is intended to be expressive, but to have a
simple semantics that can be easily mapped to query evaluation
techniques nevertheless. For this reason it is a functionallanguage
with a somewhat imperative surface syntax. Each expressionin our
language is called anaction function.

An action function is a function of signature

f : Env× Multiset(Env) × 2Env×N→N → Multiset(Env)

for some constantc. Thus an action function takes

• a tuple from the environment table (the current unit),
• the environment itself, and
• a function that maps any pair consisting of a tuplefrom the

environmentand a natural number to a natural number

as input and returns an updated environment table. The function
Env × N → N is used to simulate random numbers inside our
functional language.

The semantics of SGL action functions is given by the semantics
functions[[·]], [[·]]cond , [[·]]term for action functions, conditions, and
terms, respectively. We define this semantics as follows

[[(let v := t) f ]]E,r(u) := [[f ]]E,r(u, v : [[t]]term(u, E, r))

[[f1; f2]]E,r(u) := [[f1]]E,r(u) ⊕ [[f2]]E,r(u)

[[if φ then f1]]E,r(u) :=

(

[[f1]]E,r(u) if φE,r(u)

∅ otherwise

[[perform G]]E,r(u) := [[g]]E,r(u)

[[perform H]]E,r(u) := h(u, E, r)

wheref1, f2 andg are SGL action functions,G is the name of
defined functiong, H is the name of built-in action functionh, and
v is an attribute not yet present in recordu. We will considerif
φ then f1 else f2 a shortcut forif φ then f1; if ¬φ
then f2. Note that our definition oflet means that we extend
the current unit record by value of termt.

The semantics of conditions[[·]]cond commutes with the Boolean
operations, and[[·]]term commutes with the usual arithmetic oper-
ations. There are only three interesting types of terms. We de-
fine an attribute access in a tuple by[[u.v]]term(u, E, r) = u.v.
Our random function is defined as[[Random(i)]]term(u, E, r) =
r(u, i); Finally, for an aggregate function namea we assume that
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function CountEnemiesInRange(u, range) returns
SELECT Count(*)
FROM E
WHERE E.x >= u.posx - range
AND E.x <= u.posx + range
AND E.y >= u.posy - range
AND E.y <= u.posy + range
AND E.player <> u.player;

function CentroidOfEnemyUnits(u, range) returns
SELECT Avg(x) AS x, Avg(y) AS y
FROM E
WHERE E.x >= u.posx - range
AND E.x <= u.posx + range
AND E.y >= u.posy - range
AND E.y <= u.posy + range
AND E.player <> u.player;

Figure 4: Aggregate Function Definitions

there is an external functiona : (u, E, r) 7→ R
c and we define

[[a]](u, E, r) := a(u, E, r).
While the built-in aggregate and action functions could be arbi-

trary computable functions of appropriate signature, it appears that
in practice it causes no loss of generality to assume that they are
expressible in SQL, more specifically of the following form.3

• Each built-in action functionh(u, E, r) is of the form

SELECT e.K, h1(u, e, r) AS A1, . . .

hk(u, e, r) AS Ak (4)

FROM E e WHERE φ(u, e, r).

• Each built-in aggregate functiona(u, E, r) is of the form

SELECT a1(h1(u, e, r)), ..., ak(hk(u, e, r))

FROM E e WHERE φ(u, e, r). (5)

Here the tuplesu andr are assumed to hold constants,h1, . . . , hk
are terms overu, e, andr, anda1, . . . , ak are SQL aggregates.

Figure 4 shows definitions of the aggregates used in the SGL
script of Figure 3 and Figure 5 defines some built-in action func-
tions, both using the SQL fragments indicated above.

