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ABSTRACT

Motivated by applications in grid computing and project
management, we study multiprocessor scheduling in scenar-
ios where there is uncertainty in the successful execution
of jobs when assigned to processors. We consider the prob-
lem of multiprocessor scheduling under uncertainty, in which
we are given n unit-time jobs and m machines, a directed
acyclic graph C giving the dependencies among the jobs,
and for every job j and machine 4, the probability p;; of the
successful completion of job j when scheduled on machine 4
in any given particular step. The goal of the problem is to
find a schedule that minimizes the expected makespan, that
is, the expected completion time of all the jobs.

The problem of multiprocessor scheduling under uncer-
tainty was introduced by Malewicz and was shown to be
NP-hard even when all the jobs are independent. In this pa-
per, we present polynomial-time approximation algorithms
for the problem, for special cases of the dag C'. We obtain
an O(log n)-approximation for the case of independent jobs,
an O(log mlognlog(n 4+ m)/loglog(n + m))-approximation
when C is a collection of disjoint chains, an O(logm log? n)-
approximation when C is a collection of directed out- or
in-trees, and an O(logm log® nlog(n +m)/loglog(n 4+ m))-
approximation when C' is a directed forest.
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1. INTRODUCTION

We study the problem of multiprocessor scheduling under
uncertainty, which was introduced in |2I] to study scenarios
where there is uncertainty in the successful completion of a
job when assigned to a server. One motivating application
is in grid computing, where a large collection of computers,
often geographically distributed,cooperate to solve complex
computational tasks. To make better use of the distributed
computers, a task is usually divided into smaller pieces (or
jobs) and handed to different computers. For many applica-
tions, there could be non-trivial dependencies among these
jobs. Due to the possible physical failures, or simply the dis-
tributed nature of the computing environment, a machine
may not successfully execute the assigned job on time. In
this scenario, a natural goal is to determine a schedule of as-
signing the given jobs to the computers so that the expected
completion time of the task is minimized.

A similar example, also discussed in [21], arises while man-
aging a large project in an organization. The project may
be broken down into small jobs with dependencies among
them, i.e., a job may be executed only after the successful
completion of another set of jobs. A group of workers are
assigned to this project. Due to practical reasons and dif-
ferent skills, a worker may not be able to finish an assigned
job successfully on time. To decrease the chance of the po-
tential delay of some key jobs, the project manager could
(and would want to) assign several workers to these jobs at
the same time. Based on past experiences and the workers’
skill levels, the project manager can estimate the successful
probability of any particular worker finishing any particular
job. The challenge for the manager is to work out a strategy
(or schedule) of assigning the workers to the jobs so that the
ezpected completion time of the whole project is as small as
possible.

Motivated by the examples above, we study the problem
of multiprocessor scheduling under uncertainty, henceforth
referred to as SUU. We have a set of m machines, a set of
n unit-time jobs, and a directed acyclic graph representing
precedence constraints on the order of the execution of the
jobs. We are also given, for every job j and machine 4, the
probability p;; of the successful completion of job j when
scheduled on machine ¢ in any given particular step. To
compensate for this uncertainty, multiple machines can be
assigned to one job at the same time. We focus on the
problem of computing a schedule to minimize the expected
time to complete all the jobs, i.e., the expected makespan.

1.1 Our results
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The multiprocessor scheduling problem SUU is shown to
be NP-hard in [2I] even when all jobs are independent. In
this paper, we present approximation algorithms for SUU,
for several special classes of dependency graphs.

e We first consider the case when all the jobs are inde-
pendent and present an O(logn)-approximation algo-
rithm for the problem (§3).

A crucial component of our approach to the independent
jobs case is the formulation of a sub-problem in which we
alm to maximize the sum of success probabilities for the
jobs. A similar strategy, refined to handle job dependencies,
allows us to attack the more general case where the jobs are
not independent.

e When the precedence constraints on the jobs form a
collection of disjoint chains, we obtain an

O(log mlog n%) approximation algorithm in

(§43). Our results rely on solving a (relaxed) linear

program and rounding the fractional solution using re-

sults from network flow theory.

e Using the algorithm for disjoint chains and the chain
decomposition techniques of [I7], we obtain
log(n4+m
O(log mlog? n) and O(log m log? nlogi(g%) approx-
imations for a collection of in- or out-trees and directed
forests, respectively (§4.2]).

The schedules computed by the algorithms for disjoint chains,
trees, and directed forests, are all oblivious in the sense that
they specify in advance the assignment of machines to jobs
in each time step, independent of the set of unfinished jobs
at that step. Oblivious schedules are formally defined in
§2] where we also present useful definitions and important
properties of schedules that are used in our main results.

To the best of our knowledge, our results are the first ap-
proximation algorithms for multiprocessor scheduling under
uncertainty problems.

1.2 Reated work

The problem studied in our work was first defined in the
recent work by Malewicz |21], largely motivated by the ap-
plication of scheduling complex dags in grid computing [9].
Malewicz characterizes the complexity of the problem in
terms of the number of the machines and the width of the
dependency graph, which is defined as the maximum num-
ber of independent jobs. He shows that when the number
of machines and the width are both constants, the optimal
regimen can be computed in polynomial time using dynamic
programming. However, if either parameter is unbounded,
the problem is NP-hard. Also, the problem can not be ap-
proximated within a factor of 5/4 unless P=NP. Our work
extends that of Malewicz by studying the approximability
of the problem when neither the width of the dag nor the
number of machines is bounded.

The uncertainty of the scheduling problem we study comes
from the possible failure by a machine assigned to a job, as
modeled by the p;;’s. There have been different models of
uncertainty in the scheduling literature. Most notable is the
model where each task has a duration of random length and
may require different amount of resources. For related work,
see [7, 6, (14} 29, 16} [LT].

Scheduling in general has a rich history and a vast litera-
ture. There are many variants of scheduling problems, de-
pending on various factors. For example: Are the machines

related? Is the execution preemptive? Are there precedence
constraints on the execution of the jobs? Are there release
dates associated with the jobs? What is the objective func-
tion: makespan, weighted completion time, weighted flow
time, etc.? See [13] for a survey and [12] 20} 28], 19} 4] [I7]
for representative work.

Two particular variants of scheduling closely related to
our work is job shop scheduling [27] and the scheduling of
unrelated machines under precendence constraints. In the
job shop scheduling problem, we are given m machines and
n jobs, each job consisting of a sequence of operations. Each
operation must be processed on a specified machine. A job
is executed by processing its operations according to the as-
sociated sequence. At most one job can be scheduled on any
machine at any time. The goal of the job shop scheduling
problem is to find a schedule of the jobs on the machines
that minimizes the maximum completion time. This prob-
lem is strongly NP-hard and widely studied |10} 18] [1]. Also
extensively studied is the problem of preemptively schedul-
ing jobs with precedence constraints on unrelated parallel
machines [19] 27) [17], the processing time of a job depends
on the machine to which it is assigned. One common char-
acteristic of this problem and SUU is that in each problem,
the capability of a machine ¢ to complete a job j may vary
with both ¢ and j. However, while the unrelated parallel
machines problem models this nonuniformity using deter-
ministic processing times that vary with ¢ and j, in SUU the
jobs are all unit-size but may fail to complete with probabil-
ities that vary with ¢ and j. Owing to the uncertainty in the
completion of jobs, SUU schedules appear to be more diffi-
cult to specify and analyze. One other technical difference
is that in SUU we allow multiple machines to be assigned
to the same job at the same time, for the purpose of rais-
ing the probability of successfully completing the job. The
unrelated parallel machines problem is typically solved by a
reduction to instances of the job shop scheduling problem.
Some of our SUU algorithms also include similar reductions.

