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ABSTRACT 
A “sparse” data set typically has hundreds or even thousands of 
attributes, but most objects have non-null values for only a small 
number of these attributes.  A popular view about sparse data is 
that it arises merely as the result of poor schema design.  In this 
paper, we argue that rather than being the result of inept schema 
design, storing a sparse data set in a single table is the right way to 
proceed.  However, for this to be the case, RDBMSs must provide 
sparse data management facilities that go beyond the previously 
studied requirement of storing such data sets efficiently.  In 
particular, an RDBMS must 1) enable users to effectively build ad 
hoc queries over a very large number of attributes, and 2) support 
efficient evaluation of these queries over a wide, sparse table.  We 
propose techniques that provide these capabilities, and argue that 
the single-table approach is a necessary component of self-
managing database systems because it frees users from a tedious 
and potentially ineffective schema-design phase when managing 
sparse data sets.   
 

Categories and Subject Descriptors 
H.2 [DATABASE MANAGEMENT]: Miscellaneous 
 

General Terms 
Design, Management 
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1.  INTRODUCTION 

Suppose an online retail store has a product catalog that has 

thousands of attributes, and that most objects in the catalog have 
non-null values for only a small number of these attributes.  How 
should we manage this and other similar, “sparse” data sets in a 
relational database management system (RDBMS)?  As sparse data 
arises from many sources, including e-commerce hubs [3, 10], 
distributed systems [19], and even data extraction systems [2], 
providing efficient RDBMS support for sparse data has become 
increasingly important.   

Unfortunately, although a number of approaches are widely 
used to handle sparse data, none of them is very satisfying with the 
current technology.  Perhaps the most straightforward approach is 
to store all the products in a horizontal table (i.e., each column 
represents a distinct attribute and each row represents an object).  
For a diverse set of products, this approach results in a very wide 
and sparse table that wastes a lot of space and makes scans highly 
inefficient.  An alternative is to use vertical tables [3], which 
eliminates nulls but generally suffers from complex queries and 
poor query performance.  Yet another approach is to store a few 
“dense” attributes, which are attributes that most rows define, in a 
horizontal table, then relegates the rest of the attribute-value pairs 
to a large, catch-all text object.  Though nulls are again eliminated, 
the attributes in the text object cannot be used as normal attributes 
in SQL queries.  A more extreme approach gives up on RDBMS 
technology and resorts to a semi-structured model such as XML, 
but using a different data model introduces potential data 
integration and management issues.  Lastly, a popular view 
(especially in the research community) on sparse data is that it is a 
false problem, because with proper schema design, database 
administrators (DBAs) can decompose a sparse data set into a 
reasonable number of smaller, denser tables.  However, this multi-
table approach places a heavy burden on schema designers, may 
not always be possible, and presents problems with respect to data 
fragmentation and schema evolution.  In this paper, we argue that 
RDBMSs can be augmented to manage sparse data sets efficiently, 
and in such an augmented RDBMS, storing a sparse data set in a 
single table is a good approach. 

At first glance, it may seem like we are advocating the 
Universal Relation [15], but we are actually addressing a 
completely different problem.  The Universal Relation was a user-
interface proposal in which a wide virtual schema covers all the 
physical tables in the database.  In entity-relationship terminology, 
it puts all entities and relationships in the same logical table.  The 
main challenge in evaluating queries over the Universal Relation is 
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to translate the queries into semantically equivalent queries over 
the actual underlying schema.  In contrast, we are discussing the 
approach of physically storing a large number of entities that 
belong to the same entity set (but may have very different subsets 
of non-null attributes in the schema for that entity set) in the same 
table.  For example, we would store all products in an online 
catalog in a wide table, but we would not put products, customers, 
and the “purchased_by” relations in the same physical table.  The 
challenges here are storing the data efficiently, enabling users to 
effectively build queries over a large number of attributes, and 
evaluating these queries over the wide, sparse table efficiently. 

Recent work has shown that a sparse data set can be stored in a 
horizontal table with good storage efficiency by employing 
interpreted storage [6].  However, just storing the data in a space-
efficient manner is not sufficient – in particular, two problems still 
arise: (1) how should users build queries over a table with 
thousands of attributes, and (2) how can a system efficiently 
evaluate these queries over such a wide, sparse table? In the 
following, we give an overview of the techniques we use to 
address these problems.   

Query Construction:  Writing ad hoc SQL queries over 
sparse data is challenging because there are so many attributes to 
choose from (a drop-down menu of thousands of attributes is 
unlikely to be helpful).  Keyword search is a natural alternative 
because users do not need to specify attribute names, but its 
imprecise semantics compared to structured queries can be a 
problem.  For example, replacing a structured query “Ai = Vk” with 
the keyword query “find all objects that contain Vk” will have a 
low precision in the result if many objects contain Vk in attributes 
other than Ai.  We show empirically that low precision is not a 
problem on at least two real-world sparse data sets, and discuss the 
properties of sparse data sets that explain this result. 

Although promising, keyword search is still problematic when 
the keywords appear in many attributes, and is inapplicable when 
users require more-advanced queries such as range queries and 
aggregates.  Therefore, in addition to keyword search, RDBMSs 
should support “fuzzy” attributes in both keyword and SQL 
queries.  Specifically, users make a guess about an attribute name 
they want, and the system tries to find the best match for that 
guess.  This feature is promising because it can be considered as a 
tractable instance of schema matching; however, it is only useful to 
users who have some idea about the target attributes.  When users 
cannot exploit fuzzy attributes, we present to them a “hidden 
schema” that we automatically infer from the data set, so that users 
can more easily choose the right attributes for writing SQL queries.  
We can also build a browsing-based interface based on the hidden 
schema and let users browse the data set itself.     

Query Evaluation:  Wide, sparse tables pose challenges to 
query evaluation not found in queries over narrower, denser tables.  
For example, scans must process hundreds or thousands of 
attributes in addition to those specified in the query.  Furthermore, 
for SQL queries, scans seem to be the dominant query evaluation 
option because with thousands of attributes, unless one builds 
thousands of B-tree indexes, the probability of having an index for 
a query on a randomly chosen attribute is very low.  Fortunately, 
sparse data sets present new opportunities as well as new 
challenges, and we exploit these opportunities with two query 
evaluation techniques.  The first is building sparse B-tree indexes, 
which minimize the number of non-null values.  On a sparse data 
set, they incur much lower maintenance costs and storage 
overheads than their full index counterparts.  The second technique 
is building materialized views or covering indexes over subsets of 

attributes automatically detected by the system as correlated.  On a 
sparse data set, this technique achieves both horizontal and vertical 
partitions, so that a query that scans a partition benefits from 
processing many fewer rows and columns than scanning the base 
table.   

