
Keyword Search on Relational Data Streams
Alexander Markowetz Yin Yang Dimitris Papadias

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
 {alexmar, yini, dimitris}@cs.ust.hk

ABSTRACT
Increasing monitoring of transactions, environmental parameters,
homeland security, RFID chips and interactions of online users
rapidly establishes new data sources and application scenarios. In
this paper, we propose keyword search on relational data streams
(S-KWS) as an effective way for querying in such intricate and
dynamic environments. Compared to conventional query
methods, S-KWS has several benefits. First, it allows search for
combinations of interesting terms without a-priori knowledge of
the data streams in which they appear. Second, it hides the
schema from the user and allows it to change, without the need
for query re-writing. Finally, keyword queries are easy to express.
 Our contributions are summarized as follows. (i) We provide
formal semantics for S-KWS, addressing the temporal validity
and order of results. (ii) We propose an efficient algorithm for
generating operator trees, applicable to arbitrary schemas. (iii) We
integrate these trees into an operator mesh that shares common
expressions. (iv) We develop techniques that utilize the operator
mesh for efficient query processing. The techniques adapt
dynamically to changes in the schema and input characteristics.
Finally, (v) we present methods for purging expired tuples,
minimizing either CPU, or memory requirements.

Categories and Subject Descriptors: H.2.3 Database
Management-Languages, H.3.3 Information Search and Retrieval
General Terms: Algorithms
Keywords: Keyword Search, Data Streams

1. INTRODUCTION
With the rise of Web search engines, keyword search (KWS) has
become a leading search paradigm. In conventional KWS, each
document constitutes one unit of information, and is considered a
result, if it contains all/some of the query’s keywords. Recently,
KWS has also been applied to relational DBMS, allowing data
retrieval without SQL knowledge. In relational keyword search
(R-KWS), the basic unit of information is a tuple/record. In
contrast to KWS on documents, results in R-KWS cannot simply
be found by inspecting units of information (records) individually.
Instead, results have to be constructed by joining tuples.
 Assume the movie database of Figure 1.1 that contains four
tables: director, movie, plays and actor. Edges connecting the
tables correspond to join conditions, e.g., a movie record can be
joined with the tuples of its director (movie.did = director.did)
and actors (movie.mid = plays.mid). For simplicity, consider that
the database contains only the seven tuples of Figure 1.1. Given

the R-KWS query q:= {Tarantino, Travolta}, the system returns
two results: t1 t2 t5 t3 and t3 t6 t7 t4. The first one
signifies that there is a movie (Pulp Fiction), which was directed
by Tarantino and features Travolta. The second implies that there
is movie (mid=5) that includes both Tarantino and Travolta as
actors.

Director Movie

did name

Schema

t1

Plays Actor

other attributes
100 Quentin Tarantino

aid name

t3

other attributes
120 John Travolta

t4
145 Quentin Tarantino

mid titlet other attributes
2 Pulp Fiction

did
100

2

mid aid
t

other attributes
2 1205

t 5 1206

t 5 1457

movie.did=
director.did

plays.mid=
movie.mid

actor.aid=
plays.aid

Figure 1.1 Example of relational KWS

R-KWS shows several major benefits over SQL queries. First, it
liberates the user from having to study a (possibly messy)
database schema. In the above example, a query can be issued
without knowledge of tables, their attributes, or join conditions.
Second, R-KWS allows querying for terms in unknown locations
(tables/attributes). For instance, “Tarantino” appears both as an
actor and a director. A user trying to identify projects in which
Tarantino and Travolta cooperated does not care about their
particular roles (e.g., actor or director). Finally, a single R-KWS
query replaces numerous complex SQL statements. Finding the
two interactions between Tarantino and Travolta requires the two
SQL expressions in Figure 2.2. However, these are only the
statements that actually output results. Many more SQL queries
have to be issued, in order to cover every possible interaction, e.g.
a movie starring Tarantino that was directed by Travolta. The
overwhelming number of such SQL queries (often ranging in the
thousands), prohibits the usage of hand-coded SQL on any
database with a non-trivial schema.

SELECT *
FROM Director D, Movie M,

WHERE D.name=Tarantino, A.name=Travolta
Plays P, Actor A

and D.did=M.did and P.mid=M.mid
and A.aid=m.aid

SELECT *
FROM Actor A1, Actor A2, Plays P1, Plays P2,
WHERE A1.name=Tarantino, A2.name=Travolta
and A1.aid=P1.aid and A2.aid=P2.aid and
P1.mid=P2.mid

(a) t1 t2 t5 t3 (b) t3 t6 t7 t4
Figure 1.2 SQL statements for two results

The advantages of R-KWS have led to a variety of methods,
surveyed in Section 2. However, the additional flexibility
compared to conventional query languages, comes at the expense
of high execution cost. Specifically, the search space is now
considerably larger, since keywords may appear in arbitrary
attributes of arbitrary tables, and all feasible combinations of
keyword occurrences have to be explored. One common approach

SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

to R-KWS processing generates an operator tree for each
combination. Figure 1.3 shows two such trees, corresponding to
the two results of Figure 1.2. Similar to the hand-coded SQL
statements, a large number of additional trees have to be
evaluated, although they do not produce output. This number can
be reduced by restricting the domain of keywords, e.g., by
specifying that Tarantino can only appear as a name in the
director or actor tables. For generality, we assume no such
restrictions since they require knowledge of the schema.

Director Movie Plays Actor

Movie.mid=Plays.mid

σ

Plays.aid=Actor.aid

Director.did=
Movie.did

name=Tarantino
σ

name=Travolta

 Plays1Actor 1 Actor 2Plays 2

Actor1.aid=Plays1.aid

σ
name=Tarantino σname=Travolta

Actor2.aid=Plays2.aid

Plays1.mid=Plays2.mid

(a) t1 t2 t5 t3 (b) t3 t6 t7 t4
Figure 1.3 Operator trees for two results

In this paper we apply KWS to data streams with relational
structure; i.e., all tuples from the same source have the same
attributes and different streams can be joined according to certain
conditions. As an example, assume that in Figure 1.1 records are
not stored a-priori, but continuously arrive from distributed
databases, box office sites etc. Increasing monitoring of
transactions, environmental parameters, homeland security, RFID
chips or interactions of online users rapidly establishes new data
sources and application scenarios. Stream keyword search (S-
KWS) provides an effective and intuitive way for dealing with the
high complexity and dynamic nature of the data.
 S-KWS amplifies the benefits, as well as the challenges, of R-
KWS. In terms of benefits, unlike conventional databases, the
stream schema is likely to change at runtime, as new sources are
integrated and old sources cease to send input. Thus, it is difficult
for a user to have complete and up-to-date knowledge of the
schema. Even if this knowledge were available, any changes
would require the user to instantly adapt his/her queries. On the
other hand, S-KWS provides an intuitive way for posing queries,
which is transparent to the schema and its potential changes.
 Regarding challenges, S-KWS is more complex and expensive
(in terms of both computation and memory overhead) than R-
KWS. The complexity arises from the fact that the queries are
long running, and their output must be continuously updated. R-
KWS systems only deal with snapshot queries on a static schema
without modules for handling result insertion (when new tuples
arrive), deletion (when old tuples expire), and schema changes.
The high computation and memory overhead is due to the fact
that all the operator trees must be maintained during the entire
lifespan of the query. In R-KWS, on the other hand, many trees
can quickly be dropped. For instance, if there is no director with
the name Tarantino, every tree containing the selection
σdirector.name=Tarantino (e.g., the one in Figure 1.3a) can immediately
be discarded. In S-KWS these trees must remain active, because a
tuple containing the keyword may arrive in the future.
Furthermore, unlike R-KWS, where the system can take
advantage of well-understood query optimization mechanisms
from the underlying DBMS, S-KWS requires novel algorithms.
The paper faces the above challenges through the following
contributions:
• We provide formal semantics for S-KWS, addressing temporal

validity and order of the results.
• We propose an algorithm for generating operator trees that

outperforms existing methods (for R-KWS) both in terms of
efficiency and applicability to a wider range of schemas.

• We integrate these trees into an operator mesh that reduces the
CPU cost and memory consumption by sharing common
expressions.

• We develop techniques that utilize the operator mesh for
efficient query processing. The techniques adapt
dynamically to changes in the schema and input
characteristics.

• We present methods for purging expired tuples, minimizing the
CPU or memory requirements.

The remainder of the paper is structured as follows. Section 2
outlines related work, and describes basic concepts in R-KWS.
Section 3 defines the semantic model for S-KWS, presents the
generation of operator trees and the construction of an equivalent
operator mesh. Section 4 proposes query processing techniques
and introduces mechanisms for purging old tuples and altering the
stream schema. Section 5 contains the experimental evaluation,
and Section 6 concludes the paper.