To process a complete SGL script, each script has a main action
function called MAIN. Given a functionρ : E → E → N → N

c,
the semantics of an SGL script is

tick(E, ρ) := main⊕ρ (E) ⊕ E (6)

where, here and in the following,f⊕
ρ (E) is a shortcut for

⊕(
]

{[[f ]]E,ρ(u)(u) | u ∈ E}). (7)

The functionρ contributes the random element to the evaluation
of the script. Note, however, that this formalization is completely
deterministic. Since below we will only discuss the computation
done within a single tick, we usually omit the subscriptρ and sim-
ply write f⊕. Further note thatf⊕ is a unary relational operation.

Now that we have our formal definitions, we review our process-
ing model once more. In a single tick, the processing model first
initializes the auxiliary attributes introduced by the scripts. Then it
produces the environment tableEu for each script, which encodes
the effects but does not apply the effects. These all combined into
a single table tick(E, ρ). Finally, we apply effects using a special
post-processing query defined by the game mechanics as shownin
Example 4.1.

3For example, the Warcraft IIIcommon.ai can be fully expressed
under these restrictions.

function FireAt(u, target_key)
returns

SELECT e.key,e.player,e.posx,e.posy,e.health,
e.cooldown, 1 AS weaponused,
e.movevect_x, e.movevect_y,
e.damage+(_ARROW_HIT_DAMAGE - _ARMOR) *

(Random(e,1) mod 2) as damage,
e.inaura

FROM E e
WHERE e.key = target_key;

function MoveInDirection(u, x, y)
returns

SELECT e.key,e.player,e.posx,e.posy,e.health,
e.cooldown, e.weaponused,
x - e.posx AS movevect_x,
y - e.posy AS movevect_y,
e.damage, e.inaura

FROM E e
WHERE e.key=u.key;

function Heal(u)
returns

SELECT e.key,e.player,e.posx,e.posy,e.health,
e.cooldown, e.weaponused,
e.movevect_x, e.movevect_y, e.damage,
nonsql_max(e.inaura,_HEAL_AURA)

AS inaura
FROM E e
WHERE u.player = e.player
AND abs(u.posx - e.posx) < _HEALER_RANGE
AND abs(u.posy - e.posy) < _HEALER_RANGE;

Figure 5: Action functions implemented in SQL

5. QUERY OPTIMIZATION
In this section we address the efficient processing of SGL scripts

using data management techniques. We first show how SGL scripts
can be translated in a natural way into a relational algebra-like lan-
guage. Then we discuss the algebraic optimization of such queries
and the determination of query plans including the use of indexes.
Finally, we give efficient algorithms for computing index structures
for aggregate functions and area-of-effect actions which in total im-
prove the running time of tick() from timeO(n2) to O(n logd n),
whered depends on the query plan.

5.1 Bag Algebra
We use a fragment of the relational algebra on multisets (using

operations projectionπ, selectionσ, product×, and multiset union
⊎) extended by acombination operation⊕. The multiset algebra
operations are defined by a mapping to SQL:

σφ(R) := select * from R where φ;

π~f(∗)AS ~B(R) := SELECT ~f(∗) AS ~B FROM R;

R × S := SELECT * FROM R, S;

R ⊎ S := R UNION S;

agg~A,~g(~B)(R) := SELECT ~A, ~g( ~B)
FROM R GROUP BY ~A;

Here ~f(∗)as ~B stands forf1(∗)asB1, . . . , fn(∗)asBn, where
thefi are terms built using the attributes of the input relation, con-
stants, arithmetics, and external functions, and eachgi is an SQL
aggregate function (e.g.min, max, count, sum, avg).

The natural join⊲⊳ is defined in analogy to relational algebra
using the above multiset operations. Below, we will use algebraic
expressions interchangeably with SQL queries. We will onlyapply
the natural join on pairs of relations whose schema overlapson
exactly the attributeK, and use the notation⊲⊳K to make this clear.
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⊕

⊕

act⊕1 act⊕2

π∗,agg3(∗)

σφ2

σφ1
σ¬φ1

π∗,agg2(∗)

π∗,agg1(∗)

E

(a)

⊕

⊕

act⊕1 act⊕2

π∗,agg2(∗) π∗,agg3(∗)