2. SCHEDULES, SUCCESS
PROBABILITIES, AND MASS

In this section, we present formal definitions of a schedule
(§ 7)), introduce the notion of the mass of a job and prove
a key technical theorem about the accumulation of mass
of a job within the expected makespan of a given schedule

(§ 22).
2.1 Schedules

In SUU, we are given a set J of n unit-step jobs, and a set
M of m machines. There are precedence constraints among
the jobs, which form a directed acyclic graph (dag) C. A job
j is eligible for execution at step ¢ if all the jobs preceding j
according to the precedence constraints have been success-
fully completed before ¢t. For every job j and machine i, we
are also given p;j, which is the probability that job 7 when
scheduled on a machine ¢ will be successtully completed, in-
dependent of the outcome of any other execution. Multiple
machines can be assigned to the same job at the same step.
Without loss of generality, we assume that for each j, there
exists a machine ¢ such that p;; > 0.

DEFINITION 2.1. A schedule ¥ oflength T' € ZT U{oco}
is a collection of functions {fst : M — JU{L}|SC J, 1<
t <T+1}. An execution of the schedule ¥ means that,



at the start of each step t, if S is the set of unfinished jobs:
machine i is assigned to job fs:(i) if fs,:(i) is eligible and
belongs to S; otherwise, i s idle for that step.

Our formal definition of a schedule specifies assignment
functions fs+ for infinite ¢. This is because there is a posi-
tive probability for a job j to be not completed yet by any
given step if Vi, p;; < 1. For the purposes of optimizing ex-
pected makespan, however, we can restrict our attention to
a restricted class of schedules.

DEerFINITION 2.2 ([21]])). A regimen X, is a schedule
in which fs,(-) = fst,(:) for any S C J and t1 # to.
In other words, the assignment functions fs:’s depend only
on the unfinished job set S. Thus, we can specify ¥g by a
complete collection of functions {fs : M — SU{L}|S C J}.

We denote the minimum expected makespan for a given
SUU instance by T°"", which is finite because for any job
7, there exists a machine ¢, such that p;; > 0. It is not hard
to see that there exists an optimal schedule which is a reg-
imen because at any step ¢, one can determine an optimal
assignment function, which only depends on the subset of
unfinished jobs at step ¢t and is independent of the past exe-
cution history or the value t. While a naive specification of
an arbitrary regimen uses 2™ different assignment functions,
certain regimens can be specified succinctly, for instance,
by a polynomial-length function that takes S as input and
returns fs. In this paper, we also consider a different re-
stricted class of schedules, called oblivious schedules.

DEerFINITION 2.3. An oblivious schedule is a schedule
in which every assignment function fs: is independent of S,
i.e., for all ¢,S,5’, fs+(-) = fsr+(+). Hence, the assignment
functions at any step t can be specified by a single function,
which we denote by fr.

Oblivious schedules are appealing for two reasons. First,
at any step ¢, only one assignment function is needed, re-
gardless of the actual unfinished job set S occurring at step
t. Recall that there could be many different such S at a
given t because of the execution uncertainty. The second
benefit is more technical: oblivious schedules allow us to
address the uncertainty in the SUU problem by solving re-
lated deterministic optimization problems.

2.2 Success probabilities and mass

When a subset of machines S C M is assigned to j in any
time step, the probability that j is successfully completed is
1 —Tl;es(1 = pi;). For ease of approximation, the following
Proposition is useful to us.

ProposITION 2.1. Given zi1, -,z € [0,1], 1 — (1 —
1) (1=zg) < 21+ -+, Furthermore, if t1+- - -+x5 <
1, then1— (1 —x1)---(1—ax) > e Mz + -+ xx).

PRrOOF. The first assertion follows from the identity (1 —
z1)---(1—a) > 1—(x1+4 -+ zr), which can be proved
using a simple induction argument. The base case of £ =1
is trivial. Suppose the identity holds for £ — 1. If z; +
--- 4 xr_1 > 1, then the identity holds for k; Otherwise,
according to the induction hypothesis,

(I—2z1) - (1—2r—1)(1 —zx)
1= (w14 +zp-1)](1 - 1)

2
> 1—(:cl+-~-—|—xk).

For the second assertion, notice that if 0 <z < 1,1 —=x
e <1—-2 Sincel -z < e ™ (1—-x1)---(1—ax)
TP1...e7 %k we have
1—(1—%1)“'(1—3%)
> 1—e ... e 7k
= 1= (mttwy)
1+ + Xk

I

INIA

e

>
e
where the last inequality follows because e < 1 — £ for
x € [0,1] and the assumption that z1 + - -+ z, < 1. [

Proposition 2] suggests that we can approximate the suc-
cess probability with a convenient linear form.

DEFINITION 2.4. For any schedule ¥, we define the mass
of a job j at the end of step t to be the sum, over all time
t' € [1,t] and over every machine i to which j is assigned
at time t', of pi;. Thus, for an arbitrary schedule, the mass
of a job j at time t is a random variable. For an oblivious
schedule X,, the mass of j at the end of any step t is simply

min{ > > piy, 1},

1<T<tisfr (4)=j

where fr() is the assignment function of o at step 7. We
say that j accumulates that mass by step t.

The following theorem is crucial for our approach to the
scheduling problem. We emphasize that it holds for an arbi-
trary SUU instance. It is used in the proofs of Theorem [31]
and Lemma

THEOREM 2.2. Let ¥ be a schedule for an SUU instance,
whose expected makespan is T'. For any job j, in an ez-
ecution of ¥ for 2T steps, with probability at least 1/4, j
accumnulates a mass of at least 1/4.

ProoF. Let A be the event that j is finished within step
2T. Let St be the random variable denoting the collection of
machines assigned to job j at step t and P(St) =3, g, pij-
Let B be the event that ), , . P(S:) < 1/4. What we
want to prove is Pr(B¢) > 1/4. Observe that Pr(A) equals
Pr(ANB)+Pr(ANB°), which is at most Pr(ANB)+Pr(B°).

