
Time-based Transactional Memory
with Scalable Time Bases

Torvald Riegel
Dresden University of
Technology, Germany

torvald.riegel@inf.tu-
dresden.de

Christof Fetzer
Dresden University of
Technology, Germany
christof.fetzer@tu-

dresden.de

Pascal Felber
University of Neuchâtel,

Switzerland
pascal.felber@unine.ch

ABSTRACT
Time-based transactional memories use time to reason about
the consistency of data accessed by transactions and about
the order in which transactions commit. They avoid the
large read overhead of transactional memories that always
check consistency when a new object is accessed, while still
guaranteeing consistency at all times—in contrast to trans-
actional memories that only check consistency on transac-
tion commit.

Current implementations of time-based transactional mem-
ories use a single global clock that is incremented by the
commit operation for each update transaction that commits.
In large systems with frequent commits, the contention on
this global counter can thus become a major bottleneck.

We present a scalable replacement for this global counter
and describe how the Lazy Snapshot Algorithm (LSA), which
forms the basis for our LSA-STM time-based software trans-
actional memory, has to be changed to support these new
time bases. In particular, we show how the global counter
can be replaced (1) by an external or physical clock that
can be accessed efficiently, and (2) by multiple synchronized
physical clocks.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Performance

Keywords
Transactional Memory

1. INTRODUCTION
Over the last few years, major chip manufacturer have

shifted their focus from ever faster clock speeds to increased

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

parallel processing capabilities. With the advent of multi-
core CPUs, application programmers have to develop multi-
threaded programs in order to harness the parallelism of the
underlying CPUs. Yet, writing correct and efficient concur-
rent programs is a challenging task. Conventional synchro-
nization techniques based on locks are unlikely to be effective
in such an environment: coarse-grained locks do not scale
well whereas fine-grained locks introduce significant com-
plexity, are not composable, and can lead to such problems
as deadlocks or priority inversions.

Transactional memory (TM) was proposed as a lightweight
mechanism to synchronize threads by optimistic, lock-free
transactions. It alleviates many of the problems associated
with locking, offering the benefits of transactions without
incurring the overhead of a database. It makes memory,
which is shared by threads, act in a transactional way like
a database.

Software transactional memory (STM) has therefore re-
cently gained a lot of interest, not only in the research com-
munity (e.g., [5, 7]) but also in industry. It offers a famil-
iar transactional API at the programming language level to
help isolate concurrent accesses to shared data by multiple
threads. Besides isolation, STMs guarantee atomicity of the
sequential code executed within a transaction: in case the
transaction cannot commit, any modification performed to
shared data is automatically undone.

In STMs there is currently a trade-off between consis-
tency and performance. Several high-performance STM im-
plementations [11, 6, 3] use optimistic reads in the sense
that the set of objects read by a transaction might not be
consistent. Consistency is only checked at commit time,
i.e., commit validates the transaction. However, having an
inconsistent view of the state of the objects during the trans-
actions might prevent the application to run properly (e.g.,
it might enter an infinite loop or throw unexpected excep-
tions).

On the other hand, validating after every access can be
costly if it is performed in the obvious way, i.e., checking
every object previously read. Typically, the validation over-
head grows linearly with the number of objects a transaction
has read so far.

A time-based transactional memory uses the notion of time
to reason about the consistency of data accessed by trans-
actions and about the order in which transactions commit.
This allows a TM to always access consistent objects (as
if validating after every read) without incurring the cost
of validation. In [9, 10], we have proposed a time-based
STM that uses invisible reads but guarantees consistency

by maintaining an always consistent snapshot for transac-
tions. Other groups have proposed time-based STMs since
then [2, 12]. However, the time bases that are currently used
in these STMs are very simple because they all rely upon
shared counters (with some optimizations). As the number
of concurrent threads grows, the shared counter can quickly
become a bottleneck: update transactions typically update
the counter, which results in cache misses for all concurrent
transactions. There is therefore a dire need for more scalable
time bases.

1.1 Time-based Transactional Memory
A transactional memory consists of a set of shared objects

that can be accessed concurrently by multiple processors or
threads. Using time as the basis for the transactional mem-
ory does not impose a certain implementation in general:
both object-based and word-based STMs, as well as hard-
ware transactional memories, can be used. However, timing
information has to be stored at each object. In what follows,
we do not assume a specific implementation.

