

The Case for a Wide-Table Approach to Manage Sparse

Relational Data Sets

Eric Chu

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI USA
+1-608-628-6941

ericc@cs.wsic.edu

Jennifer Beckmann*

Microsoft Corporation
One Microsoft Way

Redmond, WA, USA
+1-425-421-7754

jennifer.beckmann@microsoft.com

Jeffrey Naughton

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI USA
+1-608-262-8737

naughton@cs.wisc.edu

ABSTRACT
A “sparse” data set typically has hundreds or even thousands of
attributes, but most objects have non-null values for only a small
number of these attributes. A popular view about sparse data is
that it arises merely as the result of poor schema design. In this
paper, we argue that rather than being the result of inept schema
design, storing a sparse data set in a single table is the right way to
proceed. However, for this to be the case, RDBMSs must provide
sparse data management facilities that go beyond the previously
studied requirement of storing such data sets efficiently. In
particular, an RDBMS must 1) enable users to effectively build ad
hoc queries over a very large number of attributes, and 2) support
efficient evaluation of these queries over a wide, sparse table. We
propose techniques that provide these capabilities, and argue that
the single-table approach is a necessary component of self-
managing database systems because it frees users from a tedious
and potentially ineffective schema-design phase when managing
sparse data sets.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Miscellaneous

General Terms
Design, Management

Keywords
sparse data, relational, wide table

1. INTRODUCTION

Suppose an online retail store has a product catalog that has

thousands of attributes, and that most objects in the catalog have
non-null values for only a small number of these attributes. How
should we manage this and other similar, “sparse” data sets in a
relational database management system (RDBMS)? As sparse data
arises from many sources, including e-commerce hubs [3, 10],
distributed systems [19], and even data extraction systems [2],
providing efficient RDBMS support for sparse data has become
increasingly important.

Unfortunately, although a number of approaches are widely
used to handle sparse data, none of them is very satisfying with the
current technology. Perhaps the most straightforward approach is
to store all the products in a horizontal table (i.e., each column
represents a distinct attribute and each row represents an object).
For a diverse set of products, this approach results in a very wide
and sparse table that wastes a lot of space and makes scans highly
inefficient. An alternative is to use vertical tables [3], which
eliminates nulls but generally suffers from complex queries and
poor query performance. Yet another approach is to store a few
“dense” attributes, which are attributes that most rows define, in a
horizontal table, then relegates the rest of the attribute-value pairs
to a large, catch-all text object. Though nulls are again eliminated,
the attributes in the text object cannot be used as normal attributes
in SQL queries. A more extreme approach gives up on RDBMS
technology and resorts to a semi-structured model such as XML,
but using a different data model introduces potential data
integration and management issues. Lastly, a popular view
(especially in the research community) on sparse data is that it is a
false problem, because with proper schema design, database
administrators (DBAs) can decompose a sparse data set into a
reasonable number of smaller, denser tables. However, this multi-
table approach places a heavy burden on schema designers, may
not always be possible, and presents problems with respect to data
fragmentation and schema evolution. In this paper, we argue that
RDBMSs can be augmented to manage sparse data sets efficiently,
and in such an augmented RDBMS, storing a sparse data set in a
single table is a good approach.

At first glance, it may seem like we are advocating the
Universal Relation [15], but we are actually addressing a
completely different problem. The Universal Relation was a user-
interface proposal in which a wide virtual schema covers all the
physical tables in the database. In entity-relationship terminology,
it puts all entities and relationships in the same logical table. The
main challenge in evaluating queries over the Universal Relation is

* Work done when the author was a student at the University of Wisconsin-
Madison.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

to translate the queries into semantically equivalent queries over
the actual underlying schema. In contrast, we are discussing the
approach of physically storing a large number of entities that
belong to the same entity set (but may have very different subsets
of non-null attributes in the schema for that entity set) in the same
table. For example, we would store all products in an online
catalog in a wide table, but we would not put products, customers,
and the “purchased_by” relations in the same physical table. The
challenges here are storing the data efficiently, enabling users to
effectively build queries over a large number of attributes, and
evaluating these queries over the wide, sparse table efficiently.

Recent work has shown that a sparse data set can be stored in a
horizontal table with good storage efficiency by employing
interpreted storage [6]. However, just storing the data in a space-
efficient manner is not sufficient – in particular, two problems still
arise: (1) how should users build queries over a table with
thousands of attributes, and (2) how can a system efficiently
evaluate these queries over such a wide, sparse table? In the
following, we give an overview of the techniques we use to
address these problems.

Query Construction: Writing ad hoc SQL queries over
sparse data is challenging because there are so many attributes to
choose from (a drop-down menu of thousands of attributes is
unlikely to be helpful). Keyword search is a natural alternative
because users do not need to specify attribute names, but its
imprecise semantics compared to structured queries can be a
problem. For example, replacing a structured query “Ai = Vk” with
the keyword query “find all objects that contain Vk” will have a
low precision in the result if many objects contain Vk in attributes
other than Ai. We show empirically that low precision is not a
problem on at least two real-world sparse data sets, and discuss the
properties of sparse data sets that explain this result.

Although promising, keyword search is still problematic when
the keywords appear in many attributes, and is inapplicable when
users require more-advanced queries such as range queries and
aggregates. Therefore, in addition to keyword search, RDBMSs
should support “fuzzy” attributes in both keyword and SQL
queries. Specifically, users make a guess about an attribute name
they want, and the system tries to find the best match for that
guess. This feature is promising because it can be considered as a
tractable instance of schema matching; however, it is only useful to
users who have some idea about the target attributes. When users
cannot exploit fuzzy attributes, we present to them a “hidden
schema” that we automatically infer from the data set, so that users
can more easily choose the right attributes for writing SQL queries.
We can also build a browsing-based interface based on the hidden
schema and let users browse the data set itself.

Query Evaluation: Wide, sparse tables pose challenges to
query evaluation not found in queries over narrower, denser tables.
For example, scans must process hundreds or thousands of
attributes in addition to those specified in the query. Furthermore,
for SQL queries, scans seem to be the dominant query evaluation
option because with thousands of attributes, unless one builds
thousands of B-tree indexes, the probability of having an index for
a query on a randomly chosen attribute is very low. Fortunately,
sparse data sets present new opportunities as well as new
challenges, and we exploit these opportunities with two query
evaluation techniques. The first is building sparse B-tree indexes,
which minimize the number of non-null values. On a sparse data
set, they incur much lower maintenance costs and storage
overheads than their full index counterparts. The second technique
is building materialized views or covering indexes over subsets of

attributes automatically detected by the system as correlated. On a
sparse data set, this technique achieves both horizontal and vertical
partitions, so that a query that scans a partition benefits from
processing many fewer rows and columns than scanning the base
table.