2. RELATED WORK
R-KWS semantics are commonly based on a graph representation
of the database [DEGP98]. Each node in the data graph G
represents a tuple, and edges connect tuples that can be joined.
Figure 2.1 shows a schema with four tables, and the data graph for
a small instance of the database. In our notation, si signifies a
tuple of S, ti one of T, etc. Two tuples (e.g., s2, t1) are connected in
G, iff their relations (S, T) are connected in the relational schema
and the tuples satisfy the corresponding join conditions.
Keywords {k1, k2, k3} are noted next to the tuples in which they
occur, e.g., k1 and k2 exist in v1.

Data Graph

V

S T U

Schema

s2t1

u2

t2

v1 v3 v4v2

u1

k1, k2

k1

k3k1, k2

u3
k3

k2s1

k3

Figure 2.1 Relation schema and corresponding data graph

The result of an R-KWS query can be defined using the concept
of Minimal Total Join Network (MTJNT) [HP02]. Given a query
q:= {k1, …, km}, an MTJNT is a connected acyclic component of
the data graph G that is (i) total, i.e., it contains all keywords k1,
…, km, and (ii) minimal, i.e., it is impossible to remove any node
and still have a total network. In particular, minimalism is
satisfied, iff every terminal node contains at least one unique
keyword, i.e., one that is not contained in any other node of the
MTJNT. The left side of Figure 2.2 shows several MTJNT for the
data graph in Figure 2.1, assuming that q:= {k1, k2, k3}. Intuitively,
only MTJNT are valid R-KWS results. For instance, (v1, t1, u2, s2)

1
does not constitute an MTJNT since s2 is redundant; the minimal
result is (v1, t1, u2). Similarly, (v2, t2, u3) is not total as it does not
include keyword k1.

1 For ease of presentation, we often denote an MTJNT as a

sequence of nodes.

t2 u3v4

k3
k1, k2

s2t1 t2v1

k1, k2

u3

k3

s2t1 t2

v2

u1

k1

u3

k3

k2

t1 u2v1

k3

k1, k2

V{k1,k2} T{} S{} T{} U{k3 }

U{k1} T{} S{} T{} U{k3

V{k2}

T{}V{k1,k2} U{k3}

MTJNT CN

}

Figure 2.2 Examples of MTJNT and CN

There are various approaches for R-KWS processing. One family
of systems, such as Discover [HP02, HGP03], DBXplorer
[ACD02] and Mragyati [SJ01], translate an R-KWS query into a
series of SQL statements, which are executed directly on
secondary storage, using the underlying DBMS. In the sequel, we
focus on Discover, an influential system that introduced several
concepts related to our work. An expanded schema2 is a graph
whose nodes correspond to horizontal decompositions of
relations, according to the set of keywords they contain. The
nodes in the expanded schema are denoted as follows: S{K}
signifies all tuples of relation S that contain exactly the set K of
query terms; K ⊆ {k1, …, km}. The set of elements in S that do not
contain any keyword is denoted as S{}. Edges in the expanded
schema connect two such sub-relations S{K′} and T{K′′}, iff their
parent relations S and T are connected in the original database
schema. Candidate networks (CN) are the projections of MTJNT
on the expanded schema. A CN is a particular combination of
keyword occurrences. For instance, the MTJNT (v1, t1, u2) of
Figure 2.1 maps to the CN (V{k1, k2}, T{}, U{k3}) because v1 ∈
V{k1, k2}, t1 ∈ T{} and u2 ∈ U{k3}. Figure 2.2 illustrates the
mappings of several MTJNT (on the left) to CN (on the right).
Note that multiple MTJNT, e.g., (v1, t1, u2) and (v4, t2, u3), can
map to the same CN, and that a CN may contain the same sub-
relation (e.g., T{}) multiple times.
 Discover answers R-KWS queries by returning all MTJNT that
do not exceed Tmax nodes. Tmax is a parameter used to avoid long
chains of joins, which usually lead to uninteresting results. The
system first generates the set of CN by traversing the expanded
schema. Next, it creates an operator tree for each CN. Leaf nodes
in the trees correspond to selections and inner nodes to joins.
Figure 2.3 shows an operator tree for the CN (V{k1, k2}, T{},
U{k3}). The selection σk1∧k2∧¬k3V produces all tuples in the sub-
relation V{k1, k2}, whereas σ¬k1∧¬k2∧¬k3T produces T{}. This
tree generates the lower two MTJNT in Figure 2.2. Finally,
operator trees are translated into SQL statements and executed by
the underlying DBMS. Common sub-expressions (e.g., V{k1, k2}

 T{}) are shared between trees for several CN (e.g., the first and
third in Figure 2.2).

V UT

k1 k2 ¬k3 ¬k1 ¬k2 ¬k3 ¬k1 ¬k2 k3

result

∧σ ∧ ∧σ ∧ ∧σ ∧

Figure 2.3 Operator tree for CN (V{k1, k2}, T{}, U{k3})

2 The concept was introduced [HP02], but had not been named.

We use the term expanded schema for easier reference.

Another family of methods, including Banks [HBN+01] and
DBSurfer [WLK04], maintains the actual data graph in main
memory and generates results by graph traversal. Specifically,
given a query, an inverted index identifies all tuples that contain
at least one keyword. Each such tuple initiates a graph traversal,
e.g., in Figure 2.1 traversals would start from nodes s1, v1, u1, u2,
v2, v4 and u3. Whenever a node is reached by all keywords, an
MTJNT is constructed by following the reverse paths to the
keyword occurrences. Duplicates are filtered in a second, post-
processing step.
 Requiring neither an in-memory data graph nor SQL, the Ekso
system [SW05] computes R-KWS queries by means of extensive
pre-processing. Given some pruning condition, Ekso determines
for each node the set of all reachable nodes in the data graph. It
then constructs a virtual document for each node, by writing the
attribute values of all reachable nodes to a text file. These files are
organized in an inverted index, on which queries are performed
conventionally. Virtual documents are incompatible to most R-
KWS semantics, such as MTJNT, since they cannot ensure
minimalism.
 Hristidis et al. [HPB03] have extended Discover to XML
databases. In this case, the nodes of the data graph represent XML
elements. Edges connect elements that are contained in each
other, or reference each other. Cohen et al. [CKKS05] discuss
semantics, and Gao et al., [GSBS03] ranked output for KWS over
XML. Work by [HGP03, BHP04, CDHW04, LYMC06] focuses
on ranking functions for R-KWS, mainly aimed at computing
results in a top-k fashion. Since S-KWS results are sorted by time,
our work does not require additional ranking.
 There is an extensive literature on relational data streams.
Under this paradigm, data elements (e.g., relational tuples),
generated by various sources, are collected at a data stream
managing system (DSMS), where users register continuous
queries. When a new tuple arrives, all relevant queries are re-
evaluated. Query processing is usually performed by routing
tuples through operator trees, where operators closely resemble
their traditional counterparts such as selections or joins.
Influential DSMS prototypes include: (i) Aurora [ACC+03],
targeted mainly at processing sensor data, (ii) TelegraphCQ
[CCD+03], focusing on the novel Eddy operator [AH00], (iii)
Stream [ABW06], designed as a general purpose DSMS, and (iv)
Pipes [KS04], a public infrastructure based on the XXL Java
library for relational databases. Surveys of various DSMS can be
found in [BBD+02, GO03].
 Depending on the application characteristics, DSMS adopt
different models regarding the validity of tuples. A popular model
assumes a sliding window of a given time frame w, i.e., a tuple s
expires w time units after its arrival. In this case, all arrivals in the
system correspond to insertions and deletions are implicit.
Another common model assumes positive-negative tuples, i.e., the
DSMS receives a negative tuple –s that takes the same route
through the operator tree as s, and erases all occurrences of its
positive counterpart. In both cases the lifespan of a tuple s is the
interval [s.tstart, s.tend) between its arrival s.tstart and the (implicit or
explicit) deletion time s.tend. Two tuples can be joined only if their
lifespans overlap. Join results must also be assigned a timestamp,
since they may constitute input for a subsequent operator.
Usually, the lifespan of a join result is defined as the intersection
of all participating tuples’ lifespans; e.g., if c is composed of
tuples s and t, then c.tstart = max(s.tstart + t.tstart) and c.tend =
min(s.tend + t.tend).

