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ABSTRACT 
Increasing monitoring of transactions, environmental parameters, 
homeland security, RFID chips and interactions of online users 
rapidly establishes new data sources and application scenarios. In 
this paper, we propose keyword search on relational data streams 
(S-KWS) as an effective way for querying in such intricate and 
dynamic environments. Compared to conventional query 
methods, S-KWS has several benefits. First, it allows search for 
combinations of interesting terms without a-priori knowledge of 
the data streams in which they appear. Second, it hides the 
schema from the user and allows it to change, without the need 
for query re-writing. Finally, keyword queries are easy to express.  
 Our contributions are summarized as follows. (i) We provide 
formal semantics for S-KWS, addressing the temporal validity 
and order of results. (ii) We propose an efficient algorithm for 
generating operator trees, applicable to arbitrary schemas. (iii) We 
integrate these trees into an operator mesh that shares common 
expressions. (iv) We develop techniques that utilize the operator 
mesh for efficient query processing. The techniques adapt 
dynamically to changes in the schema and input characteristics. 
Finally, (v) we present methods for purging expired tuples, 
minimizing either CPU, or memory requirements. 

Categories and Subject Descriptors: H.2.3 Database 
Management-Languages, H.3.3 Information Search and Retrieval   
General Terms: Algorithms 
Keywords: Keyword Search, Data Streams  

1. INTRODUCTION 
With the rise of Web search engines, keyword search (KWS) has 
become a leading search paradigm. In conventional KWS, each 
document constitutes one unit of information, and is considered a 
result, if it contains all/some of the query’s keywords. Recently, 
KWS has also been applied to relational DBMS, allowing data 
retrieval without SQL knowledge. In relational keyword search 
(R-KWS), the basic unit of information is a tuple/record. In 
contrast to KWS on documents, results in R-KWS cannot simply 
be found by inspecting units of information (records) individually. 
Instead, results have to be constructed by joining tuples.  
 Assume the movie database of Figure 1.1 that contains four 
tables: director, movie, plays and actor. Edges connecting the 
tables correspond to join conditions, e.g., a movie record can be 
joined with the tuples of its director (movie.did = director.did) 
and actors (movie.mid = plays.mid). For simplicity, consider that 
the database contains only the seven tuples of Figure 1.1. Given 

the R-KWS query q:= {Tarantino, Travolta}, the system returns 
two results: t1  t2  t5  t3 and t3  t6  t7  t4. The first one 
signifies that there is a movie (Pulp Fiction), which was directed 
by Tarantino and features Travolta. The second implies that there 
is movie (mid=5) that includes both Tarantino and Travolta as 
actors.  
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Figure 1.1 Example of relational KWS 

R-KWS shows several major benefits over SQL queries. First, it 
liberates the user from having to study a (possibly messy) 
database schema. In the above example, a query can be issued 
without knowledge of tables, their attributes, or join conditions. 
Second, R-KWS allows querying for terms in unknown locations 
(tables/attributes). For instance, “Tarantino” appears both as an 
actor and a director. A user trying to identify projects in which 
Tarantino and Travolta cooperated does not care about their 
particular roles (e.g., actor or director). Finally, a single R-KWS 
query replaces numerous complex SQL statements. Finding the 
two interactions between Tarantino and Travolta requires the two 
SQL expressions in Figure 2.2. However, these are only the 
statements that actually output results. Many more SQL queries 
have to be issued, in order to cover every possible interaction, e.g. 
a movie starring Tarantino that was directed by Travolta. The 
overwhelming number of such SQL queries (often ranging in the 
thousands), prohibits the usage of hand-coded SQL on any 
database with a non-trivial schema. 

SELECT *
FROM Director D, Movie M,

WHERE D.name=Tarantino, A.name=Travolta
Plays P, Actor A

and D.did=M.did and P.mid=M.mid
and A.aid=m.aid  

SELECT *
FROM Actor A1, Actor A2, Plays P1, Plays P2, 
WHERE A1.name=Tarantino, A2.name=Travolta
and A1.aid=P1.aid and A2.aid=P2.aid and 
P1.mid=P2.mid 

(a) t1  t2  t5  t3 (b) t3  t6  t7  t4 
Figure 1.2 SQL statements for two results 

The advantages of R-KWS have led to a variety of methods, 
surveyed in Section 2. However, the additional flexibility 
compared to conventional query languages, comes at the expense 
of high execution cost. Specifically, the search space is now 
considerably larger, since keywords may appear in arbitrary 
attributes of arbitrary tables, and all feasible combinations of 
keyword occurrences have to be explored. One common approach 
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to R-KWS processing generates an operator tree for each 
combination. Figure 1.3 shows two such trees, corresponding to 
the two results of Figure 1.2. Similar to the hand-coded SQL 
statements, a large number of additional trees have to be 
evaluated, although they do not produce output. This number can 
be reduced by restricting the domain of keywords, e.g., by 
specifying that Tarantino can only appear as a name in the 
director or actor tables. For generality, we assume no such 
restrictions since they require knowledge of the schema.  

Director Movie Plays Actor

Movie.mid=Plays.mid

σ

Plays.aid=Actor.aid

Director.did=
Movie.did

name=Tarantino
σ

name=Travolta

 Plays1Actor 1 Actor 2Plays 2

Actor1.aid=Plays1.aid

σ
name=Tarantino σname=Travolta

Actor2.aid=Plays2.aid

Plays1.mid=Plays2.mid

(a) t1  t2  t5  t3 (b) t3  t6  t7  t4 
Figure 1.3 Operator trees for two results 

In this paper we apply KWS to data streams with relational 
structure; i.e., all tuples from the same source have the same 
attributes and different streams can be joined according to certain 
conditions. As an example, assume that in Figure 1.1 records are 
not stored a-priori, but continuously arrive from distributed 
databases, box office sites etc. Increasing monitoring of 
transactions, environmental parameters, homeland security, RFID 
chips or interactions of online users rapidly establishes new data 
sources and application scenarios. Stream keyword search (S-
KWS) provides an effective and intuitive way for dealing with the 
high complexity and dynamic nature of the data. 
 S-KWS amplifies the benefits, as well as the challenges, of R-
KWS. In terms of benefits, unlike conventional databases, the 
stream schema is likely to change at runtime, as new sources are 
integrated and old sources cease to send input. Thus, it is difficult 
for a user to have complete and up-to-date knowledge of the 
schema. Even if this knowledge were available, any changes 
would require the user to instantly adapt his/her queries. On the 
other hand, S-KWS provides an intuitive way for posing queries, 
which is transparent to the schema and its potential changes. 
 Regarding challenges, S-KWS is more complex and expensive 
(in terms of both computation and memory overhead) than R-
KWS. The complexity arises from the fact that the queries are 
long running, and their output must be continuously updated. R-
KWS systems only deal with snapshot queries on a static schema 
without modules for handling result insertion (when new tuples 
arrive), deletion (when old tuples expire), and schema changes. 
The high computation and memory overhead is due to the fact 
that all the operator trees must be maintained during the entire 
lifespan of the query. In R-KWS, on the other hand, many trees 
can quickly be dropped. For instance, if there is no director with 
the name Tarantino, every tree containing the selection 
σdirector.name=Tarantino (e.g., the one in Figure 1.3a) can immediately 
be discarded. In S-KWS these trees must remain active, because a 
tuple containing the keyword may arrive in the future. 
Furthermore, unlike R-KWS, where the system can take 
advantage of well-understood query optimization mechanisms 
from the underlying DBMS, S-KWS requires novel algorithms. 
The paper faces the above challenges through the following 
contributions:  
• We provide formal semantics for S-KWS, addressing temporal 

validity and order of the results. 
• We propose an algorithm for generating operator trees that 

outperforms existing methods (for R-KWS) both in terms of 
efficiency and applicability to a wider range of schemas. 