σφ2

σφ1
σ¬φ1

π∗,agg1(∗)

E

(b)

π1.∗⊕2.∗

⊲⊳K

⊕ ⊕

act⊕1 act⊕2

π∗,agg2(∗) π∗,agg3(∗)

σφ2

σφ1
σ¬φ1

π∗,agg1(∗)

E

(c)

π1.∗⊕2.∗

⊲⊳K

⊕

act⊕1 act⊕2

π∗,agg2(∗) π∗,agg3(∗)

σφ2

σφ1
σ¬φ1

π∗,agg1(∗)

E

(d)

Figure 6: Example Query Plans. Example 5.1 translates (a) via (b) and (c) into (d).

g(π∗,f(∗)(R)) ⊕ R = g(R′) ⊕ R
′ whereR

′ = π∗,f(∗)(R) (8)

f(σφ(R)) ⊕ g(σ¬φ(R)) ⊕ R = (f(R′) ⊕ R
′) ⊕ (g(R′′) ⊕ R

′′) whereR
′ = σφ(R), R

′′ = σ¬φ(R) (9)

R
⊕
1 ⊕ R

⊕
2 = π1.∗⊕2.∗(R

⊕
1 ⊲⊳K R

⊕
2 ). whereπK(R⊕

1 ) = πK(R⊕
2 ) (10)

Figure 7: Some rules involving⊕. R, R⊕
1 , R⊕

2 denotes extended environment relations.

We assume that SGL scripts are in a normal form in which
aggregate functions only occur in let-statements, but in noother
terms. It is easy to see that this is a normal form for SGL and
that this assumption causes no loss of generality. For example,
if agg(u.health) = 3 then f is equivalent to(let v
= agg(u.health)) if u.v = 3 then f.

By the following translation, each SGL script can be turned into
an equivalent expression in our algebra.

[[f1; f2]]
⊕(E) = [[f1]]

⊕(E) ⊕ [[f2]]
⊕(E)

[[if φ then f ]]⊕(E) = [[f ]]⊕(σφ(E))

[[(let ~A = a) f ]]⊕(E) = [[f ]]⊕(π
∗,a(∗) as ~A(E)).

These translations follow immediately from the SGL semantics
definition. Using these equivalences, we can rewrite the overall
semantics function tick() (see Eq. (6)) into an expression of our
bag algebra. Note that extensions of the schema of an environment
relation effected by “let” add untyped columns, which however are
eliminated by the built-in action functions. These by definition al-
ways return environment relations of schemaK, A1, . . . , Ak.

If the built-in action functionfi(u, E, r) is in the fragment of
SQL specified in Eq. (4), we can expressf⊕

i (R) in our algebra as

⊕(πE.K,g1,...,gk
(σψi

(R × E))).

Each aggregate of the form of (5) applied to a set of unitsE0 can
be written in the bag algebra as

πu,fa(u)(E0) := agg1.∗,~g(2.∗)(σφ(E
(1)
0 × E

(2))) (11)

which can also be computed by an index nested loop joinE0 ⊲⊳
Indagg(E) with a precomputed index structureIndagg(E) =

agg1.∗,~g(2.∗)(σφ(E
(1) ×E(2))). The efficient computation of such

index structures is discussed in Section 5.3.

5.2 Algebraic Optimization
We can now rewrite the queries obtained from SGL scripts using

the algebraic laws that hold in our algebra. These are to the greater

part known from relational algebra4, but some additional rules hold
for ⊕ and its interaction with the other operations.

EXAMPLE 5.1. Consider the script of Figure 3. For clarity
of exposition, the names of aggregation functions, built-in ac-
tion functions, and conditions are abbreviated as agg1, agg2, agg3,
act1, act2, andφ1, φ2, respectively. (The ordering is as they appear
in the script.)

By our rewrite rules that take SGL to our algebra, we obtain the
query plan of Figure 6 (a). This query plan is actually already quite
good. While the SGL script suggested an evaluation one unit at a
time, the query plan employs set-at-a-time processing.