In brief, the contributions of this paper are as follows: 

• We discuss how storing a sparse data set in multiple 
tables can cause problems, and how using a single table 
can avoid these problems, without incurring the overheads 
of nulls if the underlying system uses the interpreted 
storage format.  (Section 2)  

• We show how well-studied techniques such as keyword 
search and schema matching can be exploited to assist in 
query construction over sparse data.  (Section 3) 

• We demonstrate that sparse B-tree indexes incur low 
storage and maintenance costs over sparse data sets.  
Therefore, we can efficiently build and maintain a large 
number of them on a wide, sparse table.  (Section 4) 

• We show how to exploit correlations of attributes by 
employing clustering algorithms to discover a “hidden 
schema,” which suggests useful configurations for views 
and indexes to expedite query evaluation, and provides a 
logical organization to assist users in query construction.  
(Section 5) 

 
Also, Section 6 presents experimental results; Section 7 discusses 
related work; Section 8 concludes the paper. 

Finally, we note that augmenting an RDBMS to better handle 
wide, sparse tables follows the current trend of shifting work from 
the users of the system to the system itself.  By recognizing and 
exploiting the unique properties of sparse data, we free users from 
the troublesome task of designing elaborate schemas, yet still allow 
them to conveniently enjoy the benefits provided by an RDBMS.   

2. A WIDE, SPARSE TABLE 

2.1 The Problems of Storing Sparse Data in 

Multiple Tables 

We begin with a brief diversion from our sparse data handling 
techniques to discuss why attempting to decompose a sparse data 
set into narrower, denser tables, even if users are willing to spend 
the effort, is not a panacea for sparse data management.  We also 
review the interpreted storage format, as it or some similar 
technique is necessary for the efficient storage of sparse data. 

As mentioned in the introduction, two characteristics 
distinguish sparse data sets from the conventional dense data sets: 
1) a sparse data set has a large number of attributes; and 2) most 
objects typically have non-null values for only a small number of 
attributes.  For example, Pyle described a brokerage firm that has 
nearly 700 attributes, half of which are null in 98% of the objects 
[17].  Agrawal cited an e-commerce marketplace that has nearly 
5000 attributes, most of which are null for most objects [3].  We 
also encountered an e-commerce data set that has over 2,000 
attributes, with most rows having non-null values for only about 5 
attributes [10].   

Designing a schema that partitions a data set with thousands of 
attributes into narrower, denser tables is laborious and 
troublesome.  More importantly, for tables to be dense, the 
distribution of the non-null values must conform, for the most part, 
to this multi-table schema.  In Section 5, we will see that 
sometimes we can indeed identify relatively dense partitions in a 



 

sparse data set.  However, when the non-null distribution is 
unknown or irregular, storing the data set in multiple tables can 
have the following problems:   

Significant sparseness:  The distribution of the non-null 
values can be so irregular that any multi-table schema with a 
reasonable number of tables would still contain significant 
sparseness (of course, we can always eliminate sparseness 
completely by storing each tuple in a separate table, but this option 
is clearly infeasible).  This problem can also occur when the non-
null distribution is unknown at schema design time.  In this case, it 
is difficult to determine a multi-table schema that is effective for 
reducing sparseness. 

Complications for queries and updates:  In a relational 
sparse data set, each object is represented as a tuple in a row, with 
its object identifier (oid) as a key.  When the attributes of the data 
set are partitioned into multiple tables, a tuple can have non-null 
values for attributes stored in multiple tables, and so becomes 
physically fragmented.   To reconstruct the tuple, a join on the 
tuple’s oid is required; however, the query writer must know and 
specify which tables need to be joined, which is a daunting task 
because tuples can be fragmented across different sets of tables. 

An alternative is to require each tuple to be stored in only one 
table.  One way to implement this requirement is to allow attributes 
to appear in multiple tables.  Although this approach avoids 
fragmentation, it can lead us back to sparse tables.  Furthermore, 
projection queries and updates on attributes that appear in multiple 
tables will need to name and access all those tables.   

Inflexibility for Evolving Schemas:  Many applications that 
generate sparse data allow attributes to be defined freely.  One 
example is crawling over a corpus of unstructured text documents 
to find potential attribute-value pairs.  In this scenario, a tuple 
represents a document, and its non-null attributes are the attribute-
value pairs that we discover in the document.  Unless we pre-
define a finite set of target attributes, we may encounter new 
attributes every time we process a document.  Another example is 
Condor [18], a distributed workload management system, in which 
users can define new attributes in addition to using existing ones, 
for any job they submit.   

Unless we know the future non-null data distribution a priori, 
there is no good way to integrate a set of new attributes to a multi-
table schema.  We can either add the new attributes to some 
existing tables, or store them in a new table.  However, both 
approaches can cause sparseness and complications for queries and 
updates.    

2.2 A Review of Interpreted Storage 

Storing a sparse data set in a wide table avoids the problems 
concerning tuple fragmentation and evolving schemas; however, 
this approach has been frowned upon because it causes a huge 
storage space blow-up by storing the null values.  Fortunately, 
recent work has shown that by using the interpreted storage format 
[7], which we briefly review in the following, we can avoid the 
storage overheads of the null values.   

Unlike the predominant positional storage, which allocates a 
pre-determined amount of space to all attributes in a horizontal 
table, the interpreted storage format, shown in Figure 1, avoids 
storing the null values.  To “interpret” a tuple of this format, the 
system uses a catalog that records for each attribute its name, id, 
type, and size.  A tuple in the interpreted format starts with a 
header, which contains fields such as relation-id, tuple-id, and 
record length; then, for each of its non-null attributes, the tuple 
stores the attribute’s identifier, length field (if the type is of 

variable length), and value.  Attributes that appear in the catalog, 
but not in the tuple, are implicitly null for that tuple.  For instance, 
the interpreted tuple in Figure 1 has non-null values for A1, A2, 
and A4 after the header.  This storage format is highly flexible for 
adding new attributes – we only need to update the system catalog, 
and the way we define tuples remains the same.   

Of course, merely storing the sparse data set in a wide table 
using interpreted storage does not solve the problems of query 
construction and evaluation.  In the rest of the paper, we turn our 
attention to those two problems. 

 

Figure 1.  Interpreted catalog and an interpreted record using this 
catalog. 

3.  QUERYING SPARSE DATA 

3.1  Keyword Search 

Writing ad hoc SQL queries over a sparse data set is challenging 
because there are so many attributes to choose from.  For example, 
suppose that some user wants to query the e-commerce data set 
described by Agrawal [3], which has over 5000 attributes.  One 
could try to apply the standard query-building approaches of 
displaying the schema on the user’s screen, or providing a drop-
down list from which the user can select the desirable attributes.  
However, with over 5000 attributes, these and similar approaches 
will not be effective. 