• We integrate these trees into an operator mesh that reduces the 
CPU cost and memory consumption by sharing common 
expressions.  

• We develop techniques that utilize the operator mesh for 
efficient query processing. The techniques adapt 
dynamically to changes in the schema and input 
characteristics.  

• We present methods for purging expired tuples, minimizing the 
CPU or memory requirements.  

The remainder of the paper is structured as follows. Section 2 
outlines related work, and describes basic concepts in R-KWS. 
Section 3 defines the semantic model for S-KWS, presents the 
generation of operator trees and the construction of an equivalent 
operator mesh. Section 4 proposes query processing techniques 
and introduces mechanisms for purging old tuples and altering the 
stream schema. Section 5 contains the experimental evaluation, 
and Section 6 concludes the paper. 

2. RELATED WORK 
R-KWS semantics are commonly based on a graph representation 
of the database [DEGP98]. Each node in the data graph G 
represents a tuple, and edges connect tuples that can be joined. 
Figure 2.1 shows a schema with four tables, and the data graph for 
a small instance of the database. In our notation, si signifies a 
tuple of S, ti one of T, etc. Two tuples (e.g., s2, t1) are connected in 
G, iff their relations (S, T) are connected in the relational schema 
and the tuples satisfy the corresponding join conditions. 
Keywords {k1, k2, k3} are noted next to the tuples in which they 
occur, e.g., k1 and k2 exist in v1. 

Data Graph
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u1
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Figure 2.1 Relation schema and corresponding data graph 

The result of an R-KWS query can be defined using the concept 
of Minimal Total Join Network (MTJNT) [HP02]. Given a query 
q:= {k1, …, km}, an MTJNT is a connected acyclic component of 
the data graph G that is (i) total, i.e., it contains all keywords k1, 
…, km, and (ii) minimal, i.e., it is impossible to remove any node 
and still have a total network. In particular, minimalism is 
satisfied, iff every terminal node contains at least one unique 
keyword, i.e., one that is not contained in any other node of the 
MTJNT. The left side of Figure 2.2 shows several MTJNT for the 
data graph in Figure 2.1, assuming that q:= {k1, k2, k3}. Intuitively, 
only MTJNT are valid R-KWS results. For instance, (v1, t1, u2, s2)

1 
does not constitute an MTJNT since s2 is redundant; the minimal 
result is (v1, t1, u2). Similarly, (v2, t2, u3) is not total as it does not 
include keyword k1. 

                                                                 
1 For ease of presentation, we often denote an MTJNT as a 

sequence of nodes. 
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Figure 2.2 Examples of MTJNT and CN 

There are various approaches for R-KWS processing. One family 
of systems, such as Discover [HP02, HGP03], DBXplorer 
[ACD02] and Mragyati [SJ01], translate an R-KWS query into a 
series of SQL statements, which are executed directly on 
secondary storage, using the underlying DBMS. In the sequel, we 
focus on Discover, an influential system that introduced several 
concepts related to our work. An expanded schema2 is a graph 
whose nodes correspond to horizontal decompositions of 
relations, according to the set of keywords they contain. The 
nodes in the expanded schema are denoted as follows: S{K} 
signifies all tuples of relation S that contain exactly the set K of 
query terms; K ⊆ {k1, …, km}. The set of elements in S that do not 
contain any keyword is denoted as S{}. Edges in the expanded 
schema connect two such sub-relations S{K′} and T{K′′}, iff their 
parent relations S and T are connected in the original database 
schema. Candidate networks (CN) are the projections of MTJNT 
on the expanded schema. A CN is a particular combination of 
keyword occurrences. For instance, the MTJNT (v1, t1, u2) of 
Figure 2.1 maps to the CN (V{k1, k2}, T{}, U{k3}) because v1 ∈ 
V{k1, k2}, t1 ∈ T{} and u2 ∈ U{k3}. Figure 2.2 illustrates the 
mappings of several MTJNT (on the left) to CN (on the right). 
Note that multiple MTJNT, e.g., (v1, t1, u2) and (v4, t2, u3), can 
map to the same CN, and that a CN may contain the same sub-
relation (e.g., T{}) multiple times. 
 Discover answers R-KWS queries by returning all MTJNT that 
do not exceed Tmax nodes. Tmax is a parameter used to avoid long 
chains of joins, which usually lead to uninteresting results. The 
system first generates the set of CN by traversing the expanded 
schema. Next, it creates an operator tree for each CN. Leaf nodes 
in the trees correspond to selections and inner nodes to joins. 
Figure 2.3 shows an operator tree for the CN (V{k1, k2}, T{}, 
U{k3}). The selection σk1∧k2∧¬k3V produces all tuples in the sub-
relation V{k1, k2}, whereas σ¬k1∧¬k2∧¬k3T produces T{}. This 
tree generates the lower two MTJNT in Figure 2.2. Finally, 
operator trees are translated into SQL statements and executed by 
the underlying DBMS. Common sub-expressions (e.g., V{k1, k2} 

 T{}) are shared between trees for several CN (e.g., the first and 
third in Figure 2.2). 

V UT

k1 k2 ¬k3 ¬k1 ¬k2 ¬k3 ¬k1 ¬k2 k3

result

∧σ ∧ ∧σ ∧ ∧σ ∧

 
Figure 2.3 Operator tree for CN (V{k1, k2}, T{}, U{k3}) 

                                                                 
2 The concept was introduced [HP02], but had not been named. 

We use the term expanded schema for easier reference.  

Another family of methods, including Banks [HBN+01] and 
DBSurfer [WLK04], maintains the actual data graph in main 
memory and generates results by graph traversal. Specifically, 
given a query, an inverted index identifies all tuples that contain 
at least one keyword. Each such tuple initiates a graph traversal, 
e.g., in Figure 2.1 traversals would start from nodes s1, v1, u1, u2, 
v2, v4 and u3. Whenever a node is reached by all keywords, an 
MTJNT is constructed by following the reverse paths to the 
keyword occurrences. Duplicates are filtered in a second, post-
processing step.  
 Requiring neither an in-memory data graph nor SQL, the Ekso 
system [SW05] computes R-KWS queries by means of extensive 
pre-processing. Given some pruning condition, Ekso determines 
for each node the set of all reachable nodes in the data graph. It 
then constructs a virtual document for each node, by writing the 
attribute values of all reachable nodes to a text file. These files are 
organized in an inverted index, on which queries are performed 
conventionally. Virtual documents are incompatible to most R-
KWS semantics, such as MTJNT, since they cannot ensure 
minimalism. 
 Hristidis et al. [HPB03] have extended Discover to XML 
databases. In this case, the nodes of the data graph represent XML 
elements. Edges connect elements that are contained in each 
other, or reference each other. Cohen et al. [CKKS05] discuss 
semantics, and Gao et al., [GSBS03] ranked output for KWS over 
XML. Work by [HGP03, BHP04, CDHW04, LYMC06] focuses 
on ranking functions for R-KWS, mainly aimed at computing 
results in a top-k fashion. Since S-KWS results are sorted by time, 
our work does not require additional ranking.  
 There is an extensive literature on relational data streams. 
Under this paradigm, data elements (e.g., relational tuples), 
generated by various sources, are collected at a data stream 
managing system (DSMS), where users register continuous 
queries. When a new tuple arrives, all relevant queries are re-
evaluated. Query processing is usually performed by routing 
tuples through operator trees, where operators closely resemble 
their traditional counterparts such as selections or joins. 
Influential DSMS prototypes include: (i) Aurora [ACC+03], 
targeted mainly at processing sensor data, (ii) TelegraphCQ 
[CCD+03], focusing on the novel Eddy operator [AH00], (iii) 
Stream [ABW06], designed as a general purpose DSMS, and (iv) 
Pipes [KS04], a public infrastructure based on the XXL Java 
library for relational databases. Surveys of various DSMS can be 
found in [BBD+02, GO03]. 
 Depending on the application characteristics, DSMS adopt 
different models regarding the validity of tuples. A popular model 
assumes a sliding window of a given time frame w, i.e., a tuple s 
expires w time units after its arrival. In this case, all arrivals in the 
system correspond to insertions and deletions are implicit. 
Another common model assumes positive-negative tuples, i.e., the 
DSMS receives a negative tuple –s that takes the same route 
through the operator tree as s, and erases all occurrences of its 
positive counterpart. In both cases the lifespan of a tuple s is the 
interval [s.tstart, s.tend) between its arrival s.tstart and the (implicit or 
explicit) deletion time s.tend. Two tuples can be joined only if their 
lifespans overlap. Join results must also be assigned a timestamp, 
since they may constitute input for a subsequent operator. 
Usually, the lifespan of a join result is defined as the intersection 
of all participating tuples’ lifespans; e.g., if c is composed of 
tuples s and t, then c.tstart = max(s.tstart + t.tstart) and c.tend = 
min(s.tend + t.tend).  