Time-based transactional memory uses a time base to im-
pose a total order on transactions and object versions. In
its simplest form, the time base can be a simple integer
counter shared by all processors, but the focus of this paper
is on more scalable time bases. Furthermore, the clocks of
time bases can either tick when required by the transactional
memory (i.e., they work like counters) or independently of
the transactional memory (e.g., as real-time clocks do).

Transactions are either read-only, i.e., they do not modify
any object, or update transactions, i.e., they write one or
more objects. Each object traverses a sequence of versions
as it gets modified by update transactions. A new version
becomes valid at the time a transaction that updated the
object commits. We call the validity range v.R of an object
version v the interval between the time a version becomes
valid and the time it gets superseded by another version.
The lower and upper bounds of the validity range v.R are
referred to by bv.Rc and dv.Re. A version that is still valid
has an upper bound set to ∞. Even though different pro-
cessors may have distinct time references, the value of the
commit times of transactions are agreed upon and so are
the validity ranges of objects. Note however that while the
values are agreed upon, a thread might only be able to ap-
proximate a remote timestamp ts with its own local clock,
e.g., it might be able to compute that ts was read between
local timestamps ts1 and ts2.

A transaction T accesses a finite set of object versions, de-
noted by T.O. We assume that objects are only accessed and
modified within transactions. We define the validity range
T.R of transaction T to be the time range during which
all object versions in T.O are valid, that is, the intersec-
tion of the validity ranges of the individual versions. bT.Rc
and dT.Re denote the lower and upper bounds of T.R. We
say that the object versions accessed by transaction T are a
consistent snapshot if the validity range T.R is non-empty.

The transactional memory has to read the current time at
the beginning of each transaction to make sure that trans-
actions are linearizable. Another access to the time base
is usually performed when update transactions are commit-
ted. Whether further accesses are performed depends on the
specific implementation of the transactional memory.

A transaction T can try to extend T.R to avoid that T.R
becomes empty. When T accesses the most recent versions

of the objects in T.O, the upper bound of its validity range
is set to the current time (and not ∞) because T cannot
predict if or when objects will be changed. When extending
T.R, it is checked whether some objects have been changed.
If not, the validity range can be extended to the current time
(i.e., the time before the check was performed). Otherwise,
dT.Re will be set to the earliest commit time of any of the
object versions that replace a version in T.O.

If time has progressed since the start of a transaction
(which indicates that the state of the transactional memory
has progressed), one extension has to be performed when
committing an update transaction (see Section 2). Existing
implementations of time-based transactional memory differ
mostly in the implementation of the time base, the main-
tenance of object versions, and the computation of validity
ranges, as described next.

1.2 Related Work
In what follows, we give an overview of transactional mem-

ory implementations that benefit from using some notion of
time or progress in the system.

The Lazy Snapshot Algorithm (LSA) [9] uses time in the
way described in Section 1.1, with an integer counter shared
between all threads as time base. The shared counter is
read on every start of a transaction and incremented when
committing update transactions. It is also read when LSA-
STM tries to extend a transaction’s validity range, but that
is optional. The STM does not need to access the counter
during ordinary accesses because information in the validity
ranges of object versions and the transaction is sufficient.
The overhead of this counter is negligible on current multi-
core CPUs in which sharing data is inexpensive. On larger
systems, however, the counter becomes a bottleneck.

Transactional Locking II (TL2) [2] uses time in a similar
way but is optimized towards providing a lean STM and de-
creasing overheads as much as possible: only one version is
maintained per object and no validity range extensions are
performed (except when committing update transactions).
Thus, an object can only be read if the most recent update
to the object is before the start time of the current transac-
tion. A shared integer counter is used as time base together
with an optimization that lets transactions share commit
timestamps when the timestamp-acquiring C&S operation1

fails. It is also suggested to use hardware clocks instead of
the shared counter to avoid its overhead.

In [13], Wang et al. describe compiler support for a time-
based STM that uses an algorithm similar to the one pre-
sented in [9] but also maintains only a single object version.
A shared integer counter is used as time base.

