
ar
X

iv
:c

s/
07

03
10

0v
1 

 [c
s.

D
C

]  
21

 M
ar

 2
00

7

Approximation Algorithms for Multiprocessor Scheduling
under Uncertainty

Guolong Lin
∗

Akamai Technologies
8 Cambridge Center, Cambridge, MA 02142

glin@akamai.com

Rajmohan Rajaraman
College of Computer and Information Science

Northeastern University, Boston MA 02115
rraj@ccs.neu.edu

ABSTRACT
Motivated by appli
ations in grid 
omputing and proje
t

management, we study multipro
essor s
heduling in s
enar-

ios where there is un
ertainty in the su

essful exe
ution

of jobs when assigned to pro
essors. We 
onsider the prob-

lem of multipro
essor s
heduling under un
ertainty, in whi
h

we are given n unit-time jobs and m ma
hines, a dire
ted

a
y
li
 graph C giving the dependen
ies among the jobs,

and for every job j and ma
hine i, the probability pij of the
su

essful 
ompletion of job j when s
heduled on ma
hine i
in any given parti
ular step. The goal of the problem is to

�nd a s
hedule that minimizes the expe
ted makespan, that

is, the expe
ted 
ompletion time of all the jobs.

The problem of multipro
essor s
heduling under un
er-

tainty was introdu
ed by Malewi
z and was shown to be

NP-hard even when all the jobs are independent. In this pa-

per, we present polynomial-time approximation algorithms

for the problem, for spe
ial 
ases of the dag C. We obtain

an O(log n)-approximation for the 
ase of independent jobs,

an O(logm log n log(n+m)/ log log(n+m))-approximation

when C is a 
olle
tion of disjoint 
hains, an O(logm log2 n)-
approximation when C is a 
olle
tion of dire
ted out- or

in-trees, and an O(logm log2 n log(n+m)/ log log(n+m))-
approximation when C is a dire
ted forest.

Categories and Subject Descriptors
F.2 [Theory of Computation℄: Analysis of Algorithms

General Terms
Algorithms, Theory

Keywords
Approximation Algorithms, Multipro
essor S
heduling

∗
Part of this work was done when the author was at North-

eastern University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

1. INTRODUCTION
We study the problem of multipro
essor s
heduling under

un
ertainty, whi
h was introdu
ed in [21℄ to study s
enarios

where there is un
ertainty in the su

essful 
ompletion of a

job when assigned to a server. One motivating appli
ation

is in grid 
omputing, where a large 
olle
tion of 
omputers,

often geographi
ally distributed,
ooperate to solve 
omplex


omputational tasks. To make better use of the distributed


omputers, a task is usually divided into smaller pie
es (or

jobs) and handed to di�erent 
omputers. For many appli
a-

tions, there 
ould be non-trivial dependen
ies among these

jobs. Due to the possible physi
al failures, or simply the dis-

tributed nature of the 
omputing environment, a ma
hine

may not su

essfully exe
ute the assigned job on time. In

this s
enario, a natural goal is to determine a s
hedule of as-

signing the given jobs to the 
omputers so that the expe
ted


ompletion time of the task is minimized.

A similar example, also dis
ussed in [21℄, arises while man-

aging a large proje
t in an organization. The proje
t may

be broken down into small jobs with dependen
ies among

them, i.e., a job may be exe
uted only after the su

essful


ompletion of another set of jobs. A group of workers are

assigned to this proje
t. Due to pra
ti
al reasons and dif-

ferent skills, a worker may not be able to �nish an assigned

job su

essfully on time. To de
rease the 
han
e of the po-

tential delay of some key jobs, the proje
t manager 
ould

(and would want to) assign several workers to these jobs at

the same time. Based on past experien
es and the workers'

skill levels, the proje
t manager 
an estimate the su

essful

probability of any parti
ular worker �nishing any parti
ular

job. The 
hallenge for the manager is to work out a strategy

(or s
hedule) of assigning the workers to the jobs so that the

expe
ted 
ompletion time of the whole proje
t is as small as

possible.

Motivated by the examples above, we study the problem

of multipro
essor s
heduling under un
ertainty, hen
eforth

referred to as SUU. We have a set of m ma
hines, a set of

n unit-time jobs, and a dire
ted a
y
li
 graph representing

pre
eden
e 
onstraints on the order of the exe
ution of the

jobs. We are also given, for every job j and ma
hine i, the
probability pij of the su

essful 
ompletion of job j when

s
heduled on ma
hine i in any given parti
ular step. To


ompensate for this un
ertainty, multiple ma
hines 
an be

assigned to one job at the same time. We fo
us on the

problem of 
omputing a s
hedule to minimize the expe
ted

time to 
omplete all the jobs, i.e., the expe
ted makespan.

1.1 Our results

http://arxiv.org/abs/cs/0703100v1


The multipro
essor s
heduling problem SUU is shown to

be NP-hard in [21℄ even when all jobs are independent. In

this paper, we present approximation algorithms for SUU,

for several spe
ial 
lasses of dependen
y graphs.

• We �rst 
onsider the 
ase when all the jobs are inde-

pendent and present an O(log n)-approximation algo-

rithm for the problem (�3).

A 
ru
ial 
omponent of our approa
h to the independent

jobs 
ase is the formulation of a sub-problem in whi
h we

aim to maximize the sum of su

ess probabilities for the

jobs. A similar strategy, re�ned to handle job dependen
ies,

allows us to atta
k the more general 
ase where the jobs are

not independent.

• When the pre
eden
e 
onstraints on the jobs form a


olle
tion of disjoint 
hains, we obtain an

O(logm log n log(n+m)
log log(n+m)

) approximation algorithm in

(�4.1). Our results rely on solving a (relaxed) linear

program and rounding the fra
tional solution using re-

sults from network �ow theory.

• Using the algorithm for disjoint 
hains and the 
hain

de
omposition te
hniques of [17℄, we obtain

O(logm log2 n) andO(logm log2 n log(n+m)
log log(n+m)

) approx-

imations for a 
olle
tion of in- or out-trees and dire
ted

forests, respe
tively (�4.2).

The s
hedules 
omputed by the algorithms for disjoint 
hains,

trees, and dire
ted forests, are all oblivious in the sense that

they spe
ify in advan
e the assignment of ma
hines to jobs

in ea
h time step, independent of the set of un�nished jobs

at that step. Oblivious s
hedules are formally de�ned in

�2, where we also present useful de�nitions and important

properties of s
hedules that are used in our main results.

To the best of our knowledge, our results are the �rst ap-

proximation algorithms for multipro
essor s
heduling under

un
ertainty problems.

1.2 Related work
The problem studied in our work was �rst de�ned in the

re
ent work by Malewi
z [21℄, largely motivated by the ap-

pli
ation of s
heduling 
omplex dags in grid 
omputing [9℄.

Malewi
z 
hara
terizes the 
omplexity of the problem in

terms of the number of the ma
hines and the width of the

dependen
y graph, whi
h is de�ned as the maximum num-

ber of independent jobs. He shows that when the number

of ma
hines and the width are both 
onstants, the optimal

regimen 
an be 
omputed in polynomial time using dynami


programming. However, if either parameter is unbounded,

the problem is NP-hard. Also, the problem 
an not be ap-

proximated within a fa
tor of 5/4 unless P=NP. Our work

extends that of Malewi
z by studying the approximability

of the problem when neither the width of the dag nor the

number of ma
hines is bounded.

The un
ertainty of the s
heduling problem we study 
omes

from the possible failure by a ma
hine assigned to a job, as

modeled by the pij 's. There have been di�erent models of

un
ertainty in the s
heduling literature. Most notable is the

model where ea
h task has a duration of random length and

may require di�erent amount of resour
es. For related work,

see [7, 6, 14, 29, 16, 11℄.

S
heduling in general has a ri
h history and a vast litera-

ture. There are many variants of s
heduling problems, de-

pending on various fa
tors. For example: Are the ma
hines

related? Is the exe
ution preemptive? Are there pre
eden
e


onstraints on the exe
ution of the jobs? Are there release

dates asso
iated with the jobs? What is the obje
tive fun
-

tion: makespan, weighted 
ompletion time, weighted �ow

time, et
.? See [13℄ for a survey and [12, 20, 28, 19, 4, 17℄

for representative work.

Two parti
ular variants of s
heduling 
losely related to

our work is job shop s
heduling [27℄ and the s
heduling of

unrelated ma
hines under pre
enden
e 
onstraints. In the

job shop s
heduling problem, we are given m ma
hines and

n jobs, ea
h job 
onsisting of a sequen
e of operations. Ea
h

operation must be pro
essed on a spe
i�ed ma
hine. A job

is exe
uted by pro
essing its operations a

ording to the as-

so
iated sequen
e. At most one job 
an be s
heduled on any

ma
hine at any time. The goal of the job shop s
heduling

problem is to �nd a s
hedule of the jobs on the ma
hines

that minimizes the maximum 
ompletion time. This prob-

lem is strongly NP-hard and widely studied [10, 18, 1℄. Also

extensively studied is the problem of preemptively s
hedul-

ing jobs with pre
eden
e 
onstraints on unrelated parallel

ma
hines [19, 27, 17℄, the pro
essing time of a job depends

on the ma
hine to whi
h it is assigned. One 
ommon 
har-

a
teristi
 of this problem and SUU is that in ea
h problem,

the 
apability of a ma
hine i to 
omplete a job j may vary

with both i and j. However, while the unrelated parallel

ma
hines problem models this nonuniformity using deter-

ministi
 pro
essing times that vary with i and j, in SUU the

jobs are all unit-size but may fail to 
omplete with probabil-

ities that vary with i and j. Owing to the un
ertainty in the


ompletion of jobs, SUU s
hedules appear to be more di�-


ult to spe
ify and analyze. One other te
hni
al di�eren
e

is that in SUU we allow multiple ma
hines to be assigned

to the same job at the same time, for the purpose of rais-

ing the probability of su

essfully 
ompleting the job. The

unrelated parallel ma
hines problem is typi
ally solved by a

redu
tion to instan
es of the job shop s
heduling problem.