One optimization that we can achieve is to pushπ∗,agg2(∗) up
across the selections. In the right branch of the expression, agg2
(in the form of the attributeaway vector) is not used and can
be removed. The aggregate index foragg2 will only have to be
computed for the units that satisfy conditionφ1. We obtain the
query plan of Figure 6 (b).

Next we optimize the combination of the result of main⊕ with
E. This combination takes place to ensure that each unit inE is
also present in the result even if no action is taken on this partic-
ular unit in the current tick. There are two actions being carried
out,MoveInDirection or FireAt. The first modifies each of
the units on which it is applied; for these units we do not needto
combine withE.

This optimization can be effected as follows.
1. Using rules (8), (9), and (10), we can turn the plan of Fig-

ure 6 (b) into the plan of Figure 6 (c).

2. By definition act⊕1 (R) is of the form

π~f(E.∗)(R ⊲⊳K E)

which can be simplified toπ~f(∗)(R). But then

act⊕1 (R) ⊕ R = act⊕1 (R).

This yields the plan of Figure 6 (d).
4For the monotonic operations that we introduce – those that do
not perform aggregation – the laws are basically the same as for
relational algebra with set semantics.
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5.3 Indexes and Geometric Algorithms
As we saw in Section 2.2, the most expensive part of a unit’s

script is often the processing of the aggregate functions. If ev-
ery friendly unit is processing the aggregate to count the number
of skeletal warriors, and all the enemy units are skeletal warriors,
then the naive computation isO(n2). As we noted in the previous
section, we can optimize this behavior by sharing the computation
for agg across several units and processingπ∗,agg(∗) with an in-
dex nested loop join. Of course, to do this, we have to be able to
construct the index for the aggregate.

Our choice of index structure does not just depend onagg. It also
depends on the selectionσφ; this selection appears outside the join
in our index look-up optimization. For example, the index structure
to count the number of skeletal warriors is not the same as theindex
structure to count the number of units belonging to the blue player.

In traditional databases, it would be prohibitively expensive to
create indices for each individual query plan. However, SGL
queries do not change rapidly over the course of the game; the
player issues a command, and that command performs the same
query for many clock ticks. In that regard, SGL queries are simi-
lar to continuous queries in streaming databases. We can afford to
construct an index specifically tailored to each query plan.

Note that our indices are used to share computation between
units, not between clock ticks. It is usually the case that the number
of index probesin each clock tickis comparable to the number of
entries in the index. Therefore, we are still likely to see significant
performance gains even if, at each clock tick, we discard theindex
and build a new one from scratch. For data that is updated often
– such as unit positions – it may even be more efficient to do this
than to maintain a dynamic index.

In constructing our indices, we assume thatφ is a conjunctive
query. This is commonly the case in games and is evident in all
of the aggregate queries in AMAI filecommon.eai [2]. More-
over, it is true for all of the examples in this paper. Given this
assumption, we can ignore those conjuncts ofφ that are not part
of joins. For example, suppose we want to count the number of
moderately wounded units (without regard to location). We typ-
ically define a unitu as moderately wounded ifu.health <
0.5*u.max health. This particular selection can be pushed
into the index nested loop join, and so we do not have to consider
it when building the index. On the other hand, if we want to count
the number of visible enemy units, then determining whetheran en-
emy unit is visible requires both the position of the enemy unit and
the position of the unit performing the query. Thus this selection
condition must be factored into the index.

Given that we have reducedφ to those conjuncts necessary for
the join, we now present index structures for aggregates commonly
found in games. These aggregates include all of the ones in our
examples, as well as ones that appear in the scripts forWarcraft III.