We estimate the value of Pr(ANB) below. Observe that all
possible executions of 3 on the jobs form an infinite rooted
tree, in which each node represents an intermediate state
during an execution (see Figure [[lfor an illustration). Each
node has an associated set of jobs, representing the unfin-
ished jobs at that state. For a node N, let Jobs(IN) be its
associated set of unfinished jobs. Note that Jobs(R) for the
root node R at level 0 counsists of the entire set of jobs. The
nodes at level k£ denote the states after k steps. From each
node N at level k£ to each node Q) at level £ + 1, we can
compute the corresponding transition probability according
to the assignment function fjops(n)k+1-

LemMA 2.3. Consider a tree node N at level k, where
j € Jobs(N). For1 <t <k, let St be the machine set
assigned to j during step t along the path leading to N from
R. Assume that Y, ., P(St) < ¢, where ¢ < 1. And let
P(j, N) be the probability that j will be finished by level (step)
2T following a tree path through N and >, ., .op P(S:) < c.
Then P(j,N) <c— 32145 P(S).



An infinite execution tree for a schedule.

A Markov chain for a regimen.

Figure 1: An illustration of the schedule. For simplic-
ity purpose, we only use 3 jobs. Each node represents
an intermediate state, with its associated set of unfin-
ished jobs appearing inside. The number close to an
edge represents its transition probability. The left graph
is a Markov chain representation of a regimen. The right
graph is a rooted tree representation of the execution of
a schedule. To avoid cluttering, we only show the com-
plete transitions for nodes {1,2} and {1} at step 2.

Proof of Lemma: We prove the lemma by backward induc-
tion on the level number k. Consider the base case: N’s
level is 27" — 1. We only need to execute the schedule for
one more step. Let Sor be the set of machines assigned to
J during step 27". If P(Sar) > ¢ — > cycor_q P(St), then
P(j,N) = 0. Otherwise, the probability that j is finished
within this step is at most P(S2r). In either case, the claim
is true.

We now assume that the claim is true for any level k <
2T — 1, our aim is to prove that the claim is also true for
level k£ — 1. Consider a tree node N at level £ —1. Let Sj be
the set of machines assigned to j during step k according to
assignment function f;.p.n) - A child node of N at level k
either does not contain j (j is finished at step k) or contains
J (j is not finished at step k). Let the probabilities of the
two cases be P; and 1 — Pi, respectively. Denote all the
children nodes where j is still unfinished as L.

If P(Sk) >c—> 1cicr_q1 P(St), then P(j, N) =0, which
is <c— 3 c,em_1 P(St). Otherwise,

P(j,N) = Pi+>» P(,Q)

Qer
< fﬁ+2;p%}2;;%&D
= P+(1- Pl)(c_—_z;kP(St))
< Hﬁwm—Ezl%éﬁ
< - Zl<;<r§5t),

1<t<ho1

where the second inequality follows from the induction hy-
pothesis and the last inequality follows from the fact that
P, < P(Sk). This proves the induction step and hence the
Lemma. [

By invoking the lemma with ¢ = 1/4, we obtain Pr(A N
B) = P(j,R) < ¢ = 1/4. Hence Pr(A) < 1/4 + Pr(B°).
And by Markov’s inequality, Pr(A) > 1/2. We conclude
that Pr(B¢) > 1/4, completing the proof.

3. INDEPENDENT JOBS

In this section, we study a special case of the schedul-
ing problem, where the jobs are independent. We refer to
this problem as SUU-I.  To compute a solution to SUU-I,
we first establish that there exists an oblivious schedule in
which the total mass accumulated by the jobs in O(T°"™)
steps is Q(n). To find such a schedule, we formulate a sub-
problem for maximizing the total sum of masses and then
give polynomial-time algorithms to compute an O(logn)-
approximate schedule and an O(log? n)-approximate oblivi-
ous schedule for SUU-I. For oblivious schedules, we improve
the approximation factor to O(logn - log(min{n, m})) when
we study the more general case with chain-like precedence
constraints in §4.11

THeEOREM 3.1. If there ewists a schedule X for SUU-I with
expected makespan T', then there exists an oblivious schedule
of length 2T, in which the total mass accumulated by all jobs
is at least n/16.

Proor. Consider an execution E of ¥ for 27 steps. This
execution yields naturally an oblivious schedule ¥ g of length
2T, whose assignment functions f:(-)’s are defined as follows:
f+(3) = j if machine i is assigned to job j at step ¢ in E.
Note that due to execution uncertainty, E, and hence ¥ g
are both random variables. By Theorem [2.2] for any job
Jj, with probability at least 1/4, j accumulates a mass of
at least 1/4 by step 27 in Y. Thus, the expected mass
of j at step 27" in ¥g is at least 1/16. This implies that
the expected total mass of all the jobs at step 27 in Xg is
at least n/16. Therefore, there exists an oblivious schedule
in which the total mass of the jobs at step 27 is at least
n/16. O

3.1 An O(logn)-approximate schedule for suu-I

Motivated by Theorem BTl we formulate subproblem Max-
SumMass for maximizing the sum of masses. In MaxSum-
Mass, we are given a set J of n independent, unit-step jobs,
a set M of m machines, and the probabilities p;;, and the
goal is to find an assignment f : M — JU{L} for a sin-
gle step that maximizes the sum of masses over the jobs in
the step. In Figure 2] we present a 1/3-approximation algo-
rithm MSM-ALG for MaxSumMass (which can be shown to
be NP-hard), and our approximation algorithm for SUU-I,
which simply executes, in every step, MSM-ALG on the
unfinished jobs.

THEOREM 3.2. MSM-ALG computes a 1/3-approzimate
solution to Problem MaxSumMass. [

Proor. Counsider a bi-partite graph, where one side of the
graph lie the nodes for jobs J and the other side lie the nodes
for machines M. There is an edge (¢,j) between machine ¢
and job j for any p;; > 0. MSM-ALG can be viewed as
picking and orienting the edges. Let Opt = {(¢,j)} be the
collection of edges of picked by the optimum assignment f*.
Let SoL be the solution computed by MSM-ALG. We use
a charging argument below. Consider any edge (¢, j) € Opt.

1. (4,4) € SoL, charge p;; to itself.
2. (i,7) ¢ Sow:

(a) (4,7) is not added because in step 2, f(i) # nil.
Let j° = f(i). Charge pi; to p;;y where (¢,5') €
SoL. Notice that p;; < p;;, and p;; will be



Algorithm MSM-ALG
INPUT: Jobs J, machines M, p;;’s.

e Set f(i) tonil, i € M.

e For each p;; in nonincreasing order: If f(¢) is nil and
Zx:f(m):jpxj +pij <1, assign i to j, i.e., f(i) < J.

e For every unused machine 4, f(i) +—L; output f.

Algorithm SUU-I-ALG

INPUT: Jobs J, machines M, p;;’s.

e Let S; denote the set of unfinished jobs at the start of
step t

e In each step ¢, schedule according to the assignment de-
termined by MSM-ALG applied to S; and all machines.

Figure 2: An approximation algorithm for scheduling independent jobs.

charged at most once due to this situation be-
cause each machine ¢ in Opt is used at most once.

(b) (i,7) is not added because in step 2, f(i) = nil
yet Zz:f(z —j Pz + i > 1. Since p;;’s are pro-
cessed in decreasing order, we conclude that in
SOL, 3~ f(s)=; Pxi = 1/2. Charge pi; to
23 0 s (=g Pai-

Observe that one copy of SoL is sufficient to cover the charges
of types 1 and 2(a). Two copies of SoL are sufficient to cover
the charges of type 2(b) because, by definition, the mass of
any job is at most 1 in any assignment.