Some of our SUU algorithms also in
lude similar redu
tions.

2. SCHEDULES, SUCCESS
PROBABILITIES, AND MASS

In this se
tion, we present formal de�nitions of a s
hedule

(� 2.1), introdu
e the notion of the mass of a job and prove

a key te
hni
al theorem about the a

umulation of mass

of a job within the expe
ted makespan of a given s
hedule

(� 2.2).

2.1 Schedules
In SUU, we are given a set J of n unit-step jobs, and a set

M of m ma
hines. There are pre
eden
e 
onstraints among

the jobs, whi
h form a dire
ted a
y
li
 graph (dag) C. A job

j is eligible for exe
ution at step t if all the jobs pre
eding j
a

ording to the pre
eden
e 
onstraints have been su

ess-

fully 
ompleted before t. For every job j and ma
hine i, we
are also given pij , whi
h is the probability that job j when
s
heduled on a ma
hine i will be su

essfully 
ompleted, in-

dependent of the out
ome of any other exe
ution. Multiple

ma
hines 
an be assigned to the same job at the same step.

Without loss of generality, we assume that for ea
h j, there
exists a ma
hine i su
h that pij > 0.

Definition 2.1. A s
hedule Σ of length T ∈ Z
+∪{∞}

is a 
olle
tion of fun
tions {fS,t :M → J ∪{⊥} |S ⊆ J, 1 ≤
t < T + 1}. An exe
ution of the s
hedule Σ means that,



at the start of ea
h step t, if S is the set of un�nished jobs:

ma
hine i is assigned to job fS,t(i) if fS,t(i) is eligible and

belongs to S; otherwise, i is idle for that step.

Our formal de�nition of a s
hedule spe
i�es assignment

fun
tions fS,t for in�nite t. This is be
ause there is a posi-

tive probability for a job j to be not 
ompleted yet by any

given step if ∀i, pij < 1. For the purposes of optimizing ex-

pe
ted makespan, however, we 
an restri
t our attention to

a restri
ted 
lass of s
hedules.

Definition 2.2 ([21℄). A regimen Σg is a s
hedule

in whi
h fS,t1(·) = fS,t2(·) for any S ⊆ J and t1 6= t2.
In other words, the assignment fun
tions fS,t's depend only

on the un�nished job set S. Thus, we 
an spe
ify Σg by a


omplete 
olle
tion of fun
tions {fS :M → S∪{⊥} |S ⊆ J}.

We denote the minimum expe
ted makespan for a given

SUU instan
e by TOPT

, whi
h is �nite be
ause for any job

j, there exists a ma
hine i, su
h that pij > 0. It is not hard
to see that there exists an optimal s
hedule whi
h is a reg-

imen be
ause at any step t, one 
an determine an optimal

assignment fun
tion, whi
h only depends on the subset of

un�nished jobs at step t and is independent of the past exe-


ution history or the value t. While a naive spe
i�
ation of

an arbitrary regimen uses 2n di�erent assignment fun
tions,


ertain regimens 
an be spe
i�ed su

in
tly, for instan
e,

by a polynomial-length fun
tion that takes S as input and

returns fS . In this paper, we also 
onsider a di�erent re-

stri
ted 
lass of s
hedules, 
alled oblivious s
hedules.

Definition 2.3. An oblivious s
hedule is a s
hedule

in whi
h every assignment fun
tion fS,t is independent of S,
i.e., for all t, S, S′

, fS,t(·) = fS′,t(·). Hen
e, the assignment

fun
tions at any step t 
an be spe
i�ed by a single fun
tion,

whi
h we denote by ft.

Oblivious s
hedules are appealing for two reasons. First,

at any step t, only one assignment fun
tion is needed, re-

gardless of the a
tual un�nished job set S o

urring at step

t. Re
all that there 
ould be many di�erent su
h S at a

given t be
ause of the exe
ution un
ertainty. The se
ond

bene�t is more te
hni
al: oblivious s
hedules allow us to

address the un
ertainty in the SUU problem by solving re-

lated deterministi
 optimization problems.

2.2 Success probabilities and mass
When a subset of ma
hines S ⊆M is assigned to j in any

time step, the probability that j is su

essfully 
ompleted is

1−
Q

i∈S
(1− pij). For ease of approximation, the following

Proposition is useful to us.

Proposition 2.1. Given x1, · · · , xk ∈ [0, 1], 1 − (1 −
x1) · · · (1−xk) ≤ x1+· · ·+xk. Furthermore, if x1+· · ·+xk ≤
1, then 1− (1− x1) · · · (1− xk) ≥ e

−1(x1 + · · ·+ xk).

Proof. The �rst assertion follows from the identity (1−
x1) · · · (1 − xk) ≥ 1 − (x1 + · · · + xk), whi
h 
an be proved

using a simple indu
tion argument. The base 
ase of k = 1
is trivial. Suppose the identity holds for k − 1. If x1 +
· · · + xk−1 > 1, then the identity holds for k; Otherwise,
a

ording to the indu
tion hypothesis,

(1− x1) · · · (1− xk−1)(1− xk)

≥ [1− (x1 + · · ·+ xk−1)](1− xk)

≥ 1− (x1 + · · ·+ xk).

For the se
ond assertion, noti
e that if 0 ≤ x ≤ 1, 1 − x ≤
e−x ≤ 1 − x

e
. Sin
e 1 − x ≤ e−x

, (1 − x1) · · · (1 − xk) ≤

e−x1 · · · e−xk
, we have

1− (1− x1) · · · (1− xk)

≥ 1− e−x1 · · · e−xk

= 1− e−(x1+···+xk)

≥
x1 + · · ·+ xk

e
,

where the last inequality follows be
ause e−x ≤ 1 − x
e
for

x ∈ [0, 1] and the assumption that x1 + · · ·+ xk ≤ 1.

Proposition 2.1 suggests that we 
an approximate the su
-


ess probability with a 
onvenient linear form.

Definition 2.4. For any s
hedule Σ, we de�ne the mass

of a job j at the end of step t to be the sum, over all time

t′ ∈ [1, t] and over every ma
hine i to whi
h j is assigned

at time t′, of pij. Thus, for an arbitrary s
hedule, the mass

of a job j at time t is a random variable. For an oblivious

s
hedule Σo, the mass of j at the end of any step t is simply

min{
X

1≤τ≤t

X

i:fτ (i)=j

pij , 1},

where fτ (·) is the assignment fun
tion of Σo at step τ . We

say that j a

umulates that mass by step t.

The following theorem is 
ru
ial for our approa
h to the

s
heduling problem. We emphasize that it holds for an arbi-

trary SUU instan
e. It is used in the proofs of Theorem 3.1

and Lemma 4.2.

Theorem 2.2. Let Σ be a s
hedule for an SUU instan
e,

whose expe
ted makespan is T . For any job j, in an ex-

e
ution of Σ for 2T steps, with probability at least 1/4, j
a

umulates a mass of at least 1/4.

Proof. Let A be the event that j is �nished within step

2T . Let St be the random variable denoting the 
olle
tion of

ma
hines assigned to job j at step t and P (St) =
P

i∈St
pij .

Let B be the event that

P

1≤t≤2T P (St) ≤ 1/4. What we

want to prove is Pr(Bc) ≥ 1/4. Observe that Pr(A) equals
Pr(A∩B)+Pr(A∩Bc), whi
h is at most Pr(A∩B)+Pr(Bc).
We estimate the value of Pr(A∩B) below. Observe that all

possible exe
utions of Σ on the jobs form an in�nite rooted

tree, in whi
h ea
h node represents an intermediate state

during an exe
ution (see Figure 1 for an illustration). Ea
h

node has an asso
iated set of jobs, representing the un�n-

ished jobs at that state. For a node N , let Jobs(N) be its

asso
iated set of un�nished jobs. Note that Jobs(R) for the
root node R at level 0 
onsists of the entire set of jobs. The

nodes at level k denote the states after k steps. From ea
h

node N at level k to ea
h node Q at level k + 1, we 
an


ompute the 
orresponding transition probability a

ording

to the assignment fun
tion f
Jobs(N),k+1.

Lemma 2.3. Consider a tree node N at level k, where

j ∈ Jobs(N). For 1 ≤ t ≤ k, let St be the ma
hine set

assigned to j during step t along the path leading to N from

R. Assume that

P

1≤t≤k
P (St) ≤ c, where c ≤ 1. And let

P (j,N) be the probability that j will be �nished by level (step)
2T following a tree path through N and

P

1≤t≤2T P (St) ≤ c.

Then P (j,N) ≤ c−
P

1≤t≤k P (St).



1,2,3


1,2
 1,3
 2,3


1


2


3


1,2,3


1,2,3


1,2
 2,3
 1,3
 1
 2
 3


1,2,3
 1,2
 2,3
 1,3
 1
 2
 3


t
=1


t
=3


t
=2


A
 Markov
  chain for a regimen.
 An infinite execution tree for a schedule.