Recently, some researchers have investigated the use of 
keyword search as an alternative to query a structured database 
[12, 13, 14].  Keyword search is a natural solution for the “too 
many attributes” problem because users need not specify the 
attributes.  However, if the keywords appear in many attributes, 
and the users prefer the keywords to appear in only some specific 
attributes, this approach will include extraneous objects.  In this 
case, the answer set can have a low precision.  More formally, let 
QK = [x1, ..., xn] be a keyword query from a user.  We assume that 
there exists a list of attributes A = [a1, ..., an], in which ai can be 
equal to aj for i ≠ j, such that the SQL query 

 
QS: SELECT *  

FROM table_t 
WHERE a1.contains(x1) AND ... AND 
an.contains(xn) 

 
represents the ideal query for the user.  The answer set ZS of QS is 
then the set of relevant objects.  Let ZK be the answer set of QK.  
We define the precision of ZK to be the percentage of objects in ZK 

that is also in ZS, or |ZK∩ZS|/|ZK|*100. 



 

We analyze two real-world sparse data sets to try to answer the 
question: how often is low precision a problem for keyword search 
over real-world sparse data sets?  The first data set we use in our 
evaluation, CNET, is an e-commerce product catalog that 
consolidates product information from different vendors [10].  As a 
relational table, the data set has 2,984 attributes across a total of 
233,304 products.  The average number of attributes in each row is 
11 and the mode is 5.  The second data set, EBuild, is a home-
building product catalog.  It has 1,101 attributes, a total of 302,631 
objects, and a degree of sparseness similar to CNET.  Because we 
obtained similar results for the two data sets, in the following we 
will only discuss CNET due to lack of space.   

We ran our experiments as follows.  We ignored “dense” 
attributes (there are only 4 dense attributes in CNET).  After 
tokenizing all data values in the sparse attributes into terms, for 
each term, we recorded 1) the number of attributes that contain the 
term, and 2) the number of rows that contain the term.  We refer to 
these numbers as Attr-Num and Row-Num respectively.   

We plot the top 500 terms ranked by Attr-Num in Figure 2 and 
the top 500 terms ranked by Row-Num in Figure 3.  Along the X-
axis are the top 500 terms ranked by the Attr-Num or Row-Num 
values on the Y-axis.  We include only the top 500 terms because 
both distributions have a very long tail, so including all terms 
would heavily skew the plot to obscurity. 

Both distributions look Zipfian – a small number of terms 
appear in many attributes (or rows), but most terms appear in 
relatively few attributes (or rows).  Zipf’s Law describes many 
natural phenomena, the most famous one being the frequency of 
English words in a corpus.  Indeed, we observe  
that the term-frequency distribution in the data set is also Zipf-like.   

Table 1 shows the percentage breakdowns of all terms in 
CNET with respect to Attr-Num, Row-Num, and both at the same 
time.  We show the breakdowns with respect to both values across 
the first 5 rows that represent different ranges of Attr-Num, and 
across the 5 left-most columns that represent different ranges of 
Row-Num.  The last row and column show the percentage 
breakdowns of the Row-Num and Attr-Num distributions 
respectively.   

Table 1 reveals the heavy tails of the distributions.  Under Attr-
Num, we see that 85% of all terms appear in fewer than 6 
attributes, and only 5% appear in more than 15 attributes.  This 
result suggests that low precision is not an issue for most values in 
the table.  As for Row-Num, 72% of all terms appear in fewer than 
25 objects, and 13% appear in more than 150 rows, so that doing 
keyword search on even just one term would usually give us 
relatively few rows.  Also, the two distributions are positively 
correlated.  The terms that appear in more than 150 rows are the 
same ones that appear in more than 15 attributes.  The tails of the 
two distributions share many terms in common; 71% of terms 
appear in fewer than 6 attributes and 26 rows.   

To summarize, most terms appear in few attributes and in few 
rows.  Unless users query the small set of keywords that appear in 
the head of the distributions, the answer set will be surprisingly 
focused.  If the query contains multiple keywords, this pattern 
would become even more extreme because of the multiplicative 
selectivity of conjunction.   

But what do these results say about keyword search over 
sparse data in general?  We note that most keyword queries over 
the sparse data sets we studied are focused because (a) the universe 
of values appearing in the data sets roughly follow a Zipf-like 
distribution, and (b) the rows in a sparse data set define only a few 
non-null values (Because most rows in a sparse data set define few 

attributes, the values that appear in few objects most likely also 
appear in few attributes, which explains the overlap of the tails of 
the two distributions).  Property (b) is a property of all sparse data 
sets (by definition), so we will see the same focused results from 
keyword queries for any data set that follows a Zipf-like 
distribution.  We consider this observation encouraging because 
many data sets follow Zipf-like term distributions.  
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Figure 2.  Term distribution with respect to Attr-Num. 
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Figure 3.  Term distribution with respect to Row-Num. 

 

CNET 
1 

only 
2-25 26-50 51-150 >150 

Attr-
Num 

>15 0% 0% 0% 0% 5% 5% 

11 - 15 0% 0% 0% 1% 2% 3% 

6 - 10 0% 1% 1% 2% 3% 7% 

2 - 5 1% 18% 4% 4% 2% 29% 

1 only 21% 31% 2% 1% 1% 56% 

Row-
Num 

22% 50% 7% 8% 13% 100% 

Table 1.  Percentage breakdowns of term distributions with respect 
to Attr-Num, Row-Num, and both at the same time. 

 

3.2 Fuzzy Attributes for Keyword Search and SQL 

Besides giving low-precision results in the hopefully rare cases 
when keywords appear in many attributes, keyword search is 
inapplicable when users need more-advanced queries, such as 
range queries and aggregates.  In both situations, although users 
may not know the exact attribute names they should use, they may 



 

have some idea about them.  Therefore, allowing users to specify 
“fuzzy” attributes in keyword and SQL queries can be very useful.  
That is, users make guesses about the names of the attributes they 
want, and the system tries to find attributes in the schema that 
match the guesses with high similarity scores.  This task can be 
done by using name-based schema-matching techniques (e.g., 
consulting a domain-specific thesaurus, performing standard 
stemming and transforming operations, etc.), which have been 
shown to be effective in the data integration domain [18] (and is 
often regarded as the “easy part” of data integration).   

For a SQL query, once we have identified attributes in the 
database that match the fuzzy attributes, we can replace the fuzzy 
attributes with these “real” attributes and execute the revised 
query.  This approach, which we refer to as F_SQL, presents a 
problem when it returns multiple candidate attributes for a fuzzy 
attribute.  Based on the similarity scores of each candidate with 
respect to the corresponding fuzzy attribute, we can revise the 
query in two ways.  One possibility is to pick the candidate with 
the highest similarity score for the fuzzy attribute.  This approach 
is simple, but if the candidate turns out to be wrong, we may miss 
some tuples that we should have returned.  Alternatively, we can 
use more than one candidate and get several queries, whose results 
can then be merged to get the final result.  For example, consider 
the query “A1 = V1 and A2 = V2,” in which A1 and A2 are fuzzy 
attributes that match the two sets of “real” attributes {C11} and 
{C21, C22} respectively.  We can rewrite the query as: 

 
“A1 = C11 AND A2 = V21 OR A1 = C11 AND A2 = V22” 
 
This approach has a greater chance of getting the right tuples; 

however, the query rewriting quickly gets unwieldy when multiple 
fuzzy attributes have multiple candidates, and the final result may 
once again be a superset of the result that the users intended.  
Similar approaches that seek a compromise between these two 
extremes also face problems with either low precision or low 
recall. 