5.3.1 Orthogonal Range Queries
The most common type of selection conditionφ in a game script

is an orthogonal range query. Conditions such as whether theunit
can penetrate the armor of the enemy or can move faster than the
enemy are inequalities comparing one value to another. For cate-
gorical data, this may be a degenerate range query, such as deter-
mining if a unit is of a certain type. Even determining if a unit is in
range can be an orthogonal range query. For performance reasons,
games often choose to use rectangles, not circles, to determine area
of effect as is demonstrated in Figure 4. This is evident by the
prevalence of functions in the AI scripts forWarcraft III that select
units in a rectangle, likeGroupEnumUnitsInRect(). Other
games optimize by using circles with anL1 norm; however, these

are just squares rotated45◦ and so they can be modeled as orthog-
onal range queries as well.

In the case where all ofφ is an orthogonal range query, we can
process it with a layered range tree [9]. We order the levels of
the layered range tree according to the volatility of each axis. At-
tributes that do not change often, such as the type of the unitor its
maximum health, form the top layer of the index, while data that is
constantly updated, such as position, is at the bottom. Thisway we
can reuse as much of the index as possible across clock-ticks. In
particular, we can preserve the upper layers that do not change, but
dispose of the lower ones, which do.

We can build a layered range tree inO(n logd n) time, and
for each unit, we can enumerate those elements that satisfyφ in
O(logd n + k) time, whered is the dimension of the orthogonal
range query andk is the number of elements selected byφ. In de-
termining the dimensiond, we can ignore all degenerate (i.e. cat-
egorical) range components, as those levels of the tree can be re-
placed by a hashtable withO(1) look-up. As we mentioned above,
it is not necessary for this index to be dynamic (see [7] for the
additional cost of dynamic algorithms). Therefore, we can use
fractional cascading [6] to reduce the time toO(n logd−1 n) and
O(logd−1 n + k), respectively.

However, a layered range index by itself still does not give us
the performance we want. If the units are all clustered together, as
is often the case in combat, then the valuek in O(logd−1 n + k)
can be significantly large. Ifk is close ton, then the join will still
be O(n2). However, recall that we are not actually interested in
the orthogonal range queryφ. What we really want is the value of
agg on the elements returned by this query. Ifk is large, then there
will be a high degree of overlap between the elements selected for
each unit, and so we can share this computation in computing the
aggregate.

We do this in one of two ways, depending on the nature ofagg.
The simplest case is whenagg is divisible.

DEFINITION 5.1. An aggregateagg is divisible if there is a
functionf such that

agg(A \ B) = f(agg(A), agg(B))

wheneverB ⊆ A. The aggregatesum is an example of such an
aggregate, sincesum(A\B) = sum(A)−sum(B) wheneverB ⊆
A. The aggregatecount is also divisible, as are all the statistical
moments. However,min andmax are not.

When the aggregateagg in π∗,agg(∗) is divisible, we can improve
the performance by replacing the last layer of the layered range
tree with an index that contains the aggregates, not the elements.
For example, suppose we have an orthogonal range query on just
the position of the units. Normally, we would construct a layered
range tree on thex andy values; assume for the purposes of this
example that we layer these rangesx theny. In this layered range
tree, eachx node would contain they-index of nodes withx values
in that range. However, instead of placing the units at the leaves of
they-index, we put the aggregate value of all of units whosey value
is less than or equal to the value at that leaf. This idea is illustrated
in Figure 8. The fact that our aggregate is divisible means that we
can recover the aggregate of any range in a fixed number (2d) of
queries of the tree. Furthermore, this technique is compatible with
fractional cascading. Therefore, in this case, we can compute the
index nested loop join forπ∗,agg(∗) in time O(n logd−1 n), where
d is the number of continuous attributes in the orthogonal range
query. This is a definite improvement overO(n2).

Many of the aggregates in our case study in Section 3.2, such
as centroid or the number of units, are divisible aggregatesover
orthogonal range queries. The AMAI filecommon.eai contains
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Figure 8: Divisible Aggregates in a Layered Range Tree

other examples, such as the use of sums weighted on troop type
to measure the strength of an army. In some cases, such as our
centroid query, the aggregate is really a tuple of aggregates over
the same selectionσφ. In that case, we can combine these aggre-
gates into one index structure by replacing the list of aggregates in
Figure 8 with a list of aggregate tuples.