RSTM [12] is an object-based STM that uses single-version
objects and validation (i.e., it checks on each access that
every object previously read has not been updated concur-
rently). To reduce the validation overhead, a heuristic is
used: a global “commit counter” counts the number of at-
tempted commits of update transactions in the system (i.e.,
the counter shows whether there was progress) and the set
of accessed objects is validated only if there was progress.
This heuristic is less effective than the methods used by [9,
2, 13]. Using a time base that can be efficiently read is very
important when using this heuristic because the counter has

1The compare-and-swap operation C&S(v, e, n) atomically
stores a new value n into variable v if v contains the expected
value e.

to be read on every access to an object. Thus, even disjoint
updates will lead to cache misses, slowing down transactions
that are never affected by these updates.

1.3 Contributions and Organization
In this paper, we study the concept of time-based trans-

actional memory and explore two options for providing scal-
able time bases. We introduce a novel STM algorithm that
uses perfectly synchronized real-time clocks to optimistically
synchronize concurrent transactions. We then extend our al-
gorithm so that it can also support imprecise clocks (e.g.,
externally synchronized clocks). Experimental results tend
to confirm that using real-time does indeed improve scala-
bility on large systems.

The rest of the paper is organized as follows: Section 2
describes the real-time extension of our consistent snapshot
construction algorithm for transactional memories. In Sec-
tion 3, we explain how our algorithm can use perfectly syn-
chronized and imprecise real-time clocks. Section 4 presents
experimental results that show the scalability of our ap-
proach as compared to accessing a shared counter. Finally,
Section 5 concludes the paper.

2. REAL-TIME LAZY SNAPSHOT
ALGORITHM

In what follows, we introduce the LSA-RT algorithm, an
extension of LSA [9], that does not assume a global shared
counter as time base.

2.1 Time Bases
In this paper, we use two time bases: (1) perfectly syn-

chronized clocks and (2) externally synchronized clocks. Per-
fectly synchronized clocks give (conceptually) all threads ac-
cess to one global clock without any reading error. The
reading error is the difference between the value read and
the correct value. Typically, such a perfectly synchronized
clock would need to be implemented in hardware. An ex-
ternally synchronized clock also provides access to a global
clock but with some reading error that might vary and might
not be bounded.

In both cases, the global clock does not actually need to
be a real-time clock, i.e., neither its speed nor its value needs
to be approximately synchronized with real-time. However,
having a global real-time clock typically simplifies the imple-
mentation of an externally synchronized clock (because local
clocks with a bounded drift rate can be used to approximate
real-time). In particular, this reduces the overhead and error
if the synchronization is done in software.

We use several utility functions whose implementation de-
pends on the time base that is used (see Algorithm 1): get-
Time, getNewTS, t1 < t2 (guaranteed later than or equal),
t1 % t2 (possibly later than), max and min. We first focus
on the semantics of these utility functions. Their implemen-
tation will be described later together with their respective
time base.

Function getTime returns the current time. We assume
that the timestamps that a thread is reading are monotonic,
i.e., if a thread reads first t1 and then t2, then we know that
t2 is guaranteed to be later or equal to t1. In our terminol-
ogy, we will denote this by t2 < t1. We do not require t2 to
be strictly later than t1 because we want to support clocks
that tick rarely, e.g., only when a transaction commits. If

Algorithm 1 Generic utility functions

1: use function getTime() . Get current timestamp
. (module-specific)

2: use function getNewTS() . Get strictly greater timestamp
. (module-specific)

3: use function <(t1, t2) . Guaranteed later than or equal
. (module-specific)

4: function %(t1, t2) . Possibly later than
5: return t2 6< t1
6: end function
7: use function max(t1, t2) . Maximum (module-specific)
8: use function min(t1, t2) . Minimum (module-specific)

a thread needs to read such a fresh timestamp, it needs
to call function getNewTS. This function ensures that the
value returned to a thread is strictly greater than any times-
tamp that has so far been returned to this thread by get-
NewTS or getTime. Note that the timestamps returned by
getTime and getNewTS are not necessarily unique: other
threads might read the same timestamps.

We assume that getTime and getNewTS return a clock
value that was read instantaneously at some point in real
time between the time getTime/getNewTS was called and
the time it returned. If two timestamps are read by different
threads, it might not be possible to say which timestamp was
read later or earlier (e.g., because there is a non-zero clock
reading error). To cope with this uncertainty, we say that
t2 < t1 iff it is guaranteed that t1 was read no later than t2.
Sometimes we might only be able to say that t2 was possibly
read at a later point than t1. We denote this by t2 % t1.
Note that t2 < t1 always implies t1 6% t2 and t2 % t1 implies
t1 6< t2.