 

 KWS has also been applied to streaming documents (e.g., 
continuously arriving news articles). With few exceptions [YG99, 
FJL+01, IMS+06], most related work is proprietary. The main 
difference with respect to R-KWS and S-KWS is that documents 
do not have to be joined, but are evaluated individually (similarly 
to traditional KWS). In a recent poster [HVVY06], Hristidis et al. 
proposed KWS over multiple textual streams. Similar to our 
work, results are constructed by combining units of information 
(emails, news articles) from several streams. The authors however 
do not follow a relational model, leading to several key 
differences with our problem setting. Firstly, tuples in [HVVY06] 
have only one attribute, their text. Secondly, only tuples that 
contain keywords can contribute to a result. Thirdly, and most 
significantly, combinations (joins) of several tuples are not 
evaluated upon their (text) attribute, but tuples can always be 
joined, as long as the data streams from which they origin are 
sufficiently correlated. The correlation between streams is 
continuously updated, and stored in a stream schema. 
Unfortunately, the poster does not provide a formal definition of 
semantics, or details about algorithms and experiments. In the 
following, we present a comprehensive solution for keyword 
search on relational data streams, including formal semantics, 
efficient algorithms and optimizations for different problem 
settings.  

3. STREAM KEYWORD SEARCH 
Section 3.1 describes general concepts and provides semantics for 
S-KWS. Section 3.2 presents an efficient, duplicate-free algorithm 
for candidate network generation. Section 3.3 discusses operator 
trees and meshes. Since R-KWS has a relatively long history and 
well-understood semantics, we adhere to R-KWS concepts as 
closely as possible. 

3.1 Semantics 
We assume a DSMS that monitors several relational streams and 
answers continuous keyword queries of the form q:= {k1, …, km}. 
Tuples arrive ordered by increasing tstart and may be deleted 
explicitly (through a negative tuple) or implicitly (according to 
the sliding window model). A streaming relation (SR) is the union 
of several streams with a common structure and meaning. For 
example, all cash registers in a large supermarket produce data 
streams in the format <product-id, price, time> that can be 
wrapped into a single SR. For the remainder of the paper, we 
assume streams to be bundled into SR, and hence use the terms 
stream and SR interchangeably. Note that tuples do not 
necessarily have unique keys; e.g., there may exist two records 
with exactly the same values for all attributes originating from 
different cash registers. 
 A graph, called streaming schema, denotes which streams can 
be joined and on what attributes. Nodes in the streaming schema 
represent SR. Two SR are connected by an edge, iff they can be 
joined. The schema would usually be provided by the system 
operator, but may also be altered by individual users (e.g., by 
excluding SR that are not relevant to a query). A newly arriving 
data stream can be integrated by either (i) merging it with an 
existing SR (if it adheres to the same format) or (ii) introducing a 
new SR. In our examples, we use a query with three keywords k1, 
k2, k3 on four SR: S, T, U and V. The schema is the same as that in 
Figure 2.1, i.e., the only joins permitted are those between tuples 
in T and those in S, U, or V.  

 We define S-KWS semantics, by identifying results on 
instantaneous views (snapshots) of the system. At every time 
instant τ, the instantaneous data graph G(τ) contains a node for 
each tuple s that is alive at τ. Two tuples are connected, iff they 
can be joined. Figure 3.1 shows G(τ = 9) for the example schema, 
including the lifespans of the tuples. Note that, in case of positive-
negative tuples, these lifespans are not known in advance. The 
appearance of keywords is denoted next to the tuples. Similar to 
previous work on R-KWS, we impose a limit Tmax of tuples per 
MTJNT, in order to avoid overly long chains of joins. Let R(τ) be 
the set of MTJNT in G(τ) that do not exceed Tmax nodes. The 
result R of a continuous S-KWS query is the union of R(τ), for all 
τ. The MTJNT (v1, t1, u2), (v1, t1, s2, t2, u3) and (u1, t1, s2, t2, v2, u3) 
in Figure 3.1 are elements of R(τ = 9). At time τ = 10, v1 expires 
and so do the former two MTJNT, while (u1, t1, s2, t2, v2, u3) 
continues as an element of R(τ = 10). Results are produced in 
ascending tstart order. 

s2t1

u2

t2

v1 v3 v4v2

u1

k1, k2

k1

k3k1, k2

u3
k3

k2s1

k3

[1,10) [1,10) [5,14)

[7,16)

[6,15) [9,18)[3,12)

[2,11) [3,12) [6,15)[4,13)   
Figure 3.1 Instantaneous data graph at τ = 9 

The following Lemma allows for an efficient generation and 
compact representation of R. 
Lemma 1: Let r ∈ R(τ) be an MTJNT on G(τ). If every node n in 
r is alive at τ+1, then r is a MTJNT on G(τ+1); i.e. r ∈ R(τ+1). 
Proof: Since attributes do not change values over time, any tuple 
that contains keyword k at time τ also contains k at time τ+1. 
Similarly, since edges cannot change, if r is connected at τ, it is 
also connected at τ+1. Hence, if r is total and minimal at τ, it is 
also total and minimal at τ+1.   □ 
 According to Lemma 1, an MTJNT r is not affected by 
insertions or deletions of external nodes.3 Consequently, every 
MTJNT r is constructed and reported only once (at r.tstart), rather 
than at every instant during its lifespan. The termination of a 
result r, on the other hand, depends on the stream model. For a 
sliding window of duration w, we can compute the lifespan of r, 
directly when it is created, as: r.tstart = max(n.tstart) and r.tend = 
min(n.tstart + w), where n are the component tuples of r. For 
example, (v1, t1, u2) in Figure 3.1 is output at τ = 5, in 
combination with the lifespan [5, 10). In the positive-negative 
model (where n.tend is not known in advance), r is terminated 
when the first of its constituent tuples is deleted through a 
negative tuple. When the result is terminated, the user receives a 
negative tuple –r. 
 Figure 3.2 illustrates our framework for keyword search on 
relational streams. Similar to R-KWS systems, we first generate all 
candidate networks that may produce results (i.e., MTJNT) for a 
given query and schema. Each CN is transformed to an operator 
tree. These trees are integrated in an operator mesh that exploits 
sharing opportunities. Tuples from the various stream sources are 

                                                                 
3 Other semantics, such as these used by Banks [HBN+01], do not 

show the property of Lemma 1, e.g., a result may be invalidated 
because of a new arrival, necessitating continuous monitoring of 
all results at each timestamp. 



 

routed through the operator mesh and spawn output. In the 
remainder of this section, we describe an efficient algorithm for CN 
generation and present the structure of the operator mesh. Query 
processing depends on the particular problem settings, and is 
discussed separately in Section 4. 