0.1


0.3


0.1


0.3


Figure 1: An illustration of the s
hedule. For simpli
-

ity purpose, we only use 3 jobs. Ea
h node represents

an intermediate state, with its asso
iated set of un�n-

ished jobs appearing inside. The number 
lose to an

edge represents its transition probability. The left graph

is a Markov 
hain representation of a regimen. The right

graph is a rooted tree representation of the exe
ution of

a s
hedule. To avoid 
luttering, we only show the 
om-

plete transitions for nodes {1, 2} and {1} at step 2.

Proof of Lemma: We prove the lemma by ba
kward indu
-

tion on the level number k. Consider the base 
ase: N 's

level is 2T − 1. We only need to exe
ute the s
hedule for

one more step. Let S2T be the set of ma
hines assigned to

j during step 2T . If P (S2T ) > c −
P

1≤t≤2T−1 P (St), then

P (j,N) = 0. Otherwise, the probability that j is �nished

within this step is at most P (S2T ). In either 
ase, the 
laim

is true.

We now assume that the 
laim is true for any level k ≤
2T − 1, our aim is to prove that the 
laim is also true for

level k−1. Consider a tree node N at level k−1. Let Sk be

the set of ma
hines assigned to j during step k a

ording to

assignment fun
tion f
Jobs(N),k. A 
hild node of N at level k

either does not 
ontain j (j is �nished at step k) or 
ontains
j (j is not �nished at step k). Let the probabilities of the

two 
ases be P1 and 1 − P1, respe
tively. Denote all the


hildren nodes where j is still un�nished as L.
If P (Sk) > c−

P

1≤t≤k−1 P (St), then P (j,N) = 0, whi
h

is ≤ c−
P

1≤t≤m−1 P (St). Otherwise,

P (j,N) = P1 +
X

Q∈L

P (j,Q)

≤ P1 +
X

Q∈L

(c−
X

1≤t≤k

P (St))

= P1 + (1− P1)(c−
X

1≤t≤k

P (St))

≤ P1 + (c−
X

1≤t≤k

P (St))

≤ c−
X

1≤t≤k−1

Pr(St),

where the se
ond inequality follows from the indu
tion hy-

pothesis and the last inequality follows from the fa
t that

P1 ≤ P (Sk). This proves the indu
tion step and hen
e the

Lemma.

By invoking the lemma with c = 1/4, we obtain Pr(A ∩
B) = P (j, R) ≤ c = 1/4. Hen
e Pr(A) ≤ 1/4 + Pr(Bc).
And by Markov's inequality, Pr(A) ≥ 1/2. We 
on
lude

that Pr(Bc) ≥ 1/4, 
ompleting the proof.

3. INDEPENDENT JOBS

In this se
tion, we study a spe
ial 
ase of the s
hedul-

ing problem, where the jobs are independent. We refer to

this problem as SUU-I. To 
ompute a solution to SUU-I,

we �rst establish that there exists an oblivious s
hedule in

whi
h the total mass a

umulated by the jobs in O(TOPT)
steps is Ω(n). To �nd su
h a s
hedule, we formulate a sub-

problem for maximizing the total sum of masses and then

give polynomial-time algorithms to 
ompute an O(log n)-
approximate s
hedule and an O(log2 n)-approximate oblivi-

ous s
hedule for SUU-I. For oblivious s
hedules, we improve

the approximation fa
tor to O(log n · log(min{n,m})) when
we study the more general 
ase with 
hain-like pre
eden
e


onstraints in �4.1.

Theorem 3.1. If there exists a s
hedule Σ for SUU-I with

expe
ted makespan T , then there exists an oblivious s
hedule

of length 2T , in whi
h the total mass a

umulated by all jobs

is at least n/16.

Proof. Consider an exe
ution E of Σ for 2T steps. This

exe
ution yields naturally an oblivious s
hedule ΣE of length

2T , whose assignment fun
tions ft(·)'s are de�ned as follows:
ft(i) = j if ma
hine i is assigned to job j at step t in E.
Note that due to exe
ution un
ertainty, E, and hen
e ΣE

are both random variables. By Theorem 2.2, for any job

j, with probability at least 1/4, j a

umulates a mass of

at least 1/4 by step 2T in ΣE . Thus, the expe
ted mass

of j at step 2T in ΣE is at least 1/16. This implies that

the expe
ted total mass of all the jobs at step 2T in ΣE is

at least n/16. Therefore, there exists an oblivious s
hedule

in whi
h the total mass of the jobs at step 2T is at least

n/16.

3.1 An O(log n)-approximate schedule for SUU-I

Motivated by Theorem 3.1, we formulate subproblemMax-

SumMass for maximizing the sum of masses. In MaxSum-

Mass, we are given a set J of n independent, unit-step jobs,

a set M of m ma
hines, and the probabilities pij , and the

goal is to �nd an assignment f : M → J ∪ {⊥} for a sin-

gle step that maximizes the sum of masses over the jobs in

the step. In Figure 2, we present a 1/3-approximation algo-

rithmMSM-ALG for MaxSumMass (whi
h 
an be shown to

be NP-hard), and our approximation algorithm for SUU-I,

whi
h simply exe
utes, in every step, MSM-ALG on the

un�nished jobs.

Theorem 3.2. MSM-ALG 
omputes a 1/3-approximate

solution to Problem MaxSumMass.

Proof. Consider a bi-partite graph, where one side of the

graph lie the nodes for jobs J and the other side lie the nodes

for ma
hines M . There is an edge (i, j) between ma
hine i
and job j for any pij > 0. MSM-ALG 
an be viewed as

pi
king and orienting the edges. Let Opt = {(i, j)} be the


olle
tion of edges of pi
ked by the optimum assignment f∗
.

Let Sol be the solution 
omputed by MSM-ALG. We use

a 
harging argument below. Consider any edge (i, j) ∈ Opt.

1. (i, j) ∈ Sol, 
harge pij to itself.

2. (i, j) /∈ Sol:

(a) (i, j) is not added be
ause in step 2, f(i) 6= nil.
Let j′ = f(i). Charge pij to pij′ where (i, j′) ∈
Sol. Noti
e that pij ≤ pij′ , and pij′ will be



AlgorithmMSM-ALG

INPUT: Jobs J , ma
hines M , pij 's.

• Set f(i) to nil, i ∈M .

• For ea
h pij in nonin
reasing order: If f(i) is nil and

P

x:f(x)=j pxj + pij ≤ 1, assign i to j, i.e., f(i)← j.

• For every unused ma
hine i, f(i)←⊥; output f .

Algorithm SUU-I-ALG

INPUT: Jobs J , ma
hines M , pij 's.

• Let St denote the set of un�nished jobs at the start of

step t

• In ea
h step t, s
hedule a

ording to the assignment de-

termined by MSM-ALG applied to St and all ma
hines.

Figure 2: An approximation algorithm for s
heduling independent jobs.


harged at most on
e due to this situation be-


ause ea
h ma
hine i in Opt is used at most on
e.

(b) (i, j) is not added be
ause in step 2, f(i) = nil
yet

P

x:f(x)=j
pxj + pij > 1. Sin
e pij 's are pro-


essed in de
reasing order, we 
on
lude that in

Sol,

P

x:f(x)=j
pxj ≥ 1/2. Charge pij to

2
P

x:f(x)=j
pxj .

Observe that one 
opy of Sol is su�
ient to 
over the 
harges

of types 1 and 2(a). Two 
opies of Sol are su�
ient to 
over

the 
harges of type 2(b) be
ause, by de�nition, the mass of

any job is at most 1 in any assignment.

We 
on
lude that MSM-ALG 
omputes a solution with

an approximation fa
tor 1/3.

Theorem 3.3. Algorithm SUU-I-ALG is an O(log n)-
approximation algorithm for SUU-I.

Proof. Let St denote the set of un�nished jobs at the

start of step t. Then, by Theorem 3.1, there exists an obliv-

ious s
hedule of length 2TOPT

starting from step t, in whi
h

total mass of all jobs in St is at least |St|/16. By averaging

over the 2TOPT

time steps of this s
hedule, there exists an

assignment of jobs to ma
hines in step t su
h that the total

mass of the jobs in St in step t is at least |St|/(32T
OPT).

By Theorem 3.2, in step t of SUU-I-ALG, the total mass

of the jobs a

umulated in step t is at least |St|/(96T
OPT).

By Proposition 2.1, it follows that the expe
ted number of

jobs that 
omplete in step t is at least |St|/(96eT
OPT).

We thus have a sequen
e of random variables St whi
h sat-

isfy the property E[|St+1| |St] = |St|(1− 1/(96eTOPT)). By
straightforward Cherno� bound arguments [3, 15℄, we obtain

that with high probability, St is empty within O(TOPT log n)
steps.

3.2 An approximate oblivious schedule for SUU-I

The s
hedule 
omputed by SUU-I-ALG is adaptive in

the sense that the assignment fun
tion for ea
h step is de-

pendent on the set of un�nished jobs at the start of the

step. Using an extension of MSM-ALG, we develop in this

se
tion a polynomial-time 
ombinatorial algorithm to 
om-

pute an oblivious s
hedule with expe
ted makespan within

an O(log2 n) of the optimal. In �4.1, we improve this bound

further to O(log n · log(min{n,m})) using an LP-based al-

gorithm.