For keyword search with fuzzy attributes (in the form of “f_attr 
= value” where f_attr is a fuzzy attribute), we can execute the 
query as follows: 

1) Run keyword search on the data value and obtain a set of 
objects ZK.   

2) Identify a set of candidate attributes, AC, by performing 
name matching between f_attr and the attributes in ZK that 
contain the value.   

3) Return an object in ZK only if the object contains the 
value in an attribute in AC. 

 
Compared to F_SQL, this approach, which we call F_KS, has 

the advantage that instead of matching with the set of all attributes, 
we match the fuzzy attributes with only the set of attributes that 
contain the keywords (Step 2).  Compared to pure keyword search, 
F_KS could possibly achieve higher precision because it applies 
the attribute constraint to the set of objects obtained by keyword 
search (Step 3). 

None of the three approaches is always better than the others.  
F_SQL could result in extra work if the fuzzy attributes match 
many attributes, few of which contain the data values.  F_KS 
avoids that problem, but does not apply for range queries.  Also, 
one can imagine queries for which F_SQL is highly effective (e.g., 
only a single attribute matches the user’s fuzzy attribute) and for 
which F_KS is inefficient because of an expensive and imprecise 

keyword query in Step 1. Exploring the tradeoffs between these 
approaches is a promising area for future research. 

The utility of fuzzy attributes depends on the users’ knowledge 
of the data set.  In Section 5.4, we describe a complementary 
query-building approach to help users who cannot exploit fuzzy 
attributes.  Specifically, we use a hidden schema that we 
automatically infer from the data set as a logical organization of 
the attributes, which users can browse through and select the 
attributes they need for writing structured queries.   

4.  SPARSE B-TREE INDEXES 

4.1  Motivation 

When the entire sparse data set is stored in a single table, it is 
crucial that we minimize the need to scan the whole table.  A 
common approach to avoiding table scans is indexing.  Although 
inverted indexes avoid table scans for keyword queries, they 
cannot be used for range queries, so B-tree indexes or their 
equivalent must be used. Unfortunately, building and maintaining 
hundreds of B-tree indexes on a table is generally considered 
infeasible because of the high storage and update costs that they 
incur.  In this section, we show that when the data set is sparse, we 
can overcome this problem by using sparse B-tree indexes. 

A sparse index on an attribute maps only the non-null values to 
the object identifiers (oids).  Therefore, on a sparse data set, it 
incurs much lower storage overhead and maintenance cost than its 
full counterpart, which indexes both null and non-null values.  
Specifically, the size of a sparse index on an attribute is 
proportional not to the number of rows in the table, but to the 
number of rows that have a non-null value for that attribute.  
Moreover, for each tuple insertion or deletion, we only need to 
update the indexes on the attributes that are non-null in the tuple.  
In other words, a table may have a large number of sparse indexes, 
but if a tuple that is being inserted or deleted contains few non-null 
attributes (which is the norm in a sparse data set), only those few 
indexes will be updated.   

Sparse indexes are a special case of partial indexes proposed 
by Stonebreaker [21].  A partial index contains only a subset of the 
tuples in a table.  To define this subset, it uses a conditional 
expression called the predicate of the index.  Only tuples that are 
evaluated true in this predicate are included in the index.  For 
instance, we can define a sparse index on an attribute A in a table 
H in terms of a partial index as follows: 

 
CREATE INDEX A_sparse_index ON H(A) 
WHERE A is not NULL 
 
Although feasible, using generic partial indexes to implement 

sparse indexes is not the best solution, especially if we want to 
build many sparse indexes.  The reason is that partial indexes 
require predicate checks during index maintenance and query 
evaluation.  When a tuple is inserted or deleted, the system must 
evaluate the predicate of each index on the table to determine if the 
index needs to be updated – a table with hundreds of partial 
indexes will have hundreds of predicate evaluations for each tuple 
insertion or deletion.  As for query evaluation, because partial 
index supports arbitrary predicates, the query optimizer needs to 
check if the index is applicable, e.g., a partial index containing 
only tuples that satisfy the predicate “Color = red” cannot be used 
for the query “Color = blue.”  Sparse indexes avoid these 
overheads because they consider the specific predicate of whether 



 

an attribute is non-null.  A lookup of the non-null attributes of a 
tuple would determine which indexes need maintenance.  Also, 
sparse indexes are applicable for queries with any non-null 
predicates.   

Finally, with the ability to build sparse indexes over a large 
number of attributes, we can consider building multi-column 
covering indexes, which could be useful for vertically partitioning 
the data set.  The challenge is to determine which attributes should 
be grouped together in these indexes.  We address this problem in 
Section 5.   

4.2 Bulk-loading Sparse Indexes 

Many database systems support index construction via bulk-
loading, a single operation that scans the table to retrieve the index 
keys, sorts the index entries (with external merge-sort), and builds 
a B-tree over them.  When multiple non-clustered indexes are to be 
built, these systems employ bulk-loading for each index in 
succession; in other words, the table is scanned once for each index 

construction.  Although the operations are done offline, this scan-

per-index approach is undesirable when we want to build 
hundreds of indexes on a table.   

We propose to improve the efficiency of large-scale index 

construction by using a scan-per-group approach, which scans the 
table once per group of m indexes.  Shown in Figure 4, our 
algorithm for bulk-loading divides a memory buffer pool of size B 

into m equal sections of B/m buffer pages (β1 to βm).  In the 

table scanning phase, the algorithm retrieves the index keys from 

each tuple and stores the key-oid pairs in the corresponding βi.  

As βi becomes full, its content is written to a file on disk.  In 
the index building phase, for each index, the algorithm 
performs external merge-sort on the keys from the file of key-
oid pairs, then builds the internal nodes of the B-tree.   

Although the algorithm shown here is for creating sparse 
indexes, it will create full indexes if we remove the requirement 
that an attribute is non-null (Line 1).  In the following, we analyze 
the cost difference in building m indexes between scan-per-index 
and scan-per-group, for both full and sparse indexes.  To simplify 
our comparison, we show only the two aspects of the bulk-loading 
operation that make a difference: the I/O cost and the fetch cost, 
which is the cost of retrieving the index keys.  We ignore the costs 
of doing external merge-sort and building the internal nodes of the 
B-trees because they are the same in both approaches.   