 KWS has also been applied to streaming documents (e.g.,
continuously arriving news articles). With few exceptions [YG99,
FJL+01, IMS+06], most related work is proprietary. The main
difference with respect to R-KWS and S-KWS is that documents
do not have to be joined, but are evaluated individually (similarly
to traditional KWS). In a recent poster [HVVY06], Hristidis et al.
proposed KWS over multiple textual streams. Similar to our
work, results are constructed by combining units of information
(emails, news articles) from several streams. The authors however
do not follow a relational model, leading to several key
differences with our problem setting. Firstly, tuples in [HVVY06]
have only one attribute, their text. Secondly, only tuples that
contain keywords can contribute to a result. Thirdly, and most
significantly, combinations (joins) of several tuples are not
evaluated upon their (text) attribute, but tuples can always be
joined, as long as the data streams from which they origin are
sufficiently correlated. The correlation between streams is
continuously updated, and stored in a stream schema.
Unfortunately, the poster does not provide a formal definition of
semantics, or details about algorithms and experiments. In the
following, we present a comprehensive solution for keyword
search on relational data streams, including formal semantics,
efficient algorithms and optimizations for different problem
settings.

3. STREAM KEYWORD SEARCH
Section 3.1 describes general concepts and provides semantics for
S-KWS. Section 3.2 presents an efficient, duplicate-free algorithm
for candidate network generation. Section 3.3 discusses operator
trees and meshes. Since R-KWS has a relatively long history and
well-understood semantics, we adhere to R-KWS concepts as
closely as possible.

3.1 Semantics
We assume a DSMS that monitors several relational streams and
answers continuous keyword queries of the form q:= {k1, …, km}.
Tuples arrive ordered by increasing tstart and may be deleted
explicitly (through a negative tuple) or implicitly (according to
the sliding window model). A streaming relation (SR) is the union
of several streams with a common structure and meaning. For
example, all cash registers in a large supermarket produce data
streams in the format <product-id, price, time> that can be
wrapped into a single SR. For the remainder of the paper, we
assume streams to be bundled into SR, and hence use the terms
stream and SR interchangeably. Note that tuples do not
necessarily have unique keys; e.g., there may exist two records
with exactly the same values for all attributes originating from
different cash registers.
 A graph, called streaming schema, denotes which streams can
be joined and on what attributes. Nodes in the streaming schema
represent SR. Two SR are connected by an edge, iff they can be
joined. The schema would usually be provided by the system
operator, but may also be altered by individual users (e.g., by
excluding SR that are not relevant to a query). A newly arriving
data stream can be integrated by either (i) merging it with an
existing SR (if it adheres to the same format) or (ii) introducing a
new SR. In our examples, we use a query with three keywords k1,
k2, k3 on four SR: S, T, U and V. The schema is the same as that in
Figure 2.1, i.e., the only joins permitted are those between tuples
in T and those in S, U, or V.

 We define S-KWS semantics, by identifying results on
instantaneous views (snapshots) of the system. At every time
instant τ, the instantaneous data graph G(τ) contains a node for
each tuple s that is alive at τ. Two tuples are connected, iff they
can be joined. Figure 3.1 shows G(τ = 9) for the example schema,
including the lifespans of the tuples. Note that, in case of positive-
negative tuples, these lifespans are not known in advance. The
appearance of keywords is denoted next to the tuples. Similar to
previous work on R-KWS, we impose a limit Tmax of tuples per
MTJNT, in order to avoid overly long chains of joins. Let R(τ) be
the set of MTJNT in G(τ) that do not exceed Tmax nodes. The
result R of a continuous S-KWS query is the union of R(τ), for all
τ. The MTJNT (v1, t1, u2), (v1, t1, s2, t2, u3) and (u1, t1, s2, t2, v2, u3)
in Figure 3.1 are elements of R(τ = 9). At time τ = 10, v1 expires
and so do the former two MTJNT, while (u1, t1, s2, t2, v2, u3)
continues as an element of R(τ = 10). Results are produced in
ascending tstart order.

s2t1

u2

t2

v1 v3 v4v2

u1

k1, k2

k1

k3k1, k2

u3
k3

k2s1

k3

[1,10) [1,10) [5,14)

[7,16)

[6,15) [9,18)[3,12)

[2,11) [3,12) [6,15)[4,13)
Figure 3.1 Instantaneous data graph at τ = 9

The following Lemma allows for an efficient generation and
compact representation of R.
Lemma 1: Let r ∈ R(τ) be an MTJNT on G(τ). If every node n in
r is alive at τ+1, then r is a MTJNT on G(τ+1); i.e. r ∈ R(τ+1).
Proof: Since attributes do not change values over time, any tuple
that contains keyword k at time τ also contains k at time τ+1.
Similarly, since edges cannot change, if r is connected at τ, it is
also connected at τ+1. Hence, if r is total and minimal at τ, it is
also total and minimal at τ+1. □
 According to Lemma 1, an MTJNT r is not affected by
insertions or deletions of external nodes.3 Consequently, every
MTJNT r is constructed and reported only once (at r.tstart), rather
than at every instant during its lifespan. The termination of a
result r, on the other hand, depends on the stream model. For a
sliding window of duration w, we can compute the lifespan of r,
directly when it is created, as: r.tstart = max(n.tstart) and r.tend =
min(n.tstart + w), where n are the component tuples of r. For
example, (v1, t1, u2) in Figure 3.1 is output at τ = 5, in
combination with the lifespan [5, 10). In the positive-negative
model (where n.tend is not known in advance), r is terminated
when the first of its constituent tuples is deleted through a
negative tuple. When the result is terminated, the user receives a
negative tuple –r.
 Figure 3.2 illustrates our framework for keyword search on
relational streams. Similar to R-KWS systems, we first generate all
candidate networks that may produce results (i.e., MTJNT) for a
given query and schema. Each CN is transformed to an operator
tree. These trees are integrated in an operator mesh that exploits
sharing opportunities. Tuples from the various stream sources are

3 Other semantics, such as these used by Banks [HBN+01], do not

show the property of Lemma 1, e.g., a result may be invalidated
because of a new arrival, necessitating continuous monitoring of
all results at each timestamp.

routed through the operator mesh and spawn output. In the
remainder of this section, we describe an efficient algorithm for CN
generation and present the structure of the operator mesh. Query
processing depends on the particular problem settings, and is
discussed separately in Section 4.

CN
generation

Operator
Mesh

query

stream
schema

….
streams

results (MTJNT)

Figure 3.2 General framework

3.2 Candidate Networks for Data Streams
Recall from Section 2 that Discover [HP02] already contains a
module for CN generation. Unfortunately, that module generates
duplicate CN that have to be filtered out in a post-processing step.
We propose CNGen, a novel algorithm that computes CN
according to their unique pre-order traversal and, hence, it is free
of duplicates. Futhermore, the algorithm contains elaborate
pruning conditions that abort an expansion as soon as it becomes
clear that it cannot lead to a new CN4.
 CNGen requires a total ordering (nid) on nodes of the expanded
schema. The concrete ordering does not influence correctness, but
as discussed in Section 3.3, it affects performance. For the
remainder of the presentation, we assume that each streaming
relation (e.g., S) has an ID (S.sid). Nodes in the expanded schema
have a keyword bitmap (kbit) according to the keywords
contained in the node, e.g., S{k2}.kbit = 010 = 4 and S{k1, k3}.kbit
= 101 = 5. The node order nid is a lexicographic combination of
sid and kbit, e.g., S{k1, k3}.nid < T{k2}.nid and S{k2}.nid < S{k1,
k3}.nid. For simplicity, we first consider that there are no multiple
appearances of the same node in a CN. In this case, given the nid
order and having designated a root node nroot, every CN can be
represented as a unique tree, where the children of a node are
arranged from left to right by nid. Figure 3.3 shows a CN for q:=
{k1, k2, k3} and the corresponding tree for nroot = S{k1}. Note that
nroot may actually be a terminal node of the CN, in which case it
only has one child.

T{} S{k1} U{k3 }V{k2} T{k1}

T{}

S{k1}

V{k2}

T{k1}

nroot

U{k3}

(a) Candidate network (b) Tree for nroot=S{k1}
Figure 3.3 A CN and its interpretation as a tree

Figure 3.4 shows a simplified version of CNGen, assuming that a
node contributes to a CN at most once. InitCNGen calls CNGen
for all nodes containing k1.

5 All these nodes, e.g., S{k1}, S{k1,k2},
T{k1}, will become roots. In case that several nodes have k1, the
minimal nid breaks the tie. Each application of CNGen starts with
a tree tfirst containing only nroot. For every node nnew of the
expanded schema that can be added to tfirst, CNGen creates a new

4 Discover uses an alternative definition of S{}, where essentially

S{} = S, leading to a different set of CN and, hence, pruning
conditions. In this paper, we use S{} to signify tuples of S that
contain no keyword.

