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ABSTRACT

We introduce scalability for computer games as the nexitieon
for techniques from data management. A very important dspec
of computer games is the artificial intelligence (Al) of nplayer
characters. To create interesting Al in games today, dpeetoor
players have to create complex, dynamic behavior for a vells
number of characters, but neither the game engines nonytieeoft

Al programming enables intelligent behavior that scalea t@ry
large number of non-player characters.

In this paper we make a first step towards truly scalable Al in
computer games by modeling game Al as a data management pro
lem. We present a highly expressive scripting language 31at. t
provides game designers and players with a data-drivenidrae
for customizing behavior for individual non-player chaeas. We
use sophisticated query processing and indexing techsitpef-
ficiently execute large numbers of SGL scripts, thus prowda
framework for games with a truly epic number of non-playeareh
acters. Experiments show the efficacy of our solutions.

Categories and Subject Descriptors

D.3.2 [Programming Language$: Language Classifications—
Specialized application languages

General Terms
Languages, Processing
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1. INTRODUCTION

Computer games are becoming the next frontier for social in-
teraction between humans. The Entertainment Softwarecfesso
tion estimates that computer and video game software sai8056
were $7.0 billion dollars [3]. While graphics have alwaystivated
the growth of the game industry, we believe that the datataise
munity also has the opportunity to make significant contidns
to this field.
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A computer game is a virtual environment where players &tter
with digital objects or each other for entertainment. Onghefkeys
to developing rich playing experiences is the creation afijgiex
and interesting artificial intelligence (Al). In game deyainent,
Al has a slightly different meaning than it does in the academ
context. Game Al is the system that controls the behaviomwaof n
player characters (NPCs) — entities created by the gamgruesi
and controlled by the computer. While this system may usssida
Al algorithms, game Al includes all routines that controhbeior,
be they intelligent or not.

b- Broadly speaking, there are two approaches to improvingegam

Al. The first is to create complicated, detailed, dynamicéseh
ior for a few particularly important NPCs, like the playedsch-
nemesis or sidekick. This approach is ideal for games thatodo
have many NPCs in need of interesting behavior. For this bfpe
behavior, classic Al is relevant, and has been employedrious
degrees in existing games [14]. Expert systems have beerfase
choosing plays in sports games; natural language procebsia
been used for character interactionFmgade[17]; machine learn-
ing has been used for creature behavidBliack & White[12].

However, these techniques are often too computationafigex
sive or labor intensive to be practical for more than a hanafu
NPCs. Increasingly, having just a few intriguing NPCs isufrs
ficient for many categories of games. Strategy games, negsiv
multiplayer online games, and open world games all fredueat
quire large numbers of interesting characters. Hence, ébensl
approach to game Al is to enable interesting but relativaty- s
ple behavior for a large number of NPCs. For example, charact
behavior may be controlled by a simple finite state machime. |
the aggregate, even simple game Al can lead to complex enterge
behavior, so populating a game world with many NPCs can cre-
ate compelling gameplay. However, there is a trade-off betw
having complex NPCs and having many NPCs. When the game
demands too many NPCs, developers may have no choice but to
employ simple game Al. But if the Al is too simple, the gamel wil
exhibit predictable uniformity. This trade-off is not addsed by
the classic areas of research in artificial intelligence.

A further complication in creating large numbers of NPCsis t
actual design of the Al for each NPC. Even if the processinggno
is available, creating Al is very labor intensive. To solkie prob-
lem of content creation, developers employ the usdab@-driven
Al. In this paradigm, the Al system is heavily parameterized by
data files stored outside the code. In the simplest cases fiees
rameters may be numerical values affecting transitiontaite sna-
chines. However, more generally, they are scripts thatead and
processed by the game’s Al engine. This approach works for de
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Figure 1: Expressiveness versus Number of NPCs

signing large numbers of NPCs because these scripts ardesimp
but flexible enough to be adapted to many kinds of charactars.
addition, a data-driven Al scheme offloads much of the bufen
creating Al from the programmers to the game designersyaltp

the game Al to be modified rapidly without recompiling.

The ability to produce interesting data-driven Al dependsie
expressive power of these scripts. The scripting languaged in
games vary widely, and are often customized to meet the fapeci
needs of a game. Generally, the more expressive the sgriptin
guage, the smaller the number of NPCs that can be procesaed at
given time. Figure 1 illustrates this trade-off in existit@ta-driven
games. Neverwinter Nightswith its versatile Aurora [18] script-
ing engine, supports intricate behaviors but only for a fiainof
units. The Sims 2with a more restrictive system for its characters,
can support a few dozen Sims pursuing their lives’ objest[2].
Warcraft 11l can support a couple hundred units, but it only al-
lows relatively simple battle decisions for each unit [2]indly,
Rome: Total Wasupports thousands of soldiers, but its system is
extremely limited, as large groups of soldiers must havetidel
behavior [23]. If the expressiveness Wéverwinter Nightsvere
possible in a game on the scale®dme: Total Warthis would
provide new opportunities for gameplay not currently polesi

1.1 Scaling Data-Driven Al

Our goal is to create a data-driven Al system that is bothlhigh
expressive and capable of supporting large numbers of NREs.
the number of NPCs with distinct behaviors grows, the makima
complexity of those NPCs must decrease to maintain perfiocma
However, when large numbers of NPCs are making individual de
cisions, they may be acting on distinct but very similar sétm-
formation. By treating game Al as a data management problem,
can leverage this fact to dramatically boost performanc@altic-
ular, we have developed a new functional scripting languagd.
(Scalable Games Language), that allows us to analyze Sevijit
ten by users and to use query rewrite techniques from théalsea
community to factor out expensive function evaluation thaom-
mon to a large number of scripts. We use sophisticated query p
cessing techniques to pre-compute the results of thesengixpe
functions and we use indexing techniques to quickly acdesst
within the scripts. This novel type of multi-query optimiia in
game Al significantly improves performance of the executibtine
scripts.

The language itself is functionally quite similar to thosed in
existing games, and accessible to game designers. Thet&hsjs
designed to fit with typical game architecture without digiog the
usual structure of the other systems. Fundamentally, itiplg an
optimization and generalization of data-driven Al schelesady
employed by developers, and integrating it should be nkfara
both programmers and designers. As a result, designerblaréoa
add more and more intelligent NPCs to their games whilengtgi
the same development processes.
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Figure 2: Data-Driven Game System Architecture

Contributions and Outline of the Paper

In Section 2, we start by describing the basic architectare f
data-driven games, and identifying those subsystems fmtveata
management is most important. After this introduction, waken
the following contributions in this paper.

e In Section 3, we introduce a specific data management prob-
lem that must be solved in order to scale games to large num-
bers of interesting NPCs. We also present a case study using
real-time strategy (RTS) games to analyze the effectiveenes
of our approach.

e In Section 4, we describe SGL, a novel and expressive script-
ing language for game Al. We demonstrate that the semantics
of SGL allows us to process non-player characters set-at-a-
time instead of individually.

e In Section 5, we show how to optimize SGL with rewrite
rules and specific query plans. We also present several index
structures to efficiently compute a large class of aggregate
functions used in games.

e In Section 6 we present an experimental evaluation demon-
strating the effectiveness of our query optimization anergu
processing techniques.