The utility functions max(t1, t2) and min(t1, t2) have the
following semantics. For any timestamp t3, if t3 is guaran-
teed to be later than max(t1, t2) then t3 is guaranteed to be
later than both t1 and t2. Similarly, for any timestamp t3
that is guaranteed to be earlier than min(t1, t2), then t3 is
guaranteed to be earlier than both t1 and t2.

2.2 Snapshot Construction
The main idea of LSA-RT (see Algorithm 2) is to con-

struct consistent snapshots on the fly during the execution
of a transaction and to lazily extend the validity range on
demand. By this, we can reach two goals. First, transac-
tions working on a consistent snapshot always read consis-
tent data. Second, verifying that there is an overlap be-
tween the snapshot’s validity range and the commit time of
a transaction can ensure linearizability, if so desired.

The set of objects being accessed by a transaction and
their specific versions are determined during the execution
of a transaction. The validity range T.R is therefore con-
structed incrementally. When a transaction T is started,
the lower bound of its validity range is set to the current
time (line 3), i.e., the transaction cannot execute in the
past. The getTime function returns the current time—as
observed by the current thread—according to the time base
being used. The timestamps returned by the function to any
single thread are guaranteed to be monotonically increasing,
but not strictly (a thread may read more than once the same
timestamp).

When accessing the most recent version of an object o, it
is not yet known when this version will be replaced by a new
version. We therefore obtain an approximate validity range

Algorithm 2 Real-Time Lazy Snapshot Alg. (LSA-RT)

1: procedure Start(T) . Initialize transaction attributes
2: T.CT ← 0 . T ’s commit time
3: T.R← [getTime(),∞] . T ’s validity range
4: T.O ← ∅ . Set of objects versions accessed by T
5: T.update← false . T starts as a read-only transaction
6: T.status← active . T is active
7: end procedure

8: procedure Open(T, o, m) . Opens o in mode m (read/write)
. To simplify, we assume an object is opened at most once per T

9: if m = write then
10: T.update← true
11: repeat
12: vc ← getVersion(T, o, [bT.Rc,∞])

. Get latest committed version
13: v ← clone(vc) . Create new copy for writing
14: v.T ← T . Current transaction is writer
15: Tw ← o.writer
16: if Tw 6= null∧Tw.status 6∈ {aborted, committed} then
17: solveConflict(o, T, Tw) . Contention manager ...
18: elsearbitrates and aborts the loser
19: C&S(o.writer, T.w, T) . Try registering as writer
20: end if
21: until o.writer = T
22: if bv.Rc % dT.Re then . Is the version too recent?
23: Extend(T) . Extend as much as possible
24: end if
25: else
26: v ← getVersion(T, o, T.R)

. Get latest committed version in interval
27: end if
28: bT.Rc ← max(bT.Rc, bv.Rc)
29: dT.Re ← min(dT.Re, getPrelimUB(T, o, v, dT.Re))
30: if bT.Rc % dT.Re then . Possibly inconsistent?
31: Abort(T) . Yes: abort (and terminate execution)
32: end if
33: T.O ← T.O ∪ {(o, v)} . Access object versions
34: end procedure

35: procedure Commit(T) . Try to commit transaction
36: if ¬T.update then
37: C&S(T.status, active, committed)

. Validation not necessary
38: else
39: C&S(T.status, active, committing) . Start committing
40: if T.status = committing then
41: t← getNewTS()

. Tentative commit time (may not be unique)
42: C&S(T.CT, 0, t) . Try imposing our timestamp
43: for all (o, v) ∈ T.O do . Are versions still valid at t?
44: ub← getPrelimUB(T, o, v, T.CT)
45: if T.CT % ub then
46: Abort(T) . No: abort (and terminate execution)
47: end if
48: end for
49: C&S(T.status, committing, committed). Yes: commit
50: end if
51: end if
52: end procedure