However, two very important aggregates — maximum and min-
imum — are not divisible. These aggregates are necessary for
queries such as finding the weakest (i.e. least healthy) unitin range.
For these aggregates, we cannot use the technique illustrated in Fig-
ure 8 to get rid of the valuek in theO(logd−1 n + k) look-up for
an orthogonal range tree.

One option is to build a multi-resolution aggregate tree [15] for
the entire space, and then query this tree for each unit. Unfortu-
nately, these trees return only approximate results, and there is no
guarantee on their query performance. However, there is another
possible optimization. In many instances, the size of the range will
be constant in one of the dimensions of the orthogonal range query.
For example, units of the same type all have the same weapon and
visibility range. If, as before, we assume that this visibility range
is represented as a box, this means that all of these units have the
same size for theirx andy range queries. When this is the case, we
can computemaxandminusing a sweep-line algorithm [9]. In two
dimensions, the procedure is as follows:

• Choose an axis for which the size of the range is constant.
Call this axisy and let the size of the range ber.

• Construct a binary tree ordered on the remaining axisx.

• Use this tree to perform a variant of a sweep-line algorithm
on axisy.

– Initially annotate each leaf of the tree with a default
value:∞ for min or −∞ for max.

– Sweep with a range ofr. When a unit moves into range
r, replace the default value with the actual value. When
a unit reaches the center of the range, use the tree to
compute the aggregate within the unit’sx range (this
takesO(log n) time). When a unit moves out of the
ranger, replace the actual value with default value (∞
or−∞).

– At each step of the sweep, percolate any changed leaf
values up the tree so each interior node is labeled with
the aggregate of its leaf descendants.

This technique is illustrated in Figure 9. The technique general-
izes tod dimensions, with performanceO(n logd−1 n), A total of
n items enter and exit the sweep, and it costsO(logd−1 n) time to
percolate the aggregate values for each unit that enters or exits.

99 17 45 23

99 17 23

17 23

17

Exiting sweep region

99 45 23

99 23

23

31

31

23

Entering sweep region

Figure 9: Sweep-Line ofmin on Constant Region Size

5.3.2 Spatial Aggregates
While many of our aggregates are

P

, max, andmin on orthog-
onal range queries, not all of them are. For example, we frequently
use the aggregate that returns the nearest unit. The AMAI file
common.eai contains other interesting spatial aggregates, like
searching for the unit that can reach location(x, y) in the short-
est amount of time. Many of these aggregates have been studied
extensively in the area of computational geometry, and there exist
specialized indices designed to solve many of them quickly.For
example, an efficient way to find the nearest unit is to use a kD-
tree [4]. Designing these types of indices is beyond the scope of
this paper.

However, note that for many of these spatial aggregates, thenon-
spatial part of the query is still an orthogonal range query.We do
not just want the nearest unit; we want the nearest unit that is an
archer, or the nearest unit whose armor we can penetrate. There-
fore, to process these type of queries, we place the spatial indices
as the lowest level of a layered range tree. For example, to find the
nearest unit whose armor we can penetrate, we create a tree for the
armor values, and attach a kD-tree to each node in this tree. This
structure can be created inO(n log2 n) time and space; each probe
requiresO(log2 n) time.

5.4 Processing the Combination Operator
The combination operator⊕ serves two purposes: it allows us

to combine different types of effects, and it allows us to combine
several effects of the same type from different actions. When we
look at⊕ in the latter case, we can view⊕ as an aggregate. In-
deed, this is often the definition of⊕. For example, in the case of
attacks,⊕ sums up all of the attacks on each unit to determine the
total damage to apply. In this case of a nonstackable effect like our
healing aura,⊕ computes the maximum aura for each individual,
so that we can perform that much healing.