CN
generation

Operator
Mesh

query

stream 
schema

….
streams

results (MTJNT)

 
Figure 3.2 General framework 

3.2 Candidate Networks for Data Streams 
Recall from Section 2 that Discover [HP02] already contains a 
module for CN generation. Unfortunately, that module generates 
duplicate CN that have to be filtered out in a post-processing step. 
We propose CNGen, a novel algorithm that computes CN 
according to their unique pre-order traversal and, hence, it is free 
of duplicates. Futhermore, the algorithm contains elaborate 
pruning conditions that abort an expansion as soon as it becomes 
clear that it cannot lead to a new CN4.   
 CNGen requires a total ordering (nid) on nodes of the expanded 
schema. The concrete ordering does not influence correctness, but 
as discussed in Section 3.3, it affects performance. For the 
remainder of the presentation, we assume that each streaming 
relation (e.g., S) has an ID (S.sid). Nodes in the expanded schema 
have a keyword bitmap (kbit) according to the keywords 
contained in the node, e.g., S{k2}.kbit = 010 = 4 and S{k1, k3}.kbit 
= 101 = 5. The node order nid is a lexicographic combination of 
sid and kbit, e.g., S{k1, k3}.nid < T{k2}.nid and S{k2}.nid < S{k1, 
k3}.nid. For simplicity, we first consider that there are no multiple 
appearances of the same node in a CN. In this case, given the nid 
order and having designated a root node nroot, every CN can be 
represented as a unique tree, where the children of a node are 
arranged from left to right by nid. Figure 3.3 shows a CN for q:= 
{k1, k2, k3} and the corresponding tree for nroot = S{k1}. Note that 
nroot may actually be a terminal node of the CN, in which case it 
only has one child.  
 

T{} S{k1} U{k3 }V{k2} T{k1}

 
T{}

S{k1}

V{k2}

T{k1}

nroot

U{k3}

(a) Candidate network (b) Tree for nroot=S{k1} 
Figure 3.3 A CN and its interpretation as a tree  

Figure 3.4 shows a simplified version of CNGen, assuming that a 
node contributes to a CN at most once. InitCNGen calls CNGen 
for all nodes containing k1.

5 All these nodes, e.g., S{k1}, S{k1,k2}, 
T{k1}, will become roots. In case that several nodes have k1, the 
minimal nid breaks the tie. Each application of CNGen starts with 
a tree tfirst containing only nroot. For every node nnew of the 
expanded schema that can be added to tfirst, CNGen creates a new 

                                                                 
4 Discover uses an alternative definition of S{}, where essentially 

S{} = S, leading to a different set of CN and, hence, pruning 
conditions. In this paper, we use S{} to signify tuples of S that 
contain no keyword.  

5 The choice of k1 is arbitrary. Section 3.3 discusses selection of 
efficient root nodes. 

tree tnew consisting of tfirst plus nnew (Line 7). These trees are then 
processed similarly (Lines 10-11). Trees exceeding Tmax do not 
spawn further trees. This expansion generates all trees rooted at 
nroot. Since every CN must contain k1, the set of expansions 
initiated by InitCNGen will eventually produce all CN for the 
given query and schema. 

InitCNGen(Expanded Schema E) 
1.  For all nodes nroot containing k1, ordered by increasing nid 
2.    CNGen(nroot) 
3.    Remove nroot from E  
 
CNGen(expanded schema node nroot) 
1. Initialize queue q     // stores intermediate trees 
2. Construct a tree tfirst consisting of a single node nroot 
3. Insert tfirst into q 
4. While (q ≠ Ø) 
5.     Tree told = q.first 
6.     ∀ node nnew in E that can legally be added to a node nold of told 
7.        Create a new tree tnew by adding nnew as a child of nold  
8.        If (tnew is a CN) 
9.            Output tnew; Break 
10.      If (tnew has the potential of becoming a CN) 
11.         Insert tnew in q 

Figure 3.4 The basic CNGen algorithm 

CNGen must avoid three types of duplicates. The first are 
isomorphic duplicates, e.g. Figure 3.5a shows how the CN of 
Figure 3.3 could be discovered a second time, by calling CNGen 
for nroot =T{k1}. In order to eliminate this redundancy, InitCNGen 
removes nroot from the expanded schema after CNGen(nroot) 
terminates. Note that this does not cause any result loss, since all 
CN containing nroot are generated by CNGen(nroot). The second 
type of duplicates refers to trees that originate from the same root, 
but follow different insertion order for the remaining nodes. For 
instance, the tree in Figure 3.5b is a duplicate of that in Figure 
3.3b created by starting with S{k1} and adding T{k1} before T{}. 
CNGen avoids this problem by creating trees according to their 
unique pre-order nid traversal. The term legally in Line 6 means 
that a node can be inserted only to the rightmost root-to-leaf path, 
and its nid must be larger than any of its siblings’. For instance, 
assume that the left branch of the tree in Figure 3.5b has already 
been created. T{} could not be added to S{k1} because its nid is 
smaller than that of its sibling T{k1}. Thus, this tree is not 
generated by CNGen.  The third type of duplicates occurs due to 
multiple appearances of the same node in a CN. For instance, the 
replacement of T{k1} by T{} in Figure 3.3 would lead to another 
valid CN with two nodes for T{}. This CN could be generated 
twice, by adding either the first, or the second occurrence of T{} 
as the left child of S{k1}. Such duplicates can be avoided by 
observing the lexicographic order of sub-trees rooted at the 
problematic nodes, but, for simplicity, we omit the details in 
pseudo-code of Figure 3.4. 

T{}

S{k1}

V{k2}

T{k1}

U{k3}

nroot

 

T{}

S{k1}

V{k2}

T{k1}

U{k3}

nroot

(a) Starting with different nroot  (b) Starting with the same nroot

Figure 3.5 Types of duplicates 



 

Furthermore, note that we do not have to generate all trees, but 
only those corresponding to CN. One solution would be to create 
all trees of size up to Tmax, and filter out non-CN. CNGen behaves 
more efficiently, by abandoning expansions, as soon as it 
becomes clear that the current tree cannot lead to a CN (Line 10). 
A tree has the potential to become a CN, if it (i) has fewer than 
Tmax nodes, and (ii) every leaf that is not on the rightmost path 
contains a unique keyword. Such leaves will not be expanded in 
the future, and must therefore contain unique keywords; 
otherwise, they would violate CN minimalism. Since CN 
generation depends only on the query and the schema graph, but 
not on the type of underlying data (i.e., it is not specific to stream 
applications), CNGen can also be used to speed up Discover or 
similar R-KWS systems. Furthermore, as we discuss next, the 
order by which plans are generated by CNGen allows 
optimization through extensive operator sharing.  

3.3 Operator Trees and Mesh 
Each CN can be mapped to a left-deep operator tree, where leaf 
nodes are source operators that perform selections, and interior 
operators are joins. Sources are ordered left-to-right in the order 
of their addition during CNGen: the leftmost source corresponds 
to the node (nroot) of the expanded schema from which the CN was 
discovered; the rightmost node is the last one added. Figure 3.6 
shows the operator tree for the CN in Figure 3.3. Join conditions 
correspond to parent-child relationships in the CN tree. 