For scan-per-index, we assume that a portion of the table T is 
cached in the buffer pool after building an index.  Let BP be the 
number of pages of this portion, ||T|| be the number of pages in T, 
and IO be the cost of sequentially reading a page.  The I/O cost of 
scan-per-index is: 

 
||T||*IO  + (||T|| - BP)*IO*(m-1)     (Eq. 1) 

 
In comparison, scan-per-group scans the table once, and writes 

and reads each index entry once (Lines 2, 3, and 4).  Let ||I|| be the 
number of pages of an index I.  We make the simplifying 
assumption that ||I|| is the same for each index and get the 
following I/O cost for scan-per-group: 

 
||T||*IO  + 2*||I||*IO*m        (Eq. 2) 
 
To estimate the fetch cost, let |T| be the number of index 

entries in T, and FETCH be the constant cost of retrieving an index 
key from T.  For scan-per-index, the fetch cost is: 

Scan-per-group Approach for Bulk-loading 

INPUT:  Table T(c1, ..., cn) 
              Index definitions IDef1, ..., IDefm 

              Buffer of size B divided evenly into β1, ..., βm 
OUTPUT:  Indexes I1, ..., Im 

Algorithm: 
// Table scanning phase 
for each tuple (t1, ..., tn) in T do 

for each IDefi do 
if ti is not null then                                           // Line 1 

INSERT (ti, oid) into βi 

if βi is full then  

WRITE tuples in βi to file Fi                      // Line 2 
end if 

end if 
end for 

end for 

for each βi do 
WRITE remaining tuples to Fi                              // Line 3 

end for 
// Index building phase 
for each IDefi do 

READ Fi to B pages of buffer pool                       // Line 4 
EXTERNAL MERGE-SORT of Fi                   
BUILD B-tree Ii over Fi 

end for 

Figure 4.  Creating m sparse indexes per table scan. 

 
|T|*FETCH*m          (Eq. 3) 
 
Scan-per-group retrieves only non-null index keys.  Therefore, 

when a tuple has on average c non-null attributes, the fetch cost for 
scan-per-group is:  

 
|T|*FETCH*c          (Eq. 4) 

  
For full indexes, c is the same as m, so the difference in fetch 

cost is zero.  We get the following difference in I/O cost between 
scan-per-index and scan-per-group by subtracting Eq. 2 from Eq. 
1: 

 
(||T|| - BP)*IO*(m-1) – 2*||I||*IO*m    (Eq. 5) 
 
A negative difference means that scan-per-index is better, 

whereas a positive difference means that scan-per-group is better.  
Scan-per-group loses its edge as more of T fits in the buffer pool.  
When T fits completely in the buffer pool (i.e., ||T|| = BP), scan-
per-group is never better than scan-per-index. 

Although Eq. 5 also describes the I/O cost difference for both 
full and sparse indexes, the difference is much more significant for 
sparse indexes because ||I|| is much smaller without the null values.  

At the extreme, when βi is large enough to hold all entries of Ii, the 
algorithm does not have to flush the index entries to disk at all.  In 
addition, scan-per-group incurs a lower fetch cost for sparse 
indexes than scan-per-index: 

 
|T|*FETCH*(m – c)        (Eq. 6) 
 
The difference increases when we are building more indexes (a 

larger m).  Because of this and the I/O cost difference, scan-per-
group is much more efficient than scan-per-index in creating many 
sparse indexes.  We present experiments on these tradeoffs in 
Section 6. 



 

5. HIDDEN SCHEMAS 

5.1 Defining “Good” Partitions 

Besides maximizing index coverage, another approach to avoid 
scanning the entire sparse table is to vertically partition the data set 
with materialized views or covering (sparse) indexes.  Using a 
vertical partition is more efficient than scanning the base table 
because there are fewer columns to process.  This advantage is 
huge for tables with many attributes, especially positional storage 
is used.  Interestingly, vertically partitioning a sparse data set also 
achieves horizontal partitioning (as all-null rows are omitted), so 
the vertical partitions actually have both fewer rows and columns 
than the base table.   

 

 

Figure 5.  The best-case partition has no null values, whereas in the 
worst-case partition no two columns are non-null for the same row. 

 
The challenge for vertical partitioning is to determine good 

partitions of attributes.  This task is essentially the same as 
designing a good schema for the multi-table approach, except that 
in our approach, we materialize the partitions as views or indexes 
on top of the base table.  Therefore, their objective is the same – 
maximizing the scan benefit of the partitions (or tables) while 
minimizing their maintenance costs.  We list the following 
desiderata for vertical partitions: 

• A reasonable number of partitions (e.g., getting one 
partition for each tuple is useless). 

• Partitions contain minimal null values. 

• Each base-table tuple is preferably stored in its entirety in 
one partition.   

 
Given a sparse data set, it is unclear if we can obtain partitions 

with these qualities, because the tuples can have non-null values 
for any combination of attributes.  However, our desiderata suggest 
that one way to approximate good partitions is to try to group 
together co-occurring attributes, or attributes that have non-null 
values in the same rows.  Intuitively, a partition comprising co-
occurring attributes will be dense.   

Identifying groups of co-occurring attributes in a sparse data 
set, however, can be difficult for a schema designer because the 
attributes have varying degrees of co-occurrence, and co-occurring 
attributes may not appear adjacent in the wide schema.  Therefore, 
our goal is to automatically discover these groups of co-occurring 
attributes, which from now on we collectively refer to as a hidden 

schema.  In Section 5.2, we describe how we infer a hidden 
schema by clustering attributes based on co-occurrence.  In 
Sections 5.3, we discuss our approach of materializing partitions 
on top of the base table.  In Section 5.4, we discuss the benefits of 
a hidden schema for query construction.   

5.2 Inferring Hidden Schema via Attribute 

Clustering 

We consider vertical partitioning as a k-nearest-neighbor (k-NN) 
partitioning of the attributes based on co-occurrence.  Given n 
attributes A1, ..., An and a target of k partitions, we want to find k 
clusters of co-occurring attributes.  Our approach is as follows.   

We model the relationship between attributes in a sparse data 
set as a connected weighted graph.  In this graph, each node 
represents an attribute, and every pair of nodes is connected by a 
weighted edge, whose weight represents the strength of co-
occurrence between the two attributes.  We use the Jaccard 
coefficient to define this weight.  Given two attributes AX and AY, 
let X be the set of rows for which AX is non-null, and let Y be 
defined analogously.  The Jaccard coefficient for AX and AY is 
then defined as: 

 

Jaccard(AX, AY) = |X∩Y|/|X∪Y|   
 
In other words, the numerator is the number of rows that have 

non-null values for both AX and AY, whereas the denominator is 
the number of rows that have non-null values for AX, AY, or both.  
The value of this coefficient ranges from zero to one.  It is zero 
when no rows have non-null values for both AX and AY, and one 
when AX and AY are either both null or both non-null for all tuples.   