5 The choice of k1 is arbitrary. Section 3.3 discusses selection of
efficient root nodes.

tree tnew consisting of tfirst plus nnew (Line 7). These trees are then
processed similarly (Lines 10-11). Trees exceeding Tmax do not
spawn further trees. This expansion generates all trees rooted at
nroot. Since every CN must contain k1, the set of expansions
initiated by InitCNGen will eventually produce all CN for the
given query and schema.

InitCNGen(Expanded Schema E)
1. For all nodes nroot containing k1, ordered by increasing nid
2. CNGen(nroot)
3. Remove nroot from E

CNGen(expanded schema node nroot)
1. Initialize queue q // stores intermediate trees
2. Construct a tree tfirst consisting of a single node nroot
3. Insert tfirst into q
4. While (q ≠ Ø)
5. Tree told = q.first
6. ∀ node nnew in E that can legally be added to a node nold of told
7. Create a new tree tnew by adding nnew as a child of nold
8. If (tnew is a CN)
9. Output tnew; Break
10. If (tnew has the potential of becoming a CN)
11. Insert tnew in q

Figure 3.4 The basic CNGen algorithm

CNGen must avoid three types of duplicates. The first are
isomorphic duplicates, e.g. Figure 3.5a shows how the CN of
Figure 3.3 could be discovered a second time, by calling CNGen
for nroot =T{k1}. In order to eliminate this redundancy, InitCNGen
removes nroot from the expanded schema after CNGen(nroot)
terminates. Note that this does not cause any result loss, since all
CN containing nroot are generated by CNGen(nroot). The second
type of duplicates refers to trees that originate from the same root,
but follow different insertion order for the remaining nodes. For
instance, the tree in Figure 3.5b is a duplicate of that in Figure
3.3b created by starting with S{k1} and adding T{k1} before T{}.
CNGen avoids this problem by creating trees according to their
unique pre-order nid traversal. The term legally in Line 6 means
that a node can be inserted only to the rightmost root-to-leaf path,
and its nid must be larger than any of its siblings’. For instance,
assume that the left branch of the tree in Figure 3.5b has already
been created. T{} could not be added to S{k1} because its nid is
smaller than that of its sibling T{k1}. Thus, this tree is not
generated by CNGen. The third type of duplicates occurs due to
multiple appearances of the same node in a CN. For instance, the
replacement of T{k1} by T{} in Figure 3.3 would lead to another
valid CN with two nodes for T{}. This CN could be generated
twice, by adding either the first, or the second occurrence of T{}
as the left child of S{k1}. Such duplicates can be avoided by
observing the lexicographic order of sub-trees rooted at the
problematic nodes, but, for simplicity, we omit the details in
pseudo-code of Figure 3.4.

T{}

S{k1}

V{k2}

T{k1}

U{k3}

nroot

T{}

S{k1}

V{k2}

T{k1}

U{k3}

nroot

(a) Starting with different nroot (b) Starting with the same nroot

Figure 3.5 Types of duplicates

Furthermore, note that we do not have to generate all trees, but
only those corresponding to CN. One solution would be to create
all trees of size up to Tmax, and filter out non-CN. CNGen behaves
more efficiently, by abandoning expansions, as soon as it
becomes clear that the current tree cannot lead to a CN (Line 10).
A tree has the potential to become a CN, if it (i) has fewer than
Tmax nodes, and (ii) every leaf that is not on the rightmost path
contains a unique keyword. Such leaves will not be expanded in
the future, and must therefore contain unique keywords;
otherwise, they would violate CN minimalism. Since CN
generation depends only on the query and the schema graph, but
not on the type of underlying data (i.e., it is not specific to stream
applications), CNGen can also be used to speed up Discover or
similar R-KWS systems. Furthermore, as we discuss next, the
order by which plans are generated by CNGen allows
optimization through extensive operator sharing.

3.3 Operator Trees and Mesh
Each CN can be mapped to a left-deep operator tree, where leaf
nodes are source operators that perform selections, and interior
operators are joins. Sources are ordered left-to-right in the order
of their addition during CNGen: the leftmost source corresponds
to the node (nroot) of the expanded schema from which the CN was
discovered; the rightmost node is the last one added. Figure 3.6
shows the operator tree for the CN in Figure 3.3. Join conditions
correspond to parent-child relationships in the CN tree.

S{k1} T{k1} U{k3}V{k2}T{}sources

joins

Figure 3.6 Operator tree for the CN of Figure 3.3

Operator trees that contain multiple occurrences of the same node
need special treatment, because they could generate invalid
results. Assume the CN in Figure 3.3, where T{k1} has been
replaced by T{}, resulting in another CN. Its operator tree is
similar to Figure 3.6, except that the fourth source from the left is
a selection on T{}. The tree could produce both outputs of Figure
3.7. The first one (Figure 3.7a) does not constitute a valid result
because the same tuple t1 appears twice (it is not MTJNT since it
contains a circle t1, s1, t1). However, we cannot drop the operator
tree, because it is needed to produce valid MTJNT such as in
Figure 3.7b. To avoid invalid output, join operators in S-KWS
applications ensure that when joining a left tleft and a right tright
tuple, the latter is not already part of tleft.

t1 s1 u1v1 t1

k2 k1 k3

circle

t1 s1 u1v1 t2

k2 k1 k3

(a) Invalid result (b) Valid MTJNT
Figure 3.7 An invalid result, and an MTJNT by the same CN

The order in which CNGen adds nodes to CN trees is arbitrary,
but fixed in advance. For simplicity, in Section 3.2 we used a
lexicographic order, but others may enhance performance.
Specifically, since all operator trees are left-deep, it is desirable to

arrange the sources with the highest selectivity to the left. Hence,
we want to add such nodes as early as possible during CNGen.
For instance, instead of k1, we could choose the rarest keyword, to
determine nroot. Furthermore, without any specific knowledge
about arrival rates and distribution of values, it is reasonable to
assume that the selectivity increases with the number of
keywords; i.e., nodes with a large number of keywords should be
visited first by CNGen, and hence receive a small nid.
 The forest of operator trees for all CN answers an S-KWS
completely because there exists an operator tree for every
possible MTJNT, by which the MTJNT can be produced. Results
are output as soon as their youngest tuple arrives; the correct
output order is hence preserved. However, executing the operator
trees independently would incur very high cost due to their
potentially huge number. Recall that this problem also exists in R-
KWS, but in a much milder form; if a selection on a relation, (say
S{k1}) returns no tuples, one can immediately discard all trees
(e.g., the one in Figure 3.6) containing the operator. In S-KWS,
this is not permissible, because even though the selection S{k1}
does not currently produce tuples, it may do so in the future. It is
hence crucial to optimize S-KWS operator execution.
 The operator mesh integrates all operator trees in order to
reduce the CPU cost (for evaluating joins) and memory overhead
(for intermediate results). The mesh has |SR|⋅2|K-1| clusters, where
|SR| is the number of stream relations and |K| the number of query
keywords. Each cluster contains the operator trees for all CN
discovered from a certain nroot. The trees in a cluster overlap on
their left since they include at least the common nroot, but often
share larger common parts. Figure 3.8 shows the shared execution
of the tree in Figure 3.6 together with three more CN that were
created for nroot = S{k1}. The join j1 (S{k1} T{}) is shared by
(S{k1}, T{}, V{k2}, T{k1}, U{ k3}), (S{k1}, T{}, U{k2, k3}) and
(S{k1}, T{}, V{k2,k3}). Note that this is only a small subset of all
CN in the cluster.

S{k1} U{k2 , k3} V{k2 , k3}

Buffer.out

j1.out

j1

j5 j6

j7

S{k1 }, T {}, U{k2 , k3}

S{k1 }, T {}, V{k2 , k3}

S{k1 }, T{k2 , k3}

j2

T{}

Buffer.out

V{k2}

Buffer.out

j2.out

T{k1}

Buffer.out

j3

j3.out

j4

U{k3}

Buffer.out Buffer.out Buffer.out

output operator

T{k2 , k3}

Buffer.out

S{k1 }, T {}, V{k2 }, T{k1 }, U{k3}

Figure 3.8 Meshed trees for four CN in the same cluster

Mesh creation is performed in parallel with CN generation.
Specifically, the first node in a cluster is the root node nroot, from
which CNGen originated. When CNGen generates a new tree tnew
from told (by inserting a new child nnew to a parent nold), a join
tnew.op is added to the mesh. The left child of tnew.op is told.op (the
operator that was inserted when told was created), and the right
child is the source of nnew. For each tree t, we require a pointer to
the corresponding operator t.op, in order to decide where to place