We discuss related work in Section 7 and conclude in Section 8

2. DATA-DRIVEN GAMES

Loosely defined, a data-driven game is any game that separate
the game content from the game code [10]. This design hasadeve
advantages. It allows the game studio to separate devetdgree
tween the programmers and the game designers, two groulps wit
important but not necessarily overlapping skills.

Historically, games have long had some form of separatien be
tween content and code. Media such as character modelsieext
or sounds are often kept in data files separate from the gagieeen
However, recently, the trend has been to move as much game con
tent as possible out of the engine. The data used to defindaéne c
acters or story-line is increasingly being stored in XML di[@5].
Modern design even separates logic specific to the game qalay f
the code, through the use of scripting languages; thesptisgri
languages may either be custom tailored to the game engire, o
standard language like stackless Python [11, 8].

2.1 Architecture of Data-Driven Games

While data-driven games may have different architectuees d
pending on their genre, they all have roughly the same design
Figure 2 represents the architecture of a typical dateedrame.
Three different groups of actors interact with this systeithe
largest group of actors are the game players. They primarily
teract with the game through the input and display devices.

The next group are the game programmers, who have designed
the “game engine”. The engine is not specific to any one gantk, a



can be reused for other games. In some cases, like Epic Gamesthese ticks are controlled by player input; the game will piat-
Unreal Engine 3[13], the engine may even be licensed to other ceed to the next tick until the player ends his or her turnrehd-
companies for development. The engine consists of sevified-d time games, these ticks are controlled entirely by the game, and
ent generic components common to all games. The renderihg an progress proportional to the frame-rate of the graphicéneng

audio engines comprise the media experience of the game. The Each clock tick, the simulation engine processes the atdn

physics engine is a library of algorithms that simulate ptejsef-
fects like gravity and collisions. The Al engine is a librarfyalgo-
rithms for solving classical Al problems like pathfindingratural
language processing. All of these are connected togethaugh
the discrete simulation engine. This part of the game ctmtao-
tions of the characters and objects, instructing the réngleand
audio engines how to generate output. The discrete siroolati-
gine takes cues from the physics and Al engines, but it ielgrg
directed by the content of the game.

one or more characters. Each character can perform at mest on
action per tick, but since we want the number of NPCs to berdete
mined by the data and not the game engine, our architectatgdsh
allow more than one unit to act per clock tick. A particulatiac
may span more than an a single clock tick, as the game takes tim
to render the action. However, this is modeled by perforntieg
action in a single tick, and assigning the character a “coeid
period until it can act again. As a result, some charactens lvea
inactive during a clock tick, as they are still in the cooldoperiod

The game content is created by the game designers. The designfrom their last action. Our model will assume that those abar

ers are responsible for creating the game world. This iredual
lot of the artistic elements like character models and ssuhidw-
ever, it also includes any game specific logic. The charadfjects
are stored in data files outside of the game engine. The lmhavi
of these character objects is defined by the character sciipese
scripts are read by either a compiler or an interpreter, ancgssed
by the discrete simulation engine.

This separation is particularly important for game Al, agreh
acter behavior must be constantly adjusted during gamiegest
reasons of “game balance” (i.e. ensuring that there is rgdesopti-
mal strategy, so that game play does not become monotorfews).
example, seven years after its first publication, Blizzamtinues
to updateStarcraftwith balance changes based upon observations
of games played on their BattleNet server [16].

This separation is also important to players, as they canials
teract with the content as game “modders”. A modder is pleyer
modifies a commercially released game to create a game warian
The new and challenging experiences provided by moddersfean
ten extend the lifetime of a game. For example, Bthrcraftand
the subsequent 2002 strategy gavidarcraft I1I* store their game
data and Al as scripts in MPQ files, a proprietary compresfion
mat that is similar to ZIP. The AMAI project [2] has tools fox-e
tracting the scripts from these MPQs and replacing them méth
scripts to improve the combat Al Warcraft Il1.

Games like Neverwinter Nightsand Second-Lifeshow that
user-created content is a vibrant, growing aspect of theirgam
world [21]. Therefore, we believe that the boundary betwgey-

ers and modders is closing, as more and more games embrace the

idea of user-created content.

While the entire data management layer is an interesting are
of research for the database community, our primary focukds
discrete simulation engine; before games can render langbers
of characters, they first must process their behavitie Sims 2s
an example of a game whose performance is determined plymari
by the simulation bottleneck. A character in a room with gydar
number of objects can slow the game down perceptibly, even if
the screen is not rendering the room; this is because the game
querying each of the objects in the room to determine whidah on
currently satisfies the character’s needs. This perforsprmblem
is so significant that the console versionTdfe Sims 2ntroduced

a “feng shui meter” as a gameplay element to keep a player from

adding too many objects to a room [1].

2.2 The Discrete Simulation Engine

Almost all computer games are architected so that the Al en-
gine processes its objects in clock ticks [20]tdnn-basedgames,

YWarcraft 11l was the inspiration for the famous massively multi-
player online gam&Vorld of Warcraft but is not the same game.

ters just perform an empty action. Therefore, on each clmbk t
we process exactly one action for every character in the gémwe
we show in Section 5, characters performing the empty aetien
eliminated by a selection operation, and so this assumptitin
not have any adverse effect on performance, given the apatep
index structures.

Each action, in turn, may produce seveeffects An effect is
simply an update to the data which defines an object. For eleamp
movement is an action that has a single effect — it altersak#ipn
of that unit. On the other hand, mortar-fire in a combat ganamis
action that may affect several units, damaging every NPGsin i
blast radius.

At each clock tick, the simulation engine reads the dateerelet
mines the actions of each of the characters, and deternfinesf+t
fects of this actions, and then updates the game data forekte n
tick. It is traditional practice in game design that when tipld
characters act during a clock tick, they act simultaneou3lis
keeps the engine from having to read the data more than omee du
ing a clock tick, as no action can depend on the action of @noth
character in the same tick. It also allows us to cleanly sepaach
clock tick into three stages:

e A query stage, where we read the contents of the game data.

e A decision stage, where we choose the actions of each NPC
based on the data read.

e An update stage, where we update the game data according
to the effect of these actions.

Since the actions are all updating the game data simultahgou
we need a transaction model for how these updates are pedcess
In games, this is relatively easy, because effects typidatire-
ment or decrement numerical values in the character dateex-o
ample, damage decrements an NPC's health value, whilenigeali
increments it. Games additionally separate effects énaokable
andnonstackable In stackable effects, like damage, all of the ef-
fects for that tick are cumulative. For nonstackable effeonly
one effect of that kind can apply — typically the most benafici
(or disadvantageous, depending on the context)Wamcraft lll,
witch doctors can create healing wards that heal all units ger-
tain range; this is a nonstackable effect as a unit in rangevof
wards is only healed once.

This design in games makes the update phase straightfarward
We just combine the effects of all the actions, using for stack-
able effects andnhax for the nonstackable ones, and increment or
decrement the data values accordingly. In a few instanocesffect
may set some character data to an absolute value. For exaanple
freeze spell may set a character’'s speed to 0. In these @estan
the effect is given a priority. Thus they are nonstackabfects
determined by maximum priority.