53: procedure Abort(T) . Abort transaction (unless committed)
54: if ¬C&S(T.status, active, aborted) then . Still active?
55: C&S(T.status, committing, aborted) . Committing?
56: end if
57: if T.status = aborted then . Aborted?
58: throw AbortedException in T . Terminate execution
59: end if
60: end procedure

r by obtaining the latest version of o (line 12) and comput-
ing a lower bound on its maximum validity range. We call
this the preliminary upper bound on the validity range (see
line 29). Note that we use the GetPrelimUB function to
recompute the preliminary upper bound of an object version
according to the current thread’s time reference. During the
execution of a transaction, time might advance and thus the
preliminary validity ranges might get longer. We can try to
extend T.R by recomputing its lower bound (line 23 of Al-
gorithm 2 and lines 1–6 in Algorithm 3). Extensions are not
required for correctness, but they increase the chance that a
suitable object version is available. To avoid unnecessary ex-
tensions, we mark a transaction as closed as soon as extend
detects that T has read an object version that has in mean-
time be replaced by a new version, i.e., no further extension
of the validity interval T.R is possible. For simplicity, we
have not included this optimization in the pseudo-code.

Algorithm 3 Helper functions

1: procedure Extend(T)
. Try to extend T ’s validity range to at least t

2: dT.Re ← getTime()
3: for all (o, v) ∈ T.O do

. Recompute the upper bound on validity range
4: dT.Re ← min(dT.Re, gePrelimtUB(o, v, dT.Re))
5: end for
6: end procedure

7: function getVersion(T, o, R)
. Get latest version of o overlapping R

8: loop
9: v ← latest version of o s.t. dv.Re < bRc ∧ dRe < bv.Rc∧

(v.T = null ∨ v.T.status ∈ {committing, committed})
10: if v = null then . Any valid version?
11: Abort(T) . No: abort (and terminate execution)
12: else if v.T 6= null ∧ v.T.status = committing then
13: Commit(v.T) . Help committing transaction to complete
14: else
15: return v . Always return a commited version
16: end if
17: end loop
18: end function

19: function getPrelimUB(T, o, v, t)
. Get conservative estimate on dv.Re

20: Tw ← o.writer
21: if dv.Re 6=∞ then . Still open?
22: return dv.Re . No: return version upper bound
23: else if Tw 6= null then . Yes: only Tw may set UB before t
24: if Tw.status ∈ {committing, committed} then
25: if Tw.CT > 0 then
26: if Tw = T then
27: return Tw.CT . Off by 1 but simplifies Commit
28: else
29: return Tw.CT − 1. Version valid at least until then
30: end if
31: end if
32: end if
33: end if
34: return t . Return caller’s timestamp (getTime() < t)
35: end function

If the validity range r of the latest version of o does not
intersect with T.R and the transaction is read-only, we can
look for an older version whose range overlaps with T.R
(the algorithm requests the most recent among the valid
overlapping versions, but any of them would do). The new
value of T.R is computed as the intersection of the previous
value and the validity range of the version being accessed
(lines 28–29). The transaction must abort if no suitable
version can be found (line 31 of Algorithm 2 and line 11 of
Algorithm 3).

By construction of T.R, LSA-RT guarantees that a trans-

action started at time t has a snapshot that is valid at or
after the transaction started, i.e., bT.Rc < t. Hence, a read-
only transaction can commit iff it has used a consistent snap-
shot, i.e., T.R is non-empty.

2.3 Update Transactions
An update transaction T can only commit if it can extend

its validity range up to and including its commit time. This
ensures that at the time T commits no other transaction has
modified any of these objects including at the commit time.
Note that in this way, we permit multiple transactions to
commit at the same time as long as they are not in conflict
with each other. The preliminary upper bound of an object
version written to by T is overestimated by 1 (line 27 in
Algorithm 3) to simplify the test in Commit(): we know
that T will try to commit a new version o at T.CT but,
more importantly, we also know that no other transaction
can commit a new version of o until T.CT +1 if T can indeed
commit.

The commit of an update transaction (lines 35–52) is a
two-phase process. The transaction first enters the com-
mitting state before determining whether it can commit or
must abort. The reason for keeping track of the transac-
tion’s status and updating it using a C&S operation is that
another thread can help the transaction to commit or force
it to abort, as will be discussed shortly.

A committing thread will try to set the timestamp ob-
tained from its local time reference as the commit time of
the transaction. If it fails, i.e., another thread has set the
commit time beforehand, then the current thread uses that
previously set commit time T.CT . The thread will then
check whether the upper bound of the validity range of the
transaction can be extended to include T.CT . The trans-
action can only commit if this succeeds because otherwise
some objects accessed by T might have been modified by
another transaction that committed before T.CT .