For many actions, the effect of the action only applies to a single
unit. Each move action only effects the unit itself; each archer can
only fire at some target. However, some actions, like the healer’s
healing aura shown in Figure 5, can affect multiple units. Inthis
case, we again may need to be concerned aboutO(n2) behavior;
if roughly n units perform area of effect actions that apply ton
units, then combining them isO(n2). In practice, this is unlikely.
For reasons of game balance, while unit observations cover large
areas, the area affected by an action is typically very small. There
are exceptions to this rule, like the nuclear weapons inStarcraft;
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Figure 10: Comparison of Naive versus Indexing

however, only one nuclear weapon can be fired per clock tick, so
this not an example ofO(n2) update behavior.

With that said, our goal is to have a processing model that is
generic enough for scaling games of the future, not just games of
the past. Therefore, we want to optimize⊕ so that it is as efficient
as the rest of our operations. If⊕ is just attribute-wisesum or
max, as is commonly the case in games, then we can optimize this
operation further.

We observe that all area-of-effect actions of the same type com-
monly have the same range. For example, all healers exude an aura
of the same size. This means that determining all of the unitsin the
range of an effect is the same as fixing a range and determiningall
of the effects in the range of each unit. Therefore, to optimize⊕,
we arrange our query plan to group together all actions of thesame
type. For each such action we construct an index that contains their
centers of effect. Applying⊕ now consists of performing an aggre-
gate on this index; for stackable effects this action issum, and for
nonstackable effects it ismax. Hence we can use the techniques of
Section 5.3 to perform this optimally.

6. EXPERIMENTS
To validate our ideas we have built a preliminary version of the

discrete simulation engine component of the data-driven game sys-
tem architecture as described in Section 2. This is not (yet)a gen-
eral framework — the index structures we build are tailored to the
particular game example we have chosen — but it demonstratesthat
our techniques are practical and can greatly increase the scalability
of a game engine.

For our tests, we built a faithful implementation of the battle sim-
ulation game described in Section 3.2. Every NPC unit executes a
simple but decidedly nontrivial script. On each clock tick,each unit
evaluates about 10 aggregate queries. Many of these are divisible
aggregates, like “count the enemy archers” or “compute the cen-
troid of enemy troops in my region,” others are nearest-neighbor
queries, like “find the nearest healer,” and a few are MIN queries,
such as “find the weakest unit in range.”

There are two “pluggable” versions of our aggregate query eval-
uator. One executes aggrate queries naively, using straightforward
O(n) algorithms, for a total cost ofO(n2) per tick. The other uses
in-memory indexing as described above to reduce the complexity
to O(n log(n)) per epoch.

All divisible queries (count, sum, higher moments) are imple-
mented using a layered range tree with fractional cascading. All
such queries share the same range tree. Since the game has only
two players and three unit types, we push selection on playerand/or
unit type to the top, giving us a total of 6 range trees–one foreach
player/unit type combination – to implement all the divisible aggre-
gate queries. These six trees are completely rebuilt for each tick.

Nearest neighbor queries are implemented with a kD-tree. Again
there is one such tree for each player/unit type combination. The
kD-trees share some structure with the range trees. MAX style ag-
gregates are implemented using the sweepline technique discussed
in Section 5.3.1. We sweep in theY direction, and share the top-
level (X-sorted) tree of the layered range tree to implement an
O(log n) dynamic interval aggregate index. All the data structures
share the work of (re-)sorting the units by position at the beginning
of each clock tick.

Processing for each clock tick proceeds in several phases:
• A preliminary index building phase, in which we build most

of indices described above to support aggregate queries in
the next phase.

• A decision phase: each unit evaluates a number of aggregate
queries and decides on its next action, possibly setting some
per-unit state. For example, there is a per-healer variablethat
is set to the amount of healing energy the healer wants to
broadcast in this tick.

• A second index building phase, which can depend on val-
ues generated during the decision phase. For example, a
sweepline implementation of ”max healing in range” is done
in this phase.