A

ording to Theorem 3.1, there exists an oblivious s
hed-

ule of length 2TOPT

, in whi
h total mass of all jobs is at

least n/16. Intuitively, if one 
omputes an oblivous s
hed-

ule Σ1 of length 2TOPT

with the aim of maximizing the

total sum of masses over the jobs, there should be many

jobs a

umulating 
onstant masses in Σ1. One 
an then re-

move those jobs and 
ompute a se
ond oblivious s
hedule

Σ2 of length 2TOPT

to maximize the total sum of masses for

the remaining jobs, to remove some additional jobs whi
h

have a

umulated 
onstant masses. Sin
e ea
h 
omputation

of the oblivious s
hedule removes many jobs, this pro
ess

should terminate qui
kly. By 
on
atenating the Σ1,Σ2, . . .
together, one obtains an oblivious s
hedule Σ in whi
h every

job a

umulates 
onstant mass.

By Theorem 3.2, we have a 1/3 approximation algorithm

for ProblemMaxSumMass. However,MaxSumMass only 
on-

siders oblivious s
hedules of length 1, i.e., ea
h ma
hine is

assigned to at most one job. What we need is a pro
edure of

�nding an oblivous s
hedule of length 2TOPT

, whi
h maxi-

mizes the sum of masses over jobs. It turns out that one 
an

extend MSM-ALG easily to take into a

ount the s
hedule

length, whi
h 
an be arbitrary, and still obtain the same

aproximation fa
tor of 1/3. We now formalize our dis
us-

sion.

Problem (MaxSumMass-Ext): We are given a set J of

n independent, unit-step jobs and a set M of m ma
hines.

Let pij denote the probability that job j is su

essfully 
om-

pleted if assigned to ma
hine i. We are also given a param-

eter t ∈ Z
+
. The goal of the problem is to �nd an oblivious

s
hedule Σo of length t su
h that the total sum of masses

a

umulated by the jobs by step t is maximized.

We show below Algorithm MSM-E-ALG, whi
h outputs

an oblivious s
hedule Σo of length t ∈ Z
+

that is a 1/3
approximate solution to Problem MaxSumMass-Ext. Algo-

rithmMSM-E-ALG is a simple modi�
ation fromMSM-ALG

as follows. Sin
e the s
hedule is of length t, ea
h ma
hine


an be assigned t times. We maintain a remaining 
apa
-

ity parameter for ea
h ma
hine, ti, initialized to the value

t, to keep tra
k of how many steps ma
hine i is still avail-
able to be assigned. We also use xij to keep tra
k of how

many steps ma
hines i is assigned to job j. In Step 2(a)

of MSM-E-ALG, as long as ti is positive, assign i to j
for as many steps as ne
essary. In Step 2(b), we update

ti a

ordingly. In Step 3, we output an oblivious s
hedule

Σo = {fτ (·) : 1 ≤ τ ≤ t}, whi
h 
an be spe
i�ed by xij 's as

follows. Let j1, . . . , jn be an ordering of the jobs. fτ (i) = jk
for

P

1≤l<k
xijl + 1 ≤ τ ≤

P

1≤l≤k
xijl and 1 ≤ k ≤ n.

Observe that the running time of MSM-E-ALG is inde-

pendent of the value t be
ause ea
h pij , hen
e ea
h pair

(i, j), is pro
essed exa
tly on
e in Step 2. It is not hard

to see that MSM-E-ALG outputs a 1/3 approximate solu-

tion to Problem MaxSumMass-Ext be
ause similar analysis

for MSM-ALG from Theorem 3.2 
an be applied.

Lemma 3.4. MSM-E-ALG 
omputes a solution to Prob-

lem MaxSumMass-Ext with an approximation fa
tor 1/3.

We now present an approximation algorithm SUU-I-OBL

for Problem SUU-I.

A few 
omments on SUU-I-OBL are in order. We use

MSM-E-ALG repeatedly to a

umulate 
onstant masses



Algorithm 1 MSM-E-ALG

INPUT: Jobs J , ma
hines M , pij 's and t.

1. Sort pij 's in de
reasing order. Initialize: ∀i, ti ← t;
∀i, j, xij ← 0.

2. For ea
h pij a

ording to the order:

(a) xij ← min
n

ti,
j

1−
P

k∈M xkj ·pkj

pij

ko

.

(b) ti ← ti − xij .

3. Output Σo spe
i�ed by xij 's.

Algorithm 2 SUU-I-OBL

INPUT: Jobs J , ma
hines M , pij 's.

1. t← 1.

2. I ← 1. R← J . Σ← �empty s
hedule�.

3. While (|R| > 0) and (I ≤ 66 log n)

(a) Let ΣI be the output of invoking MSM-E-ALG

on R,M with the 
urrent t value. Σ← Σ ◦ ΣI .

(b) Remove jobs that a

umulate at least 1/96 mass

from R.

(
) I ← I + 1.

4. If |R| > 0, then t ← 2t, GOTO step 2; Otherwise,

return Σ.

for a good fra
tion of the jobs ea
h round, until all jobs a

u-

mulate 
onstant masses. There is still one obsta
le though.

Sin
e we don't know the value of TOPT

, we have to �guess�

a value of t for MSM-E-ALG, whi
h must be large enough,

e.g., at least 2TOPT

, to ensure that there exists an oblivi-

ous s
hedule of length t in whi
h the total mass is at least

n/16, as proved in Theorem 3.1. In summary, in the loop of

SUU-I-OBL (Step 3), we repeatedly invoke MSM-E-ALG

to a

umulate 1/96 mass for the jobs, for at most 66 log n
rounds (we will explain the reason shortly). At the end of the

loop (Step 4), if there are some remaining jobs, that means

our t value is not large enough, we hen
e double the value of
t and try the new t again by resetting the other parameters.

Note that during ea
h invo
ation ofMSM-E-ALG, we start

from s
rat
h by ignoring any mass that the jobs may have

a

umulated in the previous rounds. We now analyze the

performan
e of SUU-I-OBL.

If t ≥ 2TOPT

, with one invo
ation of MSM-E-ALG using

t, let x be the number of jobs that get at least 1/96 mass.

The total sum of masses over the jobs is at most x · 1+ (n−
x) · 1/96 be
ause the mass that any job a

umulates is at

most 1. From Theorem 3.1, we know that there exists an

oblivious s
hedule of length t, with a total sum of mass at

least n/16. Now a

ording to Lemma 3.4, MSM-E-ALG

has an approximation ratio of 1/3. Thus,

x · 1 + (n− x) · 1/96 ≥ 1/3 · n/16.

It follows that x ≥ n/95. Sin
e ea
h invo
ation of

MSM-E-ALG makes at least 1/95 of the jobs a

umulate

1/96 mass, it is su�
ient to invoke MSM-E-ALG at most

66 log n times until all jobs a

umulate at least 1/96 mass.

To prove that SUU-I-OBL terminates in polynomial time,

we �rst bound the value of TOPT

. Let pmin = mini,j pij .
Obviously, if we let the jobs a

umulate su�
ient mass one

by one by assigning all ma
hines to a single job at any step,

then every job a

umulates a mass of at least 1 within a time

interval of ⌈ n
pmin

⌉. This implies that TOPT = O( n
pmin

log n).

Sin
e t is doubling every iteration in SUU-I-OBL, O(log n+
log 1

pmin
) di�erent t values will be �probed� before the algo-

rithm terminates. With ea
h t value, we invokeMSM-E-ALG

at most 66 log n times, and ea
h su
h invo
ation runs in

polynomial time. We 
on
lude that algorithm SUU-I-OBL

terminates within time polynomial in the size of the input.

We have thus proved:

Lemma 3.5. For Problem SUU-I, one 
an 
ompute in poly-

nomial time an oblivious s
hedule of length O(log n)TOPT in

whi
h every job a

umulates a mass of at least 1/96.

Theorem 3.6. For Problem SUU-I, within polynomial time,

we 
an 
ompute an oblivious s
hedule whose expe
ted makespan

is within a fa
tor of O(log2 n) of the optimal.

Proof. Using Lemma 3.5, we �rst 
ompute an oblivi-

ous s
hedule Σo of length T = O(log2 n) · TOPT

in whi
h

every job a

umulates a mass of at least 1/96. The in�-

nite repetition of Σo, Σ
∞
o , is the oblivious s
hedule we want.

Treating the exe
ution of Σ∞
o during ea
h step interval of

[k ·T +1, (k+1) ·T ], where k = 0, 1, . . ., as one iteration, by
Proposition 2.1 we know that every job has a su

ess proba-

bility of at least

1
24e

during ea
h iteration. Within O(log n)
iterations, all jobs are �nished with high probability. Thus,

the expe
ted makespan of Σ∞
o is within O(log2 n) of TOPT

.

We now formalize this argument.

Let random variable X be the iteration number when all

jobs are �nished. We bound the expe
ted value of X below.

E[X] =

∞
X

i=0

Pr(X > i)

=

362 log n−1
X

i=0

Pr(X > i) +
∞
X

i=362 log n

Pr(X > i)

≤ 362 log n · 1 +
∞
X

i=362 log n

n · (1−
1

96e
)i

= 362 log n+ n · (1−
1

96e
)362 log n ·

∞
X

i=0

(1−
1

96e
)i

≤ 362 log n+
96e

n
,

where the third inequality follows be
ause every job has a

probability

1
96e

of su

ess within ea
h iteration, and the last

inequality follows by summing the geometri
 series and the

fa
t that (1 − 1
96e

)181 < 1/2. This 
ompletes the proof of

the theorem.