3. INCREASING EXPRESSIVENESS IN

REAL-TIME STRATEGY GAMES

One of the challenges with trying to increase expressieires
game Al is that it must have a perceptible (positive) effettiue
gameplay. While we believe that our approach will apply taiah-
ulation games (lik& he Sims @ as demonstrated by the number of
units inRome: Total Warreal-time strategy (RTS) games are the
ideal genre to scale to large numbers of charatténghese games,

a player does not control a single character, but insteattaien
armies of characters, which are calledits The player controls
units by selecting them and issuing commands, which they the
execute. However, the way in which a unit executes a command
is controlled by the game Al. For example, if a human player in
structs a character to attack a specific enemy unit, the gdnmma
first instruct it to attack other nearby enemy units just sat ih
can maneuver into range. Most of the gameplay consistsuhigs

a command to a unit, and then scrolling to another portiorhef t
map to command other units, while the first unit executesrits o
ders. Thus these games can scale by orders of magnitudeutvitho
advances in rendering technology.

Because of this gameplay, RTS games should ideally haygscri
defining the behavior of each individual. A player wants & tmi
execute its command correctly without further instructidrat way
the player can issue commands to large numbers of units-effe
tively controlling massive armies. However, unit behavioRTS
games is relatively primitive; they are typically modelesl ssm-
ple finite state machines [22]. As a result a player must tirec
control the units if there is to be any coordination betwenitsu
For example, a standard tactic in strategy games is to haherar
stay behind armored troops in order to protect them; if theosed
troops move, the archers need to move as well to retain thearc
Even achieving this relatively simple level of coordinati@quires
the human player to neglect all other troops and repeatsdlyei
instructions to these two.

The problem is that processing individual Al scripts carvbey
expensivaas each unit is typically processed separately. Game Al
is a main efficiency bottleneck in such games. Suppose the gam
designer wants a certain type of unit to run in fear from adarg
number of marching skeletons. If the number of skeletalpsos
on the order of:, the total number of units, then it takéxn) to
count the number of skeletons. Furthermore, if all the watssee
the skeletons, then each unit performsm) count aggregate, for
a total time ofO(n?) to process all of the units.

3.1 Processing Units as a Group

The typical solution to this problem in RTS games is to handle
all coordination ircentralized Al scriptsin centralized Al, a script
controls the actions of a large number of units. For exangaeh
computer player i'Warcraft Ill has two invisible commanders to
control all the units: one for attacking, and one for deferGen-
tralized Al controls units by querying the environment, dhdn
issuing a simple command to each unit. This solves the pmoble
in our skeleton example since the centralized script camtcihe
number of skeletal troops i@(n) time and issue the “run away”
instruction to each unit again if(n) time.

However, centralized Al has three major problems. Becanse o
script controls all of the units of a faction, it is difficuld write
scripts that control more than one geographic cluster dsuatia
time. The limitation ofWarcraft Ill to two commanders means the
computer is unable to defend and fight a multiple-front wathat

2While massively multiplayer online games have more charact
relatively few interact with each other at any moment.

same time; human players use limitations like this to théiraa-
tage. Another problem is that it is difficult to separate viiliial
behavior from herd behavior. When the centralized Al scsges
the skeletal warrior, it issues the run away command to atsun
Thus the units flee uniformly, ignoring issues such as whialtsu
can see the skeletons. Changing the centralized scriptctmuat
for this makes the script harder to design and read.

Most importantly, however, centralized Al is really only-de
signed to run the computer player. It is of no help to the human
player because he or she controls individual units, and nenhtal
commander. Therefore, sophisticated individual Al ssripbuld
be a massive improvement to RTS games.

Note that centralized Al is a crude form of set-at-a-timecpss-
ing, explicitly implemented by the game designer. The desig
knows that all of the units will compute the same aggregate an
places this in the centralized script. However, it shoulth®nec-
essary for the game designer to do this explicitly. If we ¢t a
scripting language that allows us to use sophisticateditevwrles
to group calculations together, then we can do this in thetscr
compiler.

The primary difficulty in designing such a query languagedsi
ation; if the language only has conditionals, we can easityert
our language to a declarative language like SQL and optiinae
cordingly. Fortunately, an analysis of the scripts in RT&ga like
Warcraft Il [2] reveals that iteration is only used in the following

contexts. ) ]
e Computing an aggregate value about a set of units or the local

environment. Examples include summing up the strength of
visible units, or finding the weakest unit in range.

e Applying an update to a set of units or the environment.

e Processing an array whose size is fixed and determined at
compile time (e.g. an array representing the “strength” of
each troop type iWarcraft IIl).

e Reimplementing functionality that exists already in the
game, but is not open to modders (e.g. the pathfinding al-
gorithms in the AMAI fileconmon. eai [2]).

The first two cases can easily be handled by a declarativedayegy
The third case is also either an aggregate computation opan u
date to the array, and can be processed similarly. The firs& ca
is simply a matter of opening up more of the API to the scriptin
language, which is an orthogonal problem. Therefore, wegedn
the most important functionality of these scripting langes with

a purely functional language with aggregate functions ag. st
each step, the Al script performs a declarative query on thé e
ronment and uses the result to perform an update. We defise thi
language explicitly in Section 4.

To provide true individualized behavior, it is not enoughttour
optimization pull out common aggregate expressions. Famex
ple, the units counting the number of skeletons may not be tabl
see exactly the same number of skeletons. However, if ths uni
are clustered together — as they normally are in combat k#éie-s
tons they see should overlap. To take advantage of thisagyesle
would like to construct indices that efficiently compute then-
ber of skeletons for each visible region, and process eaqit ss
a look-up in this index. However, the type of index that we mak
depends heavily on the type of aggregate and our query plan. W
investigate this further in Section 5.

3.2 Case Study: A Battle Simulation

RTS games have non-combat aspects to them such as economics
and building. However, in these games these aspects arly-high
abstracted and do not feature large numbers of individddiere-
fore they are relatively easy to process. Hence, we willietal our
approach by focusing on the combat simulation of an RTS.



Our battle simulation is structured like that of the typi&alS.
The state of each unit consists of at least three values: tay
position of the unit, and its health. Health is modeled asteger;

represents a single action for a single unit. Informally, S(®L
script is a function that, at each clock tick, takes the emrnent
FE and returns a new environment talilg. However, since there

when it is reduced to 0, the unit is dead and is removed. There are several individuals acting, we need to be able to comtiae

are only three types of actions: a unit can either move (tmgba
its x andy value), damage an enemy unit (reducing its health), or
heal a friendly unit (restoring its health). Which of thesti@ns
are available depends on the type of the unit.

e Knights: These units can only move and attack. They are

environmentsk,, to produce the final environment at the end of
our clock tick.