S{k1} T{k1} U{k3}V{k2}T{}sources

joins

 
Figure 3.6 Operator tree for the CN of Figure 3.3 

Operator trees that contain multiple occurrences of the same node 
need special treatment, because they could generate invalid 
results. Assume the CN in Figure 3.3, where T{k1} has been 
replaced by T{}, resulting in another CN. Its operator tree is 
similar to Figure 3.6, except that the fourth source from the left is 
a selection on T{}. The tree could produce both outputs of Figure 
3.7. The first one (Figure 3.7a) does not constitute a valid result 
because the same tuple t1 appears twice (it is not MTJNT since it 
contains a circle t1, s1, t1). However, we cannot drop the operator 
tree, because it is needed to produce valid MTJNT such as in 
Figure 3.7b. To avoid invalid output, join operators in S-KWS 
applications ensure that when joining a left tleft and a right tright 
tuple, the latter is not already part of tleft. 
 

t1 s1 u1v1 t1

k2 k1 k3

circle

t1 s1 u1v1 t2

k2 k1 k3

(a) Invalid result (b) Valid MTJNT 
Figure 3.7 An invalid result, and an MTJNT by the same CN 

The order in which CNGen adds nodes to CN trees is arbitrary, 
but fixed in advance. For simplicity, in Section 3.2 we used a 
lexicographic order, but others may enhance performance. 
Specifically, since all operator trees are left-deep, it is desirable to 

arrange the sources with the highest selectivity to the left. Hence, 
we want to add such nodes as early as possible during CNGen. 
For instance, instead of k1, we could choose the rarest keyword, to 
determine nroot. Furthermore, without any specific knowledge 
about arrival rates and distribution of values, it is reasonable to 
assume that the selectivity increases with the number of 
keywords; i.e., nodes with a large number of keywords should be 
visited first by CNGen, and hence receive a small nid.  
 The forest of operator trees for all CN answers an S-KWS 
completely because there exists an operator tree for every 
possible MTJNT, by which the MTJNT can be produced. Results 
are output as soon as their youngest tuple arrives; the correct 
output order is hence preserved. However, executing the operator 
trees independently would incur very high cost due to their 
potentially huge number. Recall that this problem also exists in R-
KWS, but in a much milder form; if a selection on a relation, (say 
S{k1}) returns no tuples, one can immediately discard all trees 
(e.g., the one in Figure 3.6) containing the operator. In S-KWS, 
this is not permissible, because even though the selection S{k1} 
does not currently produce tuples, it may do so in the future. It is 
hence crucial to optimize S-KWS operator execution.  
 The operator mesh integrates all operator trees in order to 
reduce the CPU cost (for evaluating joins) and memory overhead 
(for intermediate results). The mesh has |SR|⋅2|K-1| clusters, where 
|SR| is the number of stream relations and |K| the number of query 
keywords. Each cluster contains the operator trees for all CN 
discovered from a certain nroot. The trees in a cluster overlap on 
their left since they include at least the common nroot, but often 
share larger common parts. Figure 3.8 shows the shared execution 
of the tree in Figure 3.6 together with three more CN that were 
created for nroot = S{k1}. The join j1 (S{k1} T{}) is shared by 
(S{k1}, T{}, V{k2}, T{k1}, U{ k3}), (S{k1}, T{}, U{k2, k3}) and 
(S{k1}, T{}, V{k2,k3}). Note that this is only a small subset of all 
CN in the cluster.  
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Figure 3.8 Meshed trees for four CN in the same cluster 

Mesh creation is performed in parallel with CN generation. 
Specifically, the first node in a cluster is the root node nroot, from 
which CNGen originated. When CNGen generates a new tree tnew 
from told (by inserting a new child nnew to a parent nold), a join 
tnew.op is added to the mesh. The left child of tnew.op is told.op (the 
operator that was inserted when told was created), and the right 
child is the source of nnew. For each tree t, we require a pointer to 
the corresponding operator t.op, in order to decide where to place 



 

subsequent joins due to expansion of t. The algorithm is 
initialized with tfirst.op pointing to the source of nroot. For instance, 
the mesh of Figure 3.8 at first contains only S{k1}. When T{} is 
visited by CNGen, j1 is added to the mesh and connected to S{k1} 
on the left and T{} on the right. Subsequent insertions of V{k2}, 
T{k1}, U{ k3} in the CN cause the addition of j2, j3 and j4. 
Similarly, when at a later point, CNGen inserts U{k2, k3} to the 
tree containing S{k1} and T{}, j5 is added to the mesh and 
connected to j1 (representing S{k1} T{}) and source U{k2, k3}. 
 The entire operator mesh has |SR|⋅2|K| leafs/sources, one for 
each node of the extended schema. The maximum depth of the 
mesh is Tmax + 1 and the number of edges depends on the schema 
complexity. Output is produced at all levels, since operator trees 
vary in height. Different clusters are interconnected only through 
their source operators; joins from different clusters do not connect 
directly. In addition, we introduce a central output operator that 
collects results from all topmost operators (those producing 
MTJNT).  
 We further integrate operators by sharing buffers. In traditional 
DSMS, a join operator j has two individual input buffers, j.left-
buffer and j.right-buffer. In our system, these buffers are replaced 
by the output buffers of the child operators, e.g., in Figure 3.8, 
j1.out replaces j5.left-buffer and j6.left-buffer. This concept of state 
sharing reduces memory consumption dramatically, since a single 
operator in the mesh may have thousands of parents. Note that 
tuples in the buffers are naturally ordered by their tstart, i.e., the 
time instant at which they were produced. More complex 
indexing schemes are not required, since buffers in S-KWS 
meshes commonly contain very few tuples, if any. 
 In summary, this section provides a complete solution for 
generating candidate networks, which are optimized through the 
operator mesh. The extension of the proposed techniques to R-
KWS systems that are based on similar concepts (e.g., Discover) 
is straightforward and expected to yield significant gains in terms 
of performance (absence of duplicates, early pruning). Our focus 
however lies in on stream systems. Compared to R-KWS, S-KWS 
has three important differences: (i) long running queries that 
require continuous update of results, as new tuples arrive and old 
ones expire; (ii) a huge mesh that cannot be trimmed and (iii) 
potentially changing schema due to incorporation or removal of 
stream sources. These differences necessitate novel query 
processing techniques, as discussed in the following section.  

4. QUERY PROCESSING 
S-KWS meshes are larger and more densely connected than 
operator graphs in any other data stream application, necessitating 
massive optimization. However, they also provide beneficial 
characteristics, in particular: (i) S-KWS meshes have a distinct 
structure, i.e., clustered left-deep trees, and (ii) their join and 
selection operators are rather selective. In the following we 
propose two query processing methods for exploiting these 
properties. Section 4.1 describes Full-Mesh (FM) S-KWS, which 
creates the entire operator mesh at a preprocessing step, so that, at 
runtime, the system resources are exclusively dedicated to tuple 
processing. Section 4.2 presents Partial-Mesh (PM) S-KWS that 
does not require pre-processing, but dynamically grows and 
shrinks the operator mesh at runtime. Section 4.3 proposes 
algorithms for purging dead tuples. Finally, both Full and Partial 
Mesh can handle changes in the schema as discussed in Section 
4.4.  

4.1 Full-Mesh 
FM generates the operator mesh (as described in Section 3.3) 
before the actual query processing. The entire mesh is maintained 
in main memory throughout the lifespan of the query. FM allows 
optimization by demand-driven operator execution, an inter-
operator messaging system that eliminates ineffective joins. 
Specifically, many join operators may execute without any 
prospect of forming MTJNT, because joins at higher levels lack 
input from their right child. In Figure 3.8, assume tuples from 
S{k1} and T{}, while V{k2}, U{k2, k3} and V{k2, k3} are empty. 
None of the joins j2, j5, or j6 requires output from j1 because they 
do not receive right input. In the worst case, j1’s results expire 
before the arrival of any tuples from V{k2}, U{k2, k3} or V{k2, k3}. 
The operator has wasted CPU cycles and memory, but not 
contributed anything to the query. Even if V{k2} had tuples 
available and j2 consumed input from j1, the execution of both 
operators could still be pointless, e.g., if j4 happens to lack right 
input.  
 Under demand-driven operator execution, every join is 
considered to be either running or sleeping. Running operators 
process input; sleeping ones ignore it. A join operator is sent to 
sleep, if (i) it has no input from the right child (a source), or (ii) 
all its parents are sleeping. Sending operators to sleep does not 
affect the result’s correctness or completeness because either the 
operator cannot produce output (case i), or its output would not be 
consumed (case ii). Figure 4.1 shows the state diagram for a join 
operator. States are characterized by two binary flags: d indicating 
that at least one parent operator is running, and r specifying that 
the operator’s right input is not empty. An operator only runs in 
the topmost state, (d / r). When it leaves this state (Transition 2 or 
3) it goes to sleep (or halts), to wake up (or restart) later 
(Transitions 9 and 10). Operators must exchange messages 
regarding their state to ensure that all d and r flags are up-to-date. 
Particularly, a join operator communicates changes in its state 
(running/sleeping) to its left child that adjusts its d flag 
accordingly. Likewise, sources inform their parents (i.e., joins for 
which they constitute the right child), whenever their buffer runs 
empty, or when a new tuple arrives to a previously empty buffer, 
so that these joins maintain correct r flags.  
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Figure 4.1 States and transitions for join operators 