In brief, the contributions of this paper are as follows:

• We discuss how storing a sparse data set in multiple
tables can cause problems, and how using a single table
can avoid these problems, without incurring the overheads
of nulls if the underlying system uses the interpreted
storage format. (Section 2)

• We show how well-studied techniques such as keyword
search and schema matching can be exploited to assist in
query construction over sparse data. (Section 3)

• We demonstrate that sparse B-tree indexes incur low
storage and maintenance costs over sparse data sets.
Therefore, we can efficiently build and maintain a large
number of them on a wide, sparse table. (Section 4)

• We show how to exploit correlations of attributes by
employing clustering algorithms to discover a “hidden
schema,” which suggests useful configurations for views
and indexes to expedite query evaluation, and provides a
logical organization to assist users in query construction.
(Section 5)

Also, Section 6 presents experimental results; Section 7 discusses
related work; Section 8 concludes the paper.

Finally, we note that augmenting an RDBMS to better handle
wide, sparse tables follows the current trend of shifting work from
the users of the system to the system itself. By recognizing and
exploiting the unique properties of sparse data, we free users from
the troublesome task of designing elaborate schemas, yet still allow
them to conveniently enjoy the benefits provided by an RDBMS.

2. A WIDE, SPARSE TABLE

2.1 The Problems of Storing Sparse Data in

Multiple Tables

We begin with a brief diversion from our sparse data handling
techniques to discuss why attempting to decompose a sparse data
set into narrower, denser tables, even if users are willing to spend
the effort, is not a panacea for sparse data management. We also
review the interpreted storage format, as it or some similar
technique is necessary for the efficient storage of sparse data.

As mentioned in the introduction, two characteristics
distinguish sparse data sets from the conventional dense data sets:
1) a sparse data set has a large number of attributes; and 2) most
objects typically have non-null values for only a small number of
attributes. For example, Pyle described a brokerage firm that has
nearly 700 attributes, half of which are null in 98% of the objects
[17]. Agrawal cited an e-commerce marketplace that has nearly
5000 attributes, most of which are null for most objects [3]. We
also encountered an e-commerce data set that has over 2,000
attributes, with most rows having non-null values for only about 5
attributes [10].

Designing a schema that partitions a data set with thousands of
attributes into narrower, denser tables is laborious and
troublesome. More importantly, for tables to be dense, the
distribution of the non-null values must conform, for the most part,
to this multi-table schema. In Section 5, we will see that
sometimes we can indeed identify relatively dense partitions in a

sparse data set. However, when the non-null distribution is
unknown or irregular, storing the data set in multiple tables can
have the following problems:

Significant sparseness: The distribution of the non-null
values can be so irregular that any multi-table schema with a
reasonable number of tables would still contain significant
sparseness (of course, we can always eliminate sparseness
completely by storing each tuple in a separate table, but this option
is clearly infeasible). This problem can also occur when the non-
null distribution is unknown at schema design time. In this case, it
is difficult to determine a multi-table schema that is effective for
reducing sparseness.

Complications for queries and updates: In a relational
sparse data set, each object is represented as a tuple in a row, with
its object identifier (oid) as a key. When the attributes of the data
set are partitioned into multiple tables, a tuple can have non-null
values for attributes stored in multiple tables, and so becomes
physically fragmented. To reconstruct the tuple, a join on the
tuple’s oid is required; however, the query writer must know and
specify which tables need to be joined, which is a daunting task
because tuples can be fragmented across different sets of tables.

An alternative is to require each tuple to be stored in only one
table. One way to implement this requirement is to allow attributes
to appear in multiple tables. Although this approach avoids
fragmentation, it can lead us back to sparse tables. Furthermore,
projection queries and updates on attributes that appear in multiple
tables will need to name and access all those tables.

Inflexibility for Evolving Schemas: Many applications that
generate sparse data allow attributes to be defined freely. One
example is crawling over a corpus of unstructured text documents
to find potential attribute-value pairs. In this scenario, a tuple
represents a document, and its non-null attributes are the attribute-
value pairs that we discover in the document. Unless we pre-
define a finite set of target attributes, we may encounter new
attributes every time we process a document. Another example is
Condor [18], a distributed workload management system, in which
users can define new attributes in addition to using existing ones,
for any job they submit.

Unless we know the future non-null data distribution a priori,
there is no good way to integrate a set of new attributes to a multi-
table schema. We can either add the new attributes to some
existing tables, or store them in a new table. However, both
approaches can cause sparseness and complications for queries and
updates.

2.2 A Review of Interpreted Storage

Storing a sparse data set in a wide table avoids the problems
concerning tuple fragmentation and evolving schemas; however,
this approach has been frowned upon because it causes a huge
storage space blow-up by storing the null values. Fortunately,
recent work has shown that by using the interpreted storage format
[7], which we briefly review in the following, we can avoid the
storage overheads of the null values.

Unlike the predominant positional storage, which allocates a
pre-determined amount of space to all attributes in a horizontal
table, the interpreted storage format, shown in Figure 1, avoids
storing the null values. To “interpret” a tuple of this format, the
system uses a catalog that records for each attribute its name, id,
type, and size. A tuple in the interpreted format starts with a
header, which contains fields such as relation-id, tuple-id, and
record length; then, for each of its non-null attributes, the tuple
stores the attribute’s identifier, length field (if the type is of

variable length), and value. Attributes that appear in the catalog,
but not in the tuple, are implicitly null for that tuple. For instance,
the interpreted tuple in Figure 1 has non-null values for A1, A2,
and A4 after the header. This storage format is highly flexible for
adding new attributes – we only need to update the system catalog,
and the way we define tuples remains the same.

Of course, merely storing the sparse data set in a wide table
using interpreted storage does not solve the problems of query
construction and evaluation. In the rest of the paper, we turn our
attention to those two problems.

Figure 1. Interpreted catalog and an interpreted record using this
catalog.

3. QUERYING SPARSE DATA

3.1 Keyword Search

Writing ad hoc SQL queries over a sparse data set is challenging
because there are so many attributes to choose from. For example,
suppose that some user wants to query the e-commerce data set
described by Agrawal [3], which has over 5000 attributes. One
could try to apply the standard query-building approaches of
displaying the schema on the user’s screen, or providing a drop-
down list from which the user can select the desirable attributes.
However, with over 5000 attributes, these and similar approaches
will not be effective.

Recently, some researchers have investigated the use of
keyword search as an alternative to query a structured database
[12, 13, 14]. Keyword search is a natural solution for the “too
many attributes” problem because users need not specify the
attributes. However, if the keywords appear in many attributes,
and the users prefer the keywords to appear in only some specific
attributes, this approach will include extraneous objects. In this
case, the answer set can have a low precision. More formally, let
QK = [x1, ..., xn] be a keyword query from a user. We assume that
there exists a list of attributes A = [a1, ..., an], in which ai can be
equal to aj for i ≠ j, such that the SQL query

QS: SELECT *

FROM table_t
WHERE a1.contains(x1) AND ... AND
an.contains(xn)

represents the ideal query for the user. The answer set ZS of QS is
then the set of relevant objects. Let ZK be the answer set of QK.
We define the precision of ZK to be the percentage of objects in ZK

that is also in ZS, or |ZK∩ZS|/|ZK|*100.