4. JOBS WITH PRECEDENCE
CONSTRAINTS

In this se
tion, we study SUU when there are non-trivial

pre
eden
e 
onstraints on the jobs. We �rst present in �4.1 a

polylogarithmi
 approximation algorithm for the 
ase when

the 
onstraints form disjoint 
hains, and then extend the

results in �4.2 to the more general 
ase when the 
onstraints



form dire
ted forests. All of the s
hedules we 
ompute are

oblivious.

4.1 Disjoint chains
We 
onsider SUU in the spe
ial 
ase where the dependen
y

graph C for the jobs is a 
olle
tion of disjoint 
hains C =
{C1, · · · , Cl}. We refer to this problem as SUU-C. If job j1
pre
edes j2 a

ording to the 
onstraints, we write j1 ≺ j2.
At a high level, our approa
h to solve SUU-C is to �rst


ompute an oblivious s
hedule of near-optimal length in

whi
h every job has a 
onstant probability of su

essful 
om-

pletion, then repli
ate this s
hedule su�
iently many times

to 
on
lude that all the jobs are �nished with high probabil-

ity within a desired makespan bound. We �rst 
onsider the

problem of a

umulating a 
onstant su

ess probability for

ea
h job. As in the independent jobs 
ase, we will use the no-

tion of mass instead of the a
tual probability. However, we

need to take into a

ount the dependen
ies among the jobs.

Therefore, we formulate the following problem A

uMass-C:

Given the input for SUU-C, 
ompute an oblivious s
hedule

with minimum length T , subje
t to two 
onditions: (i) Ev-

ery job j a

umulates a mass of at least 1/2 within T ; (ii)
If j1 ≺ j2, j1 must already a

umulate mass 1/2 before any

ma
hine 
an be assigned to j2. Condition (ii) 
aptures the

intuition that if j1 has a low probability of su

essful 
om-

pletion before step t, then the probability that j2 is eligible

for exe
ution at step t would be small; so it does not make

mu
h sense to assign ma
hines to j2 prior to t in the oblivi-

ous s
hedule.

The following is a relaxed linear program (LP1) for

A

uMass-C. Let xij denote the number of steps during whi
h

ma
hine i are assigned to j. Let dj be the number of steps

during whi
h there is some ma
hine assigned to j.

(LP1) min t

s.t.

X

i∈M

pijxij ≥ 1/2 ∀j ∈ J (1)

X

j∈J

xij ≤ t ∀i ∈M (2)

X

j∈Ck

dj ≤ t Ck ∈ C (3)

0 ≤ xij ≤ dj ∀i, j (4)

dj ≥ 1 ∀j (5)

Some 
omments on (LP1) are in order. Equation 1 enfor
es

Condition (i). Equation 2 bounds the load on every ma
hine,

whi
h we de�ne below. Equation 3 bounds the time length

on ea
h 
hain 
onstraint. Finally Equation 4 ensures that

ea
h job a

umulates its mass during the dj steps when there
is some ma
hine assigned to it. Let T ∗

be the optimal value

for (LP1) above.

Note that in (LP1) we do not have any 
ondition to pre-

vent two di�erent jobs from two pre
eden
e 
hains to be

s
heduled on the same ma
hine at the same step. We use the

term pseudo-s
hedule to 
apture su
h �s
hedules�, in whi
h

di�erent jobs from di�erent pre
eden
e 
hains may be s
hed-

uled to the same ma
hine simultaneously.

Definition 4.1. A pseudo-s
hedule of length T ∈ Z
+

∪∞ is a 
olle
tion of assignment fun
tions, {ft : M →
2J | 1 ≤ t < T + 1}.

Hen
e, an assignment fun
tion of a pseudo-s
hedule may

map a ma
hine to a set of jobs. In this sense, a pseudo-

s
hedule may not be feasible; we address this issue later

when des
ribe how to transform a pseudo-s
hedule to an

appropriate oblivious s
hedule. An oblivious s
hedule is a

pseudo-s
hedule in whi
h the value of ft is a single element.

Definition 4.2. Given a pseudo-s
hedule Σg of (�nite)

length T , {ft : M → 2J | 1 ≤ t < T + 1}, the load of a

ma
hine i is de�ned as the total number of times that a

job is s
heduled on i in Σg. Formally, the load of ma
hine

i is

P

1≤t<T+1 |ft(i)|. The load of Σg is de�ned as the

maximum load of any ma
hine.

We remark that a pseudo-s
hedule of length T may have a

load greater than T .

Theorem 4.1. Within polynomial time one 
an round an

optimal feasible solution to (LP1), and obtain a pseudo-

s
hedule for Problem A

uMass-C whose length and load are

both O(logm)T ∗
.

Proof. Obviously (LP1) is feasible be
ause one 
an as-

sign ma
hines to ea
h job for a �nite steps so that the job


an a

umulate a mass of 1/2. Let {xij , dj , t} be one opti-

mal solution to (LP1). (Note that t is equal to T ∗
.) Our

e�orts mainly 
on
ern the rounding pro
edure, i.e., obtain-

ing a feasible integral solution from the fra
tional solution

without blowing up t too mu
h. We then des
ribe how to

get a pseudo-s
hedule from an integral solution to (LP1).

We di�erentiate between two 
ases.

The �rst 
ase is when t ≥ |J | = n. We round ea
h xij and

dj up by setting x∗
ij = ⌈xij⌉ and d∗j = ⌈dj⌉. We obtain a

feasible integral solution with approximation fa
tor 2 sin
e

we have

X

i∈M

pijx
∗
ij ≥ 1/2 ∀j ∈ J,

X

j∈J

x∗
ij ≤ t+ n ≤ 2t ∀i ∈M,

X

j∈Ck

d∗j ≤ t+ n ≤ 2t Ck ∈ C,

x∗
ij ≤ d∗j ∀i, j.

The se
ond 
ase is when t < |J | = n. We make use of

some results from network �ow theory for our rounding

in this 
ase. Noti
e that although we target for a mass

of 1/2, any 
onstant smaller than 1/2 will do as well be-


ause we 
an always s
ale every variable up to rea
h that

target, sa
ri�
ing only a 
onstant fa
tor. In our presen-

tation below, we use many su
h s
ale-up operations. (We

haven't tried to optimize the 
onstants.) For a given job

j, if
P

i∈M,xij≥1 pijxij ≥ 1/4, we 
an round these xij 's to

the next larger integer. Sin
e ⌈xij⌉ ≤ 2xij , this only in-


urs a fa
tor of 2 blow up in t. Thus, we only need to


onsider those jobs j su
h that

P

i∈M,xij≥1 pijxij ≤ 1/4,

whi
h implies that

P

i∈M,xij<1 pijxij ≥ 1/4. Observe that

P

i∈M,pij<
1

8m
,xij<1 pijxij < 1/8, whi
h implies

P

i∈M,pij≥
1

8m
,xij<1 pijxij ≥ 1/8.

We bu
ket these pij 's into at most B = ⌈log(8m)⌉ inter-

vals (2−(k+1), 2−k] (k = 0, 1, . . .). For a bu
ket

b : (2−(b+1), 2−b], if
P

pij∈bu
ket b
xij < 1/32, we remove

this bu
ket from further 
onsideration. Note that the sum

of pijxij over all removed bu
kets is at most 1/16. Hen
e



for the pij 's in the remaining bu
kets, we still have

P

i∈M,pij≥
1

8m
,xij<1 pijxij ≥ 1/16.

For ea
h job j, there is a bu
ket bj : (2−(bj+1), 2−bj ] su
h

that

P

pij∈bu
ket bj
xij ≥ 2

bj

16B
. Denote the sum on the left

side of the above inequality by Dj . If ne
essary, we s
ale all

the xij 's (and other variables) up by a fa
tor of 32, so that all

Dj ≥ 1. We then round Dj down to ⌊Dj⌋. These operations
only 
ost us a 
onstant fa
tor in terms of approximation.

Thus for the ease of the presentation below, we assume that

the Dj 's are integral and let D =
P

j∈J
Dj .

We now 
onstru
t a network-�ow instan
e as follows (see

Figure 3). We have one node for ea
h job j, one node for

ea
h ma
hine i, a sour
e node u, and a destination node

v. We add an edge (i, j) for ea
h xij 
ontributing to the


omputation of Dj 's. We orient the edge (i, j) from j to i,
with edge 
apa
ity ⌈dj⌉. From ea
h ma
hine node i, add an

edge toward v, with 
apa
ity ⌈2t⌉. For ea
h job node j, add
an edge from u to j, with 
apa
ity Dj .

u
 v


i


d
j


2t


D
j


d
j

d
j


2t


2t


2t


j


Figure 3: A network �ow instan
e for the rounding

of an optimal solution to (LP1)

The argument before the 
onstru
tion shows that a �ow of

demand D at u 
an be pushed through the network, where

the xij 's spe
ify su
h a feasible �ow. D is a
tually the max-

imum �ow of the network (
onsider the 
ut where one side


onsists of u alone). From Ford-Fulkerson's theorem [8, 5℄,

we know that there exists an integral feasible �ow when the

parameters are integral, as in our instan
e. We take su
h

an integral �ow value on edge (j, i) as our rounded solution

x∗
ij . Furthermore, the integral solution obtained observes

the following identities.