After creating an adjacency matrix on the attributes with the 
weights as the values, we use a k-NN clustering algorithm 
implemented in CLUTO [9] to find a hidden schema.  We consider 
disjoint partitioning schemes in which each attribute is assigned to 
only one partition.   

As co-occurrence is the main criterion for clustering, the 
algorithm’s objective is to minimize sparseness.  To evaluate the 
quality of a partition with respect to sparseness, we define 
NullRatio, which compares the actual number of null values in the 
partition to the largest possible number of null values.  For a 
partition P that has c attributes and a total of m non-null values in r 
rows, its NullRatio is defined as: 

 
NullRatio(P) = (c*r – m)/(c-1)*m 
 
The numerator is the number of null values in the partition, 

whereas the denominator is the highest possible number of null 
values in a partition with c attributes and m total non-null values.  
This worst-case scenario occurs when all the attributes are disjoint, 
meaning that no two attributes have non-null values in the same 
row. The NullRatio can range from zero, when the partition has no 
null values, to one, when the partition has the maximum number of 
null values.  Figure 5 shows an example of best-case and worst-
case partitions.  In Section 6, we report that our approach finds 
clear clusters of attributes with low NullRatio from our sample 
data sets; moreover, the partitions make semantic sense. 

Finally, we note that although our current clustering approach 
tries to minimize sparseness in the hidden schema, it has no 
constraints on the total number of partitions or on the percentage of 
fragmented tuples per partition.  An interesting direction for future 
work is to extend the clustering algorithm to support these 
constraints.   

5.3 Hidden Schema for Query Evaluation 

Once we obtain a hidden schema, we can use it to build either 
materialized views or covering indexes on top of the base table.  

Best-case 

partition 

 

Worst-case 

partition 

 



 

The following is an example of defining a sparse view over a 
group of attributes An, ..., Am in a relation H: 
 

CREATE MATERIALIZED VIEW sparse_view ON 
H(oid, An, ..., Am) 
WHERE NOT (An is null AND ... AND Am is null) 
 
As the partitions are relatively dense and narrow, we may 

consider storing them with positional storage, rather than with 
interpreted storage that we suggest for the sparse table.  The reason 
is that although interpreted storage incurs no storage overheads 
over null values, it is less efficient than positional storage in 
retrieving values from the attributes.  Specifically, with interpreted 
storage, the system must “interpret” the attribute identities and 
their values for each tuple at query access time, whereas with 
positional storage, the position information of the attributes is pre-
compiled.  For dense partitions, the benefit of not storing null 
values becomes less relevant, while the performance gain in 
retrieving values from attributes becomes more desirable.   

One might ask whether our approach of storing a number of 
dense, narrow views over the data set is consistent with our 
comments earlier that partitioning a sparse data set into narrow, 
dense tables is not a good idea. The answer is yes, for several 
reasons. First, the partitions discussed here are discovered 
automatically, and used in queries automatically (standard view 
matching algorithms can be employed transparently to determine 
when a query can be evaluated from the view), without imposing 
any burden on the users.  Second, because the partitions are 
materialized views, there is always the option of referring to the 
base table if the optimizer decides that using the view is less 
efficient than using the base table for a given query.  Third, if after 
some number of future updates the views no longer match the 
hidden schema embedded in the current underlying data set, we 
can always drop the views, and create new ones as determined by 
the latest hidden schema. 

Another reasonable question is how expensive it is to build and 
maintain these materialized views.  For reasons similar to those 
that explain why sparse B-tree indexes are efficient over sparse 
data, storing and maintaining these views is far more efficient than 
it would be for dense data.  Regarding storage, the additional 
overhead of these views is approximately equal to that of the base 
table that uses interpreted storage.  To see this, note that except for 
the oids, each non-null value is stored in only one view because 
each attribute appears in only one view.  When the views are 
stored using interpreted storage, only the non-null values take 
space; when the views are stored using positional storage because 
they are dense, the null overhead is again small.  Regarding 
maintenance costs, consider a table with 100 attributes A1 to A100 
and we materialize ten projection views on it:  A1 to A10, A11 to 
A20, and so on.  If the table is sparse and the tuples usually have 
values for only one partition, each tuple insertion, deletion, or 
update on the sparse table will trigger two updates on average.  In 
comparison, if the table is dense in the same setting, each update 
will cause eleven updates – one to the sparse table, and one to each 
of the ten views.   

5.4 Using the Hidden Schema for Query 

Construction 

With a hidden schema, we can extend our effort in aiding users to 
query sparse data sets.  When facing a sparse data set, users are 
often overwhelmed not only because of the vast number of 
attributes, but also because the data set is unorganized.  The lack of 

logical organization leads to two problems:  1) It is difficult to 
make sense of a schema that has so many attributes, and 2) it is 
difficult to browse through the data.  A hidden schema can 
improve these problems by imposing order on chaos.  Specifically, 
we can build a directory of attributes from which users can choose 
the appropriate attributes for structured queries, or even build a 
browsing-based interface that lets users browse the data set itself as 
multiple dense “mini-tables.”   

In Section 3, we discussed pure keyword search, F_KS 
(keyword search with fuzzy attributes), and F_SQL (SQL with 
fuzzy attributes).  All these approaches satisfy users with different 
needs and knowledge about the data set.  Pure keyword search is 
for users who know about the data, but not the attributes.  F_KS is 
for users who have some idea about the attributes they want and do 
not need the expressive power of SQL.  F_SQL is for users who 
are somewhat familiar with their attributes and need to ask 
complex queries that cannot be expressed via keyword search.  
When these approaches are inapplicable, browsing-based 
approaches based on a hidden schema provide a helpful alternative, 
especially for users who know nothing about the schema, and for 
those who do not even have a specific query in mind. 

6. EXPERIMENTS 

6.1 Sparse Indexes 

We conducted our experiments with sparse indexes in PostgreSQL, 
which implements both full and partial B-tree indexes, and uses the 
scan-per-index approach for bulk-loading.  During bulk-loading, it 
packs the leaf pages to 90% capacity and the non-leaf pages to 
70% full.  We implemented the scan-per-group algorithm as 
described in Section 4.2, and set the buffer size B to 40 MB.  For 
partial indexes, PostgreSQL uses a heavy-weight predicate 
evaluation that makes several function calls.  Based on this 
implementation, we implemented sparse indexes by using a 
lighter-weight test that looks for non-null attributes in the inserted 
tuple.   

We used synthetic data so that we could control the parameters 
in the experiments.  We modeled the properties of the data after the 
CNET sparse data set.  The table had 250k rows and on average 5 
non-null values per row distributed over 640 varchar(16) attributes.  
We used the interpreted storage format to store the table in all but 
one experiment, in which we used positional storage.  The size of 
the table was 37.6MB and 391MB for interpreted and positional 
storage, respectively.  Each single-column full index was 4.34MB 
and each single-column sparse index was 88KB.  In other words, a 
sparse index was approximately 50 times smaller than a full index, 
and the amount of space that sparse indexes took to cover all 640 
attributes in the table was only enough for 13 full indexes. 