We analyze two real-world sparse data sets to try to answer the
question: how often is low precision a problem for keyword search
over real-world sparse data sets? The first data set we use in our
evaluation, CNET, is an e-commerce product catalog that
consolidates product information from different vendors [10]. As a
relational table, the data set has 2,984 attributes across a total of
233,304 products. The average number of attributes in each row is
11 and the mode is 5. The second data set, EBuild, is a home-
building product catalog. It has 1,101 attributes, a total of 302,631
objects, and a degree of sparseness similar to CNET. Because we
obtained similar results for the two data sets, in the following we
will only discuss CNET due to lack of space.

We ran our experiments as follows. We ignored “dense”
attributes (there are only 4 dense attributes in CNET). After
tokenizing all data values in the sparse attributes into terms, for
each term, we recorded 1) the number of attributes that contain the
term, and 2) the number of rows that contain the term. We refer to
these numbers as Attr-Num and Row-Num respectively.

We plot the top 500 terms ranked by Attr-Num in Figure 2 and
the top 500 terms ranked by Row-Num in Figure 3. Along the X-
axis are the top 500 terms ranked by the Attr-Num or Row-Num
values on the Y-axis. We include only the top 500 terms because
both distributions have a very long tail, so including all terms
would heavily skew the plot to obscurity.

Both distributions look Zipfian – a small number of terms
appear in many attributes (or rows), but most terms appear in
relatively few attributes (or rows). Zipf’s Law describes many
natural phenomena, the most famous one being the frequency of
English words in a corpus. Indeed, we observe
that the term-frequency distribution in the data set is also Zipf-like.

Table 1 shows the percentage breakdowns of all terms in
CNET with respect to Attr-Num, Row-Num, and both at the same
time. We show the breakdowns with respect to both values across
the first 5 rows that represent different ranges of Attr-Num, and
across the 5 left-most columns that represent different ranges of
Row-Num. The last row and column show the percentage
breakdowns of the Row-Num and Attr-Num distributions
respectively.

Table 1 reveals the heavy tails of the distributions. Under Attr-
Num, we see that 85% of all terms appear in fewer than 6
attributes, and only 5% appear in more than 15 attributes. This
result suggests that low precision is not an issue for most values in
the table. As for Row-Num, 72% of all terms appear in fewer than
25 objects, and 13% appear in more than 150 rows, so that doing
keyword search on even just one term would usually give us
relatively few rows. Also, the two distributions are positively
correlated. The terms that appear in more than 150 rows are the
same ones that appear in more than 15 attributes. The tails of the
two distributions share many terms in common; 71% of terms
appear in fewer than 6 attributes and 26 rows.

To summarize, most terms appear in few attributes and in few
rows. Unless users query the small set of keywords that appear in
the head of the distributions, the answer set will be surprisingly
focused. If the query contains multiple keywords, this pattern
would become even more extreme because of the multiplicative
selectivity of conjunction.

But what do these results say about keyword search over
sparse data in general? We note that most keyword queries over
the sparse data sets we studied are focused because (a) the universe
of values appearing in the data sets roughly follow a Zipf-like
distribution, and (b) the rows in a sparse data set define only a few
non-null values (Because most rows in a sparse data set define few

attributes, the values that appear in few objects most likely also
appear in few attributes, which explains the overlap of the tails of
the two distributions). Property (b) is a property of all sparse data
sets (by definition), so we will see the same focused results from
keyword queries for any data set that follows a Zipf-like
distribution. We consider this observation encouraging because
many data sets follow Zipf-like term distributions.

Attr-Num Distribution

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

Top 500 Terms ranked by Attr-Num

A
tt

r-
N

u
m

Figure 2. Term distribution with respect to Attr-Num.

Row-Num Distribution

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500

Top 500 Terms Ranked by Row-Num

R
o

w
-N

u
m

Figure 3. Term distribution with respect to Row-Num.

CNET
1

only
2-25 26-50 51-150 >150

Attr-
Num

>15 0% 0% 0% 0% 5% 5%

11 - 15 0% 0% 0% 1% 2% 3%

6 - 10 0% 1% 1% 2% 3% 7%

2 - 5 1% 18% 4% 4% 2% 29%

1 only 21% 31% 2% 1% 1% 56%

Row-
Num

22% 50% 7% 8% 13% 100%

Table 1. Percentage breakdowns of term distributions with respect
to Attr-Num, Row-Num, and both at the same time.

3.2 Fuzzy Attributes for Keyword Search and SQL

Besides giving low-precision results in the hopefully rare cases
when keywords appear in many attributes, keyword search is
inapplicable when users need more-advanced queries, such as
range queries and aggregates. In both situations, although users
may not know the exact attribute names they should use, they may

have some idea about them. Therefore, allowing users to specify
“fuzzy” attributes in keyword and SQL queries can be very useful.
That is, users make guesses about the names of the attributes they
want, and the system tries to find attributes in the schema that
match the guesses with high similarity scores. This task can be
done by using name-based schema-matching techniques (e.g.,
consulting a domain-specific thesaurus, performing standard
stemming and transforming operations, etc.), which have been
shown to be effective in the data integration domain [18] (and is
often regarded as the “easy part” of data integration).

For a SQL query, once we have identified attributes in the
database that match the fuzzy attributes, we can replace the fuzzy
attributes with these “real” attributes and execute the revised
query. This approach, which we refer to as F_SQL, presents a
problem when it returns multiple candidate attributes for a fuzzy
attribute. Based on the similarity scores of each candidate with
respect to the corresponding fuzzy attribute, we can revise the
query in two ways. One possibility is to pick the candidate with
the highest similarity score for the fuzzy attribute. This approach
is simple, but if the candidate turns out to be wrong, we may miss
some tuples that we should have returned. Alternatively, we can
use more than one candidate and get several queries, whose results
can then be merged to get the final result. For example, consider
the query “A1 = V1 and A2 = V2,” in which A1 and A2 are fuzzy
attributes that match the two sets of “real” attributes {C11} and
{C21, C22} respectively. We can rewrite the query as:

“A1 = C11 AND A2 = V21 OR A1 = C11 AND A2 = V22”

This approach has a greater chance of getting the right tuples;

however, the query rewriting quickly gets unwieldy when multiple
fuzzy attributes have multiple candidates, and the final result may
once again be a superset of the result that the users intended.
Similar approaches that seek a compromise between these two
extremes also face problems with either low precision or low
recall.