We do this by separating the schemarinto attributes repre-
senting the state of the each unit and the attributes regirgehe
effects on the unit. For example, one possible schema fdpaitie

armored, and hence take less damage from the attacks of oth-simulation is

ers. They also do the most damage in their attacks. However,

they can only attack units that are in arm’s reach.
e Archers: These units can only move and attack. Unlike

knights, they are not armored, so they take more damage

from the attacks of others. Their arrows also do less dam-

E(key, pl ayer, posx, posy, heal t h, cool down,
weaponused, nbvevect x, novevect .y,
danmage, i naur a)

The attributekey ... cool down in (1) represent the state of the

@)

age than the swords of the knights. However, they have a ypjt. These attributes cannot be modified directly by an S@ips

much larger range in which they damage an enemy unit.
e Healers These units can only move and heal. Like archers,

The remaining (auxiliary) attributes represent the effeqiplied to
the unit, such as how far the unit will move, or the strengtithef

they are not armored, and so take more damage from the at-nearest healing aura. These are the values altered by anc®ipt. s

tacks of others. They heal units by casting a “healing aura”
that restores health to all friendly units within the cirde

we combine these values together to calculate the finalteffec
each unit using the rules outlined in Section 2.2.

this aura. The health of a unit can never be restored beyond  only once we have combined all of the individual environnsent

the initial health of the unit. Healing auras are nonstalkab
s0 a unit can only be healed once per clock tick.
For modeling specifics such as determining damage, theteffec

E,, together into a single environment do we actually apply the
effects and change the state of the units. This is done by ta pos
processing step outside of the SGL scripts, and is consldese

of armor, and so on, we use the game mechanics in the pen-andpart of the game mechanics.

paper d20 system[27]. This system is the foundation foraihc

puter game combat simulations, and thus is a reasonablel mode

This system has the added advantage that its rules are righelés
according to the limitations of computer games Wharcraft Ill, a
typical unit can only see an area capable of holding 100 athis.
Therefore, processing a query like “count the number ofetkél
units” is really justO(1) with a large constant. On the other hand,
visibility in the d20 system allows characters to see andenjiattg-
ments about areas containing up to 25,000 other units. Taset
mechanics allow for interesting scaling to large numbensnitfs.

In our case study, we want our scripting language to suppert i
teresting coordination between units. For example, we et
archers to use the knights as cover. To do this, the scriptpate
the centroids of the enemy, the knights, and the archersnands
the archers so that these three points are in a line with tightain
the center. As another example, we want the knights to cksesr
to keep the enemies from going through. To do this the knights
compute their approximate density by computing the stahder
viation of all the troop positions, and then counting the bemof
troops in two standard deviations. If they are too spreadtbet
move towards their centroid.

In general, our scripting language will support a much large
class of aggregates than these examples. However, thegaugle
to exhibit interesting behavior not found in current RTS gam
Furthermore, they will serve as useful examples when we @efin
our language in the next section.

4. THE SGL LANGUAGE

Our game data is abstractly modeled as a relaliohVe assume
that this table is anultiset it need not have keys. Each row in
the table represents a unit or object, and contains inféomatich
as the unit's health, speed, attack damage, and so on. It isay a
include data representing messages from other units of/ters,
like the pathfinding subsystem, or the time remaining in thi¢su
cooldown period.

EXAMPLE 4.1. For the schema in (1) the post-processing step
consists of performing the following SQL query to get the rew
vironment.

SELECT u. key, u. pl ayer,
posx + u.nobvevect_x * norm AS posX,
. posy + u.novevect_y * norm AS posy,
.health - u.damage + u.inaura AS health,
.cool down - 1
+ u.weaponused*_TI ME_RELOAD AS cool down,
0 AS weaponused,
0 AS novevect_x, 0 AS novevect _y,
0 AS damage, 0 AS inaura

FROM E u

WHERE u. health > 0; # renove the dead
where norm is a shortcut for WALK.DI ST_PERTI CK /
sqrt (u. movevect x? + u. novevect .y?). For example,
at the end of the tick, we take the total damage done to a udit an
subtract it from the health (as well as restore the amountighed
by the healing aura). It is also at this point that we remowissun
with 0 health from the table.

We spend the rest of this section formalizing this procegsin
model so that we can optimize it in Section 5.

4.1 Syntax of SGL

Informally, SGL scripts consist of SQL together with coratit
als ( f -t hen- el se statements)| et -statements to (temporar-
ily) add new attributes to the current unit, and a specialaeg
per f or mfor invoking other scripts or applying built-in actions.
A per f or mstatement specifies an update to the environment. To
help with readability, the programmer can decompose atsatip
several functions.

Because individual unit behavior must be tailored to the,uni
each Al script has access to the current unit tuplgvhich holds
its own state) from the environment. Furthermore, it hasation
Random for generating random values. To get a random num-
ber, the script provides a number as a seed. For any nuinber

ccCccoccCc

The language SGL (Scalable Gaming Language) is a scripting Random(z) will always return the same number within a single

language for specifying individual unit behavior. An SGLript

clock tick, but not necessarily between clock ticks.



mai n(u) {
(l et ¢ = Count Enemi esl nRange(u, u. range))
(l et away_vector = (u.posx, u.posy) -
Centroi dOf EnenyUni ts(u, u.range)) {
if (c >u.nmorale) then
per f orm Movel nDi recti on(u, away_vector);
else if (c > 0 and u.cooldown = 0) then
(let target_key = get Nearest Eneny(u). key) {
perform FireAt (u, target_key);
Pl

Figure 3: An SGL Script

In detail, the syntax of action functions is given by the gnaan

action (let attributenanme =

action; action

term action

if cond then action
if cond then action else action
perform acti onf n_name

|
|
|
|
Conditions are Boolean combinations of atomic conditions.
Atomic conditions are comparisons of two terms (using<s,<,
#). Terms are constructed using arithmetics over constatis,
tributes of the unit, random numbers, and aggregate fumetio

ExamMPLE 4.2. Figure 3 shows an example of a simple script
that fires an arrow if there is a unit in range, but runs away if
there are too many enemies. If neither case is true, or it is wa
ing on the weapon cooldown, then it does nothing. Note that
Count Enem esl nRange, Centroi dOF EnenyUnits, and
Near est Eneny are all aggregate functions that compute a value
from E. The functiondvbvel nDi r ect i on andFi r eAt, on the
other hand, are action functions and update the environriidese
functions are provided as SGL built-ins, but we show how tinge
them explicitly in Section 4.3.

4.2 Combining Effects in Environment Tables

As we described in Section 2.2, the way in which we combine
effects depends on whether they are stackable or nonstackab
Therefore, we tag the attributes of our environmertb keep track
of how we combine effects on this attribute (i.e. sum for lsadde
effects,min or max for nonstackable effects). Formally, our envi-
ronmentE has schem# (K, A1, ..., Ax). Each attributed; of £
is tagged as the typg which is either constinax, min, or sum.
Attributes of type “const” never change and can never be itteetd
subject of an effect; the type df is always const. For example,
in the schema in (1), the first line of attributes are all ofetygonst.
The attributel naur a has typemax, since healing auras are not
stackable; all other attributes have type sum.

To combine output of the SGL scripts, we defineanbination
operation® on a relationR whose schem#® (K, A;,, ..., As,,)
is a subschema of that &. We letK, A;,, ..., A;, be precisely
the const-typed attributes &. We defineb R as

select K, fi,(4iy) as Ai,..., fi,,(As,) as A
from R group by K,A;,...,As;

where, abusing notation and identifying typewith the aggregate
function of the same name,

pan={ 2,

tm

7; = const
otherwise )
When attributek is a key for tableR, we will sometimes writeR®

to highlight this; note that in this case = ®R. We useR @ S
as a shortcut forb(R W S), wherew denotes the multiset union
operation.

Becaused is defined in terms ofnin, max, and sum, it is as-
sociative and commutative. Furthermore, given two envirent
tablesE; and E-,

@(E1 (G Ez) = @(@(El) (] EQ). 3)

In the caseF, = (), this in particular implies idempotence of the
combination operators(®(E1)) = ®(E1), and by applying the
equivalence twice we obtaip (E1 W Ez) = G(®(E1) W ®(E2)).
This property will be useful in generating our query plans.