We conclude that MSM-ALG computes a solution with
an approximation factor 1/3. [

THEOREM 3.3. Algorithm SUU-I-ALG is an O(logn)-
approzimation algorithm for SUU-I.

PRrOOF. Let S: denote the set of unfinished jobs at the
start of step t. Then, by Theorem [3.1] there exists an obliv-
ious schedule of length 2T°F™T starting from step ¢, in which
total mass of all jobs in S; is at least |S¢|/16. By averaging
over the 27°°F" time steps of this schedule, there exists an
assignment of jobs to machines in step ¢ such that the total
mass of the jobs in S: in step t is at least |S¢|/(32T°°™").
By Theorem [B2] in step ¢ of SUU-I-ALG, the total mass
of the jobs accumulated in step ¢ is at least |S¢|/(96T°F™).
By Proposition 2] it follows that the expected number of
jobs that complete in step t is at least |S;|/(96eT°"™).

We thus have a sequence of random variables S; which sat-
isfy the property E[|Sit1||S:] = |Se|(1 — 1/(96eT°"T)). By
straightforward Chernoff bound arguments [3} [I5], we obtain
that with high probability, \S; is empty within O(T°F™ logn)
steps. [

3.2 Anapproximateobliviousschedulefor suu-i

The schedule computed by SUU-I-ALG is adaptive in
the sense that the assignment function for each step is de-
pendent on the set of unfinished jobs at the start of the
step. Using an extension of MSM-ALG, we develop in this
section a polynomial-time combinatorial algorithm to com-
pute an oblivious schedule with expected makespan within
an O(log? n) of the optimal. In §&1I] we improve this bound
further to O(logn - log(min{n, m})) using an LP-based al-
gorithm.

According to Theorem [3] there exists an oblivious sched-
ule of length 27°°" | in which total mass of all jobs is at
least n/16. Intuitively, if one computes an oblivous sched-
ule ¥; of length 27°F" with the aim of maximizing the
total sum of masses over the jobs, there should be many
jobs accumulating constant masses in 3;. One can then re-
move those jobs and compute a second oblivious schedule
Y5 of length 27°F™ to maximize the total sum of masses for

the remaining jobs, to remove some additional jobs which
have accumulated constant masses. Since each computation
of the oblivious schedule removes many jobs, this process
should terminate quickly. By concatenating the 31,3, ...
together, one obtains an oblivious schedule ¥ in which every
job accumulates constant mass.

By Theorem [3:2] we have a 1/3 approximation algorithm
for Problem MaxSumMass. However, MaxSumMass only con-
siders oblivious schedules of length 1, i.e., each machine is
assigned to at most one job. What we need is a procedure of
finding an oblivous schedule of length 27°F", which maxi-
mizes the sum of masses over jobs. It turns out that one can
extend MSM-ALG easily to take into account the schedule
length, which can be arbitrary, and still obtain the same
aproximation factor of 1/3. We now formalize our discus-
sion.

Problem (MaxSumMass-Ext): We are given a set J of
n independent, unit-step jobs and a set M of m machines.
Let p;; denote the probability that job j is successfully com-
pleted if assigned to machine i. We are also given a param-
eter t € Z". The goal of the problem is to find an oblivious
schedule ¥, of length ¢ such that the total sum of masses
accumulated by the jobs by step ¢ is maximized.

We show below Algorithm MSM-E-ALG, which outputs
an oblivious schedule ¥, of length ¢ € Z7T that is a 1/3
approximate solution to Problem MaxSumMass-Ext. Algo-

rithm MSM-E-ALG is a simple modification from MSM-ALG

as follows. Since the schedule is of length ¢, each machine
can be assigned t times. We maintain a remaining capac-
ity parameter for each machine, ¢;, initialized to the value
t, to keep track of how many steps machine ¢ is still avail-
able to be assigned. We also use z;; to keep track of how
many steps machines ¢ is assigned to job j. In Step 2(a)
of MSM-E-ALG, as long as t; is positive, assign ¢ to j
for as many steps as necessary. In Step 2(b), we update
t; accordingly. In Step 3, we output an oblivious schedule
Yo ={f-() : 1 <7 < t}, which can be specified by z;;’s as
follows. Let ji,...,Jjn be an ordering of the jobs. f,(i) = jx
for >3 iy +1 <7 <Y iy and 1 <k <o
Observe that the running time of MSM-E-ALG is inde-
pendent of the value ¢ because each p;;, hence each pair
(i,7), is processed exactly once in Step 2. It is not hard
to see that MSM-E-ALG outputs a 1/3 approximate solu-
tion to Problem MaxSumMass-Ext because similar analysis
for MSM-ALG from Theorem can be applied.

LemMaA 3.4. MSM-E-ALG computes a solution to Prob-
lemm MaxSumMass-Ext with an approzimation factor 1/3.

We now present an approximation algorithm SUU-I-OBL
for Problem SUU-I.

A few comments on SUU-I-OBL are in order. We use
MSM-E-ALG repeatedly to accumulate constant masses



Algorithm 1 MSM-E-ALG
INPUT: Jobs J, machines M, p;;’s and t.

1. Sort p;;’s in decreasing order. Initialize: Vi,t; + ¢;
Vi,j, Tij < 0.

2. For each p;; according to the order:

(a) zij < min {ti7 {_szegfjxkj.pkj J }
(b) t; «— t; — Tij.

3. Output X, specified by x;;’s.

Algorithm 2 SUU-I-OBL
INPUT: Jobs J, machines M, p;;’s.

1. ¢+ 1.
2. I < 1. R+ J. ¥ < “empty schedule”.
3. While (|R| > 0) and (I < 66logn)

(a) Let X be the output of invoking MSM-E-ALG
on R, M with the current ¢ value. ¥ < ¥ o X;.

(b) Remove jobs that accumulate at least 1/96 mass
from R.

(c) I+ TI+1.

4. If |R| > 0, then t < 2t, GOTO step 2; Otherwise,
return .

for a good fraction of the jobs each round, until all jobs accu-
mulate constant masses. There is still one obstacle though.
Since we don’t know the value of T°"", we have to “guess”
a value of t for MSM-E-ALG, which must be large enough,
e.g., at least 2T°"", to ensure that there ezists an oblivi-
ous schedule of length ¢ in which the total mass is at least
n/16, as proved in Theorem Bl In summary, in the loop of
SUU-I-OBL (Step 3), we repeatedly invoke MSM-E-ALG
to accumulate 1/96 mass for the jobs, for at most 66logn
rounds (we will explain the reason shortly). At the end of the
loop (Step 4), if there are some remaining jobs, that means
our ¢ value is not large enough, we hence double the value of
t and try the new ¢ again by resetting the other parameters.
Note that during each invocation of MSM-E-ALG, we start
from scratch by ignoring any mass that the jobs may have
accumulated in the previous rounds. We now analyze the
performance of SUU-I-OBL.