X

i∈M

pijx
∗
ij ≥

1

16⌈log(8m)⌉
∀j ∈ J,

X

j∈J

x∗
ij ≤ ⌈2t⌉ ∀i ∈M,

X

j∈Ck

⌈dj⌉ ≤ ⌈2t⌉ Ck ∈ C,

x∗
ij ≤ ⌈dj⌉ ∀i, j.

Raising all the values by a fa
tor of O(logm), we obtain an

integral feasible solution {x̂ij , d̂j , t̂}, where t̂ = O(logm)T ∗
.

We now des
ribe how to 
onstru
t from the integral solu-

tion a pseudo-s
hedule Σs whose length and load are both

bounded by t̂ = O(logm)T ∗
. Consider a job j in a 
hain

Ck ∈ C. Given the x̂ij 's, let Lj = maxi x̂ij . Let ψj =

P

j0:j0≺j
Lj0 . We assign the ma
hines to j within a step

interval of length Lj from step ψj +1 to ψj +Lj , using ea
h

ma
hine i x̂ij times. In other words, the assignment fun
-

tions for 
hain Ck are spe
i�ed as follows. For any job j and
ma
hine i, if x̂ij > 0, fk

t (i) = {j} for t ∈ [ψj + 1, ψj + x̂ij ].
This 
an be done be
ause ea
h ma
hine is assigned to j at
most Lj times and di�erent ma
hines 
an be assigned to j
at the same step. After we de�ne the fk

t (·) for every 
hain

Ck ∈ C, we de�ne the assignment fun
tions for Σs as

ft(i) = ∪k:Ck∈Cf
k
t (i) for i ∈M, t ∈ [1, t̂].

Re
all that the range of the assignment fun
tions for a pseudo-

s
hedule is a set of jobs. This 
ompletes the proof of the

theorem.

We now relate A

uMass-C to SUU-C. Re
all that T ∗
is the

optimal value of (LP1) we write for Problem A

uMass-C,

and TOPT

is the expe
ted makespan of an optimum s
hedule

Σ for Problem SUU-C. We now bound the value T ∗
in terms

of TOPT

in Lemma 4.2. This lemma, together with Theo-

rem 4.1 immediately yields a pseudo-s
hedule that solves

A

uMass-C with load and length within O(log n) fa
tor of
TOPT

.

Lemma 4.2. T ∗ ≤ 16TOPT.

Proof. The following linear program is the same as (LP1),

ex
ept that 1/2 is repla
ed by 1/16 and t is repla
ed by

2TOPT

. We argue that this linear program is feasible.

X

i∈M

pijxij ≥ 1/16 ∀j ∈ J

X

j∈J

xij ≤ 2TOPT ∀i ∈M

X

j∈Ck

dj ≤ 2TOPT Ck ∈ C

xij ≤ dj ∀i, j

dj ≥ 1 ∀j

xij ≥ 0 ∀i, j

Consider the �rst 2TOPT

exe
ution steps using an opti-

mal s
hedule Σ. Let random variable Xij be the number of

steps in whi
h i is assigned to j. Let random variable Yj

be the total number of steps when there is some ma
hine

assigned to j. We know from Theorem 2.2 that with prob-

ability at least 1/4, j a

umulates at least 1/4 mass within

2TOPT

steps. This amounts to the fa
t that the expe
ted

a

umulated mass for j is at least 1/16. Thus
X

i∈M

pij ·E[Xij ] ≥ 1/16.

Sin
e in Σ a ma
hine is assigned to at most a job at any

step,

P

j∈J
Xij ≤ 2TOPT

. So

X

j∈J

E[Xij ] ≤ 2TOPT.

Sin
e we are 
onsidering only 2TOPT

steps of Σ, we have
P

j∈Ck
Yj ≤ 2TOPT

. Obviously, Xij ≤ Yj . Taking the ex-

pe
tation, we have

X

j∈Ck

E[Yj ] ≤ 2TOPT



and

E[Xij ] ≤ E[Yj ].

We 
on
lude that xij = E[Xij ] for i ∈ M, j ∈ J and

dj = E[Yj ] for j ∈ J form a solution to the linear program.

Raising this solution by a fa
tor of 8, we obtain a solution

to (LP1). This means that a t of value 16TOPT

is a
hievable

in (LP1). We have thus proved that T ∗ ≤ 16TOPT

. This


ompletes the proof of the lemma.

Theorem 4.3. A pseudo-s
hedule with length and load

bounded by O(logm) · TOPT 
an be 
omputed within poly-

nomial time, su
h that: (i) Every job j a

umulates at least

1/2 mass. (ii) If j1 ≺ j2, j2 
an only begin the a

umulation

after j1 a

umulates 1/2 mass.

In the remainder of this se
tion, we des
ribe how to 
onvert

a pseudo-s
hedule obtained from Theorem 4.3 to a feasible

s
hedule. A

ording to Theorem 4.3, we 
an 
ompute a

pseudo-s
hedule Σs of length O(logm) ·TOPT

in whi
h every

job a

umulates a mass of at least 1/2, and hen
e a su

ess

probability of at least

1
2e
. Moreover, if j1 ≺ j2, no ma
hine

is assigned to j2 until j1 has a

umulated 1/2 su
h mass.

We now 
onvert Σs to a (feasible) oblivious s
hedule Σo in

two steps.

1. We use the elegant random delay te
hnique of [19,

27℄ to delay the start step of the exe
ution for ea
h


hain appropriately and obtain a new pseudo-s
hedule

Σs,1 in whi
h the number of jobs s
heduled on any

ma
hine at any step is O( log(n+m)
log log(n+m)

). The random-

ized s
hedule 
an also be derandomized using te
h-

niques from [22, 25, 27℄. We then ��atten� Σs,1 to

obtain an oblivious s
hedule Σo,1, sa
ri�
ing a fa
tor

of O( log(n+m)
log log(n+m)

) in the s
hedule's length.

2. To obtain the �nal oblivious s
hedule Σo, we take the

oblivious s
hedule Σo,1 from above and repli
ate ea
h

step's ma
hine assignment O(log n) times, so that all

jobs will be �nished with high probability.

We now des
ribe in detail the two steps that 
onvert a

pseudo-s
hedule to a feasible oblivious s
hedule. Sin
e the

se
ond step is simpler, we des
ribe it �rst.

S
hedule repli
ation: We �rst repli
ate Σo,1 at ea
h

step by a fa
tor of σ = 16 log n to get another oblivious

s
hedule Σo,2. More pre
isely, let T denote Σo,1's length

and let gt(·)'s be the assignment fun
tions of Σo,1. We de�ne

the assignment fun
tions ft(·)'s of Σo,2 as follows. For any

t ∈ [1, σ ·T ], ft(·) = gτ (·), where τ = ⌊ t−1
σ
⌋+1. Note that if

Σo,1 
an be spe
i�ed in spa
e polynomial in the size of the

input, as we will show in the �delay� step, so 
an Σo,2.

We de�ne yet another oblivious s
hedule Σo,3 of length

n as follows. Topologi
ally sort the jobs a

ording to the

pre
eden
e 
onstraints, e.g., appending the pre
eden
e 
hains

one after another, and let j1, . . . , jn be the jobs in the sorted

order. The assignment fun
tions ht(·)'s for Σo,3 are spe
i-

�ed as follows. ∀i ∈ M,ht(i) = jt, where 1 ≤ t ≤ n. Now

the �nal oblivious s
hedule we want is Σo = Σo,2 ◦ Σ
∞
o,3. In

other words, oblivious s
hedule Σo is simply the repli
ated

Σo,1 followed by assigning all the ma
hines to some job at

ea
h step.

We now analyze the expe
ted makespan of Σo. If all

jobs are su

essfully 
ompleted within step σT , the expe
ted

makespan is at most σT . The probability that this does not

happen is at most n(1− 1
2e
)σ < 1/n2

. Noti
e also that from

step σT +1 on, Σo assigns all the ma
hines to a single job at

ea
h step periodi
ally (due to Σo,3, with a period length of

n). The expe
ted number of steps for a job to be 
ompleted

is at most TOPT

if all the ma
hines are assigned to it. Sin
e

we periodi
ally assign the ma
hines to any �xed job, on av-

erage, it takes at most (nTOPT) steps to 
omplete any �xed

job. Hen
e, on average, it takes at most n2TOPT

steps to


omplete all the jobs using the assignment fun
tions beyond

step σT . The expe
ted makespan of Σo is thus at most

(1− 1/n2)σ · T + 1/n2 · (σ · T + n2TOPT).

As we will prove shortly, T = O(logm log(n+m)
log log(n+m)

) · TOPT

and σ = 16 log n. We 
on
lude that the expe
ted makespan

of Σo is O(log n logm log(n+m)
log log(n+m)

) · TOPT

.

Converting pseudo-s
hedule Σs to an oblivious s
hed-

ule: We now address the issue when the 
omputed pseudo-

s
hedule Σs from Theorem 4.3 is not yet feasible, that is,

when some ma
hine is assigned to more than one job at the

same step. We 
laim that we 
an 
onvert Σs to an oblivious

s
hedule Σo,1 by sa
ri�
ing a fa
tor of O( log(n+m)
log log(n+m)

).

Let Πmax be the load of Σs, i.e., the maximum number

of jobs assigned to any ma
hine. A result by Shmoys, Stein

and Wein on job shop s
heduling problem [27, Lemma 2.1℄

states that if we delay the starting step of ea
h 
hain by an

integral amount independently and uniformly 
hosen from

[0,Πmax], the resulting pseudo-s
hedule has no more than

O( log(n+m)
log log(n+m)

) jobs s
heduled on any ma
hine during any

step. We now explain what we mean by the term delay.