Assume the operator tree in Figure 3.8, where all sources produce 
tuples, and consequently all join operators are running. When 
U{k2, k3} dries up, it informs its parent j5, which turns off its r 
flag, goes to sleep (Transition 2), and informs its left child (j1), by 



 

calling j1.Pstop. Upon receiving this notification, j1 decreases its 
counter of running parents (Transition 1), but takes no further 
action, because it still has other running parents (j2 and j6). When 
V{k2, k3} stops producing output, j6 halts, and j1 is left with a 
single running parent (j2). Now assume that T{k1} dries up. 
Consequently, j3 adjusts its r flag, goes to sleep and informs j2; j2 
decreases its counter (rParents = 0), halts (Transition 3), and calls 
j1.Pstop. This operator also finds all its parents sleeping, and 
likewise halts.  
 Before going to sleep, an operator sets a local timestamp 
stopTime = now. When it later wakes up, it processes all tuples 
from its left and right input that are (i) alive and (ii) arrived after 
stopTime. To ensure the correct temporal order of results and to 
avoid duplicates, tuples are processed in increasing order of tstart, 
and joined against those of the opposite input that have a smaller 
tstart. Before receiving tuples, the newly awaking join has to 
ensure that its left input buffer is up-to-date. After all, the left 
child may be currently sleeping, causing its output buffer to be 
incomplete. Thus, the operator calls leftChild.Pstart, asking its 
left input to wake up and update its output buffer. Continuing the 
running example, consider that in Figure 3.8 the only sources with 
output are S{k1}, T{}, V{k2}, U{k3} and T{k2, k3}. The only join 
operators6 currently running are j4 and j7. However, j4 does not 
generate results because its left input is empty (since j3 is 
sleeping). Now assume that T{k1} begins producing output, 
causing j3 to adjust its r flag, wake up (Transition 9), and call 
j2.Pstart. This operator restarts and informs j1. Consequently, all 
joins, with the exception of j5 and j6, are running again. Note that 
demand driven operator execution is not restricted to S-KWS 
queries; the proposed method can be adapted to arbitrary join 
trees and benefit other complex data stream applications. 
 As shown in the experimental evaluation, FM combined with 
demand driven operator execution is very fast for most problem 
settings. Furthermore, the overhead of mesh initialization is small, 
particularly in comparison to the duration of long queries. However, 
FM has also some drawbacks. First, query processing is delayed 
until the mesh is complete. For certain applications, this delay may 
not be acceptable. Second, the size of the mesh can exceed the 
available main memory, especially if there are multiple active 
queries in the system. Third, given the potentially huge mesh, for 
certain settings the computation cost can be high, even with demand 
driven operator execution. These drawbacks motivate the second 
approach that adapts the mesh size dynamically according to the 
stream characteristics. 

4.2 Partial-Mesh 
Partial-Mesh (PM) S-KWS breaks the distinction between mesh 
initialization and tuple processing by building the mesh at 
runtime. Furthermore, the method maintains relatively few active 
operators in memory, i.e. those with input. Specifically, it is each 
operator’s responsibility to create its parents before it can produce 
output. Conversely, it must destroy its parents (and other 
operators up the tree), if it cannot supply them with input. 
Especially in large meshes, most operators are usually idle, and 
some never execute throughout the query lifespan. The absence of 
these operators does not affect completeness, but dramatically 
reduces memory consumption. In the following we describe how 
to grow and shrink the operator mesh. 

                                                                 
6 The output operator is always running.  

 In the beginning, the dynamic mesh contains only the |SR|⋅2|K| 
sources. Join operators are created later, as tuples travel up the 
mesh. For our left-deep operator trees, we define that a join 
operator must be part of the mesh, iff it has left input. Recall that 
the operator mesh is composed of |SR|⋅2|K-1| clusters, one for each 
source containing k1. Figure 4.2 illustrates the generation of part 
of the cluster in Figure 3.8. When the leftmost source S{k1} first 
produces output, it creates its direct parents j1 and j7, along with 
others that are not depicted (Figure 4.2a). Joins producing 
MTJNT (e.g., j7) do not construct further parents, but connect to 
the (permanent) central output operator. On the other hand, when 
j1 generates results, it creates its own parents, e.g., j2, j5 and j6 
(Figure 4.2b). The new parents directly process their first input, 
e.g. when j1 outputs its first tuple t and j2 is formed, j2 
immediately probes t against T{}. Results trigger the addition of 
new joins in the mesh (i.e., the parents of j2). 
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Figure 4.2 Growing a cluster of operators from S{k1} 

A point that needs clarification is how an operator at an arbitrary 
level in the mesh determines its direct parents. Recall from 
Section 3.3 that whenever CNGen creates a new tree tnew (by 
adding a node nnew to a previous tree told), a join tnew.op is inserted 
to the operator mesh. The left input of tnew.op is told.op and the 
right one is the source of nnew. In PM the problem is reversed: we 
have an operator tnew.op, but we need the corresponding tree tnew 
for deciding which parents to create. Figure 4.3 illustrates 
TreeGen, an algorithm for reconstructing a tree tnew, given its last 
added operator tnew.op. The main idea is to check the join 
condition of tnew.op: if nold is the source joined with nnew, then tnew 
is generated by adding nnew as the rightmost child of nold in told. 
Tree told is reconstructed recursively in the same manner.  
 
TreeGen(operator tnew.op) 
1. if tnew.op is a selection  
2.   Tree tnew = a tree with a single node nroot 
3. else // tnew.op is a join 
4.  Tree told = TreeGen(left child of tnew.op)  
5.  Let nnew be the node corresponding to the right child of tnew.op 
6.  Let nold be the node joined with nnew in tnew.op 
7.  Tree tnew = add nnew as the rightmost child of nold in told  
8. return tnew 

Figure 4.3 The TreeGen algorithm 

Figure 4.4 explains TreeGen by retracing the steps of Figure 4.2. 
When S{k1} produces its first output, TreeGen(S{k1}) returns a 
tree t0 that contains a single node S{k1}. The parents of S{k1} in 
the mesh are computed by simulating one loop of CNGen(S{k1}), 
i.e., adding nodes to t0 according to the rules of Section 3.2. Each 
parent (e.g., j1, j7) is inserted in the mesh and connected to its left 
and right inputs. Similarly, when j1 = S{k1} T{} starts generating 
results, it has to create the layer of its direct parents. The call 



 

TreeGen(j1) returns the tree t1 of Figure 4.4a, derived by adding a 
child T{} to the only node S{k1} of t0. The one-node expansion of 
t1 reveals the parents of j1 (e.g., j2, j5, j6) in the mesh. Continuing 
the example, when j2 starts producing results, it has to create its 
own parents. TreeGen(j2) checks which component of j1 joins 
with V{k2} in j2. If V{k2} is joined with S{k1}, t2 is derived by 
adding V{k2} as the rightmost child of S{k1} in t1 (left tree in 
Figure 4.4b). Otherwise (V{k2} is joined with T{}), t2 is derived 
by adding V{k2} to T{} (right tree in Figure 4.4b). Note that 
during the computation of t2, t1 must also be reconstructed since 
intermediate trees are not stored. Keeping all these trees would 
require a large amount of memory, defeating the purpose of PM.  
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  Figure 4.4 Examples of TreeGen  

Conversely to generating parents, any operator without output 
destroys its parents, thereby freeing memory. In Figure 4.2b, if j1 
stops producing output, its buffer eventually runs dry. 
Consequently, the parents j2, j5 and j6 are removed, leading back 
to the partial mesh of Figure 4.2a. Join operators that have been 
removed from main memory are regenerated whenever necessary, 
e.g., fresh output by j1 at a later time leads to the anew creation of 
j2, j5 and j6. Note that the destruction of parent operators 
recursively travels up the operator mesh, e.g., if in Figure 4.2b 
S{k1} dries up, the entire cluster is reduced to its sources.  