If t > 27°F" | with one invocation of MSM-E-ALG using
t, let x be the number of jobs that get at least 1/96 mass.
The total sum of masses over the jobs is at most z -1+ (n —
z) - 1/96 because the mass that any job accumulates is at
most 1. From Theorem [3.I] we know that there exists an
oblivious schedule of length ¢, with a total sum of mass at
least n/16. Now according to Lemma [3.4] MSM-E-ALG
has an approximation ratio of 1/3. Thus,

z-1+(n—x)-1/96 > 1/3-n/16.

It follows that = > n/95. Since each invocation of
MSM-E-ALG makes at least 1/95 of the jobs accumulate
1/96 mass, it is sufficient to invoke MSM-E-ALG at most

66 log n times until all jobs accumulate at least 1/96 mass.

To prove that SUU-I-OBL terminates in polynomial time,
we first bound the value of T°"". Let pmin = min; ; pij.
Obviously, if we let the jobs accumulate sufficient mass one
by one by assigning all machines to a single job at any step,
then every job accumulates a mass of at least 1 within a time
interval of [-"—1]. This implies that 7°"* = O(;-—logn).
Since ¢ is doubling every iteration in SUU-I-OBL, O(log n+
log pim) different ¢ values will be “probed” before the algo-
rithm terminates. With each ¢ value, we invoke MSM-E-ALG
at most 66logn times, and each such invocation runs in
polynomial time. We conclude that algorithm SUU-I-OBL
terminates within time polynomial in the size of the input.
We have thus proved:

LemMA 3.5. For Problem SUU-1, one can compute in poly-
nomial time an oblivious schedule of length O(logn)T°*" in
which every job accumulates a mass of at least 1/96.

THEOREM 3.6. For Problem SUU-I, within polynomial time,
we can compute an oblivious schedule whose expected makespan
is within a factor of O(log®n) of the optimal.

PROOF. Using Lemma B.5] we first compute an oblivi-
ous schedule ¥, of length T = O(log®n) - T°*" in which
every job accumulates a mass of at least 1/96. The infi-
nite repetition of X,, X5°, is the oblivious schedule we want.
Treating the execution of ¥5° during each step interval of
[k-T+1,(k+1)-T], where k = 0,1, ..., as one iteration, by
Proposition [Z.I] we know that every job has a success proba-
bility of at least 5+— during each iteration. Within O(logn)
iterations, all jobs are finished with high probability. Thus,
the expected makespan of ¥2° is within O(log® n) of T°FT.
We now formalize this argument.

Let random variable X be the iteration number when all
jobs are finished. We bound the expected value of X below.

E[X] = ) Pr(X >i)

=0

362logn—1 (&S}
= Y PrX>i+ Y Pr(X>i)

=0 1=362logn
oo 1
< 3621 - (11— =)"
< ogn-1+ . Z n-(1 966)
1=362 logn
— 36210gn—|—n(1— i)36210gn.§:(1_ L)z
96e = 96e

IN

362logn + 9—26,

where the third inequality follows because every job has a
probability ﬁ of success within each iteration, and the last
inequality follows by summing the geometric series and the
fact that (1 — 5=-)"' < 1/2. This completes the proof of

96e
the theorem. [

4. JOBSWITH PRECEDENCE
CONSTRAINTS

In this section, we study SUU when there are non-trivial
precedence constraints on the jobs. We first present in §4.T]a
polylogarithmic approximation algorithm for the case when
the constraints form disjoint chains, and then extend the
results in §4.2] to the more general case when the constraints



form directed forests. All of the schedules we compute are
oblivious.

4.1 Digoint chains

We consider SUU in the special case where the dependency
graph C for the jobs is a collection of disjoint chains C' =
{C4,---,Ci}. We refer to this problem as SUU-C. If job j1
precedes j2 according to the constraints, we write ji < ja.

At a high level, our approach to solve SUU-C is to first
compute an oblivious schedule of near-optimal length in
which every job has a constant probability of successful com-
pletion, then replicate this schedule sufficiently many times
to conclude that all the jobs are finished with high probabil-
ity within a desired makespan bound. We first consider the
problem of accumulating a constant success probability for
each job. Asin the independent jobs case, we will use the no-
tion of mass instead of the actual probability. However, we
need to take into account the dependencies among the jobs.
Therefore, we formulate the following problem AccuMass-C:
Given the input for SUU-C, compute an oblivious schedule
with minimum length T, subject to two conditions: (i) Ev-
ery job j accumulates a mass of at least 1/2 within T'; (ii)
If j1 < j2, j1 must already accumulate mass 1/2 before any
machine can be assigned to j2. Condition (ii) captures the
intuition that if j; has a low probability of successful com-
pletion before step ¢, then the probability that jo is eligible
for execution at step ¢t would be small; so it does not make
much sense to assign machines to j2 prior to ¢ in the oblivi-
ous schedule.

The following is a relaxed linear program (LP1) for
AccuMass-C. Let x;; denote the number of steps during which
machine i are assigned to j. Let d; be the number of steps
during which there is some machine assigned to j.

(LP1) min ¢
st Y pymy > 1/2 VjeJ (1)
€M
wiy <t VieM (2)
jeJ
ddj <t GreC (3)
JECK
dj > 1 Vj (5)

Some comments on (LP1) are in order. Equation [I] enforces
Condition (i). Equation2lbounds the load on every machine,
which we define below. Equation [3] bounds the time length
on each chain constraint. Finally Equation [ ensures that
each job accumulates its mass during the d; steps when there
is some machine assigned to it. Let T be the optimal value
for (LP1) above.

Note that in (LP1) we do not have any condition to pre-
vent two different jobs from two precedence chains to be
scheduled on the same machine at the same step. We use the
term pseudo-schedule to capture such “schedules”, in which
different jobs from different precedence chains may be sched-
uled to the same machine simultaneously.

DerIiNITION 4.1. A pseudo-schedule oflength T' € Z*

Uoo is a collection of assignment functions, {f: : M —
271 <t <T+1}.

Hence, an assignment function of a pseudo-schedule may

map a machine to a set of jobs. In this sense, a pseudo-
schedule may not be feasible; we address this issue later
when describe how to transform a pseudo-schedule to an
appropriate oblivious schedule. An oblivious schedule is a
pseudo-schedule in which the value of f; is a single element.

DEFINITION 4.2. Given a pseudo-schedule 34 of (finite)
length T, {fi : M — 27 |1 <t < T + 1}, the load of a
machine ¢ is defined as the total number of times that a
job is scheduled on i in 4. Formally, the load of machine
i 08 Y cperay [ft(9)]. The load of ¥y is defined as the
mazimum load of any machine.

We remark that a pseudo-schedule of length 7" may have a
load greater than T

THEOREM 4.1. Within polynomial time one can round an
optimal feasible solution to (LP1), and obtain a pseudo-
schedule for Problem AccuMass-C whose length and load are
both O(logm)T™.