subsequent joins due to expansion of t. The algorithm is
initialized with tfirst.op pointing to the source of nroot. For instance,
the mesh of Figure 3.8 at first contains only S{k1}. When T{} is
visited by CNGen, j1 is added to the mesh and connected to S{k1}
on the left and T{} on the right. Subsequent insertions of V{k2},
T{k1}, U{ k3} in the CN cause the addition of j2, j3 and j4.
Similarly, when at a later point, CNGen inserts U{k2, k3} to the
tree containing S{k1} and T{}, j5 is added to the mesh and
connected to j1 (representing S{k1} T{}) and source U{k2, k3}.
 The entire operator mesh has |SR|⋅2|K| leafs/sources, one for
each node of the extended schema. The maximum depth of the
mesh is Tmax + 1 and the number of edges depends on the schema
complexity. Output is produced at all levels, since operator trees
vary in height. Different clusters are interconnected only through
their source operators; joins from different clusters do not connect
directly. In addition, we introduce a central output operator that
collects results from all topmost operators (those producing
MTJNT).
 We further integrate operators by sharing buffers. In traditional
DSMS, a join operator j has two individual input buffers, j.left-
buffer and j.right-buffer. In our system, these buffers are replaced
by the output buffers of the child operators, e.g., in Figure 3.8,
j1.out replaces j5.left-buffer and j6.left-buffer. This concept of state
sharing reduces memory consumption dramatically, since a single
operator in the mesh may have thousands of parents. Note that
tuples in the buffers are naturally ordered by their tstart, i.e., the
time instant at which they were produced. More complex
indexing schemes are not required, since buffers in S-KWS
meshes commonly contain very few tuples, if any.
 In summary, this section provides a complete solution for
generating candidate networks, which are optimized through the
operator mesh. The extension of the proposed techniques to R-
KWS systems that are based on similar concepts (e.g., Discover)
is straightforward and expected to yield significant gains in terms
of performance (absence of duplicates, early pruning). Our focus
however lies in on stream systems. Compared to R-KWS, S-KWS
has three important differences: (i) long running queries that
require continuous update of results, as new tuples arrive and old
ones expire; (ii) a huge mesh that cannot be trimmed and (iii)
potentially changing schema due to incorporation or removal of
stream sources. These differences necessitate novel query
processing techniques, as discussed in the following section.

4. QUERY PROCESSING
S-KWS meshes are larger and more densely connected than
operator graphs in any other data stream application, necessitating
massive optimization. However, they also provide beneficial
characteristics, in particular: (i) S-KWS meshes have a distinct
structure, i.e., clustered left-deep trees, and (ii) their join and
selection operators are rather selective. In the following we
propose two query processing methods for exploiting these
properties. Section 4.1 describes Full-Mesh (FM) S-KWS, which
creates the entire operator mesh at a preprocessing step, so that, at
runtime, the system resources are exclusively dedicated to tuple
processing. Section 4.2 presents Partial-Mesh (PM) S-KWS that
does not require pre-processing, but dynamically grows and
shrinks the operator mesh at runtime. Section 4.3 proposes
algorithms for purging dead tuples. Finally, both Full and Partial
Mesh can handle changes in the schema as discussed in Section
4.4.

4.1 Full-Mesh
FM generates the operator mesh (as described in Section 3.3)
before the actual query processing. The entire mesh is maintained
in main memory throughout the lifespan of the query. FM allows
optimization by demand-driven operator execution, an inter-
operator messaging system that eliminates ineffective joins.
Specifically, many join operators may execute without any
prospect of forming MTJNT, because joins at higher levels lack
input from their right child. In Figure 3.8, assume tuples from
S{k1} and T{}, while V{k2}, U{k2, k3} and V{k2, k3} are empty.
None of the joins j2, j5, or j6 requires output from j1 because they
do not receive right input. In the worst case, j1’s results expire
before the arrival of any tuples from V{k2}, U{k2, k3} or V{k2, k3}.
The operator has wasted CPU cycles and memory, but not
contributed anything to the query. Even if V{k2} had tuples
available and j2 consumed input from j1, the execution of both
operators could still be pointless, e.g., if j4 happens to lack right
input.
 Under demand-driven operator execution, every join is
considered to be either running or sleeping. Running operators
process input; sleeping ones ignore it. A join operator is sent to
sleep, if (i) it has no input from the right child (a source), or (ii)
all its parents are sleeping. Sending operators to sleep does not
affect the result’s correctness or completeness because either the
operator cannot produce output (case i), or its output would not be
consumed (case ii). Figure 4.1 shows the state diagram for a join
operator. States are characterized by two binary flags: d indicating
that at least one parent operator is running, and r specifying that
the operator’s right input is not empty. An operator only runs in
the topmost state, (d / r). When it leaves this state (Transition 2 or
3) it goes to sleep (or halts), to wake up (or restart) later
(Transitions 9 and 10). Operators must exchange messages
regarding their state to ensure that all d and r flags are up-to-date.
Particularly, a join operator communicates changes in its state
(running/sleeping) to its left child that adjusts its d flag
accordingly. Likewise, sources inform their parents (i.e., joins for
which they constitute the right child), whenever their buffer runs
empty, or when a new tuple arrives to a previously empty buffer,
so that these joins maintain correct r flags.

Pstop()
rParents--

Pstop()
rParents--

rParents == 0

rParents == 0

RightSide = Ø

RightSide = ØPStart()
rParents++

Tuple arrives
at right input

Tuple arrives at right input

2

3

1

4

6

5 7

8

9

10

! d / r
sleeping

d / !r
sleeping

d / r
running

! d / !r
sleeping

PStart()
rParents++

Figure 4.1 States and transitions for join operators

Assume the operator tree in Figure 3.8, where all sources produce
tuples, and consequently all join operators are running. When
U{k2, k3} dries up, it informs its parent j5, which turns off its r
flag, goes to sleep (Transition 2), and informs its left child (j1), by

calling j1.Pstop. Upon receiving this notification, j1 decreases its
counter of running parents (Transition 1), but takes no further
action, because it still has other running parents (j2 and j6). When
V{k2, k3} stops producing output, j6 halts, and j1 is left with a
single running parent (j2). Now assume that T{k1} dries up.
Consequently, j3 adjusts its r flag, goes to sleep and informs j2; j2
decreases its counter (rParents = 0), halts (Transition 3), and calls
j1.Pstop. This operator also finds all its parents sleeping, and
likewise halts.
 Before going to sleep, an operator sets a local timestamp
stopTime = now. When it later wakes up, it processes all tuples
from its left and right input that are (i) alive and (ii) arrived after
stopTime. To ensure the correct temporal order of results and to
avoid duplicates, tuples are processed in increasing order of tstart,
and joined against those of the opposite input that have a smaller
tstart. Before receiving tuples, the newly awaking join has to
ensure that its left input buffer is up-to-date. After all, the left
child may be currently sleeping, causing its output buffer to be
incomplete. Thus, the operator calls leftChild.Pstart, asking its
left input to wake up and update its output buffer. Continuing the
running example, consider that in Figure 3.8 the only sources with
output are S{k1}, T{}, V{k2}, U{k3} and T{k2, k3}. The only join
operators6 currently running are j4 and j7. However, j4 does not
generate results because its left input is empty (since j3 is
sleeping). Now assume that T{k1} begins producing output,
causing j3 to adjust its r flag, wake up (Transition 9), and call
j2.Pstart. This operator restarts and informs j1. Consequently, all
joins, with the exception of j5 and j6, are running again. Note that
demand driven operator execution is not restricted to S-KWS
queries; the proposed method can be adapted to arbitrary join
trees and benefit other complex data stream applications.
 As shown in the experimental evaluation, FM combined with
demand driven operator execution is very fast for most problem
settings. Furthermore, the overhead of mesh initialization is small,
particularly in comparison to the duration of long queries. However,
FM has also some drawbacks. First, query processing is delayed
until the mesh is complete. For certain applications, this delay may
not be acceptable. Second, the size of the mesh can exceed the
available main memory, especially if there are multiple active
queries in the system. Third, given the potentially huge mesh, for
certain settings the computation cost can be high, even with demand
driven operator execution. These drawbacks motivate the second
approach that adapts the mesh size dynamically according to the
stream characteristics.

4.2 Partial-Mesh
Partial-Mesh (PM) S-KWS breaks the distinction between mesh
initialization and tuple processing by building the mesh at
runtime. Furthermore, the method maintains relatively few active
operators in memory, i.e. those with input. Specifically, it is each
operator’s responsibility to create its parents before it can produce
output. Conversely, it must destroy its parents (and other
operators up the tree), if it cannot supply them with input.
Especially in large meshes, most operators are usually idle, and
some never execute throughout the query lifespan. The absence of
these operators does not affect completeness, but dramatically
reduces memory consumption. In the following we describe how
to grow and shrink the operator mesh.