If it is possible to update a most recent version (i.e., T.R
remains non-empty), LSA-RT atomically marks the object
o that it is writing (visible write) by registering itself in
o.writer. When another transaction tries to write the same
object, it will see the mark and detect a conflict (lines 16-
17). In that case, one of the transactions might need to
wait or be aborted. This task is typically delegated to a
contention manager [7], a configurable module whose role is
to determine which transaction is allowed to progress upon
conflict; the other transaction will be aborted.

Setting the transaction’s state atomically commits—or
discards in case of an abort—all object versions written by
the transaction and removes the write markers on all written
objects (as in DSTM [7]).

2.4 Use of Real-Time Clocks
The function getNewTS is actually required to return a

timestamp that is larger than the time at which the function
got invoked. For time bases that can tick on demand (e.g.,
counters), this condition is easily satisfiable. However, if a
clock ticks independently and rarely (e.g., a slow real-time
clock), the committing transaction T would have to wait for
a new timestamp. If reading the time takes always longer
than the time between two ticks of the time base (which is
the case in our system), then this requirement is trivially
satisfied.

The reason for this requirement is that threads need to

agree on the validity ranges of object versions. Informally,
we have to avoid a situation where one transaction draws
conclusions about the state at time t and later another trans-
action modifies state at t. We ensure this by first putting an
update transaction T into the committing state, which will
get visible to other transactions at some time tc when the
C&S returns. getNewTS then sets T.CT to a value larger
than tc (see above). Because transactions always read the
time before they start to access objects (see Algorithms 2
and 3), it is guaranteed that if a transaction Ta accesses a
version at time t, all transactions T that could commit a
change to the object at T.CT = t are already in the com-
mitting state. Ta sees this state indirectly in all possibly
updated objects, and will either not access the version at
time t or wait for all T to commit or abort.

3. TIME BASES
We will now show that we can use two kinds of real-time

clocks for LSA-RT: perfectly synchronized clocks and exter-
nally synchronized clocks. Synchronizing real-time clocks in
distributed systems is a well studied topic [1, 4]. With the
appropriate hardware support, one could achieve perfectly
synchronized clocks in the sense that there is no observable
semantic difference between accessing some global real-time
clock or processor-local replicas of the global real-time clock.
There is of course a performance difference because there is
no contention when processors access their local clock but
there might be quite some contention when instead accessing
a single global real-time clock. We show in Section 3.1 how
one can implement the utility functions of LSA-RT with a
perfectly synchronized clock.

In systems that do not have hardware-based clock syn-
chronization, we can synchronize clocks in software. When
doing so, we need to expect that there is an observable de-
viation between the individual real-time clocks. We address
the issues of externally synchronized clocks in Section 3.2.

3.1 Perfectly Synchronized Real-Time Clocks
We assume a notion of real-time. Each thread p has ac-

cess to a local clock Cp. Clocks are perfectly synchronized
if Cp at real-time t (Cp(t)) is always equal to t. Reading
a local clock that is perfectly synchronized always satisfies
linearizability. Furthermore, we require that synchroniza-
tion instructions (e.g., C&S) are linearizable. Algorithm 4
shows the functions for a time base that uses perfectly syn-
chronized clocks. getTime simply reads Cp and returns its
value. getNewTS has to make sure that the returned time
t is larger than the time at which the getNewTS was in-
voked. If time always advances when reading the local clock
(e.g., because reading the clock takes some time) the busy-
waiting loop is not necessary. Because perfectly synchro-
nized clocks are linearizable, <, min, and max have straight-
forward definitions.

3.2 Externally Synchronized Real-Time
Clocks

Previously, we assumed that the global time base is a
linearizable counter or a perfectly synchronized clock. How-
ever, scalable counters that provide low-latency accesses are
hard to implement. In turn, perfectly synchronized clocks
need to have a high resolution to avoid waiting when ac-
quiring a new timestamp (lines 7–9 in Algorithm 4), which

Algorithm 4 Utility functions for perfectly synchronized
clocks
1: function getTime() . Get current timestamp
2: t← readLocalClock()
3: return t
4: end function

5: function getNewTS() . Get strictly greater timestamp
6: ts ← readLocalClock()
7: repeat . Loop only required for slow clocks
8: t← readLocalClock()
9: until t > ts

10: return t
11: end function

12: function <(t1, t2) . Guaranteed later than or equal
13: return t1 ≥ t2
14: end function

15: function max(t1, t2) . Maximum
16: if t1 � t2 then
17: return t1
18: else
19: return t2
20: end if
21: end function

22: function min(t1, t2) . Minimum
23: if t1 � t2 then
24: return t2
25: else
26: return t1
27: end if
28: end function

makes perfect synchronization more expensive. Finally, the
cost of accurate hardware clocks can be prohibitive.