ExampPLE 4.3. If the schema in (1) is tag with types as de-
scribed above, then

SELECT key, player, posx, posy, health,
max( weaponused) AS weaponused,
sun( novevect _x) AS novevect X,
sun( novevect _y) AS novevect _y,
sun{damage) as danmge,
max(i naura) as inaura

FROM E

GROUP BY key,

computes the environmentFE.

cool down,

pl ayer, posx, posy, health, cool down

4.3 Semantics of SGL

The goal of the SGL language is to support the specification of
character actions. It is intended to be expressive, but we ha
simple semantics that can be easily mapped to query evatuati
techniques nevertheless. For this reason it is a functiangluage
with a somewhat imperative surface syntax. Each expregsiour
language is called aaction function

An action function is a function of signature

f : Envx Multiset(Env) x 28— _, Multiset(Env)
for some constant. Thus an action function takes

e a tuple from the environment table (the current unit),
e the environment itself, and

e a function that maps any pair consisting of a tujpten the
environmentind a natural number to a natural number

as input and returns an updated environment table. Theifunct
Env x N — N is used to simulate random numbers inside our
functional language.

The semantics of SGL action functions is given by the seroanti
functions[-], [-Jcond, [-Jterm for action functions, conditions, and
terms, respectively. We define this semantics as follows

[(let v =10 fle,(w) = [fler(uv: [em(u, E,r))
Ufi; foler(uw) = [filer(uw) ® [folE,r(u)
[f 6 then Aloo = {é{)flﬂE,rw) gtfgm&)
[perform Glg,»(v) = [g]lzr(u)
[perform H]g »(u) := h(u,E,r)

where f1, fo and g are SGL action functions7 is the name of
defined functiory, H is the name of built-in action functiol, and
v is an attribute not yet present in recard We will consideri f
¢ then f, el se frashortcutfoi f ¢ then fi; if —¢
t hen f>. Note that our definition of et means that we extend
the current unit record by value of term

The semantics of conditiorfs]cona commutes with the Boolean
operations, and-Jte:mn cCOmMmutes with the usual arithmetic oper-
ations. There are only three interesting types of terms. &e d
fine an attribute access in a tuple py.v]cerm (u, F,7) = w.v.
Our random function is defined §Random (i)]term (u, E, 1) =
r(u,1); Finally, for an aggregate function naraewe assume that



functi on Count Enem esl nRange(u, range) returns

SELECT Count (*)
FROM E
WHERE E.Xx >= u.posx - range
AND E. X <= u.posx + range
AND E.y >= u.posy - range
AND E.y <= u.posy + range
AND E. pl ayer <> u.pl ayer;
function Centroi dO EnenyUnits(u, range) returns
SELECT Avg(x) AS x, Avg(y) ASy
FROM E
WHERE E.Xx >= u.posx - range
AND E. X <= u.posx + range
AND E.y >= u.posy - range
AND E.y <= u.posy + range
AND E. pl ayer <> u.pl ayer;

Figure 4: Aggregate Function Definitions

there is an external function : (u, E,r) — R and we define
[a](u, E, ) := a(u, E,r).

While the built-in aggregate and action functions could t#-a
trary computable functions of appropriate signature, jtess that
in practice it causes no loss of generality to assume thgtdhe
expressible in SQL, more specifically of the following fofm.

e Each built-in action functiof(u, E, r) is of the form
SELECT e. K, hi(u,e,r) AS A,
hi(u,e,r) AS Ay
FROM E e WHERE ¢(u,e,r).

4)

e Each built-in aggregate functior(u, £, r) is of the form
SELECT ai(hi(u,e,7)), ..., ar(hx(u,e,r))
FROM E ¢ WHERE ¢(u, e, 7). (5)

Here the tuples andr are assumed to hold constanis, .. ., hx
are terms ovet, e, andr, andas, . . . , ax are SQL aggregates.

function FireAt(u,
returns
SELECT e. key, e. pl ayer, e. posx, e. posy, e. heal th,
e. cool down, 1 AS weaponused,
e. novevect_x, e.nobvevect_y,
e. damage+(_ARROW HI T_DAMAGE - _ARMOR) *
(Randon{e, 1) nod 2) as dammge,
e.inaura
FROM E e
WHERE e. key = target_key;

tar get _key)

function Mvel nDirection(u,
returns
SELECT e. key, e. pl ayer, e. posx, e. posy, e. heal th,
e. cool down, e.weaponused,
- e.posx AS novevect _X,
- e.posy AS novevect_y,
. damage, e.inaura

X, Y)

D 0O< X

FROM E
WHERE e. key=u. key;

function Heal (u)
returns
SELECT e. key, e. pl ayer, e. posx, e. posy, e. heal th,
e. cool down, e.weaponused,
e. novevect _x, e.novevect_y, e.damage,
nonsql _max(e.inaura, HEAL_ AURA)

AS inaura
FROM E e
WHERE u. pl ayer = e. pl ayer
AND abs(u. posx - e.posx) < _HEALER RANGE
AND abs(u. posy - e.posy) < _HEALER RANGE;

Figure 5: Action functions implemented in SQL

5. QUERY OPTIMIZATION

In this section we address the efficient processing of SGptscr
using data management techniques. We first show how SGliscrip
can be translated in a natural way into a relational algékedan-
guage. Then we discuss the algebraic optimization of suehieg
and the determination of query plans including the use ofxed.

Figure 4 shows definitions of the aggregates used in the SGL Finally, we give efficient algorithms for computing indexwsttures

script of Figure 3 and Figure 5 defines some built-in actiancfu
tions, both using the SQL fragments indicated above.

To process a complete SGL script, each script has a maimactio
function called MAIN. Given a functiop : ¥ — E — N — N°¢,
the semantics of an SGL script is

tick(E, p) := main (E) & F (6)
where, here and in the following? (E) is a shortcut for
eIz o0 (w) | v € BY). @

The functionp contributes the random element to the evaluation
of the script. Note, however, that this formalization is qbetely
deterministic. Since below we will only discuss the compiota
done within a single tick, we usually omit the subscyp@nd sim-
ply write f®. Further note thaf® is a unary relational operation.
Now that we have our formal definitions, we review our proeess
ing model once more. In a single tick, the processing modst fir
initializes the auxiliary attributes introduced by theipts. Then it
produces the environment tahi&, for each script, which encodes
the effects but does not apply the effects. These all cordhiime
a single table tickE, p). Finally, we apply effects using a special
post-processing query defined by the game mechanics as shown
Example 4.1.

3For example, the Warcraft Idonmon. ai can be fully expressed
under these restrictions.

for aggregate functions and area-of-effect actions whicbtal im-
prove the running time of tick() from tim@(n?) to O(nlog®n),
whered depends on the query plan.

5.1 Bag Algebra

We use a fragment of the relational algebra on multisets@usi
operations projection, selectiorns, productx, and multiset union
W) extended by @ombination operatiorp. The multiset algebra
operations are defined by a mapping to SQL:

os(R) = select = fromR where ¢;
Trwas5(R) = SELECT f(x) AS B FROM R
RxS := SELECT » FROM R, S;
RyS = RUNOCN S
ag9s ;5 (R) := SELECT A, §(B) .

FROM R GROUP BY A;

Here f(+) as B stands forfi(«)as Bu, ..., fa(x)as B,, where
the f; are terms built using the attributes of the input relatian-c
stants, arithmetics, and external functions, and eadh an SQL
aggregate function (e.gi n, max, count ,sum avg).