Proor. Obviously (LP1) is feasible because one can as-
sign machines to each job for a finite steps so that the job
can accumulate a mass of 1/2. Let {zi;,d;,t} be one opti-
mal solution to (LP1). (Note that ¢ is equal to 7™.) Our
efforts mainly concern the rounding procedure, i.e., obtain-
ing a feasible integral solution from the fractional solution
without blowing up ¢t too much. We then describe how to
get a pseudo-schedule from an integral solution to (LP1).
We differentiate between two cases.

The first case is when ¢ > |J| = n. We round each z;; and
d; up by setting zj; = [zi;] and dj = [d;]. We obtain a
feasible integral solution with approximation factor 2 since
we have

> piyxi; > 1/2 Vi€,

i€ M
@l < t+n<2 Vie M,
jeJ
ddj < t+n<2t CreC,
JECK
The second case is when ¢t < |J| = n. We make use of

some results from network flow theory for our rounding
in this case. Notice that although we target for a mass
of 1/2, any constant smaller than 1/2 will do as well be-
cause we can always scale every variable up to reach that
target, sacrificing only a constant factor. In our presen-
tation below, we use many such scale-up operations. (We
haven’t tried to optimize the constants.) For a given job
g, if ZieM'xij>1pijxij > 1/4, we can round these z;;’s to
the next larger integer. Since [z;;] < 2z;j, this only in-
curs a factor of 2 blow up in t. Thus, we only need to
consider those jobs j such that ZieM’x“leijxij < 1/4,
which implies that ZieM’xijdpi]‘xi]‘ > 1/4. Observe that
ZieM’pij<#yxij<1pijxij < 1/8, which implies
2ieM piy> g iy <1 PigTis > 1/8.

We bucket these p;;’s into at most B = [log(8m)] inter-
vals (27**+1 97%] (k= 0,1,...). For a bucket

. (9—(b by
b o (27D 27t if ZpiijuCketbmij < 1/32, we remove
this bucket from further consideration. Note that the sum
of pijxzi; over all removed buckets is at most 1/16. Hence



for the p;;’s in the remaining buckets, we still have
Zie]\f,pijzﬁ,xij<l pijxi; > 1/16.

For each job j, there is a bucket b; : (279 27%] such
that Zpij cbucket b; Tij > %. Denote the sum on the left
side of the above inequality by Dj;. If necessary, we scale all
the x;;’s (and other variables) up by a factor of 32, so that all
D; > 1. We then round D; down to |D;|. These operations
only cost us a constant factor in terms of approximation.
Thus for the ease of the presentation below, we assume that
the D;’s are integral and let D = 3", ; D;

We now construct a network-flow 1nstance as follows (see
Figure B). We have one node for each job j, one node for
each machine 7, a source node u, and a destination node
v. We add an edge (i,j) for each w;; contributing to the
computation of D;’s. We orient the edge (¢,7) from j to i,
with edge capacity [d;]. From each machine node ¢, add an
edge toward v, with capacity [2t]. For each job node j, add
an edge from w to j, with capacity Dj;.

Figure 3: A network flow instance for the rounding
of an optimal solution to (LP1)

The argument before the construction shows that a flow of
demand D at u can be pushed through the network, where
the z;;’s specify such a feasible flow. D is actually the max-
imum flow of the network (consider the cut where one side
consists of u alone). From Ford-Fulkerson’s theorem [8], [5],
we know that there exists an integral feasible flow when the
parameters are integral, as in our instance. We take such
an integral flow value on edge (j,¢) as our rounded solution
x;;. Furthermore, the integral solution obtained observes
the following identities.

. 1 )
DijTi; 2> = VjEJ,
iezz\; I 16[log(8m)]
doay < 2] VieM,
jeJ
> d1 < 2] CreC,
JECK

Raising all the values by a factor of O(logm), we obtain an
integral feasible solution {#;, d;, £}, where { = O(log m)T™.
We now describe how to construct from the integral solu-
tion a pseudo-schedule ¥, whose length and load are both
bounded by ¢ = O(logm)T*. Consider a job j in a chain
Cr € C. Given the 2;;’s, let L; = max;£;;. Let ¢; =

Zj jo<j Lio- We assign the machines to j within a step
mterval ‘of length L; from step 1; + 1 to ¢; + L;, using each
machine ¢ ;; times. In other words, the assignment func-
tions for chain C are specified as follows. For any job j and
machine 4, if &;; > 0, fF(i) = {j} for t € [1; + 1,v; + &4j].
This can be done because each machine is assigned to j at
most L; times and different machines can be assigned to j
at the same step. After we define the ff(-) for every chain
Cy € C, we define the assignment functions for X as

fe@) = Uopec fE(i) for i€ Mt e (1,1,

Recall that the range of the assignment functions for a pseudo-
schedule is a set of jobs. This completes the proof of the
theorem. [

We now relate AccuMass-C to SUU-C. Recall that T is the
optimal value of (LP1) we write for Problem AccuMass-C,
and T°F7 is the expected makespan of an optimum schedule
3 for Problem SUU-C. We now bound the value T™ in terms
of T°"T in Lemma This lemma, together with Theo-
rem [£1] immediately yields a pseudo-schedule that solves
AccuMass-C with load and length within O(logn) factor of

TOPT'
LEmMA 4.2. T* < 16T°FT. O

ProOOF. The following linear program is the same as (LP1),
except that 1/2 is replaced by 1/16 and ¢ is replaced by
2T°FT. We argue that this linear program is feasible.

Zpi]‘xi]‘ > 1/16 V.] eJ

ieM
in]‘ < 2T°FT Vie M
jeJ
Z dj < 2TOPT CreC
JECK
ac,-j S dj Viyj
dj =2 1 Vj
xij > 0 Vij

Consider the first 2T°"" execution steps using an opti-
mal schedule 3. Let random variable X;; be the number of
steps in which ¢ is assigned to j. Let random variable Y;
be the total number of steps when there is some machine
assigned to j. We know from Theorem that with prob-
ability at least 1/4, j accumulates at least 1/4 mass within
2T°FT steps. This amounts to the fact that the expected
accumulated mass for j is at least 1/16. Thus

me ’

i€ M

E[X,;] > 1/16.

Since in ¥ a machine is assigned to at most a job at any
step, >, Xij < 277", So

> E[Xi;] < 2T°%,
jeJ

Since we are considering only 27°°F" steps of 3, we have

dec Y; < 2T°FT. Obviously, X;; < Y;. Taking the ex-
pectatlon we have

S Byl <21
JECK



and
E[Xi5] < E[Y;].

We conclude that z;; = E[X;] for ¢ € M,j € J and
d; = E[Y;] for j € J form a solution to the linear program.
Raising this solution by a factor of 8, we obtain a solution
to (LP1). This means that a t of value 16T°"" is achievable
in (LP1). We have thus proved that T < 167°F". This
completes the proof of the lemma. [

THEOREM 4.3. A pseudo-schedule with length and load
bounded by O(logm) - T°FT can be computed within poly-
nomial time, such that: (i) Every job j accumulates at least
1/2 mass. (1) If j1 < j2, j2 can only begin the accumulation
after j1 accumulates 1/2 mass. [

In the remainder of this section, we describe how to convert
a pseudo-schedule obtained from Theorem [4.3] to a feasible
schedule. According to Theorem (43l we can compute a
pseudo-schedule X5 of length O(logm)-T°"™" in which every
job accumulates a mass of at least 1/2, and hence a success
probability of at least 2—16 Moreover, if j1 < j2, no machine
is assigned to j2 until j1 has accumulated 1/2 such mass.
We now convert 3, to a (feasible) oblivious schedule ¥, in
two steps.