Re
all that in the last paragraph of the proof for Theo-

rem 4.1, we �rst spe
ify a fun
tion fk
t for ea
h 
onstraint


hain Ck ∈ C, and then de�ne assignment fun
tion for Σs

as ft = ∪kf
k
t . Suppose that a 
hain Ck is delayed by an

amount of φk, the assignment fun
tion gkt for 
hain Ck is

modi�ed as follows. ∀i ∈ M , if t ≤ φk, g
k
t (i) = ∅; other-

wise, gkt (i) = fk
t−φk

(i). And the assignment fun
tion for the

s
hedule is de�ned as ft = ∪kg
k
t . To make our presentation

self-
ontained, we now outline the argument for the bound

of O( log(n+m)
log log(n+m)

) below.

Fix a step t and a ma
hine i. Let p = Pr[at least τ units

of pro
essing are s
heduled on ma
hine i at step t]. Note

that a job j 
ould be s
heduled in multiple steps, and ea
h

job is unit-step, it is equivalent to say that there are mul-

tiple pro
essing units of job j. There are at most

`

Πmax

τ

´

ways to 
hoose those τ pro
essing units. Fo
us on a par-

ti
ular 
hoi
e of τ units. If these units are from di�erent


hains, the probability that they are all s
heduled at step t
is at most ( 1

Πmax
)τ sin
e we 
hoose the delay independently

and uniformly from [0,Πmax]. Otherwise, the probability is

0 be
ause our pseudo-s
hedule 
an never assign two units

from the same 
hain to the same ma
hine at the same step.

Therefore,

p ≤

 

Πmax

τ

!

„

1

Πmax

«τ

≤

„

eΠmax

τ

«τ „

1

Πmax

«τ

≤
“ e

τ

”τ



If τ = α log(n+m)
log log(n+m)

, then p < (n +m)−(α−1)
. Let Lmax

be the length of the longest 
hain a

ording to Σs. The

probability that any ma
hine at any step is assigned at

least α log(n+m)
log log(n+m)

jobs is bounded by m(Πmax+Lmax)(n+

m)−(α−1)
. With the assumption, whi
h we will remove

shortly, that TOPT

is bounded by a polynomial in (n+m),
Πmax + Lmax is bounded by a polynomial in (n + m) as

well. If we 
hoose α to be su�
iently large, then with high

probability, no more than α log(n+m)
log log(n+m)

jobs are s
heduled

on any ma
hine at any step.

Shmoys, Stein and Wein [27℄ also derandomize the algo-

rithm so that O(log(n+m)) jobs 
an be s
heduled on any

ma
hine simultaneously, based on results by [23, 24, 22℄.

S
hmdit, Siegel and Srinivasan [25℄ give a di�erent deran-

domization strategy and obtain a 
ollision bound mat
h-

ing the randomized algorithm, i.e., O( log(n+m)
log log(n+m)

) ma
hines

simultaneously for any ma
hine. We denote this (deran-

domized) pseudo-s
hedule by Σs,1, whose length is at most

twi
e that of Σs. A

ording to Theorem 4.3, Σs's length

is O(logm) · TOPT

, it follows that we 
an ��atten� Σs,1

out to obtain an oblivious s
hedule Σo,1 whose length is

O(logm log(n+m)
log log(n+m)

) · TOPT

, in whi
h ea
h ma
hine is as-

signed to one job at any step. We 
omment that the random

delay te
hnique originates in [19℄ when they study the job

shop s
heduling problem.

Redu
ing TOPT: We now address the issue that TOPT

is

not always bounded by a polynomial in (n+m). We make

use of a tri
k from [27, Se
tion 3.1℄. Consider the pseudo-

s
hedule Σs 
omputed in Theorem 4.3. For ea
h job j, let
lij be the number of steps in whi
h ma
hine i is assigned to

j and Lj be maxi lij . Denote maxj Lj by L. We know that

all ma
hines are assigned to j within a window of length

Lj . Let β = nm. Round ea
h lij down to the nearest mul-

tiple of

L
β
, and denote this value by l′ij . We therefore 
an

treat the l′ij as integers in {0, . . . , β}. A s
hedule for this

new problem 
an be trivially res
aled to one with the real

values l′ij . Sin
e β = nm, the s
hedule now e�e
tively has

a length (and load) bounded by a polynomial in (n + m).
Hen
e our dis
ussions of the random delay and derandom-

ization hold now. Let Σ′
be the resulting feasible oblivious

s
hedule, with length bounded by O(logm log(n+m)
log log(n+m)

)TOPT

and load bounded by O(logm)TOPT

. To get a feasible obliv-

ious s
hedule Σo,1 so that every job a

umulates 1/2 mass,

we insert (lij − l
′
ij) units of pro
essing to Σ′

. The insertion


an be done in a way that preserves the pre
eden
e 
on-

straints, i.e., if j1 ≺ j2, then no ma
hine 
an be assigned

to j2 before j1 a

umulates 1/2 mass. Sin
e ea
h insertion

lengthens Σ′
by an amount ≤ L

nm
and we have at most nm

su
h insertions, the length of the s
hedule is in
reased by at

most L. The loads on the ma
hines are the same as before

the rounding. Note that L is bounded by Πmax, whi
h is

O(logm)TOPT

. We thus have obtained a feasible oblivious

s
hedule Σo,1 whose length is O(logm log(n+m)
log log(n+m)

)TOPT

, in

whi
h every job a

umulates a 
onstant mass. Finally, we

use the repli
ation te
hnique dis
ussed earlier in this se
tion

to obtain the desired s
hedule.

Theorem 4.4. For Problem SUU-C, there exists a poly-

nomial-time algorithm to 
ompute an oblivious s
hedule s
hed-

ule with expe
ted makespan within a fa
tor of

O(logm log n log(n+m)
log log(n+m)

) of the optimal.

For independent jobs, i.e., when the 
onstraints C in Prob-

lem SUU-C is empty, we 
an prove a bound for oblivious

s
hedules that slightly improves over the result stated at

the end of �3.

Theorem 4.5. For Problem SUU-I, there exists a poly-

nomial-time algorithm to 
ompute an oblivious s
hedule s
hed-

ule with expe
ted makespan within a fa
tor of

O(log n · log(min{n,m})) of the optimal.

Proof. Let (LP2) be the linear program obtained from

(LP1) by removing 
onstraints 3, 4, 5, and T ∗
2 be (LP2)'s

optimal value. We �rst show that one 
an round an optimal

feasible solution to (LP2), and obtain an oblivious s
hedule

for Problem A

uMass-C, whose length, and hen
e load, are

both O(log(min{n,m})) · T ∗
2 .

For Problem SUU-I, Condition (ii) of A

uMass-C is void.

We thus don't need 
onstraints 3, 4, 5 when writing the

linear program. The rounding in the proof of Theorem 4.1

gives an O(logm) blow-up. If m ≥ n, we 
an do a better

analysis for the rounding pro
edure. Sin
e there are n+m
non-trivial 
onstraints in (LP2), there are at most n + m
nonzero values in any basi
 feasible solution [2, 26℄. In an

optimal solution {xij , t} (whi
h is basi
 feasible), we may

assume without loss of generality that for any ma
hine i,
there exists a j su
h that xij > 0. Otherwise, we may

remove that ma
hine from 
onsideration in (LP2). From

here, we 
on
lude that the number of ma
hines i that have
at least two xij > 0 is at most n. When we round xij 's,

we only need to 
onsider these ma
hines i with at least two

xij > 0. Then the same rounding pro
edure in the proof

of Theorem 4.1 gives a fa
tor O(log n) blow-up be
ause for

ea
h job, we only need to 
onsider O(log n) bu
kets.
We 
on
lude that one 
an obtain an integral feasible solu-

tion {x̂ij , t̂} where t̂ = O(log(min{n,m}))·T ∗
2 . Furthermore,

from {x̂ij , t̂}, one 
an 
onstru
t a (feasible) oblivious s
hed-

ule for Problem A

uMass-C, whose length, and hen
e load,

are t̂ = O(log(min{n,m})) · T ∗
2 . This is be
ause the load on

ea
h ma
hine is bounded by t̂ a

ording to Equation 2 and

the jobs are independent. Hen
e the ma
hine assignment


an be done in su
h a way that no more than one job is

s
heduled on any ma
hine at any step.

We thus have an oblivious s
hedule in whi
h every job

a

umulates a 
onstant mass within time that is at most

O(log(min{n,m}) times optimal. We now apply the s
hed-

ule repli
ation step and obtain the desired bound.

4.2 Tree-like precedence constraints
Our algorithm for tree-like pre
eden
e 
onstraints uses

te
hniques from [17℄, who extend the work of [27℄ on s
hedul-

ing unrelated parallel ma
hines with 
hain pre
eden
e 
on-

straints to the 
ase where there are tree-like pre
eden
e 
on-

straints by de
omposing the dire
ted forests into O(log n)

olle
tion of 
hains. To state their result, we �rst introdu
e

some notations used in [17℄. Given a dag G(V,E), let din(u)
and dout(u) denote the in-degree and out-degree, respe
-

tively, of u in G. A 
hain de
omposition of G is a partition

of its vertex set into subsets B1, . . . , Bλ (
alled blo
ks) su
h

that: (i) The subgraph indu
ed by ea
h blo
k Bi is a 
olle
-

tion of vertex-disjoint dire
ted 
hains; (ii) For any u, v ∈ V ,
let u ∈ Bi be an an
estor of v ∈ Bj . Then, either i < j, or
i = j and u and v belong to the same dire
ted 
hain of Bi;

(iii) If dout(u) > 1, then none of u's out-neighbors are in the

same blo
ks as u. The 
hain-width of a dag is the minimum



value λ su
h that there is a 
hain de
omposition of the dag

into λ blo
ks. We now state the de
omposition result.