The natural joinx is defined in analogy to relational algebra
using the above multiset operations. Below, we will use ladgie
expressions interchangeably with SQL queries. We will agply
the natural join on pairs of relations whose schema overtaps
exactly the attributd<, and use the notatiarix to make this clear.
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Figure 6: Example Query Plans. Example 5.1 translates (a) gi(b) and (c) into (d).
9(mu e (R) @R = g(RY® R whereR’ = T () (R) (8)
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Figure 7: Some rules involving®. R, RY, RY denotes extended environment relations.

We assume that SGL scripts are in a normal form in which
aggregate functions only occur in let-statements, but irother
terms. It is easy to see that this is a normal form for SGL and
that this assumption causes no loss of generality. For eleamp
if agg(u.health) = 3 then f isequivalenttq( |l et v
= agg(u. health)) if u.v = 3 then f.

By the following translation, each SGL script can be turngd i
an equivalent expression in our algebra.

[f1; £21%(E) [A1%(B) & [f2]®(E)
[if ¢ then f]%(E) 1% (06 (E))
[(let A=a) f]%(E) 1% (7 s £(E))-

These translations follow immediately from the SGL senenti
definition. Using these equivalences, we can rewrite theative
semantics function tick() (see Eq. (6)) into an expressibour
bag algebra. Note that extensions of the schema of an envinain
relation effected by “let” add untyped columns, which hoereare
eliminated by the built-in action functions. These by deiomi al-
ways return environment relations of scheiiaAs, ..., Ax.

If the built-in action functionf;(u, E, ) is in the fragment of
SQL specified in Eqg. (4), we can expre&8(R) in our algebra as

EB(TFEJ(,QLW,QIC (0-1/)1’ (R X E)))

Each aggregate of the form of (5) applied to a set of uBiscan
be written in the bag algebra as

Tuta(u)(Bo) = 809G , z0.) (0e(EY x E®)) (11)

which can also be computed by an index nested loop fainx<
Ind.gg () with a precomputed index structuiadagg(E) =

g, . ;2. (06(EY x E®)). The efficient computation of such
index structures is discussed in Section 5.3.

5.2 Algebraic Optimization

We can now rewrite the queries obtained from SGL scriptsgusin
the algebraic laws that hold in our algebra. These are toreegey

part known from relational algettabut some additional rules hold
for @ and its interaction with the other operations.

ExXAMPLE 5.1. Consider the script of Figure 3. For clarity
of exposition, the names of aggregation functions, builat-
tion functions, and conditions are abbreviated as aagg,, agg;,
act, ack, and¢1, ¢, respectively. (The ordering is as they appear
in the script.)

By our rewrite rules that take SGL to our algebra, we obtaén th
query plan of Figure 6 (a). This query plan is actually alsequite
good. While the SGL script suggested an evaluation one tiait a
time, the query plan employs set-at-a-time processing.

One optimization that we can achieve is to push,,, ) Up
across the selections. In the right branch of the expressigg
(in the form of the attribut@way _vect or) is not used and can
be removed. The aggregate index f@g, will only have to be
computed for the units that satisfy conditign. We obtain the
query plan of Figure 6 (b).

Next we optimize the combination of the result of maiwith
E. This combination takes place to ensure that each unit in
also present in the result even if no action is taken on thisgpa
ular unit in the current tick. There are two actions beingiedr
out,Movel nDi recti onorFi r eAt . The first modifies each of
the units on which it is applied; for these units we do not niged
combine withE.

This optimization can be effected as follows.

1. Using rules (8), (9), and (10), we can turn the plan of Fig-
ure 6 (b) into the plan of Figure 6 (c).

2. By definition acf (R) is of the form

T g (B XK E)

which can be simplified tar 5, (). But then

act’ (R) ® R = act’(R).
This yields the plan of Figure 6 (d).

4For the monotonic operations that we introduce — those that d
not perform aggregation — the laws are basically the sameras f
relational algebra with set semantics.




5.3 Indexes and Geometric Algorithms

As we saw in Section 2.2, the most expensive part of a unit’s
script is often the processing of the aggregate functiorisev
ery friendly unit is processing the aggregate to count thaber
of skeletal warriors, and all the enemy units are skeletatiwzs,
then the naive computation @(n?). As we noted in the previous
section, we can optimize this behavior by sharing the coatjmrt
for agg across several units and processing,e.(.) with an in-
dex nested loop join. Of course, to do this, we have to be able t
construct the index for the aggregate.

Our choice of index structure does not just dependgn It also
depends on the selection; this selection appears outside the join
in our index look-up optimization. For example, the indexisture
to count the number of skeletal warriors is not the same aisthex
structure to count the number of units belonging to the blagg.

In traditional databases, it would be prohibitively expgeado
create indices for each individual query plan. However, SGL
queries do not change rapidly over the course of the game; the

are just squares rotatdd° and so they can be modeled as orthog-
onal range queries as well.

In the case where all af is an orthogonal range query, we can
process it with a layered range tree [9]. We order the levéls o
the layered range tree according to the volatility of eadk.akt-
tributes that do not change often, such as the type of theouiits
maximum health, form the top layer of the index, while dat th
constantly updated, such as position, is at the bottom. Wayswe
can reuse as much of the index as possible across clock-ticks
particular, we can preserve the upper layers that do notgehdnut
dispose of the lower ones, which do.

We can build a layered range tree @(nlog?n) time, and
for each unit, we can enumerate those elements that satisfy
O(log® n + k) time, whered is the dimension of the orthogonal
range query and is the number of elements selecteddayln de-
termining the dimensior, we can ignore all degenerate (i.e. cat-
egorical) range components, as those levels of the treeeae-b
placed by a hashtable with(1) look-up. As we mentioned above,

player issues a command, and that command performs the samdt i not necessary for this index to be dynamic (see [7] fer th

query for many clock ticks. In that regard, SGL queries anai-si
lar to continuous queries in streaming databases. We cardat
construct an index specifically tailored to each query plan.

Note that our indices are used to share computation between
units, not between clock ticks. Itis usually the case thatthmber
of index probesn each clock ticks comparable to the number of
entries in the index. Therefore, we are still likely to segnificant
performance gains even if, at each clock tick, we discardritiex
and build a new one from scratch. For data that is updatea ofte
— such as unit positions — it may even be more efficient to do thi
than to maintain a dynamic index.

In constructing our indices, we assume thais a conjunctive
query. This is commonly the case in games and is evident in all
of the aggregate queries in AMAI fileomron. eai [2]. More-
over, it is true for all of the examples in this paper. Giversth
assumption, we can ignore those conjunctg dhat are not part
of joins. For example, suppose we want to count the number of
moderately wounded units (without regard to location). W& t
ically define a unitu as moderately wounded if. heal th <
0. 5+xu. max_heal t h. This particular selection can be pushed
into the index nested loop join, and so we do not have to censid
it when building the index. On the other hand, if we want torttou
the number of visible enemy units, then determining wheginezn-
emy unit is visible requires both the position of the enemiy and
the position of the unit performing the query. Thus this sida
condition must be factored into the index.

Given that we have reduceflto those conjuncts necessary for
the join, we now present index structures for aggregatesreamty
found in games. These aggregates include all of the onesrin ou
examples, as well as ones that appear in the script&/éaocraft 111.