• An action phase, for example to determine the result of an
attack.

• A movement phase: Units attempt to move in directions they
have decided on earlier. This is done in random order, with
collision detection and very simple pathfinding rules.

To facilitate our experiments (and since we wanted to measure
performance faithfully), we added a simple rule to prevent the game
from finishing prematurely: Whenever a unit dies, it is ”resur-
rected” at a position chosen uniformly at random on the grid.

6.1 Results
Our engine is written in C++, and we compiled it using gcc on

MacOS X. We ran our experiments on a 2GHz Intel Core Duo with
1.5 GB of RAM. Timings were obtained simply using the MacOS
”time” command running the simulator with a given set of param-
eters. The number of clock ticks simulated has been chosen tobe
high enough that setup time is negligible. The times reported are
the number of seconds of real time required to simulate 500 clock
ticks on an otherwise unloaded machine. These numbers are re-
peatable, and are proportional to the number of ticks simulated, to
within one percent. Thus, we do not provide error bars.

Scalability With The Number of Units. For both the naive and
the indexed strategies, we ran experiments varying the number of
units, and varying the size of the playing grid to maintain a constant
density of 1 percent of game grid squares occupied. The results are
shown in Figure 10. The quadratic behavior of the naive algorithm
is clearly evident. Note that the overhead of index construction
is quite low: the indexed algorithm dominates the naive algorithm
even for very small numbers of Units, and it is an order of magni-
tude faster by 700 Units. If we assume a game engine should be
able to simulate at least 10 clock ticks per second, the naivesystem
does not scale to 1100 Units on this processor, while the indexed
system scales to more than 12000 Units.

Varying Unit Density. For both the naive and the indexed strate-
gies, we ran experiments fixing the number of Units at 500, and
varying the unit density between 0.5 and 8 percent. Neither algo-
rithm is particularly sensitive to this parameter; we omit the full
results due to space constraints.

In summary, our experimental results show that our techniques
are very successful, leading to an order of magnitude improvement
in capacity on current hardware.
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7. RELATED WORK
To the best of our knowledge, this is the first paper to treat com-

puter games as a data management problem, with its own set of
problems and solutions. Previous work on games in the academic
literature has focused on classic AI problems, such as machine
learning and pathfinding, or on network issues, such as jitter and
latency. Papaemmanouil et al. [19] have examined the issue of
message dissemination in games; however, this work is part of a
general study of overlay dissemination trees, and does not address
the specific needs of games.

Work in the game developer literature, on the other hand, hasfo-
cused on leveraging database systems to solve problems in games.
Tozour [26] has designed a game architecture that uses spatial
databases to aid the AI engine in runtime spatial analysis. In the
case of classic board games like Chess, databases are used toman-
age a knowledge base for strategy evaluation [5]. However, most of
this work uses existing technology, and does not suggest newareas
for data management research.

8. CONCLUSIONS
Innovation in game design occurs in tandem with innovations

in game architecture. The upcoming gameSpore[28] is a perfect
example of this.Sporeis able to provide players with an unprece-
dented level of character customization by leveraging the power of
new techniques for procedurally generating animations. Atthe sur-
face, those new techniques are a means to increase the effectiveness
of development in traditional settings, offloading the burden of art
creation to the game code. When used to their full potential,those
techniques enable a new gameplay paradigm.

The power of our AI architecture follows this two-fold path as
well. It enables existing development to be greatly enhanced with
substantial performance improvements, but also opens up possibil-
ities for new kinds of games. Given a robust, expressive AI system
that is individualized rather than centralized, developers are free to
expose that AI to the player in ways previously not possible.Games
could be made where the central player experience is about creating
an exciting game experience through interesting AI.

Restricting the expressive power of the player is a relic of tra-
ditional computational limitations. With our AI architecture that
supports expressive AI without reducing the number of characters,
developers can enable much more sophisticated choices for play-
ers. Players will then be empowered by the game’s AI, insteadof
hindered by it.
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