Lemma 4.6 ([17℄, Lemma 1). Every dag whose under-

lying undire
ted graph is a forest has a 
hain de
omposition

of width γ, where γ ≤ 2(⌈log n⌉+1). The de
omposition 
an

be 
omputed within polynomial time.

Using Lemma 4.6, we simply de
ompose a given dire
ted

forest into at most γ = O(log n) blo
ks, and within ea
h

blo
k, apply our algorithm for the 
hain 
ase (Theorem 4.4).

Sin
e the optimal expe
ted makespan on any subgraph (sub-

set of jobs) is a lower bound for that of the whole graph

(whole set of jobs), this approa
h gives up another fa
tor of

log n. We have thus obtained

Theorem 4.7. For Problem SUU, if the dependen
y graph

C is a dire
ted forest, there exists a polynomial-time algo-

rithm to 
ompute an oblivious s
hedule s
hedule with ex-

pe
ted makespan within a fa
tor of O(logm log2 n log(n+m)
log log(n+m)

)

of the optimal.

When the pre
eden
e 
onstraints form a 
olle
tion of out

trees (rooted trees with edges dire
ted away from the root)

or in trees (de�ned analogously), we 
an obtain an improved

approximation algorithm by again following the ideas of [17℄.

More spe
i�
ally, we de
ompose the out/in trees intoO(log n)
blo
ks; then randomly delay ea
h 
hain by an amount of

steps 
hosen uniformly from [0, O(Πmax/ log n)] (this step


an be derandomized in polynomial time); and prove that

with high probability, at most O(log n) jobs 
an be s
hed-

uled on any ma
hine simultaneously.

Theorem 4.8. For Problem SUU, if the dependen
y graph

C is a 
olle
tion of out/in trees, there exists a polynomial-

time algorithm to 
ompute an oblivious s
hedule s
hedule

with expe
ted makespan within a fa
tor of O(logm log2 n)
of the optimal.

5. OPEN PROBLEMS
In this paper, we have presented polylogarithmi
 approxi-

mation algorithms for the problem of multipro
essor s
hedul-

ing under un
ertainty, for spe
ial 
lasses of dependen
y graphs.

We believe that our bounds are not tight; in parti
ular, we


onje
ture that a more 
areful analysis will improve the ap-

proximation ratios by an O(log n) fa
tor in ea
h 
ase. It will

also be interesting to obtain approximations for more gen-

eral 
lasses of dependen
ies, and to 
onsider online versions

of our s
heduling problem.

6. REFERENCES
[1℄ D. Applegate and B. Cook. A 
omputational study of

the job-shop s
heduling problem. ORSA Journal of

Computing, 3(2):149�156, 1991.

[2℄ D. Bertsimas and J. Tsitsiklis. Introdu
tion to Linear

Optimization. Athena S
ienti�
, 1997.

[3℄ H. Cherno�. A measure of the asymptoti
 e�
ien
y for

tests of a hypothesis based on the sum of observations.

Annals of Mathemati
al Statisti
s, 23:493�509, 1952.

[4℄ F. Chudak and D. Shmoys. Approximation algorithms

for pre
eden
e-
onstrained s
heduling problems on

parallel ma
hines that run at di�erent speeds. Journal

of Algorithms, 30, 1999.

[5℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introdu
tion to Algorithms. MIT Press and

M
Graw-Hill Book Company, Cambridge, MA, se
ond

edition, 2001.

[6℄ A. Fernandez, R. Arma
ost, and J. Pet-Edwards. A

model for the resour
e 
onstrained proje
t s
heduling

problem with sto
hasti
 task durations. In 7th

Industrial Engineering Resear
h Conferen
e

Pro
eedings, 1998.

[7℄ A. Fernandez, R. Arma
ost, and J. Pet-Edwards.

Understanding simulation solutions to resour
e


onstrained proje
t s
heduling problems with

sto
hasti
 task durations. Engineering Management

Journal, 10(4):5�13, 1998.

[8℄ L. R. Ford, Jr. and D. R. Fulkerson. Flows in

Networks. Prin
eton University Press, Prin
eton, 1962.

[9℄ I. Foster and C. Kesselman, editors. The Grid:

Blueprint for a New Computing Infrastru
ture.

Morgan Kaufmann, San Fran
is
o, CA, 2nd edition,

2004.

[10℄ M. R. Garey and D. S. Johnson. Computers and

Intra
tability: A guide to the theory of

NP-
ompleteness. W. H. Freeman, San Fran
is
o,

1979.

[11℄ A. Goel and P. Indyk. Sto
hasti
 load balan
ing and

related problems. In Pro
eedings of the 40th Annual

Symposium on Foundations of Computer S
ien
e

(FOCS), 1999.

[12℄ R. L. Graham. Bounds for 
ertain multipro
essing

anomalies. Bell System Te
hni
al Journal (BSTJ),

45:1563�1581, 1966.

[13℄ L. Hall. Approximation algorithms for s
heduling. In

D. Ho
hbaum, editor, Approximation Algorithms for

NP-hard Problems, PWS Publishing Company. 1997.

[14℄ W. Herroelen and R. Leus. Proje
t s
heduling under

un
ertainty: Survey and resear
h potentials. European

Journal of Operational Resear
h, 165(2):289�306,

2005.

[15℄ W. Hoe�ding. On the distribution of the number of

su

esses in independent trials. Annals of

Mathemati
al Statisti
s, 27:713�721, 1956.

[16℄ J. Kleinberg, Y. Rabani, and E. Tardos. Allo
ating

bandwidth for bursty 
onne
tions. SIAM Journal on

Computing, 30, 2000.

[17℄ V. Kumar, M. Marathe, S. Parthasarathy, and

A. Srinivasan. S
heduling on unrelated ma
hines

under tree-like pre
eden
e 
onstraints. In

International Workshop on Approximation Algorithms

for Combinatorial Optimization, 2005.

[18℄ E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B.

Shmoys. Sequen
ing and s
heduling: Algorithms and


omplexity. Te
hni
al Report BS-R8909, Centre for

Mathemati
s and Computer S
ien
e., Amsterdam,

1991.

[19℄ F. T. Leighton, B. M. Maggs, and S. Rao. Pa
ket

routing and job-shop s
heduling in O (
ongestion +

dilation) steps. Combinatori
a, 14(2):167�186, 1994.

[20℄ J. Lenstra, D. Shmoys, and E. Tardos. Approximation

algorithms for s
heduling unrelated parallel ma
hines.

Mathemati
al Programming, 46, 1990.

[21℄ G. Malewi
z. Parallel s
heduling of 
omplex dags



under un
ertainty. In Pro
eedings of the 17th annual

ACM symposium on Parallelism in algorithms and

ar
hite
tures, pages 66 � 75, Las Vegas, Nevada, USA,

2005.

[22℄ P. Raghavan. Probabilisti
 
onstru
tion of

deterministi
 algorithms: Approximating pa
king

integer programs. Journal of Computer and System

S
ien
es, 37, 1988.

[23℄ P. Raghavan and C. Thompson. Provably good

routing in graphs: Regular arrays. In ACM

Symposium on Theory of Computing (STOC), 1985.

[24℄ P. Raghavan and C. Thompson. Randomized

rounding: A te
hnique for provably good algorithms

and algorithmi
 proofs. Combinatori
a, 7, 1987.

[25℄ J. S
hmidt, A. Siegel, and A. Srinivasan.

Cherno�-hoe�ding bounds for appli
ations with

limited independen
e. SIAM Journal on Dis
rete

Mathemati
s, 8, 1995.

[26℄ A. S
hrijver. Theory of linear and integer

programming. Inters
ien
e Series in Dis
rete

Mathemati
s and Optimization. Wiley, 1986.

[27℄ D. Shmoys, C. Stein, and J. Wein. Improved

approximation algorithms for shop s
heduling

problems. SIAM Journal on Computing, 23, 1994.

[28℄ M. Skutella. Convex quadrati
 and semide�nite

programming relaxations in s
heduling. Journal of the

Asso
iation for Computing Ma
hinery (JACM),

48(2):206�242, 2001.

[29℄ M. Skutella and M. Uetz. S
heduling

pre
eden
e-
onstrained jobs with sto
hasti
 pro
essing

times on parallel ma
hines. In Pro
eedings of the

twelfth annual ACM-SIAM symposium on Dis
rete

algorithms (SODA), pages 589�590, Washington,

D.C., US, 2001.



1,2,3


1,2,3


1,2
 2,3
 1,3
 1
 2
 3


1,2,3
 1,2
 2,3
 1,3
 1
 2
 3


t
=1


t
=3


t
=2


0.1


0.3




1,2,3


1,2
 1,3
 2,3


1


2


3


0.3


0.1



	Introduction
	Our results
	Related work

	Schedules, success probabilities, and mass
	Schedules
	Success probabilities and mass

	Independent jobs
	An O(logn)-approximate schedule for SUU-I
	An approximate oblivious schedule for SUU-I

	Jobs with precedence constraints
	Disjoint chains
	Tree-like precedence constraints

	Open problems
	References