For keyword search with fuzzy attributes (in the form of “f_attr
= value” where f_attr is a fuzzy attribute), we can execute the
query as follows:

1) Run keyword search on the data value and obtain a set of
objects ZK.

2) Identify a set of candidate attributes, AC, by performing
name matching between f_attr and the attributes in ZK that
contain the value.

3) Return an object in ZK only if the object contains the
value in an attribute in AC.

Compared to F_SQL, this approach, which we call F_KS, has

the advantage that instead of matching with the set of all attributes,
we match the fuzzy attributes with only the set of attributes that
contain the keywords (Step 2). Compared to pure keyword search,
F_KS could possibly achieve higher precision because it applies
the attribute constraint to the set of objects obtained by keyword
search (Step 3).

None of the three approaches is always better than the others.
F_SQL could result in extra work if the fuzzy attributes match
many attributes, few of which contain the data values. F_KS
avoids that problem, but does not apply for range queries. Also,
one can imagine queries for which F_SQL is highly effective (e.g.,
only a single attribute matches the user’s fuzzy attribute) and for
which F_KS is inefficient because of an expensive and imprecise

keyword query in Step 1. Exploring the tradeoffs between these
approaches is a promising area for future research.

The utility of fuzzy attributes depends on the users’ knowledge
of the data set. In Section 5.4, we describe a complementary
query-building approach to help users who cannot exploit fuzzy
attributes. Specifically, we use a hidden schema that we
automatically infer from the data set as a logical organization of
the attributes, which users can browse through and select the
attributes they need for writing structured queries.

4. SPARSE B-TREE INDEXES

4.1 Motivation

When the entire sparse data set is stored in a single table, it is
crucial that we minimize the need to scan the whole table. A
common approach to avoiding table scans is indexing. Although
inverted indexes avoid table scans for keyword queries, they
cannot be used for range queries, so B-tree indexes or their
equivalent must be used. Unfortunately, building and maintaining
hundreds of B-tree indexes on a table is generally considered
infeasible because of the high storage and update costs that they
incur. In this section, we show that when the data set is sparse, we
can overcome this problem by using sparse B-tree indexes.

A sparse index on an attribute maps only the non-null values to
the object identifiers (oids). Therefore, on a sparse data set, it
incurs much lower storage overhead and maintenance cost than its
full counterpart, which indexes both null and non-null values.
Specifically, the size of a sparse index on an attribute is
proportional not to the number of rows in the table, but to the
number of rows that have a non-null value for that attribute.
Moreover, for each tuple insertion or deletion, we only need to
update the indexes on the attributes that are non-null in the tuple.
In other words, a table may have a large number of sparse indexes,
but if a tuple that is being inserted or deleted contains few non-null
attributes (which is the norm in a sparse data set), only those few
indexes will be updated.

Sparse indexes are a special case of partial indexes proposed
by Stonebreaker [21]. A partial index contains only a subset of the
tuples in a table. To define this subset, it uses a conditional
expression called the predicate of the index. Only tuples that are
evaluated true in this predicate are included in the index. For
instance, we can define a sparse index on an attribute A in a table
H in terms of a partial index as follows:

CREATE INDEX A_sparse_index ON H(A)
WHERE A is not NULL

Although feasible, using generic partial indexes to implement

sparse indexes is not the best solution, especially if we want to
build many sparse indexes. The reason is that partial indexes
require predicate checks during index maintenance and query
evaluation. When a tuple is inserted or deleted, the system must
evaluate the predicate of each index on the table to determine if the
index needs to be updated – a table with hundreds of partial
indexes will have hundreds of predicate evaluations for each tuple
insertion or deletion. As for query evaluation, because partial
index supports arbitrary predicates, the query optimizer needs to
check if the index is applicable, e.g., a partial index containing
only tuples that satisfy the predicate “Color = red” cannot be used
for the query “Color = blue.” Sparse indexes avoid these
overheads because they consider the specific predicate of whether

an attribute is non-null. A lookup of the non-null attributes of a
tuple would determine which indexes need maintenance. Also,
sparse indexes are applicable for queries with any non-null
predicates.

Finally, with the ability to build sparse indexes over a large
number of attributes, we can consider building multi-column
covering indexes, which could be useful for vertically partitioning
the data set. The challenge is to determine which attributes should
be grouped together in these indexes. We address this problem in
Section 5.

4.2 Bulk-loading Sparse Indexes

Many database systems support index construction via bulk-
loading, a single operation that scans the table to retrieve the index
keys, sorts the index entries (with external merge-sort), and builds
a B-tree over them. When multiple non-clustered indexes are to be
built, these systems employ bulk-loading for each index in
succession; in other words, the table is scanned once for each index

construction. Although the operations are done offline, this scan-

per-index approach is undesirable when we want to build
hundreds of indexes on a table.

We propose to improve the efficiency of large-scale index

construction by using a scan-per-group approach, which scans the
table once per group of m indexes. Shown in Figure 4, our
algorithm for bulk-loading divides a memory buffer pool of size B

into m equal sections of B/m buffer pages (β1 to βm). In the

table scanning phase, the algorithm retrieves the index keys from

each tuple and stores the key-oid pairs in the corresponding βi.

As βi becomes full, its content is written to a file on disk. In
the index building phase, for each index, the algorithm
performs external merge-sort on the keys from the file of key-
oid pairs, then builds the internal nodes of the B-tree.

Although the algorithm shown here is for creating sparse
indexes, it will create full indexes if we remove the requirement
that an attribute is non-null (Line 1). In the following, we analyze
the cost difference in building m indexes between scan-per-index
and scan-per-group, for both full and sparse indexes. To simplify
our comparison, we show only the two aspects of the bulk-loading
operation that make a difference: the I/O cost and the fetch cost,
which is the cost of retrieving the index keys. We ignore the costs
of doing external merge-sort and building the internal nodes of the
B-trees because they are the same in both approaches.

For scan-per-index, we assume that a portion of the table T is
cached in the buffer pool after building an index. Let BP be the
number of pages of this portion, ||T|| be the number of pages in T,
and IO be the cost of sequentially reading a page. The I/O cost of
scan-per-index is:

||T||*IO + (||T|| - BP)*IO*(m-1) (Eq. 1)

In comparison, scan-per-group scans the table once, and writes

and reads each index entry once (Lines 2, 3, and 4). Let ||I|| be the
number of pages of an index I. We make the simplifying
assumption that ||I|| is the same for each index and get the
following I/O cost for scan-per-group:

||T||*IO + 2*||I||*IO*m (Eq. 2)

To estimate the fetch cost, let |T| be the number of index

entries in T, and FETCH be the constant cost of retrieving an index
key from T. For scan-per-index, the fetch cost is:

Scan-per-group Approach for Bulk-loading

INPUT: Table T(c1, ..., cn)
 Index definitions IDef1, ..., IDefm

 Buffer of size B divided evenly into β1, ..., βm
OUTPUT: Indexes I1, ..., Im

Algorithm:
// Table scanning phase
for each tuple (t1, ..., tn) in T do

for each IDefi do
if ti is not null then // Line 1

INSERT (ti, oid) into βi

if βi is full then

WRITE tuples in βi to file Fi // Line 2
end if

end if
end for

end for

for each βi do
WRITE remaining tuples to Fi // Line 3

end for
// Index building phase
for each IDefi do

READ Fi to B pages of buffer pool // Line 4
EXTERNAL MERGE-SORT of Fi
BUILD B-tree Ii over Fi

end for

Figure 4. Creating m sparse indexes per table scan.

|T|*FETCH*m (Eq. 3)

Scan-per-group retrieves only non-null index keys. Therefore,

when a tuple has on average c non-null attributes, the fetch cost for
scan-per-group is:

|T|*FETCH*c (Eq. 4)

For full indexes, c is the same as m, so the difference in fetch

cost is zero. We get the following difference in I/O cost between
scan-per-index and scan-per-group by subtracting Eq. 2 from Eq.
1:

(||T|| - BP)*IO*(m-1) – 2*||I||*IO*m (Eq. 5)

A negative difference means that scan-per-index is better,

whereas a positive difference means that scan-per-group is better.
Scan-per-group loses its edge as more of T fits in the buffer pool.
When T fits completely in the buffer pool (i.e., ||T|| = BP), scan-
per-group is never better than scan-per-index.

Although Eq. 5 also describes the I/O cost difference for both
full and sparse indexes, the difference is much more significant for
sparse indexes because ||I|| is much smaller without the null values.

At the extreme, when βi is large enough to hold all entries of Ii, the
algorithm does not have to flush the index entries to disk at all. In
addition, scan-per-group incurs a lower fetch cost for sparse
indexes than scan-per-index:

|T|*FETCH*(m – c) (Eq. 6)

The difference increases when we are building more indexes (a

larger m). Because of this and the I/O cost difference, scan-per-
group is much more efficient than scan-per-index in creating many
sparse indexes. We present experiments on these tradeoffs in
Section 6.

5. HIDDEN SCHEMAS

5.1 Defining “Good” Partitions

Besides maximizing index coverage, another approach to avoid
scanning the entire sparse table is to vertically partition the data set
with materialized views or covering (sparse) indexes. Using a
vertical partition is more efficient than scanning the base table
because there are fewer columns to process. This advantage is
huge for tables with many attributes, especially positional storage
is used. Interestingly, vertically partitioning a sparse data set also
achieves horizontal partitioning (as all-null rows are omitted), so
the vertical partitions actually have both fewer rows and columns
than the base table.

Figure 5. The best-case partition has no null values, whereas in the
worst-case partition no two columns are non-null for the same row.

The challenge for vertical partitioning is to determine good

partitions of attributes. This task is essentially the same as
designing a good schema for the multi-table approach, except that
in our approach, we materialize the partitions as views or indexes
on top of the base table. Therefore, their objective is the same –
maximizing the scan benefit of the partitions (or tables) while
minimizing their maintenance costs. We list the following
desiderata for vertical partitions:

• A reasonable number of partitions (e.g., getting one
partition for each tuple is useless).

• Partitions contain minimal null values.

• Each base-table tuple is preferably stored in its entirety in
one partition.

Given a sparse data set, it is unclear if we can obtain partitions

with these qualities, because the tuples can have non-null values
for any combination of attributes. However, our desiderata suggest
that one way to approximate good partitions is to try to group
together co-occurring attributes, or attributes that have non-null
values in the same rows. Intuitively, a partition comprising co-
occurring attributes will be dense.

Identifying groups of co-occurring attributes in a sparse data
set, however, can be difficult for a schema designer because the
attributes have varying degrees of co-occurrence, and co-occurring
attributes may not appear adjacent in the wide schema. Therefore,
our goal is to automatically discover these groups of co-occurring
attributes, which from now on we collectively refer to as a hidden

schema. In Section 5.2, we describe how we infer a hidden
schema by clustering attributes based on co-occurrence. In
Sections 5.3, we discuss our approach of materializing partitions
on top of the base table. In Section 5.4, we discuss the benefits of
a hidden schema for query construction.

5.2 Inferring Hidden Schema via Attribute

Clustering

We consider vertical partitioning as a k-nearest-neighbor (k-NN)
partitioning of the attributes based on co-occurrence. Given n
attributes A1, ..., An and a target of k partitions, we want to find k
clusters of co-occurring attributes. Our approach is as follows.

We model the relationship between attributes in a sparse data
set as a connected weighted graph. In this graph, each node
represents an attribute, and every pair of nodes is connected by a
weighted edge, whose weight represents the strength of co-
occurrence between the two attributes. We use the Jaccard
coefficient to define this weight. Given two attributes AX and AY,
let X be the set of rows for which AX is non-null, and let Y be
defined analogously. The Jaccard coefficient for AX and AY is
then defined as:

Jaccard(AX, AY) = |X∩Y|/|X∪Y|

In other words, the numerator is the number of rows that have

non-null values for both AX and AY, whereas the denominator is
the number of rows that have non-null values for AX, AY, or both.
The value of this coefficient ranges from zero to one. It is zero
when no rows have non-null values for both AX and AY, and one
when AX and AY are either both null or both non-null for all tuples.

After creating an adjacency matrix on the attributes with the
weights as the values, we use a k-NN clustering algorithm
implemented in CLUTO [9] to find a hidden schema. We consider
disjoint partitioning schemes in which each attribute is assigned to
only one partition.

As co-occurrence is the main criterion for clustering, the
algorithm’s objective is to minimize sparseness. To evaluate the
quality of a partition with respect to sparseness, we define
NullRatio, which compares the actual number of null values in the
partition to the largest possible number of null values. For a
partition P that has c attributes and a total of m non-null values in r
rows, its NullRatio is defined as:

NullRatio(P) = (c*r – m)/(c-1)*m

The numerator is the number of null values in the partition,

whereas the denominator is the highest possible number of null
values in a partition with c attributes and m total non-null values.
This worst-case scenario occurs when all the attributes are disjoint,
meaning that no two attributes have non-null values in the same
row. The NullRatio can range from zero, when the partition has no
null values, to one, when the partition has the maximum number of
null values. Figure 5 shows an example of best-case and worst-
case partitions. In Section 6, we report that our approach finds
clear clusters of attributes with low NullRatio from our sample
data sets; moreover, the partitions make semantic sense.

Finally, we note that although our current clustering approach
tries to minimize sparseness in the hidden schema, it has no
constraints on the total number of partitions or on the percentage of
fragmented tuples per partition. An interesting direction for future
work is to extend the clustering algorithm to support these
constraints.

5.3 Hidden Schema for Query Evaluation

Once we obtain a hidden schema, we can use it to build either
materialized views or covering indexes on top of the base table.