5.3.1 Orthogonal Range Queries

The most common type of selection conditioin a game script
is an orthogonal range query. Conditions such as whethaurtie
can penetrate the armor of the enemy or can move faster tkan th
enemy are inequalities comparing one value to another. &er c
gorical data, this may be a degenerate range query, suches de
mining if a unit is of a certain type. Even determining if atlgiin
range can be an orthogonal range query. For performancenas
games often choose to use rectangles, not circles, to detearea
of effect as is demonstrated in Figure 4. This is evident k& th
prevalence of functions in the Al scripts fdfarcraft Ill that select
units in a rectangle, lik&x oupEnumni t sl nRect (). Other
games optimize by using circles with &t norm; however, these

additional cost of dynamic algorithms). Therefore, we cae u
fractional cascading [6] to reduce the time@gn log? ! n) and
O(log®™' n + k), respectively.

However, a layered range index by itself still does not gige u
the performance we want. If the units are all clustered togrets
is often the case in combat, then the valum O(log?~* n + k)
can be significantly large. K is close ton, then the join will still
be O(n?). However, recall that we are not actually interested in
the orthogonal range quety. What we really want is the value of
agg on the elements returned by this queryk I large, then there
will be a high degree of overlap between the elements seldate
each unit, and so we can share this computation in compuiimg t
aggregate.

We do this in one of two ways, depending on the natureggf
The simplest case is whewg is divisible

DEFINITION 5.1. An aggregategg is divisible if there is a
function f such that

agg(A\ B) = f(agg(A),age(B))

wheneverB C A. The aggregateum is an example of such an
aggregate, sinceim(A\ B) = sum(A)—sum(B) wheneverB C
A. The aggregateount is also divisible, as are all the statistical
moments. Howevernin andmax are not.

When the aggregateg in 7, ..q(+) is divisible, we can improve
the performance by replacing the last layer of the layeredea
tree with an index that contains the aggregates, not theegitsm
For example, suppose we have an orthogonal range query bn jus
the position of the units. Normally, we would construct acied
range tree on the andy values; assume for the purposes of this
example that we layer these rangetheny. In this layered range
tree, eachr node would contain thg-index of nodes with: values
in that range. However, instead of placing the units at theds of
they-index, we put the aggregate value of all of units whgsalue
is less than or equal to the value at that leaf. This ideauistiited
in Figure 8. The fact that our aggregate is divisible meansre
can recover the aggregate of any range in a fixed nunitf@rof
queries of the tree. Furthermore, this technique is corbleatvith
fractional cascading. Therefore, in this case, we can ctenine
index nested loop join foft, ,e () in time O(n log?~1 n), where
d is the number of continuous attributes in the orthogonagean
query. This is a definite improvement ov@(n?).

Many of the aggregates in our case study in Section 3.2, such
as centroid or the number of units, are divisible aggregaies
orthogonal range queries. The AMAI fitsormon. eai contains
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Figure 8: Divisible Aggregates in a Layered Range Tree

other examples, such as the use of sums weighted on troop type [[] Entering sweep region

to measure the strength of an army. In some cases, such as our

centroid query, the aggregate is really a tuple of aggregaver

the same selections. In that case, we can combine these aggre- .

gates into one index structure by replacing the list of agjes in 5.3.2 Spatial Aggregates

Figure 8 with a list of aggregate tuples. While many of our aggregates ay€, max, andmin on orthog-
However, two very important aggregates — maximum and min- onal range queries, not all of them are. For example, we &etiy

imum — are not divisible. These aggregates are necessary foruse the aggregate that returns the nearest unit. The AMAI file

Figure 9: Sweep-Line ofmin on Constant Region Size

queries such as finding the weakest (i.e. least healthyjrurahge. conmon. eai contains other interesting spatial aggregates, like
For these aggregates, we cannot use the technique ilectrefig- searching for the unit that can reach locati{@ny) in the short-

ure 8 to get rid of the valug in the O(log?~* n + k) look-up for est amount of time. Many of these aggregates have been dtudie
an orthogonal range tree. extensively in the area of computational geometry, ancetlegist

One option is to build a multi-resolution aggregate treqd fbb specialized indices designed to solve many of them quickiyr

the entire space, and then query this tree for each unit. tinfo  example, an efficient way to find the nearest unit is to use a kD-
nately, these trees return only approximate results, ag tis no tree [4]. Designing these types of indices is beyond the esasp
guarantee on their query performance. However, there ihano  this paper.

possible optimization. In many instances, the size of thgeawill However, note that for many of these spatial aggregatesidhe

be constant in one of the dimensions of the orthogonal range/q spatial part of the query is still an orthogonal range quéve do
For example, units of the same type all have the same weagbn an not just want the nearest unit; we want the nearest unit thani
visibility range. If, as before, we assume that this visipifange archer, or the nearest unit whose armor we can penetratee-The
is represented as a box, this means that all of these uniésthav fore, to process these type of queries, we place the spaties
same size for their andy range queries. When this is the case, we as the lowest level of a layered range tree. For example, dalfie
can computenaxandmin using a sweep-line algorithm [9]. Intwo  nearest unit whose armor we can penetrate, we create a trigefo
dimensions, the procedure is as follows: armor values, and attach a kD-tree to each node in this treies. T
¢ structure can be created@(n log? n) time and space; each probe

e Choose an axis for which the size of the range is constan . BN
requiresO(log* n) time.

Call this axisy and let the size of the range be

e Construct a binary tree ordered on the remaining axis 5.4 Processing the Combination Operator
e Use this tree to perform a variant of a sweep-line algorithm The combination operatap serves two purposes: it allows us
on axisy. to combine different types of effects, and it allows us to bome
— Initially annotate each leaf of the tree with a default several effects of the same type from different actions. We
value: oo for min or — oo for max. look at @ in the latter case, we can view as an aggregate. In-

— Sweep with a range of When a unit moves intorange ~ deed, this is often the definition ef. For example, in the case of
r, replace the default value with the actual value. When attacks® sums up all of the attacks on each unit to determine the
a unit reaches the center of the range, use the tree to total damage to apply. In this case of a nonstackable effecolr
compute the aggregate within the unitsrange (this healing aura@® computes the maximum aura for each individual,
takesO(log ) time). When a unit moves out of the SO that we can perform that much healing. . .
ranger, replace the actual value with default value ( For many actions, the effect of the action only applies taglsi
or —c0). unit. Each move action only effects the unit itself; eactharcan

— At each step of the sweep, percolate any changed leaf only fire at some target. However, some actions, like theenisal
values up the tree so each interior node is labeled with healing aura shown in Figure 5, can affect multiple units:this

the aggregate of its leaf descendants. case, we again may need to be concerned abguf) behavior;

if roughly n units perform area of effect actions that applyrto

This technique is illustrated in Figure 9. The techniqueegeh units, then combining them 8(n?). In practice, this is unlikely.

izes tod dimensions, with performana@(n log?~! n), A total of For reasons of game balance, while unit observations cavge |
n items enter and exit the sweep, and it ca3tog? ! n) time to areas, the area affected by an action is typically very srii&lere
percolate the aggregate values for each unit that enterster e are exceptions to this rule, like the nuclear weaponStarcraft
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Figure 10: Comparison of Naive versus Indexing

however, only one nuclear weapon can be fired per clock tick, s
this not an example aD(n?) update behavior.