6 The output operator is always running.

 In the beginning, the dynamic mesh contains only the |SR|⋅2|K|
sources. Join operators are created later, as tuples travel up the
mesh. For our left-deep operator trees, we define that a join
operator must be part of the mesh, iff it has left input. Recall that
the operator mesh is composed of |SR|⋅2|K-1| clusters, one for each
source containing k1. Figure 4.2 illustrates the generation of part
of the cluster in Figure 3.8. When the leftmost source S{k1} first
produces output, it creates its direct parents j1 and j7, along with
others that are not depicted (Figure 4.2a). Joins producing
MTJNT (e.g., j7) do not construct further parents, but connect to
the (permanent) central output operator. On the other hand, when
j1 generates results, it creates its own parents, e.g., j2, j5 and j6
(Figure 4.2b). The new parents directly process their first input,
e.g. when j1 outputs its first tuple t and j2 is formed, j2
immediately probes t against T{}. Results trigger the addition of
new joins in the mesh (i.e., the parents of j2).

j7j1

S{k1} V{k2}
U{k2 ,
k3}

T{}
V{k2 ,
k3}

T{k2 ,
k3}

output operator

j7j1

S{k1} V{k2}
U{k2,
k3}

T{}

j2

V{k2 ,
k3}

T{k2 ,
k3}

j6j5

output operator

(a) S{k1} creates j1 and j7 (b) j1’s output creates j2, j5 and j6
Figure 4.2 Growing a cluster of operators from S{k1}

A point that needs clarification is how an operator at an arbitrary
level in the mesh determines its direct parents. Recall from
Section 3.3 that whenever CNGen creates a new tree tnew (by
adding a node nnew to a previous tree told), a join tnew.op is inserted
to the operator mesh. The left input of tnew.op is told.op and the
right one is the source of nnew. In PM the problem is reversed: we
have an operator tnew.op, but we need the corresponding tree tnew
for deciding which parents to create. Figure 4.3 illustrates
TreeGen, an algorithm for reconstructing a tree tnew, given its last
added operator tnew.op. The main idea is to check the join
condition of tnew.op: if nold is the source joined with nnew, then tnew
is generated by adding nnew as the rightmost child of nold in told.
Tree told is reconstructed recursively in the same manner.

TreeGen(operator tnew.op)
1. if tnew.op is a selection
2. Tree tnew = a tree with a single node nroot
3. else // tnew.op is a join
4. Tree told = TreeGen(left child of tnew.op)
5. Let nnew be the node corresponding to the right child of tnew.op
6. Let nold be the node joined with nnew in tnew.op
7. Tree tnew = add nnew as the rightmost child of nold in told
8. return tnew

Figure 4.3 The TreeGen algorithm

Figure 4.4 explains TreeGen by retracing the steps of Figure 4.2.
When S{k1} produces its first output, TreeGen(S{k1}) returns a
tree t0 that contains a single node S{k1}. The parents of S{k1} in
the mesh are computed by simulating one loop of CNGen(S{k1}),
i.e., adding nodes to t0 according to the rules of Section 3.2. Each
parent (e.g., j1, j7) is inserted in the mesh and connected to its left
and right inputs. Similarly, when j1 = S{k1} T{} starts generating
results, it has to create the layer of its direct parents. The call

TreeGen(j1) returns the tree t1 of Figure 4.4a, derived by adding a
child T{} to the only node S{k1} of t0. The one-node expansion of
t1 reveals the parents of j1 (e.g., j2, j5, j6) in the mesh. Continuing
the example, when j2 starts producing results, it has to create its
own parents. TreeGen(j2) checks which component of j1 joins
with V{k2} in j2. If V{k2} is joined with S{k1}, t2 is derived by
adding V{k2} as the rightmost child of S{k1} in t1 (left tree in
Figure 4.4b). Otherwise (V{k2} is joined with T{}), t2 is derived
by adding V{k2} to T{} (right tree in Figure 4.4b). Note that
during the computation of t2, t1 must also be reconstructed since
intermediate trees are not stored. Keeping all these trees would
require a large amount of memory, defeating the purpose of PM.

S{k1} T{}

new operator tnew.op

j1
told.op

nnew

new tree tnew

S{k1}

T{} V{k2}

new operator tnew.op

j2

told.op nnew

possible new trees tnew

T{}

j1

S{k1}

V{k2}

S{k1}

T{}

V{k2}

(a) TreeGen(j1} (b) TreeGen(j2}
 Figure 4.4 Examples of TreeGen

Conversely to generating parents, any operator without output
destroys its parents, thereby freeing memory. In Figure 4.2b, if j1
stops producing output, its buffer eventually runs dry.
Consequently, the parents j2, j5 and j6 are removed, leading back
to the partial mesh of Figure 4.2a. Join operators that have been
removed from main memory are regenerated whenever necessary,
e.g., fresh output by j1 at a later time leads to the anew creation of
j2, j5 and j6. Note that the destruction of parent operators
recursively travels up the operator mesh, e.g., if in Figure 4.2b
S{k1} dries up, the entire cluster is reduced to its sources.

4.3 Purging Dead Tuples
When a source tuple s is deleted, all join results that include s
must be removed from the system. Under the positive-negative
stream model, purging is part of query processing; i.e., a negative
tuple –s travels up the mesh, expunging all composite tuples
containing s. Therefore, we focus on sliding windows, where
there are no explicit deletions. In this case, source buffers are
ordered by s.tend (since s.tend = s.tstart + w). These can be purged by
simply inspecting the topmost tuples. On the other hand, since the
output buffers of joins are not sorted on tend (recall that join results
do not expire according to their creation order), deletions may
trigger complete buffer scans. Thus, in the sequel we assume that
source buffers are immediately purged, and propose two
algorithms, eager and lazy, for removing tuples from the output
buffers of join operators.
 Eager, illustrated in Figure 4.5, applies a bottom-up method,
which resembles the positive-negative approach to deletion.
Specifically, whenever a source tuple expires, the corresponding
leaf operator removes the tuple from its output buffer and informs
its parents. Any join operator receiving such a note cleans its own
output buffer, and informs its parents, should it find expired
tuples. Eager is memory-optimal since all occurrences of a
deleted tuple are removed immediately from all affected
operators. However, it can be quite expensive in terms of CPU
overhead, due to the recursive call for all parents (potentially
thousands) in lines 7-8.

Eager(operator op)
1. boolean tell_parents = false
2. For all tuples s in op.out
3. If s expires
4. tell_parents = true
5. Remove s from op.out
6. If (tell_parents)
7. For all parent operators p of op
8. Eager(p)

Figure 4.5 Eager purging

Lazy reduces the CPU cost by removing expired tuples only when
they are encountered during join execution. Assume, for instance,
that in Figure 3.8 S{k1} and T{} have tuples from which j1
produces output. Whenever a tuple in V{k2}, U{k2, k3} or V{k2,
k3} arrives, it is probed against j1.out. The probing consists of
looping over the buffer and inspecting each tuple for join-ability
(nested loop). During the loop, all dead tuples in j1.out are
removed. Lazy incurs minimal CPU overhead, but provides no
guarantee regarding when a dead tuple is removed. If V{k2},
U{k2, k3} or V{k2, k3} dry up, j1.out will not be purged and its
dead tuples will continue wasting memory.
 For full-mesh query processing, we combine lazy with demand
driven operator execution in order to limit the time that expired
tuples remain in the system. Recall that the troublesome case
involves an operator (j1) with output, whose parents (j2, j5, j6)
have no right input. Under demand driven operator execution, j1
must be sleeping, since all its parents are also sleeping. The
problem of deleting expired tuples is hence reduced to purging the
output buffers of sleeping operators. When an operator op halts,
its output buffer may contain live tuples that cannot be expunged
since op may wake-up soon. However, after op sleeps for w
seconds, its entire output has expired, and its buffer can be
discarded. On the other hand, if op restarts before w, the expired
tuples will be removed by join processing. In any case, even if a
tuple in the output buffer had expired before op halted, it cannot
remain in the system for more than 2w after its expiration.
 In order to monitor outdated buffers, lazy maintains a doubly
linked list Q of sleeping operators. If an operator op halts, an
entry e = <op, stopTime> is appended to Q. Additionally, op keeps
a pointer to e. A continuous process watches Q’s head. When the
topmost operator optop (the first to halt in Q) has been sleeping for
w (optop.stopTime + w = now), it is de-queued and its buffer
cleared of all content. Should an operator wake up before it is de-
queued, it removes its entry from Q by following the
corresponding pointer. Since removal of outdated buffers is
integrated with demand driven operator execution, this
optimization is only applicable to FM. Lazy purging for the partial
mesh cannot have guarantees regarding when an expired tuple is
deleted.