Therefore, we want to be able to use clocks that return
imprecise values but for which the deviation dev between
real-time t and the value of the local clock Cp at time t is
bounded. For a time-based transactional memory, the im-
precision essentially means that it cannot be certain whether
an object version was valid at a certain time or not.

We handle that uncertainty in a straightforward way. If
a transaction is not sure that a version is valid at a certain
time, it assumes that the version is not valid at this time.
Thus, it masks uncertainty errors. Because the deviation
is bounded, only the lower and upper bounds of a version’s
validity range are affected. Informally, the bounds of the
validity range are virtually brought closer by dev each. This
creates gaps of size 2·dev between versions, which can reduce
the probability that LSA-RT finds an intersection between
the validity ranges of object versions.

A transactional memory can always fall back to using val-
idation. In current time-based transactional memories, up-
dates to objects are always visible independently of timing
information. Thus, time-based transactional memories are
at least as efficient as transactional memories that only rely
on validation.

For externally synchronized clocks, we require that the
local clock ECp for each thread p has a known maximum
deviation dev from real time t (i.e., |ECp(t) − t| ≤ dev).
Accordingly, a timestamp obtained at real-time t from ECp

consist of a local time ts = ECp(t), an ID cid for the local
clock, and the maximum deviation dev.

The utility functions for externally synchronized clocks
are shown in Algorithm 5. In <, timestamps from the same
clock are handled specially because no deviation has to be
considered in this case. Otherwise, the deviation represents

the uncertainty and is taken into account (line 14). Function
max checks if one of the timestamps is guaranteed to be
later than or equal to the other, in which case the former
is returned. Otherwise timestamps do not originate from
the same clock. Therefore, we select the timestamp with
the largest upper bound (value plus deviation) and we set
its clock ID to undefined to indicate that future comparisons
will always need to take into account the deviation (line 14).
Function min is defined similarly.

getTime and getNewTS are similar to those of perfectly
synchronized clocks. However, the loop in getNewTS is
not required because we assume that dev > 0. The way
in which < masks uncertainty makes sure that versions are
never valid at exactly the time at which they were commit-
ted, which prevents the misbehavior that would otherwise
require waiting for a new time value.

Algorithm 5 Utility functions for externally synchronized
clocks
1: function getTime() . Get current timestamp
2: (ts, cid, dev)← readExtSyncClock()

. Time, clock ID, deviation
3: t← (ts, cid, dev)
4: return t
5: end function

6: function getNewTS() . Strictly greater timestamp
7: t← getT ime() . Loop is not necessary when dev > 0
8: return t
9: end function

10: function <(t1, t2) . Guaranteed later than or equal
11: if t1.cid = t2.cid ∧ t1.cid 6= undefined then
12: return t1.ts ≥ t2.ts
13: else
14: return t1.ts− t1.dev ≥ t2.ts + t2.dev
15: end if
16: end function

17: function max(t1, t2) . Maximum
18: if t1 < t2 then
19: return t1
20: else if t2 < t1 then
21: return t2
22: else if t1.ts + t1.dev > t2.ts + t2.dev then
23: return (t1, undefined, t1.dev)
24: else
25: return (t2, undefined, t2.dev)
26: end if
27: end function

28: function min(t1, t2) . Minimum
29: if t1 < t2 then
30: return t2
31: else if t2 < t1 then
32: return t1
33: else if t1.ts− t1.dev < t2.ts− t2.dev then
34: return (t1, undefined, t1.dev)
35: else
36: return (t2, undefined, t2.dev)
37: end if
38: end function

4. CASE STUDY: MMTIMER VS. SHARED
INTEGER COUNTER

To show how a time base can affect transactional mem-
ory performance, we investigate performance on a machine
in which shared counters have a noticeable overhead. We
executed our benchmarks on a 16-processor partition of an
SGI Altix 3700, a ccNUMA machine with Itanium II proces-
sors. Pairs of two processors share 4GB of memory and are

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
M

M
T

im
er

 ti
ck

s

max(abs(offset))
max(error)

max(error + abs(offset))

Figure 1: MMTimer synchronization errors and off-
sets.

connected to all other processor pairs. The STM we use is
a C++ implementation of LSA-RT. We use two time bases:
(1) an ordinary shared integer counter and (2) MMTimer, a
hardware clock built into the Altix machines.