Best-case

partition

Worst-case

partition

The following is an example of defining a sparse view over a
group of attributes An, ..., Am in a relation H:

CREATE MATERIALIZED VIEW sparse_view ON
H(oid, An, ..., Am)
WHERE NOT (An is null AND ... AND Am is null)

As the partitions are relatively dense and narrow, we may

consider storing them with positional storage, rather than with
interpreted storage that we suggest for the sparse table. The reason
is that although interpreted storage incurs no storage overheads
over null values, it is less efficient than positional storage in
retrieving values from the attributes. Specifically, with interpreted
storage, the system must “interpret” the attribute identities and
their values for each tuple at query access time, whereas with
positional storage, the position information of the attributes is pre-
compiled. For dense partitions, the benefit of not storing null
values becomes less relevant, while the performance gain in
retrieving values from attributes becomes more desirable.

One might ask whether our approach of storing a number of
dense, narrow views over the data set is consistent with our
comments earlier that partitioning a sparse data set into narrow,
dense tables is not a good idea. The answer is yes, for several
reasons. First, the partitions discussed here are discovered
automatically, and used in queries automatically (standard view
matching algorithms can be employed transparently to determine
when a query can be evaluated from the view), without imposing
any burden on the users. Second, because the partitions are
materialized views, there is always the option of referring to the
base table if the optimizer decides that using the view is less
efficient than using the base table for a given query. Third, if after
some number of future updates the views no longer match the
hidden schema embedded in the current underlying data set, we
can always drop the views, and create new ones as determined by
the latest hidden schema.

Another reasonable question is how expensive it is to build and
maintain these materialized views. For reasons similar to those
that explain why sparse B-tree indexes are efficient over sparse
data, storing and maintaining these views is far more efficient than
it would be for dense data. Regarding storage, the additional
overhead of these views is approximately equal to that of the base
table that uses interpreted storage. To see this, note that except for
the oids, each non-null value is stored in only one view because
each attribute appears in only one view. When the views are
stored using interpreted storage, only the non-null values take
space; when the views are stored using positional storage because
they are dense, the null overhead is again small. Regarding
maintenance costs, consider a table with 100 attributes A1 to A100
and we materialize ten projection views on it: A1 to A10, A11 to
A20, and so on. If the table is sparse and the tuples usually have
values for only one partition, each tuple insertion, deletion, or
update on the sparse table will trigger two updates on average. In
comparison, if the table is dense in the same setting, each update
will cause eleven updates – one to the sparse table, and one to each
of the ten views.

5.4 Using the Hidden Schema for Query

Construction

With a hidden schema, we can extend our effort in aiding users to
query sparse data sets. When facing a sparse data set, users are
often overwhelmed not only because of the vast number of
attributes, but also because the data set is unorganized. The lack of

logical organization leads to two problems: 1) It is difficult to
make sense of a schema that has so many attributes, and 2) it is
difficult to browse through the data. A hidden schema can
improve these problems by imposing order on chaos. Specifically,
we can build a directory of attributes from which users can choose
the appropriate attributes for structured queries, or even build a
browsing-based interface that lets users browse the data set itself as
multiple dense “mini-tables.”

In Section 3, we discussed pure keyword search, F_KS
(keyword search with fuzzy attributes), and F_SQL (SQL with
fuzzy attributes). All these approaches satisfy users with different
needs and knowledge about the data set. Pure keyword search is
for users who know about the data, but not the attributes. F_KS is
for users who have some idea about the attributes they want and do
not need the expressive power of SQL. F_SQL is for users who
are somewhat familiar with their attributes and need to ask
complex queries that cannot be expressed via keyword search.
When these approaches are inapplicable, browsing-based
approaches based on a hidden schema provide a helpful alternative,
especially for users who know nothing about the schema, and for
those who do not even have a specific query in mind.

6. EXPERIMENTS

6.1 Sparse Indexes

We conducted our experiments with sparse indexes in PostgreSQL,
which implements both full and partial B-tree indexes, and uses the
scan-per-index approach for bulk-loading. During bulk-loading, it
packs the leaf pages to 90% capacity and the non-leaf pages to
70% full. We implemented the scan-per-group algorithm as
described in Section 4.2, and set the buffer size B to 40 MB. For
partial indexes, PostgreSQL uses a heavy-weight predicate
evaluation that makes several function calls. Based on this
implementation, we implemented sparse indexes by using a
lighter-weight test that looks for non-null attributes in the inserted
tuple.

We used synthetic data so that we could control the parameters
in the experiments. We modeled the properties of the data after the
CNET sparse data set. The table had 250k rows and on average 5
non-null values per row distributed over 640 varchar(16) attributes.
We used the interpreted storage format to store the table in all but
one experiment, in which we used positional storage. The size of
the table was 37.6MB and 391MB for interpreted and positional
storage, respectively. Each single-column full index was 4.34MB
and each single-column sparse index was 88KB. In other words, a
sparse index was approximately 50 times smaller than a full index,
and the amount of space that sparse indexes took to cover all 640
attributes in the table was only enough for 13 full indexes.

We compared scan-per-group with scan-per-index for bulk-
loading both full and sparse indexes. Figure 6 shows the times of
building different numbers of full indexes with both approaches on
a table that fits in memory. While scan-per-index increased
linearly as the number of indexes increased, scan-per-group
increased even more rapidly. Recall from Section 4.2 that
although scan-per-group scans the table only once, it incurs an
overhead on buffering tuples to disk and this cost is proportional to
the number of indexes (Eq. 2). Therefore, when the base table fits
in memory, scan-per-index’s advantage over scan-per-group
increases as more indexes share the buffer pool in the scan-per-
group approach.

Figure 6. Bulk-loading full indexes when table fits in memory.

Figure 7. Bulk-loading full indexes when table does not fit in
memory.

Figure 8. Bulk-loading sparse indexes when table fits in memory.

Figure 9. Inserting different number of non-nulls into 80 indexes.

Figure 10. Inserting 5 non-nulls into table with varying numbers
of full and sparse indexes.

To observe the difference when the base table does not fit in

memory, we experimented with the same data set in positional
storage. Figure 7 shows the comparison of building full indexes on
this big table with the two approaches. Scan-per-group always
outperformed scan-per-index because scan-per-index had to scan
what was not in the buffer many times, and the cost advantage
increased as the number of indexes increased (Eq. 1).

Figure 8 compares the performances of the two approaches in
creating sparse indexes on the table using interpreted storage (so
the table fits in memory). It shows the same pattern as in Figure 7
– scan-per-group was much better and the advantage increased
with the number of indexes. This experiment shows the cost
savings in doing fewer scans as we batch indexes together. Also,
comparing Figures 6 and 8, we see that for the same set of
attributes on the same table, the amount of time to build the sparse
indexes was much less than that to build the full indexes.