We compared scan-per-group with scan-per-index for bulk-
loading both full and sparse indexes.  Figure 6 shows the times of 
building different numbers of full indexes with both approaches on 
a table that fits in memory.  While scan-per-index increased 
linearly as the number of indexes increased, scan-per-group 
increased even more rapidly.  Recall from Section 4.2 that 
although scan-per-group scans the table only once, it incurs an 
overhead on buffering tuples to disk and this cost is proportional to 
the number of indexes (Eq. 2).  Therefore, when the base table fits 
in memory, scan-per-index’s advantage over scan-per-group 
increases as more indexes share the buffer pool in the scan-per-
group approach.   

 



 

 

Figure 6.  Bulk-loading full indexes when table fits in memory. 

 

 

Figure 7.  Bulk-loading full indexes when table does not fit in 
memory. 

 

 

Figure 8.  Bulk-loading sparse indexes when table fits in memory. 

 

 

Figure 9.  Inserting different number of  non-nulls into 80 indexes. 

 

 
Figure 10.  Inserting 5 non-nulls into table with varying numbers 
of full and sparse indexes. 

 
 
To observe the difference when the base table does not fit in 

memory, we experimented with the same data set in positional 
storage.  Figure 7 shows the comparison of building full indexes on 
this big table with the two approaches.  Scan-per-group always 
outperformed scan-per-index because scan-per-index had to scan 
what was not in the buffer many times, and the cost advantage 
increased as the number of indexes increased (Eq. 1).   

Figure 8 compares the performances of the two approaches in 
creating sparse indexes on the table using interpreted storage (so 
the table fits in memory).  It shows the same pattern as in Figure 7 
– scan-per-group was much better and the advantage increased 
with the number of indexes.  This experiment shows the cost 
savings in doing fewer scans as we batch indexes together.  Also, 
comparing Figures 6 and 8, we see that for the same set of 
attributes on the same table, the amount of time to build the sparse 
indexes was much less than that to build the full indexes.   

Next, we compared the maintenance costs of the two types of 
indexes.  The maintenance cost depends on the density of a row 
inserted into the table and the number of indexes affected by the 
insert.  To illustrate these factors, we built 80 indexes over the base 
table, then inserted rows with non-null values for different 
numbers of the indexed attributes.  Figure 9 shows that for full 
indexes, the insert costs were relatively constant because an update 
was required whether the value was null.  However, for sparse 
indexes, the update costs started low when a new tuple had few 
non-null values for the indexed attributes, and increased as more of 
the 80 indexed attributes were non-null.   

Finally, we compared the insert performance between a generic 
partial index and the more specialized sparse index.  We inserted a 
row with 5 values into a table with different numbers of indexes.  
Figure 10 demonstrates that the partial index had higher overheads 
associated with predicate evaluation – even when there were few 
inserts into the indexes, the predicates of all partial indexes had to 
be checked to see if an update was needed.  Toward the right end 
of the graph, we see that the partial indexes incurred more costs as 
the table had more indexes.  This result supports our claim that 
sparse indexes perform better than generic partial indexes and 
warrant a separate implementation.   

6.2 Hidden Schemas 

We begin by exploring whether the patterns of attribute co-
occurrence in our real-world data sets can really be exploited to 
find hidden schemas.  We performed experiments on both the 
CNET and the EBuild data sets.   

Figure 11 shows the adjacency matrix of the attributes of 
EBuild before applying the k-NN clustering algorithm, whereas 



 

Figure 12 shows the adjacency matrix of the same set of attributes 
after clustering the attributes by co-occurrence (with k = 13).  The 
lines dividing the matrices indicate the clusters of attributes.  We 
can observe the values of the Jaccard coefficient in gradation of 
intensity.  As the Jaccard coefficient goes to one, the color gets 
darker; as the coefficient goes to zero, the color approaches white.  
The clear pattern of blocks on the diagonal in Figure 12 means that 
we have found very strong clusters based on co-occurrence.   

Tables 2 and 3 list five groupings of attributes with high 
average Jaccard coefficients, for CNET (with k = 406) and EBuild 
(with k = 203), respectively.  These partitions have very low 
NullRatios.  Also, about 83% of all partitions from CNET, and 
about 88% of all partitions from Ebuild, have a NullRatio less than 
0.5.  The CNET and EBuild data set have 233,304 and 302,631 
rows respectively; in comparison, the sizes of the partitions in 
Tables 2 and 3 are much smaller. 

We also observed if the partitions in these hidden schemas 
make semantic sense.  Judging on semantic quality is highly 
subjective, but these partitions mostly make semantic sense to the 
authors.  The clusters in CNET are related to printers, projectors, 
hardware storage, cameras, and speakers.  The clusters in EBuild 
are related to toilets, vehicles, cabinets, whirlpools, and small 
refrigerators.   

We now turn to experiments that explore the impact of the 
structure of hidden schemas on scan times and maintenance 
overhead.  Recall that our goal is to form views by clustering co-
occurring attributes, and that these views will speed query 
evaluation even more than views defined over attributes that have 
no special co-occurrence pattern.  To test our claim, we created six 
synthetic data sets that had different values of NullRatio.  Each 
data set was stored in a base table that had 110 attributes of type 
varchar(16).  We created 11 materialized views, each with 10 
consecutive attributes, on the base table.  The data sets had 100k 
rows and each row had 10 non-null values.  To determine which 10 
attributes were non-null for a row, we first picked a view, then 
assigned non-null values to c’ random attributes that were in the 
view and 10-c’ attributes that were not.  The value of c’ was 0, 2, 
4, 8, and 10 for the six data sets.  The base table was stored with 
interpreted storage, whereas the views were stored with positional 
storage, which we considered to be the common approach because 
we expected the views to be relatively dense.  Figure 13 shows the 
actual scanning times for the views.  As expected, the view with a 
zero NullRatio had the best performance and the scanning time 
increased with increasing NullRatio.   

To observe how data distribution affects maintenance costs, we 
created single-attribute views and compared them with the 10-
attribute views.  In this experiment, we inserted tuples with 10 
non-null attributes that belonged to different number of views.  
Figure 14 shows the result.  The single-attribute views represent 
the worst-case scenario because inserting 10 non-null values 
always triggered 10 view updates.  For the 10-attribute views, the 
update costs were low when the non-null attributes belonged to 
few views, and increased when the attributes were in more views.  
The result shows that given a hidden schema, whether it incurs low 
maintenance costs depends on whether the data distribution of the 
new tuples conforms to the partitions of the hidden schema.  