4.3 Purging Dead Tuples 
When a source tuple s is deleted, all join results that include s 
must be removed from the system. Under the positive-negative 
stream model, purging is part of query processing; i.e., a negative 
tuple –s travels up the mesh, expunging all composite tuples 
containing s. Therefore, we focus on sliding windows, where 
there are no explicit deletions. In this case, source buffers are 
ordered by s.tend (since s.tend = s.tstart + w). These can be purged by 
simply inspecting the topmost tuples. On the other hand, since the 
output buffers of joins are not sorted on tend (recall that join results 
do not expire according to their creation order), deletions may 
trigger complete buffer scans. Thus, in the sequel we assume that 
source buffers are immediately purged, and propose two 
algorithms, eager and lazy, for removing tuples from the output 
buffers of join operators. 
 Eager, illustrated in Figure 4.5, applies a bottom-up method, 
which resembles the positive-negative approach to deletion. 
Specifically, whenever a source tuple expires, the corresponding 
leaf operator removes the tuple from its output buffer and informs 
its parents. Any join operator receiving such a note cleans its own 
output buffer, and informs its parents, should it find expired 
tuples. Eager is memory-optimal since all occurrences of a 
deleted tuple are removed immediately from all affected 
operators. However, it can be quite expensive in terms of CPU 
overhead, due to the recursive call for all parents (potentially 
thousands) in lines 7-8.  
 

Eager(operator op) 
1. boolean tell_parents = false 
2. For all tuples s in op.out 
3.    If s expires 
4.       tell_parents = true 
5.       Remove s from op.out 
6. If (tell_parents) 
7.      For all parent operators p of op  
8.         Eager(p) 

Figure 4.5 Eager purging 

Lazy reduces the CPU cost by removing expired tuples only when 
they are encountered during join execution. Assume, for instance, 
that in Figure 3.8 S{k1} and T{} have tuples from which j1 
produces output. Whenever a tuple in V{k2}, U{k2, k3} or V{k2, 
k3} arrives, it is probed against j1.out. The probing consists of 
looping over the buffer and inspecting each tuple for join-ability 
(nested loop). During the loop, all dead tuples in j1.out are 
removed. Lazy incurs minimal CPU overhead, but provides no 
guarantee regarding when a dead tuple is removed. If V{k2}, 
U{k2, k3} or V{k2, k3} dry up, j1.out will not be purged and its 
dead tuples will continue wasting memory.  
 For full-mesh query processing, we combine lazy with demand 
driven operator execution in order to limit the time that expired 
tuples remain in the system. Recall that the troublesome case 
involves an operator (j1) with output, whose parents (j2, j5, j6) 
have no right input. Under demand driven operator execution, j1 
must be sleeping, since all its parents are also sleeping. The 
problem of deleting expired tuples is hence reduced to purging the 
output buffers of sleeping operators. When an operator op halts, 
its output buffer may contain live tuples that cannot be expunged 
since op may wake-up soon. However, after op sleeps for w 
seconds, its entire output has expired, and its buffer can be 
discarded. On the other hand, if op restarts before w, the expired 
tuples will be removed by join processing. In any case, even if a 
tuple in the output buffer had expired before op halted, it cannot 
remain in the system for more than 2w after its expiration.  
 In order to monitor outdated buffers, lazy maintains a doubly 
linked list Q of sleeping operators. If an operator op halts, an 
entry e = <op, stopTime> is appended to Q. Additionally, op keeps 
a pointer to e. A continuous process watches Q’s head. When the 
topmost operator optop (the first to halt in Q) has been sleeping for 
w (optop.stopTime + w = now), it is de-queued and its buffer 
cleared of all content. Should an operator wake up before it is de-
queued, it removes its entry from Q by following the 
corresponding pointer. Since removal of outdated buffers is 
integrated with demand driven operator execution, this 
optimization is only applicable to FM. Lazy purging for the partial 
mesh cannot have guarantees regarding when an expired tuple is 
deleted. 

4.4 Handling Changes in the Schema 
Schema changes may be caused by the appearance or 
disappearance of either a source (SR), or an edge indicating which 
SR can be joined. In the following, we focus on changes due to 
SR; those incurred by edges are handled similarly. First, we 
address appearances. A new SR Snew at time tnew, introduces 2|K| 
new nodes in the expanded schema and produces an equal number 
of source operators. Let Mold (Mnew) be the operator mesh before 
(after) tnew. Directly switching from Mold to an empty Mnew is not 
permissible, since tuples (and intermediate results) that are still 



 

alive at tnew would be lost. Instead, Mnew is generated on top of 
Mold, so that all operators of Mold (and their intermediate results) 
become part of Mnew. Specifically, we apply CNGen using the 
same nid as Mold for old nodes, and assign to each new node a nid 
that is larger than that of all older sources. Consequently, every 
operator cluster in Mold becomes part of a cluster in Mnew. 
Furthermore, Mnew contains 2|K-1| additional clusters, rooted at 
sources of Snew. In order not to suspend query processing, the 
migration from Mold to Mnew occurs successively. During the 
transition, tuples are routed up the mesh as usual. Each new join 
operator that receives tuples from both children processes them 
directly, ensuring that tuples which arrived after tnew are properly 
joined with older ones, and no results are lost during mesh 
migration.  
 The disappearance of an SR causes the removal of 2|K-1| sources 
from the mesh. All direct parents of these sources are also purged. 
The removal of parents travels recursively up the mesh. This 
process may cause some other operators to remain without 
parents. Such operators must also be deleted from the mesh. In 
order to achieve this effect, for every direct parent p of a deleted 
source, we insert the left child into a list lrem, and delete p. After 
this stage terminates, each operator in lrem that has no parents is 
removed and its left child is inserted in lrem. The process 
terminates when lrem is empty. In contrast to appearances, SR 
disappearances require no immediate attention and can be 
performed whenever the system has resources to spare. The above 
discussion applies to both full and partial mesh approaches. The 
only difference is that in PM new operators are only created as 
high as there are data (instead of the entire Mnew). 

5. EXPERIMENTAL EVALUATION 
The proposed algorithms are implemented in C++, following the 
Pipes data stream framework [KS04]. Experiments are performed 
on a 3.2GHz Dual-Pentium IV with 2 GB of RAM. Due to lack of 
real datasets, we resort to synthetic data. In particular, we 
construct a schema containing |SR| streaming relations, connected 
in the shape of a ternary tree: each SR can be joined with up to 
four other SR (its parent and children). An SR has one attribute 
for each edge, used to evaluate equi-joins with the corresponding 
neighbor. Results are restricted to at most Tmax joined tuples. Each 
SR generates one tuple per second. Attribute values are randomly 
and independently chosen in the range [1, sel]. Two tuples of 
neighboring SR can thus be joined with probability 1/sel (i.e., the 
join selectivity). A tuple may contain several different keywords, 
each with an independent probability KWF. We assume a sliding 
window of w minutes, and answer a continuous S-KWS query 
with |K| keywords for the duration of five hours. We investigate 
peak memory and total CPU as a function of w, |K|, Tmax, |SR|, 
KWF and sel. Table 5.1 illustrates the ranges and the default 
values (in bold) of these parameters. In each experiment, we vary 
one parameter and set the remaining ones to their default.  
 