With that said, our goal is to have a processing model that is
generic enough for scaling games of the future, not just gaohe
the past. Therefore, we want to optimizeso that it is as efficient
as the rest of our operations. df is just attribute-wisesum or
max, as is commonly the case in games, then we can optimize this
operation further.

We observe that all area-of-effect actions of the same tgpe c
monly have the same range. For example, all healers exudgan a
of the same size. This means that determining all of the imttse
range of an effect is the same as fixing a range and determatling
of the effects in the range of each unit. Therefore, to optis,
we arrange our query plan to group together all actions o$énee
type. For each such action we construct an index that cantiagir
centers of effect. Applyings now consists of performing an aggre-
gate on this index; for stackable effects this actioguis:, and for
nonstackable effects it inax. Hence we can use the techniques of
Section 5.3 to perform this optimally.

6. EXPERIMENTS

To validate our ideas we have built a preliminary versionhef t
discrete simulation engine component of the data-drivemegsys-
tem architecture as described in Section 2. This is not &ggn-
eral framework — the index structures we build are tailoethe
particular game example we have chosen — but it demonsttetes
our techniques are practical and can greatly increase #helslity
of a game engine.

For our tests, we built a faithful implementation of the lsagim-
ulation game described in Section 3.2. Every NPC unit exescat
simple but decidedly nontrivial script. On each clock tiekch unit
evaluates about 10 aggregate queries. Many of these asgbtivi
aggregates, like “count the enemy archers” or “compute #re c
troid of enemy troops in my region,” others are nearestinzig
queries, like “find the nearest healer,” and a few are MIN mser
such as “find the weakest unit in range.”

There are two “pluggable” versions of our aggregate queay-ev
uator. One executes aggrate queries naively, using stiaigfard
O(n) algorithms, for a total cost aP(n?) per tick. The other uses
in-memory indexing as described above to reduce the coritplex
to O(n log(n)) per epoch.

All divisible queries (count, sum, higher moments) are ieapl
mented using a layered range tree with fractional cascadig

Nearest neighbor queries are implemented with a kD-treairAg
there is one such tree for each player/unit type combinatidre
kD-trees share some structure with the range trees. MAX syt
gregates are implemented using the sweepline techniqoessisd
in Section 5.3.1. We sweep in thé direction, and share the top-
level (X-sorted) tree of the layered range tree to implement an
O(log n) dynamic interval aggregate index. All the data structures
share the work of (re-)sorting the units by position at thgitnging
of each clock tick.

Processing for each clock tick proceeds in several phases:

e A preliminary index building phase, in which we build most
of indices described above to support aggregate queries in
the next phase.

A decision phase: each unit evaluates a number of aggregate
gueries and decides on its next action, possibly settinggsom
per-unit state. For example, there is a per-healer vartable

is set to the amount of healing energy the healer wants to
broadcast in this tick.

A second index building phase, which can depend on val-
ues generated during the decision phase. For example, a
sweepline implementation of "max healing in range” is done
in this phase.

An action phase, for example to determine the result of an
attack.

A movement phase: Units attempt to move in directions they
have decided on earlier. This is done in random order, with
collision detection and very simple pathfinding rules.

To facilitate our experiments (and since we wanted to measur
performance faithfully), we added a simple rule to prevhatgame
from finishing prematurely: Whenever a unit dies, it is "nesu
rected” at a position chosen uniformly at random on the grid.

6.1 Results

Our engine is written in C++, and we compiled it using gcc on
MacOS X. We ran our experiments on a 2GHz Intel Core Duo with
1.5 GB of RAM. Timings were obtained simply using the MacOS
"time” command running the simulator with a given set of para
eters. The number of clock ticks simulated has been choske to
high enough that setup time is negligible. The times reploate
the number of seconds of real time required to simulate 58€kcl
ticks on an otherwise unloaded machine. These numbers are re
peatable, and are proportional to the number of ticks sitad|ao
within one percent. Thus, we do not provide error bars.

Scalability With The Number of Units. For both the naive and
the indexed strategies, we ran experiments varying the auofb
units, and varying the size of the playing grid to maintaimastant
density of 1 percent of game grid squares occupied. Thetsesna
shown in Figure 10. The quadratic behavior of the naive #lyor

is clearly evident. Note that the overhead of index constvoc
is quite low: the indexed algorithm dominates the naive r@tlgm
even for very small numbers of Units, and it is an order of ntagn
tude faster by 700 Units. If we assume a game engine should be
able to simulate at least 10 clock ticks per second, the rs3istem
does not scale to 1100 Units on this processor, while thexetle
system scales to more than 12000 Units.

Varying Unit Density. For both the naive and the indexed strate-

gies, we ran experiments fixing the number of Units at 500, and
varying the unit density between 0.5 and 8 percent. Neithgr-a

such queries share the same range tree. Since the game fas onkithm is particularly sensitive to this parameter; we onhi¢ full

two players and three unit types, we push selection on phayeior
unit type to the top, giving us a total of 6 range trees—oneémh
player/unit type combination — to implement all the divisibggre-
gate queries. These six trees are completely rebuilt fdr gek.
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results due to space constraints.

In summary, our experimental results show that our teclesqu
are very successful, leading to an order of magnitude imgrant
in capacity on current hardware.



7. RELATED WORK

To the best of our knowledge, this is the first paper to treat-co

[8] Bruce Dawson. Game scripting in Python.Game
Developers Conf2002.

puter games as a data management problem, with its own set of [9] Mark de Berg, Marc van Kreveld, Mark Overmars, and

problems and solutions. Previous work on games in the adadem

literature has focused on classic Al problems, such as machi
learning and pathfinding, or on network issues, such as gte

latency. Papaemmanouil et al. [19] have examined the isbue o

message dissemination in games; however, this work is pat o
general study of overlay dissemination trees, and doesdureas
the specific needs of games.

Work in the game developer literature, on the other handfdias
cused on leveraging database systems to solve problemsigsga

Tozour [26] has designed a game architecture that usesakpati

databases to aid the Al engine in runtime spatial analysishe
case of classic board games like Chess, databases are used-to
age a knowledge base for strategy evaluation [5]. Howeves} of
this work uses existing technology, and does not suggestineas
for data management research.

8. CONCLUSIONS

Innovation in game design occurs in tandem with innovations

in game architecture. The upcoming gaBmore[28] is a perfect
example of this.Sporeis able to provide players with an unprece-
dented level of character customization by leveraging tivegp of
new techniques for procedurally generating animationghésur-
face, those new techniques are a means to increase théveffiess
of development in traditional settings, offloading the tauraf art
creation to the game code. When used to their full poterihiake
technigues enable a new gameplay paradigm.

The power of our Al architecture follows this two-fold path a
well. It enables existing development to be greatly enhdueiéh
substantial performance improvements, but also opens sgilpb
ities for new kinds of games. Given a robust, expressive Atep
that is individualized rather than centralized, develsmae free to
expose that Al to the player in ways previously not possiGlames
could be made where the central player experience is abeaticg
an exciting game experience through interesting Al.

Restricting the expressive power of the player is a relicaf t
ditional computational limitations. With our Al architece that
supports expressive Al without reducing the number of dftara,
developers can enable much more sophisticated choicedafpr p
ers. Players will then be empowered by the game’s Al, instfad
hindered by it.
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