We studied the scan performance of the views for EBuild.  We 
wanted to observe how the NullRatio of the actual views correlated 
with the percentage improvement of the actual views to the worst-
case views, which had no co-occurring attributes.  To obtain the 
worst-case views, we created a table with the same schema, 
projected the values of each attribute individually along with null 

 

Figure 11.  Adjacency matrix of attributes from EBuild before 
applying k-NN.   

 

Figure 12.  Adjacency matrix of attributes from EBuild after 
applying k-NN with k = 13. 

 
Row 
Count 

Average 
Jaccard 

Null 
Ratio 

Attributes in Cluster 

1423 0.944 0.007 printer output type, printer type, media 
feeder(s), media type, printer output ... 

346 0.932 0.015 audio output type, input device type, 
projector image brightness  ... 

3116 0.949 0.012 configuration device type, device type, 
hard drive size, storage controller type... 

442 0.984 0.002 camera flash type, connections type, 
lens systems type, still image format ... 

125 0.860 0.005 speaker form factor, speaker qty, 
speaker driver diameter, speaker type ... 

Table 2.  Five attribute groupings from k-NN for CNET with k = 
406. 

Row 
Count 

Average 
Jaccard 

Null 
Ratio 

Attributes in Cluster 

5894 0.874 0.060 bowl style, flushing system, gallons per 
flush, mounting type, rough-in ... 

2707 0.816 0.042 convenience features, gross weight, 
ground clearance, maximum payload, 
maximum torque, sound system ... 

10729 0.035 0.035 cabinet construction, door mount detail, 
door style, interior cabinet finish ... 

44112 0.105 0.105 outlet position, no. of jets, no. of pumps, 
package type, pump horsepower... 

320 0.075 0.075 bottle storage capacity, temperature 
range, storage capacity... 

Table 3.  Five attribute groupings form k-NN for Ebuild with k = 
203. 
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Figure 13.  Scan times for 10-attribute views with different 
NullRatios.    
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Figure 14.  Insert cost depends on how many views are affected. 

 

Figure 15.  Percentage speedup of clustered views to the worst-
case view for Ebuild data (k = 203). 

 
values for the rest of the attributes, and combined the result of 
each projection into one table.  For example, the following 
SQL statement creates a two-column worst-case view 
WorstCase over attributes A1 and A2 of table H: 

 
INSERT INTO WorstCase 
SELECT * FROM 
((SELECT oid, A1, NULL as A2 FROM H)  
UNION ALL 
(SELECT oid, NULL as A1, A2 FROM H)) 
 
The result in Figure 15 verifies our claim that views with lower 

NullRatio results in better performance.  Moreover, most points in 
the figure appeared in the upper left-hand corner, which means that 
the clusters found by the k-NN algorithm led to tightly-packed 
views.  Next, we compared the scanning times of the views to that 

of the base table for EBuild.  Scanning the base table that used 
interpreted storage took 15.247 second, whereas the largest view 
suggested by k-NN took 1.84 seconds, and a majority of the views 
took no more than 1 second.   

7. RELATED WORK 

In pioneering work on the sparse data problem, Agrawal et al. 
discussed using vertical tables as an alternative to horizontal tables 
(with positional storage) for handling sparse data [3]. More 
recently, comparing these approaches to using horizontal tables 
with interpreted storage, Beckmann et al. [6] concluded that 
interpreted storage outperformed both positionally stored 
horizontal and vertical tables.  The paper did not address schema 
design issues and the impact of indexes and views with respect to 
supporting efficient query construction and evaluation over sparse 
data sets.   

There is a large body of work on keyword search over 
relational [13] and XML data [12, 14].  For relational data, the 
focus is on efficiently joining tuples that have at least one 
keyword.  Our approach does not have this problem because the 
data set is stored in a single base table.  To improve the quality of 
keyword search, some previous work proposed to support metadata 
hints and exploit the hierarchical structure of XML documents 
[14], but the latter option is not as useful for the flat relational 
model.     

Agrawal et al. [4] noted that when a numeric data set has low-
reflectivity, correspondence between attribute names and values 
becomes less important for finding the right answer because a 
query with multiple numbers is likely to have few interpretations.  
For example, in a completely non-reflective, 2-dimensional data 
set, the query “1 and 3” can only refer to the point “x = 1 and y = 
3” for attributes x and y because its reflection, the point “x = 3 and 
y = 1,” does not exist.  Low-reflectivity and Zipf-like Row-Num 
and Attr-Num distributions have similar implications in that 
keyword search over data sets with these qualities tend to get high-
precision results.  However, reflectivity applies to only numeric 
values, whereas the term distributions apply to all terms.   

Oracle [5] implements indexes that do not store null values, but 
to our knowledge no published literature has evaluated the 
performance of these indexes on sparse data sets.   

Vertical partitioning is a well-studied optimization technique 
[16].  Our work is the first that considers it in the context of sparse 
data.  It is similar to the work by Edmonds et al. [11], which 
described a scalable algorithm to find empty rectangles in 2-
dimentional data sets; however, the latter was meant as a 
complementary data mining approach, rather than for query 
optimization.   

Column-based storage techniques, such as C-Store [20], take 
vertical partitioning to an extreme by projecting all individual 
columns from the tables.  Though not specific to sparse data, 
Abadi [1] discussed some schema-design constraints similar to the 
problems described in Section 2, and argued that these constraints 
are no longer valid if a column-oriented layout is used.  C-Store is 
optimized for read-mostly workloads, whereas our approach makes 
no assumption about workloads.   

8. CONCLUSION 

The management of sparse data sets is a challenge for relational 
database systems. To our knowledge, the research literature has not 
addressed this challenge beyond studying the problem of how to 
efficiently store such data sets.  In this paper, we argue that the 



 

initially unappealing approach of “stuffing” the sparse data set into 
a very wide, very sparse table, is actually an attractive alternative. 
The approach is initially unappealing for a variety of reasons, 
including the discouraging prospects of data storage explosion, 
lack of indexability, slow scans of tuples that are full of attributes 
not requested by the query, and the unfortunate prospect of asking 
users to select from thousands of attributes when building their 
queries.  Fortunately, the previously proposed interpreted storage 
format removes the storage explosion problem.  In this paper, we 
show that sparse indexes and materialized views over an 
automatically discovered hidden schema can solve the indexability 
and inefficient scan issues. 

The issue of helping users query this kind of data remains.  We 
have argued that a combination of keyword search, “fuzzy” SQL, 
and a directory of attributes based on the hidden schema can assist 
users in building their queries.  Of course, like all user interface 
work, the utility of our approach cannot be proven definitively 
without a user study involving real-world users, data, and 
workloads.  Even in the absence of such a study, we think there is 
reason to be optimistic, because our proposed approach exploits 
techniques that have been proven to work in other aspects of data 
management, such as data integration and information retrieval. 
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