Parameter Range & Default 
W 5, 10, 20, 40, 80 minutes 
|K| 2, 3, 4, 5 
Tmax 2, 3, 4, 5, 6 
|SR| 5, 10, 15, 20, 25 
KWF 0.003, 0.007, 0.01, 0.013, 0.016 
1/sel 1/500, 1/750, 1/1000, 1/1250, 1/1500 

Table 5.1 Parameters under investigation 

First we compare the (i) Full-Mesh (FM), (ii) Partial-Mesh (PM) 
and (iii) a "forest" approach that executes the operator trees 
independently, as a function of the window size w. FM includes 
lazy purging combined with demand driven operator execution. 
Recall that these optimizations are not applicable to PM. Figures 
5.1a and 5.1b illustrate the total CPU time (in seconds) and the 
peak memory consumption (in bytes). The output cardinality |R| is 
shown under the x-axis of the chart for CPU cost. While the 
number of live tuples grows linearly with w, the ways in which 
they can be joined (i.e., the number of edges in the data graph), 
grows quadratically. The CPU overhead (for evaluating joins) and 
space consumption (for intermediate and actual results) reflect 
this observation. As expected, FM is, generally, the best method 
in terms of CPU cost, and PM in terms of space. The forest 
approach is consistently inefficient, and excluded from the 
remaining experiments for better scaling of the diagrams. 
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Figure 5.1 Window size w 

Figure 5.2 studies the effect of keyword frequency KWF. The 
number of MTJNT, as well as the CPU and memory required for 
their production increases with KWF. The relative performance of 
FM and PM is similar to Figure 5.1. The better CPU performance 
of PM for small values of KWF (and w) is counter-intuitive since 
PM has to grow and shrink the mesh at runtime (in addition to 
processing tuples). As we show in the following experiments, a 
similar phenomenon exists for highly complex meshes (e.g., large 
Tmax and |K|). The explanation is that, in these cases, the overhead 
of the mesh exceeds the actual cost of processing. Specifically, in 
full meshes, every incoming tuple has to announce itself to all its 
parent operators. Most of these operators cannot produce output 
because they lack input from their left child (join). Nevertheless, 
the looping over all parents (usually several thousand) and the 
corresponding message exchanges burden the CPU cost. 
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Figure 5.2 Keyword frequency KWF 

Figure 5.3 shows the cost as a function of the SR cardinality 
ranging between 5 and 25. Because the number of neighbors for 
each SR is limited to four, an increasing |SR| causes a linearly 
more complex streaming schema (and corresponding operator 
mesh), which echoes on the CPU and memory consumption. The 
duration of the initialization phase (I) for FM is depicted below 
the x-axis of Figure 5.3b (in seconds). As expected, I is 
proportional to the mesh size.  
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Figure 5.4 investigates the impact of decreasing join selectivity. 
Raising the likelihood of joining two tuples causes a quadratic 
increase to the number of edges in a conceptual data graph. This 
growth is reflected in the number of intermediate results and 
MTJNT, as well as in the CPU and memory consumption. PM’s 
CPU performance degrades particularly fast because numerous 
tuples that travel up the operator mesh cause the system to create 
more join operators. Several of these operators are removed 
(when they lack input) and re-generated repeatedly through 
expensive computations.  
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Figure 5.4 Join selectivity 1/sel 

Figure 5.5 depicts the effect of the number of query keywords |K|. 
This parameter has no impact on the number of tuples, or the way 
they can be joined. However, it causes an exponential growth in 
the size and complexity of the operator mesh. This phenomenon 
can be observed from the initialization time to construct the full 
mesh (see I in Figure 5.5b). Three keywords require only 2.5 
seconds of initialization, whereas five keywords require almost 
half an hour. Since most operators in this mesh are commonly 
idle, they are never created by PM; hence the increasing gap in 
terms of memory overhead between FM and PM. A similar gap 
exists also for the CPU cost, as explained in the context of Figure 
5.2. Note that queries with more than five keywords are 
unrealistic for two reasons. First, experience from Web search 
shows that actual queries rarely exceed four terms. Second, 
according to our semantics, any increase in |K| lowers the 
likelihood to produce results. For five keywords, we only observe 
a singe result in five hours.  
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Tmax has a similar impact to |K|: it does not influence the number 
of tuples or how they can be joined, but leads to an exponential 
growth of the mesh. Mesh creation for Tmax = 6 exceeds two 
minutes, compared to less than one second for Tmax = 3. Increasing 
both Tmax and |K| simultaneously can cause mesh initialization to 
take several hours. Following the mesh size, CPU and memory 
also grow fast, since (i) the mesh requires more storage, (ii) there 
are more intermediate results and (iii) their generation requires 
more CPU. In contrast to |K|, increasing Tmax also causes an 
exponential growth to the number of results.  
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The last set of experiments measures the benefits of demand driven 
operator execution and lazy purging for FM as a function of w. FM-
D-L signifies that both optimizations are applied. The absence of an 
optimization is denoted with symbol "!". Specifically, !L implies 
eager purging. As shown in Figure 5.7, demand driven operator 
execution reduces both the CPU time and the memory consumption. 
The space savings are due to the avoidance of intermediate results 
that cannot lead to actual output. On the other hand (Figure 5.8), 
lazy also reduces CPU cost, but increases space consumption 
because of tuples that remain in the system after their expiration.  
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Summarizing the evaluation, both FM and PM achieve large 
performance gains with respect to the independent execution of 
operator trees. FM is faster than PM for most settings. However, it 
incurs significant space overhead, and may be outperformed by 
PM for problems that involve highly complex meshes. In 
addition, a query can be processed only after the mesh 
initialization completes. Given the above, FM is preferable for 
queries with long duration (where the initialization cost is 
amortized) and small meshes (i.e., few keywords, low Tmax). For 
all other cases, the method of choice is PM, especially when there 
are concurrent queries competing for the system memory.  



 

6. CONCLUSION 
This paper is the first to propose keyword search on relational 
data streams. S-KWS has several advantages over structured 
query languages, most notably, ease of use and ability to retrieve 
information without knowledge of the schema. At the same time, 
it presents considerable challenges compared to keyword search 
for static relational data. In particular, S-KWS is more intricate 
than R-KWS, because it has to perform additional tasks that are 
specific to data streams (e.g., handle result expirations) and is at 
the same time subject to streams’ unpredictability and sudden 
changes. Furthermore, the search space is vast, since all possible 
combinations of keyword occurrences must be considered. In 
contrast to R-KWS, this space cannot be pruned, but must be fully 
monitored during the entire query lifespan. 
 We face these challenges through a series of contributions. We 
present the first duplicate-free algorithm that enumerates all 
possible candidate networks and prunes current expansions at the 
earliest possible stage. The resulting forest of operator trees 
answers an S-KWS query correctly, but inefficiently. Going one 
step further, we integrate the individual trees into a single mesh of 
shared operators. Finally, we present two highly optimized, query 
processing techniques. FM builds the full mesh in an initialization 
phase, so that at runtime system resources are dedicated to tuple 
processing. PM does not require initialization, but dynamically 
grows and shrinks the operator mesh at runtime. The relative 
performance of these techniques is evaluated by an extensive set 
of experiments.  
  S-KWS enables an entire class of querying tasks and novel 
applications. One direction for future work concerns additional 
functionality in current techniques. In particular, a user may wish 
to receive only the top-k results for any time instant, in which 
case we should incorporate ranking mechanisms in the query 
processing methods. Another interesting setting involves long 
running KWS queries on a combination of stream and static 
relational data. Going back to the example of Section 1, some of 
the tables (e.g., director) may be stored in the DBMS, while 
tuples of other tables (e.g., movie) arrive continuously from 
distributed sources. Processing in this environment would require 
integration of S-KWS and R-KWS methods. 
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