4.4 Handling Changes in the Schema
Schema changes may be caused by the appearance or
disappearance of either a source (SR), or an edge indicating which
SR can be joined. In the following, we focus on changes due to
SR; those incurred by edges are handled similarly. First, we
address appearances. A new SR Snew at time tnew, introduces 2|K|
new nodes in the expanded schema and produces an equal number
of source operators. Let Mold (Mnew) be the operator mesh before
(after) tnew. Directly switching from Mold to an empty Mnew is not
permissible, since tuples (and intermediate results) that are still

alive at tnew would be lost. Instead, Mnew is generated on top of
Mold, so that all operators of Mold (and their intermediate results)
become part of Mnew. Specifically, we apply CNGen using the
same nid as Mold for old nodes, and assign to each new node a nid
that is larger than that of all older sources. Consequently, every
operator cluster in Mold becomes part of a cluster in Mnew.
Furthermore, Mnew contains 2|K-1| additional clusters, rooted at
sources of Snew. In order not to suspend query processing, the
migration from Mold to Mnew occurs successively. During the
transition, tuples are routed up the mesh as usual. Each new join
operator that receives tuples from both children processes them
directly, ensuring that tuples which arrived after tnew are properly
joined with older ones, and no results are lost during mesh
migration.
 The disappearance of an SR causes the removal of 2|K-1| sources
from the mesh. All direct parents of these sources are also purged.
The removal of parents travels recursively up the mesh. This
process may cause some other operators to remain without
parents. Such operators must also be deleted from the mesh. In
order to achieve this effect, for every direct parent p of a deleted
source, we insert the left child into a list lrem, and delete p. After
this stage terminates, each operator in lrem that has no parents is
removed and its left child is inserted in lrem. The process
terminates when lrem is empty. In contrast to appearances, SR
disappearances require no immediate attention and can be
performed whenever the system has resources to spare. The above
discussion applies to both full and partial mesh approaches. The
only difference is that in PM new operators are only created as
high as there are data (instead of the entire Mnew).

5. EXPERIMENTAL EVALUATION
The proposed algorithms are implemented in C++, following the
Pipes data stream framework [KS04]. Experiments are performed
on a 3.2GHz Dual-Pentium IV with 2 GB of RAM. Due to lack of
real datasets, we resort to synthetic data. In particular, we
construct a schema containing |SR| streaming relations, connected
in the shape of a ternary tree: each SR can be joined with up to
four other SR (its parent and children). An SR has one attribute
for each edge, used to evaluate equi-joins with the corresponding
neighbor. Results are restricted to at most Tmax joined tuples. Each
SR generates one tuple per second. Attribute values are randomly
and independently chosen in the range [1, sel]. Two tuples of
neighboring SR can thus be joined with probability 1/sel (i.e., the
join selectivity). A tuple may contain several different keywords,
each with an independent probability KWF. We assume a sliding
window of w minutes, and answer a continuous S-KWS query
with |K| keywords for the duration of five hours. We investigate
peak memory and total CPU as a function of w, |K|, Tmax, |SR|,
KWF and sel. Table 5.1 illustrates the ranges and the default
values (in bold) of these parameters. In each experiment, we vary
one parameter and set the remaining ones to their default.

Parameter Range & Default
W 5, 10, 20, 40, 80 minutes
|K| 2, 3, 4, 5
Tmax 2, 3, 4, 5, 6
|SR| 5, 10, 15, 20, 25
KWF 0.003, 0.007, 0.01, 0.013, 0.016
1/sel 1/500, 1/750, 1/1000, 1/1250, 1/1500

Table 5.1 Parameters under investigation

First we compare the (i) Full-Mesh (FM), (ii) Partial-Mesh (PM)
and (iii) a "forest" approach that executes the operator trees
independently, as a function of the window size w. FM includes
lazy purging combined with demand driven operator execution.
Recall that these optimizations are not applicable to PM. Figures
5.1a and 5.1b illustrate the total CPU time (in seconds) and the
peak memory consumption (in bytes). The output cardinality |R| is
shown under the x-axis of the chart for CPU cost. While the
number of live tuples grows linearly with w, the ways in which
they can be joined (i.e., the number of edges in the data graph),
grows quadratically. The CPU overhead (for evaluating joins) and
space consumption (for intermediate and actual results) reflect
this observation. As expected, FM is, generally, the best method
in terms of CPU cost, and PM in terms of space. The forest
approach is consistently inefficient, and excluded from the
remaining experiments for better scaling of the diagrams.

1

10

102

103

104

5 10 20 40 80
w in min.

CPU in sec. PM FM Forest

|R|: 8 33 236 1582 11213 106

107

108

109

5 10 20 40 80

Bytes PM FM Forest

w in min.

(a) Total CPU cost (b) Peak memory
Figure 5.1 Window size w

Figure 5.2 studies the effect of keyword frequency KWF. The
number of MTJNT, as well as the CPU and memory required for
their production increases with KWF. The relative performance of
FM and PM is similar to Figure 5.1. The better CPU performance
of PM for small values of KWF (and w) is counter-intuitive since
PM has to grow and shrink the mesh at runtime (in addition to
processing tuples). As we show in the following experiments, a
similar phenomenon exists for highly complex meshes (e.g., large
Tmax and |K|). The explanation is that, in these cases, the overhead
of the mesh exceeds the actual cost of processing. Specifically, in
full meshes, every incoming tuple has to announce itself to all its
parent operators. Most of these operators cannot produce output
because they lack input from their left child (join). Nevertheless,
the looping over all parents (usually several thousand) and the
corresponding message exchanges burden the CPU cost.

10

20

30

40

50

60

0.003 0.007 0.01 0.013 0.016
KWF

CPU in sec. PM FM

|R|: 4 95 236 596 1089

4*106

5*106

6*106

7*106

8*106

0.003 0.007 0.01 0.013 0.016

Bytes PM FM

KWF

(a) Total CPU cost (b) Peak memory
Figure 5.2 Keyword frequency KWF

Figure 5.3 shows the cost as a function of the SR cardinality
ranging between 5 and 25. Because the number of neighbors for
each SR is limited to four, an increasing |SR| causes a linearly
more complex streaming schema (and corresponding operator
mesh), which echoes on the CPU and memory consumption. The
duration of the initialization phase (I) for FM is depicted below
the x-axis of Figure 5.3b (in seconds). As expected, I is
proportional to the mesh size.

0

10

20

30

40

50

60

70

5 10 15 20 25
|SR|

CPU in sec. PM FM

|R|: 24 137 236 331 374

106

107

108

5 10 15 20 25

Bytes PM FM

|SR|

I: 0.421 1.406 2.422 3.406 4.516

(a) Total CPU cost (b) Peak memory
Figure 5.3 Number of stream relations |SR|

Figure 5.4 investigates the impact of decreasing join selectivity.
Raising the likelihood of joining two tuples causes a quadratic
increase to the number of edges in a conceptual data graph. This
growth is reflected in the number of intermediate results and
MTJNT, as well as in the CPU and memory consumption. PM’s
CPU performance degrades particularly fast because numerous
tuples that travel up the operator mesh cause the system to create
more join operators. Several of these operators are removed
(when they lack input) and re-generated repeatedly through
expensive computations.

20

30

40

50

60

70

80

1/1500 1/1250 1/1000 1/750 1/500
sel

CPU in sec. PM FM-D

72 116 236 585 1758|R|:
4*106

5*106

6*106

7*106

8*106

9*106

107

1/1500 1/1250 1/1000 1/750 1/500

Bytes PM FM-D

sel

(a) Total CPU cost (b) Peak memory
Figure 5.4 Join selectivity 1/sel

Figure 5.5 depicts the effect of the number of query keywords |K|.
This parameter has no impact on the number of tuples, or the way
they can be joined. However, it causes an exponential growth in
the size and complexity of the operator mesh. This phenomenon
can be observed from the initialization time to construct the full
mesh (see I in Figure 5.5b). Three keywords require only 2.5
seconds of initialization, whereas five keywords require almost
half an hour. Since most operators in this mesh are commonly
idle, they are never created by PM; hence the increasing gap in
terms of memory overhead between FM and PM. A similar gap
exists also for the CPU cost, as explained in the context of Figure
5.2. Note that queries with more than five keywords are
unrealistic for two reasons. First, experience from Web search
shows that actual queries rarely exceed four terms. Second,
according to our semantics, any increase in |K| lowers the
likelihood to produce results. For five keywords, we only observe
a singe result in five hours.