Next, we compared the maintenance costs of the two types of
indexes. The maintenance cost depends on the density of a row
inserted into the table and the number of indexes affected by the
insert. To illustrate these factors, we built 80 indexes over the base
table, then inserted rows with non-null values for different
numbers of the indexed attributes. Figure 9 shows that for full
indexes, the insert costs were relatively constant because an update
was required whether the value was null. However, for sparse
indexes, the update costs started low when a new tuple had few
non-null values for the indexed attributes, and increased as more of
the 80 indexed attributes were non-null.

Finally, we compared the insert performance between a generic
partial index and the more specialized sparse index. We inserted a
row with 5 values into a table with different numbers of indexes.
Figure 10 demonstrates that the partial index had higher overheads
associated with predicate evaluation – even when there were few
inserts into the indexes, the predicates of all partial indexes had to
be checked to see if an update was needed. Toward the right end
of the graph, we see that the partial indexes incurred more costs as
the table had more indexes. This result supports our claim that
sparse indexes perform better than generic partial indexes and
warrant a separate implementation.

6.2 Hidden Schemas

We begin by exploring whether the patterns of attribute co-
occurrence in our real-world data sets can really be exploited to
find hidden schemas. We performed experiments on both the
CNET and the EBuild data sets.

Figure 11 shows the adjacency matrix of the attributes of
EBuild before applying the k-NN clustering algorithm, whereas

Figure 12 shows the adjacency matrix of the same set of attributes
after clustering the attributes by co-occurrence (with k = 13). The
lines dividing the matrices indicate the clusters of attributes. We
can observe the values of the Jaccard coefficient in gradation of
intensity. As the Jaccard coefficient goes to one, the color gets
darker; as the coefficient goes to zero, the color approaches white.
The clear pattern of blocks on the diagonal in Figure 12 means that
we have found very strong clusters based on co-occurrence.

Tables 2 and 3 list five groupings of attributes with high
average Jaccard coefficients, for CNET (with k = 406) and EBuild
(with k = 203), respectively. These partitions have very low
NullRatios. Also, about 83% of all partitions from CNET, and
about 88% of all partitions from Ebuild, have a NullRatio less than
0.5. The CNET and EBuild data set have 233,304 and 302,631
rows respectively; in comparison, the sizes of the partitions in
Tables 2 and 3 are much smaller.

We also observed if the partitions in these hidden schemas
make semantic sense. Judging on semantic quality is highly
subjective, but these partitions mostly make semantic sense to the
authors. The clusters in CNET are related to printers, projectors,
hardware storage, cameras, and speakers. The clusters in EBuild
are related to toilets, vehicles, cabinets, whirlpools, and small
refrigerators.

We now turn to experiments that explore the impact of the
structure of hidden schemas on scan times and maintenance
overhead. Recall that our goal is to form views by clustering co-
occurring attributes, and that these views will speed query
evaluation even more than views defined over attributes that have
no special co-occurrence pattern. To test our claim, we created six
synthetic data sets that had different values of NullRatio. Each
data set was stored in a base table that had 110 attributes of type
varchar(16). We created 11 materialized views, each with 10
consecutive attributes, on the base table. The data sets had 100k
rows and each row had 10 non-null values. To determine which 10
attributes were non-null for a row, we first picked a view, then
assigned non-null values to c’ random attributes that were in the
view and 10-c’ attributes that were not. The value of c’ was 0, 2,
4, 8, and 10 for the six data sets. The base table was stored with
interpreted storage, whereas the views were stored with positional
storage, which we considered to be the common approach because
we expected the views to be relatively dense. Figure 13 shows the
actual scanning times for the views. As expected, the view with a
zero NullRatio had the best performance and the scanning time
increased with increasing NullRatio.

To observe how data distribution affects maintenance costs, we
created single-attribute views and compared them with the 10-
attribute views. In this experiment, we inserted tuples with 10
non-null attributes that belonged to different number of views.
Figure 14 shows the result. The single-attribute views represent
the worst-case scenario because inserting 10 non-null values
always triggered 10 view updates. For the 10-attribute views, the
update costs were low when the non-null attributes belonged to
few views, and increased when the attributes were in more views.
The result shows that given a hidden schema, whether it incurs low
maintenance costs depends on whether the data distribution of the
new tuples conforms to the partitions of the hidden schema.

We studied the scan performance of the views for EBuild. We
wanted to observe how the NullRatio of the actual views correlated
with the percentage improvement of the actual views to the worst-
case views, which had no co-occurring attributes. To obtain the
worst-case views, we created a table with the same schema,
projected the values of each attribute individually along with null

Figure 11. Adjacency matrix of attributes from EBuild before
applying k-NN.

Figure 12. Adjacency matrix of attributes from EBuild after
applying k-NN with k = 13.

Row
Count

Average
Jaccard

Null
Ratio

Attributes in Cluster

1423 0.944 0.007 printer output type, printer type, media
feeder(s), media type, printer output ...

346 0.932 0.015 audio output type, input device type,
projector image brightness ...

3116 0.949 0.012 configuration device type, device type,
hard drive size, storage controller type...

442 0.984 0.002 camera flash type, connections type,
lens systems type, still image format ...

125 0.860 0.005 speaker form factor, speaker qty,
speaker driver diameter, speaker type ...

Table 2. Five attribute groupings from k-NN for CNET with k =
406.

Row
Count

Average
Jaccard

Null
Ratio

Attributes in Cluster

5894 0.874 0.060 bowl style, flushing system, gallons per
flush, mounting type, rough-in ...

2707 0.816 0.042 convenience features, gross weight,
ground clearance, maximum payload,
maximum torque, sound system ...

10729 0.035 0.035 cabinet construction, door mount detail,
door style, interior cabinet finish ...

44112 0.105 0.105 outlet position, no. of jets, no. of pumps,
package type, pump horsepower...

320 0.075 0.075 bottle storage capacity, temperature
range, storage capacity...

Table 3. Five attribute groupings form k-NN for Ebuild with k =
203.

0

0.05

0.1

0.15

0.2

0.25

0.00 0.21 0.39 0.53 0.65 1.00
Null Ratio

R
u

n
n

in
g

 T
im

e
 I

n
 S

e
c

o
n

d
s

Figure 13. Scan times for 10-attribute views with different
NullRatios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 10
Number of Clustered Views

Affected By Insert

R
u

n
n

in
g

 T
im

e
 I
n

 S
e
c
o

n
d

s

Single Column Views

Clustered Views

Figure 14. Insert cost depends on how many views are affected.