1. We use the elegant random delay technique of [19]
[27] to delay the start step of the execution for each
chain appropriately and obtain a new pseudo-schedule
3,1 in which the number of jobs scheduled on any
machine at any step is O(%). The random-
ized schedule can also be derandomized using tech-
niques from [22] 25 27]. We then “fatten” X1 to
obtain an oblivious schedule X, 1, sacrificing a factor

of O(%) in the schedule’s length.

2. To obtain the final oblivious schedule ¥,, we take the
oblivious schedule ¥, 1 from above and replicate each
step’s machine assignment O(logn) times, so that all
jobs will be finished with high probability.

We now describe in detail the two steps that convert a

pseudo-schedule to a feasible oblivious schedule. Since the
second step is simpler, we describe it first.
Schedule replication:  We first replicate 3,1 at each
step by a factor of 0 = 16logn to get another oblivious
schedule ¥, 2. More precisely, let 7' denote ¥, 1’s length
and let g¢(-)’s be the assignment functions of ¥,1. We define
the assignment functions f(-)’s of X, 2 as follows. For any
te[l,0-T], fi(-) = g-(-), where 7 = [ =1 ] + 1. Note that if
3,1 can be specified in space polynomial in the size of the
input, as we will show in the “delay” step, so can ¥, 2.

We define yet another oblivious schedule 3, 3 of length
n as follows. Topologically sort the jobs according to the
precedence constraints, e.g., appending the precedence chains
one after another, and let ji, ..., j, be the jobs in the sorted
order. The assignment functions h:(-)’s for ¥, 3 are speci-
fied as follows. Vi € M, h:(i) = j¢, where 1 < ¢t < n. Now
the final oblivious schedule we want is ¥, = 3,2 0 35%. In
other words, oblivious schedule ¥, is simply the replicated
3o,1 followed by assigning all the machines to some job at
each step.

We now analyze the expected makespan of ¥,. If all
jobs are successfully completed within step o7, the expected

makespan is at most ¢7". The probability that this does not
happen is at most n(1— 5-)7 < 1/n*. Notice also that from
step T+ 1 on, ¥, assigns all the machines to a single job at
each step periodically (due to 3, 3, with a period length of
n). The expected number of steps for a job to be completed
is at most T°F" if all the machines are assigned to it. Since
we periodically assign the machines to any fixed job, on av-
erage, it takes at most (nT°"") steps to complete any fixed
job. Hence, on average, it takes at most n>T°FT steps to
complete all the jobs using the assignment functions beyond
step oT. The expected makespan of 3, is thus at most

(1—1/n*)o-T+1/n*- (o -T +n*T°"").
As we will prove shortly, T = O(log m%) . TOFT

and o = 16logn. We conclude that the expected makespan

of 3, is O(lognlogm%) -TOFT,

Converting pseudo-schedule ¥; to an oblivious sched-
ule: We now address the issue when the computed pseudo-
schedule Y from Theorem [£3] is not yet feasible, that is,
when some machine is assigned to more than one job at the
same step. We claim that we can convert ¥, to an oblivious
schedule 3,1 by sacrificing a factor of O(mlgc’ﬁg%).

Let II,nqz be the load of X, i.e., the maximum number
of jobs assigned to any machine. A result by Shmoys, Stein
and Wein on job shop scheduling problem [27] Lemma 2.1]
states that if we delay the starting step of each chain by an
integral amount independently and uniformly chosen from
[07Hmax], the resulting pseudo-schedule has no more than
O(%) jobs scheduled on any machine during any
step. We now explain what we mean by the term delay.
Recall that in the last paragraph of the proof for Theo-
rem 1] we first specify a function fff for each constraint
chain Cj € C, and then define assignment function for 3
as f: = Upff. Suppose that a chain Cj is delayed by an
amount of ¢, the assignment function gf for chain Cj is
modified as follows. Vi € M, if t < ¢x,gr (i) = 0; other-
wise, gF (i) = f£¢k (7). And the assignment function for the

schedule is defined as fi = Urg¥. To make our presentation
self-contained, we now outline the argument for the bound

log(n+m
of O(gltm) lgcfg(; +,11)) below.

Fix a step ¢ and a machine i. Let p = Pr[at least 7 units
of processing are scheduled on machine 7 at step t]. Note
that a job j could be scheduled in multiple steps, and each
job is unit-step, it is equivalent to say that there are mul-
tiple processing units of job j. There are at most (H”;‘”)
ways to choose those 7 processing units. Focus on a par-
ticular choice of 7 units. If these units are from different
chains, the probability that they are all scheduled at step ¢
is at most (Hiaz )" since we choose the delay independently
and uniformly from [0, [I;nqz]. Otherwise, the probability is
0 because our pseudo-schedule can never assign two units
from the same chain to the same machine at the same step.

Therefore,
Hmam 1 T
T Hmal‘
< (%) (=)
T Hmal‘
e T
(%)

i)
IN

IN



1 + —(a—
%, then p < (n +m) (=1 Let Limas

be the length of the longest chain according to ¥s;. The
probability that eny machine at any step is assigned at
least a%“”)) jobs is bounded by m(ILynaz + Limaz)(n+

log log(n+m
—(a—1)

fr=a«a

m) With the assumption, which we will remove
shortly, that T°" is bounded by a polynomial in (n + m),
ez + Lmaz is bounded by a polynomial in (n + m) as
well. If we choose « to be sufficiently large, then with high
probability, no more than a% jobs are scheduled
on any machine at any step.

Shmoys, Stein and Wein [27] also derandomize the algo-
rithm so that O(log(n + m)) jobs can be scheduled on any
machine simultaneously, based on results by [23, 24] [22].
Schmdit, Siegel and Srinivasan [25] give a different deran-
domization strategy and obtain a collision bound match-
ing the randomized algorithm, i.e., O(%
simultaneously for any machine. We denote this (deran-
domized) pseudo-schedule by 3 1, whose length is at most
twice that of 3s. According to Theorem [£3] >,’s length
is O(logm) - T°FT, it follows that we can “Hatten” X1

out to obtain an oblivious schedule X, whose length is

1 +
o (IOg m logolgo(gn(nrgn)

signed to one job at any step. We comment that the random
delay technique originates in [I9] when they study the job
shop scheduling problem.