1

10

102

103

104

2 3 4 5
|K|

CPU in sec. PM FM

|R|:2492 236 6 1
106

107

108

109

1010

2 3 4 5

Bytes PM FM

|K|

I: 0.078 2.422 61.968 1566

(a) Total CPU cost (b) Peak memory
Figure 5.5 Number of keywords |K|

Tmax has a similar impact to |K|: it does not influence the number
of tuples or how they can be joined, but leads to an exponential
growth of the mesh. Mesh creation for Tmax = 6 exceeds two
minutes, compared to less than one second for Tmax = 3. Increasing
both Tmax and |K| simultaneously can cause mesh initialization to
take several hours. Following the mesh size, CPU and memory
also grow fast, since (i) the mesh requires more storage, (ii) there
are more intermediate results and (iii) their generation requires
more CPU. In contrast to |K|, increasing Tmax also causes an
exponential growth to the number of results.

1

10

102

103

104

2 3 4 5 6
Tmax

CPU in sec. PM FM

|R|:5 41 236 1412 7161
106

107

108

2 3 4 5 6
Tmax

Bytes PM FM

I: 0.062 0.359 2.422 18.078 140.515

(a) Total CPU cost (b) Peak memory
Figure 5.6 Limit Tmax of nodes per MTJNT

The last set of experiments measures the benefits of demand driven
operator execution and lazy purging for FM as a function of w. FM-
D-L signifies that both optimizations are applied. The absence of an
optimization is denoted with symbol "!". Specifically, !L implies
eager purging. As shown in Figure 5.7, demand driven operator
execution reduces both the CPU time and the memory consumption.
The space savings are due to the avoidance of intermediate results
that cannot lead to actual output. On the other hand (Figure 5.8),
lazy also reduces CPU cost, but increases space consumption
because of tuples that remain in the system after their expiration.

5 10 20 40 80

CPU in sec.

10

102

103

w in min.

FM-!D-L
FM-D-L

106

107

108

5 10 20 40 80

Bytes

w in min.

FM-!D-L
FM-D-L

(a) Total CPU cost (b) Peak memory
Figure 5.7 Effects of demand driven operator execution (D)

10

102

103

5 10 20 40 80

CPU in sec.
FM-D-!L
FM-D-L

w in min.
 106

107

108

5 10 20 40 80

Bytes
FM-D-!L
FM-D-L

w in min.

(a) Total CPU cost (b) Peak memory
Figure 5.8 Effects of lazy purging (L)

Summarizing the evaluation, both FM and PM achieve large
performance gains with respect to the independent execution of
operator trees. FM is faster than PM for most settings. However, it
incurs significant space overhead, and may be outperformed by
PM for problems that involve highly complex meshes. In
addition, a query can be processed only after the mesh
initialization completes. Given the above, FM is preferable for
queries with long duration (where the initialization cost is
amortized) and small meshes (i.e., few keywords, low Tmax). For
all other cases, the method of choice is PM, especially when there
are concurrent queries competing for the system memory.

6. CONCLUSION
This paper is the first to propose keyword search on relational
data streams. S-KWS has several advantages over structured
query languages, most notably, ease of use and ability to retrieve
information without knowledge of the schema. At the same time,
it presents considerable challenges compared to keyword search
for static relational data. In particular, S-KWS is more intricate
than R-KWS, because it has to perform additional tasks that are
specific to data streams (e.g., handle result expirations) and is at
the same time subject to streams’ unpredictability and sudden
changes. Furthermore, the search space is vast, since all possible
combinations of keyword occurrences must be considered. In
contrast to R-KWS, this space cannot be pruned, but must be fully
monitored during the entire query lifespan.
 We face these challenges through a series of contributions. We
present the first duplicate-free algorithm that enumerates all
possible candidate networks and prunes current expansions at the
earliest possible stage. The resulting forest of operator trees
answers an S-KWS query correctly, but inefficiently. Going one
step further, we integrate the individual trees into a single mesh of
shared operators. Finally, we present two highly optimized, query
processing techniques. FM builds the full mesh in an initialization
phase, so that at runtime system resources are dedicated to tuple
processing. PM does not require initialization, but dynamically
grows and shrinks the operator mesh at runtime. The relative
performance of these techniques is evaluated by an extensive set
of experiments.
 S-KWS enables an entire class of querying tasks and novel
applications. One direction for future work concerns additional
functionality in current techniques. In particular, a user may wish
to receive only the top-k results for any time instant, in which
case we should incorporate ranking mechanisms in the query
processing methods. Another interesting setting involves long
running KWS queries on a combination of stream and static
relational data. Going back to the example of Section 1, some of
the tables (e.g., director) may be stored in the DBMS, while
tuples of other tables (e.g., movie) arrive continuously from
distributed sources. Processing in this environment would require
integration of S-KWS and R-KWS methods.

ACKNOWLEDGMENTS
This work was supported by grant HKUST 6184/05E, from Hong
Kong RGC. We would like to thank George Fakas for initiating
discussions that led to this paper and Vagelis Hristidis for
providing useful advice.

REFERENCES
[ABW06] Arasu, A., Babu, S., Widom, J. The CQL Continuous

Query Language: Semantic Foundations and Query
Execution. VLDB Journal, 15(2): 121–142, 2006.

[ACC+03] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik,
S. B. Aurora: a New Model and Architecture for Data
Stream Management. VLDB Journal, 12(2): 120–139,
2003.

[ACD02] Agrawal, S., Chaudhuri, S., Das, G. DBXplorer: A system
for keyword-based search over relational databases. ICDE,
2002.

[AH00] Avnur, R., Hellerstein, J. M. Eddies: Continuously
Adaptive Query Processing. SIGMOD, 2000.

[BHP04] Balmin, A., Hristidis, V., Papakonstantinou, Y.
ObjectRank: Authority-based keyword search in databases.
VLDB, 2004.

[BBD+02] Babock, B., Babu, S., Datar, M., Motwani, R., Widom, J.
Models and Issues in Data Stream Systems, PODS, 2002.

[CCD+03] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S.,
Madden, S.R., Raman, V., Reiss, F., Shah, M.A.
TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. CIDR, 2003.

[CDHW04] Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.
Probabilistic ranking of database query results. VLDB,
2004.

[CKKS05] Cohen, S., Kanza, Y., Kimelfeld, B. Sagiv, Y.
Interconnection semantics for keyword search in XML.
CIKM, 2005.

[DEGP98] Dar, S., Entin, G., Geva, S., Palmon, E. DTL’s DataSpot:
Database exploration using plain language. VLDB, 1998.

[FJL+01] Fabret, F., Jacobsen, H. A., Llirbat, F., Pereira, J., Ross, K.
A., Shasha, D. Filtering algorithms and implementation for
very fast publish/subscribe systems. SIGMOD Record,
30(2): 115–126, 2001.

[GO03] Golab, L., Öszu, T.M. Issues in Data Stream Management.
SIGMOD Record, 32(2): 5–14, 2003.

[GSBS03] Guo, L., Shao, F., Botev C., Shanmugasundaram J.
XRANK: Ranked keyword search over XML documents.
SIGMOD, 2003.

[HBN+01] Hulgeri, A., Bhalotia, G., Nakhe, C., Chakrabarti, S.,
Sudarshan, S. Keyword search in databases. IEEE Data
Engineering Bulletin 24(3): 22–32, 2001.

[HGP03] Hristidis, V., Gravano, L., Papakonstantinou, Y. Efficient
IR-style keyword search over relational databases. VLDB,
2003.

[HP02] Hristidis, V., Papakonstantinou, Y. DISCOVER: Keyword
search in relational databases. VLDB, 2002.

[HPB03] Hristidis, V., Papakonstantinou, Y., Balmin, A. Keyword
proximity search on XML graphs. ICDE, 2003.

[HVVY06] Hristidis, V., Valdivia, O., Vlachos, M., Yu, P. Continuous
Keyword Search on Multiple Text Streams. Poster, CIKM,
2006.

[IMS+06] Irmak, U., Mihaylov, S., Suel, T., Ganguly, S., Izmailov,
R. Efficient Query Subscription Processing for Prospective
Search Engines. USENIX Annual Technical Conference,
2006.

[KS04] Kramer, J., Seeger, B. PIPES: a public infrastructure for
processing and exploring streams. SIGMOD, 2004.

[LYMC06] Liu, F., Yu, C., Meng, W., Chowdhury, A. Effective
Keyword Search in Relational Databases. SIGMOD, 2006.

[SJ01] Sarda N.L., Jain, A. Mragyati: A system for keyword-
based searching in databases. TR CoRR cs.DB/0110052,
2001.

[SW05] Su Q., Widom, J. Indexing relational database content
offline for efficient keyword-based search. IDEAS, 2005.

[WLK04] Wheeldon, R., Levene, M., Keenoy, K. DbSurfer: A search
and navigation tool for relational databases. Annual British
National Conference on Databases, 2004.

[YG99] Yan, T. W., Garcia-Molina, H. The SIFT information
dissemination system. ACM Transactions on Database
Systems, 24(4): 529–565, 1999.