Figure 15. Percentage speedup of clustered views to the worst-
case view for Ebuild data (k = 203).

values for the rest of the attributes, and combined the result of
each projection into one table. For example, the following
SQL statement creates a two-column worst-case view
WorstCase over attributes A1 and A2 of table H:

INSERT INTO WorstCase
SELECT * FROM
((SELECT oid, A1, NULL as A2 FROM H)
UNION ALL
(SELECT oid, NULL as A1, A2 FROM H))

The result in Figure 15 verifies our claim that views with lower

NullRatio results in better performance. Moreover, most points in
the figure appeared in the upper left-hand corner, which means that
the clusters found by the k-NN algorithm led to tightly-packed
views. Next, we compared the scanning times of the views to that

of the base table for EBuild. Scanning the base table that used
interpreted storage took 15.247 second, whereas the largest view
suggested by k-NN took 1.84 seconds, and a majority of the views
took no more than 1 second.

7. RELATED WORK

In pioneering work on the sparse data problem, Agrawal et al.
discussed using vertical tables as an alternative to horizontal tables
(with positional storage) for handling sparse data [3]. More
recently, comparing these approaches to using horizontal tables
with interpreted storage, Beckmann et al. [6] concluded that
interpreted storage outperformed both positionally stored
horizontal and vertical tables. The paper did not address schema
design issues and the impact of indexes and views with respect to
supporting efficient query construction and evaluation over sparse
data sets.

There is a large body of work on keyword search over
relational [13] and XML data [12, 14]. For relational data, the
focus is on efficiently joining tuples that have at least one
keyword. Our approach does not have this problem because the
data set is stored in a single base table. To improve the quality of
keyword search, some previous work proposed to support metadata
hints and exploit the hierarchical structure of XML documents
[14], but the latter option is not as useful for the flat relational
model.

Agrawal et al. [4] noted that when a numeric data set has low-
reflectivity, correspondence between attribute names and values
becomes less important for finding the right answer because a
query with multiple numbers is likely to have few interpretations.
For example, in a completely non-reflective, 2-dimensional data
set, the query “1 and 3” can only refer to the point “x = 1 and y =
3” for attributes x and y because its reflection, the point “x = 3 and
y = 1,” does not exist. Low-reflectivity and Zipf-like Row-Num
and Attr-Num distributions have similar implications in that
keyword search over data sets with these qualities tend to get high-
precision results. However, reflectivity applies to only numeric
values, whereas the term distributions apply to all terms.

Oracle [5] implements indexes that do not store null values, but
to our knowledge no published literature has evaluated the
performance of these indexes on sparse data sets.

Vertical partitioning is a well-studied optimization technique
[16]. Our work is the first that considers it in the context of sparse
data. It is similar to the work by Edmonds et al. [11], which
described a scalable algorithm to find empty rectangles in 2-
dimentional data sets; however, the latter was meant as a
complementary data mining approach, rather than for query
optimization.

Column-based storage techniques, such as C-Store [20], take
vertical partitioning to an extreme by projecting all individual
columns from the tables. Though not specific to sparse data,
Abadi [1] discussed some schema-design constraints similar to the
problems described in Section 2, and argued that these constraints
are no longer valid if a column-oriented layout is used. C-Store is
optimized for read-mostly workloads, whereas our approach makes
no assumption about workloads.

8. CONCLUSION

The management of sparse data sets is a challenge for relational
database systems. To our knowledge, the research literature has not
addressed this challenge beyond studying the problem of how to
efficiently store such data sets. In this paper, we argue that the

initially unappealing approach of “stuffing” the sparse data set into
a very wide, very sparse table, is actually an attractive alternative.
The approach is initially unappealing for a variety of reasons,
including the discouraging prospects of data storage explosion,
lack of indexability, slow scans of tuples that are full of attributes
not requested by the query, and the unfortunate prospect of asking
users to select from thousands of attributes when building their
queries. Fortunately, the previously proposed interpreted storage
format removes the storage explosion problem. In this paper, we
show that sparse indexes and materialized views over an
automatically discovered hidden schema can solve the indexability
and inefficient scan issues.

The issue of helping users query this kind of data remains. We
have argued that a combination of keyword search, “fuzzy” SQL,
and a directory of attributes based on the hidden schema can assist
users in building their queries. Of course, like all user interface
work, the utility of our approach cannot be proven definitively
without a user study involving real-world users, data, and
workloads. Even in the absence of such a study, we think there is
reason to be optimistic, because our proposed approach exploits
techniques that have been proven to work in other aspects of data
management, such as data integration and information retrieval.

ACKNOWLEDGEMENT

This work was funded by National Science Foundation Award
SCI-0515491.

REFERENCES

[1] D. Abadi. Redefining Physical Data Independence. To appear
in CIDR 2007.

[2] E. Agichtein, L. Gravano: Querying Text Databases for
Efficient Information Extraction. ICDE 2003: 113-124.

[3] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-
commerce data. In Proc. of VLDB, pages 149-158, 2001.

[4] R. Agrawal, R. Srikant. Searching with Numbers. WWW2002.
[5] R. Baylis. Oracle Database Administrator’s Guide, 10g, 2003.

[6] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F.
Naughton. Extending RDBMSs to support sparse datasets
using an interpreted attribute storage format. In Proc. of ICDE,
2006.

[7] N. Chapin. A Comparison of File Organization Techniques. In
Proc. of 24th national conference, pg. 273-283, USA, 1969.
ACM Press.

[8] S. Chaudhuri, V. Narasayya. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB, 1997.

[9] CLUstering TOolkit (CLUTO). WWW, available at:
http://www.cs.umn.edu/karypis/cluto.

[10] CNET Networks, Inc. Product Directory.
http://shoppper.cnet.com.

[11] J. Edmonds, J Gryz, D. Liang, R. Miller. Mining for Empty
Rectangles in Large Data Sets. ICDT 2001: 174-188.

[12] D. Florescu, D. Kossmann, I. Manolescu, “Integrating
Keyword Search into XML Query Processing”, WWW Conf.,
2000.

[13] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. In Proc. of VLDB, 2002.

[14] Y. Li, C. Yu, H. Jagadish. Schema-Free XQuery. In VLDB,
2004.

[15] D. Maier, J. Ullman. Maximal Objects and the Semantics of
Universal Relation Databases. ACM Trans. Database Syst.,
1983.

[16] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical
Partitioning Algorithms for Database Design. ACM Trans.
Database Syst., 9(4):680-710, 1984.

[17] D. Pyle. Data preparation for data mining. Morgan
Kaufmann Publishers Inc., 1999.

[18] E. Rahm, P. A. Bernstein, A survey of approaches to
automatic schema matching. VLDB Journal 10, 4 (Dec.
2001), pp. 334-350.

[19] R. Raman, M. Livny, and M. H. Solomon. Matchmaking:
Distributed resource management for high throughput
computing. In HPDC, 1998.

[20] M. Stonebraker et al. C-Store: a Column-Oriented DBMS. In
VLDB 2005.

[21] M. Stonebraker. The Case for Partial Indexes. SIGMOD Rec.,
18(4):4-11, 1989.