Reducing 7°"T: We now address the issue that 7°°" is
not always bounded by a polynomial in (n + m). We make
use of a trick from |27, Section 3.1]. Consider the pseudo-
schedule ¥ computed in Theorem [£3]l For each job j, let
li; be the number of steps in which machine 7 is assigned to
j and L; be max; l;;. Denote max; L; by L. We know that
all machines are assigned to j within a window of length
L;. Let B = nm. Round each l;; down to the nearest mul-
tiple of £, and denote this value by li;. We therefore can

treat the lj; as integers in {0,...,3}. A schedule for this
new problem can be trivially rescaled to one with the real
values l;;. Since 8 = nm, the schedule now effectively has
a length (and load) bounded by a polynomial in (n + m).
Hence our discussions of the random delay and derandom-
ization hold now. Let ¥’ be the resulting feasible oblivious

schedule, with length bounded by O(log m%)TOPT

and load bounded by O(logm)T°"™. To get a feasible obliv-
ious schedule X, 1 so that every job accumulates 1/2 mass,
we insert (I;; — l;;) units of processing to X’. The insertion
can be done in a way that preserves the precedence con-
straints, i.e., if j1 < j2, then no machine can be assigned
to j2 before ji accumulates 1/2 mass. Since each insertion
lengthens ' by an amount < % and we have at most nm
such insertions, the length of the schedule is increased by at
most L. The loads on the machines are the same as before
the rounding. Note that L is bounded by Il,nq., which is
O(logm)T°"™. We thus have obtained a feasible oblivious
schedule ¥, 1 whose length is O(log m%)TOPT7 in
which every job accumulates a constant mass. Finally, we
use the replication technique discussed earlier in this section
to obtain the desired schedule.

) machines

) - T°F" in which each machine is as-

THEOREM 4.4. For Problem SUU-C, there ezists a poly-

nomzial-time algorithm to compute an oblivious schedule sched-

ule with expected makespan within a factor of

O(log mlog n%) of the optimal. [

For independent jobs, i.e., when the constraints C' in Prob-
lem SUU-C is empty, we can prove a bound for oblivious
schedules that slightly improves over the result stated at
the end of §3l

THEOREM 4.5. For Problem SUU-I, there exists a poly-
nomial-time algorithm to compute an oblivious schedule sched-
ule with expected makespan within a factor of
O(logn - log(min{n, m})) of the optimal. [

PrOOF. Let (LP2) be the linear program obtained from
(LP1) by removing constraints [3] [ [l and 75 be (LP2)’s
optimal value. We first show that one can round an optimal
feasible solution to (LP2), and obtain an oblivious schedule
for Problem AccuMass-C, whose length, and hence load, are
both O(log(min{n, m})) - T5.

For Problem SUU-I, Condition (ii) of AccuMass-C is void.
We thus don’t need constraints Bl Ml Bl when writing the
linear program. The rounding in the proof of Theorem [£]]
gives an O(logm) blow-up. If m > n, we can do a better
analysis for the rounding procedure. Since there are n +m
non-trivial constraints in (LP2), there are at most n + m
nonzero values in any basic feasible solution [2] 26]. In an
optimal solution {z;;,t} (which is basic feasible), we may
assume without loss of generality that for any machine i,
there exists a j such that x;; > 0. Otherwise, we may
remove that machine from consideration in (LP2). From
here, we conclude that the number of machines ¢ that have
at least two z;; > 0 is at most n. When we round z;;’s,
we only need to consider these machines ¢ with at least two
x;; > 0. Then the same rounding procedure in the proof
of Theorem [T] gives a factor O(logn) blow-up because for
each job, we only need to consider O(log n) buckets.

We conclude that one can obtain an integral feasible solu-
tion {&;j,} where f = O(log(min{n, m}))-T5. Furthermore,
from {Z;;,%}, one can construct a (feasible) oblivious sched-
ule for Problem AccuMass-C, whose length, and hence load,
are £ = O(log(min{n, m})) - T5. This is because the load on
each machine is bounded by £ according to Equation 2 and
the jobs are independent. Hence the machine assignment
can be done in such a way that no more than one job is
scheduled on any machine at any step.

We thus have an oblivious schedule in which every job
accumulates a constant mass within time that is at most
O(log(min{n, m}) times optimal. We now apply the sched-
ule replication step and obtain the desired bound. [

4.2 Treelike precedence constraints

Our algorithm for tree-like precedence constraints uses
techniques from [I7], who extend the work of [27] on schedul-
ing unrelated parallel machines with chain precedence con-
straints to the case where there are tree-like precedence con-
straints by decomposing the directed forests into O(logn)
collection of chains. To state their result, we first introduce
some notations used in [I7]. Given a dag G(V, E), let din(u)
and dout(u) denote the in-degree and out-degree, respec-
tively, of u in G. A chain decomposition of G is a partition
of its vertex set into subsets B, ..., Bx (called blocks) such
that: (i) The subgraph induced by each block B; is a collec-
tion of vertex-disjoint directed chains; (ii) For any u,v € V,
let uw € B; be an ancestor of v € B;. Then, either ¢ < j, or
i = j and u and v belong to the same directed chain of B;;
(iil) If doue(u) > 1, then none of u’s out-neighbors are in the
same blocks as u. The chain-width of a dag is the minimum



value A such that there is a chain decomposition of the dag
into A blocks. We now state the decomposition result.

Lemma 4.6 ([I7], LEMMA 1). Every dag whose under-
lying undirected graph is a forest has a chain decomposition
of width ~y, where v < 2([logn]+1). The decomposition can
be computed within polynomial time.

Using Lemma [4.6] we simply decompose a given directed
forest into at most v = O(logn) blocks, and within each
block, apply our algorithm for the chain case (Theorem 4.
Since the optimal expected makespan on any subgraph (sub-
set of jobs) is a lower bound for that of the whole graph
(whole set of jobs), this approach gives up another factor of
log n. We have thus obtained

THEOREM 4.7. For Problem SUU, if the dependency graph
C is a directed forest, there erists a polynomial-time algo-
rithm to compute an oblivious schedule schedule with ez-
pected makespan within o factor of O(log mlog? nmlgoi(;%)
of the optimal.

When the precedence constraints form a collection of out
trees (rooted trees with edges directed away from the root)
or in trees (defined analogously), we can obtain an improved
approximation algorithm by again following the ideas of [17].
More specifically, we decompose the out/in trees into O(logn)
blocks; then randomly delay each chain by an amount of
steps chosen uniformly from [0, O(Il;maz/logn)] (this step
can be derandomized in polynomial time); and prove that
with high probability, at most O(logn) jobs can be sched-
uled on any machine simultaneously.

THEOREM 4.8. For Problem SUU, if the dependency graph
C' is a collection of out/in trees, there exists a polynomial-
time algorithm to compute an oblivious schedule schedule
with expected makespan within a factor of O(logmlog®n)
of the optimal.

5. OPEN PROBLEMS

In this paper, we have presented polylogarithmic approxi-
mation algorithms for the problem of multiprocessor schedul-
ing under uncertainty, for special classes of dependency graphs.
We believe that our bounds are not tight; in particular, we
conjecture that a more careful analysis will improve the ap-
proximation ratios by an O(logn) factor in each case. It will
also be interesting to obtain approximations for more gen-
eral classes of dependencies, and to consider online versions
of our scheduling problem.
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