4.1 MMTimer
MMTimer is a real-time clock with an interface similar to

the High Precision Event Timer widely available in x86 ma-
chines. It ticks at 20 MHz but reading from it takes always
7 to 8 ticks of the MMTimer, so the effective granularity is
much coarser than one would expect from 20 MHz. In par-
ticular, the MMTimer is therefore strictly monotonic, i.e.,
both GetTime and GetNewTS just return the value of
MMTimer.

At first, we had no information about whether MMTimer
is a synchronized clock or not. We therefore used a simple
test to measure the synchronization error by having threads
on different CPUs read from the MMTimer and comparing
the clock value obtained at each CPU with a reference value
published by a thread on another CPU. Figure 1 shows the
results of a four-hour run with synchronization rounds every
tenth second.

In the figure, offsets represent the estimated difference of
local clock values to the reference clock value and errors
denote the largest possible deviation between the estimated
offset and the offset that could be achieved by a perfect com-
parison. Only the maximum values of all CPUs are shown
for each round. The results show that there is no drift, so
the MMTimer behaves as a global clock or a set of synchro-
nized clocks. Second, errors are always larger than offsets,
so MMTimer could well be a perfectly synchronized clock.
Third, the error seems to be bounded and is not too large:
90 ticks seems to be a reasonable estimate for its bound (see
Figure 1). However, our clock comparison algorithm suffers
from its communication over shared memory, so the MM-
Timer’s actual synchronization error bounds could be much
smaller.

We later came to know that MMTimer is indeed a syn-
chronized clock [8]. Every node in the Altix system has one
register for the clock that is accessible via the MMTimer
interface. Before system boot, a single node is selected as
source for the clock signal, and all other nodes’ clocks are
synchronized to this node. During runtime, the source clock

then advances all other nodes’ clocks. Dedicated cables are
used for the clock signal. However, we do not know how
the synchronization mechanism works in detail (e.g., syn-
chronization errors could arise from a varying latency of the
clock signal). We have reasons to assume that such poten-
tial errors are already masked by the time that it takes to
read the MMTimer (7 or 8 ticks of MMTimer), which would
mean that MMTimer behaves like a linearizable perfectly
synchronized clock.

The important observation is that, unsurprisingly, hard-
ware support can ensure a much better clock synchroniza-
tion than mechanisms that require communication via shared
memory (in our case, 8 ticks vs. 90 ticks). We would like
to see more multiprocessor systems providing synchronized
clocks. Furthermore, synchronization errors should be guar-
anteed to be bounded and the bounds should be published
to enable concurrent applications to use synchronized clocks
to their full potential.

4.2 Time Base Overheads
To investigate the overheads of using shared counters and

MMTimer as time bases, we used a simple workload in which
transactions update distinct objects (but this fact is not
known a priori). This type of workload exists in many larger
systems: the programmer relies on the transactional mem-
ory to actually enforce atomicity and isolation of concurrent
computations. Furthermore, performance in this workload is
not affected by other properties of the transactional memory
(e.g., contention management), which makes the overhead of
the time base more apparent. Figure 2 shows throughput
results for this workload for update transactions of differ-
ent sizes. For very short transactions, MMTimer’s overhead
decreases throughput in the single-threaded case. However,
the overhead gets negligible when transactions are larger.
More importantly, using a shared counter as time base pre-
vents the STM from scaling well, whereas with MMTimer,
performance increases linearly with the number of threads.
The influence of the shared counter decreases when trans-
actions get larger because the contention on the counter
decreases. However, the influence of the shared counter’s
overhead would increase again if the STM would perform
its operations faster or more CPUs would be involved. An
optimization for the counter similar to the one used by TL2
(see Section 1.2) showed no advantages on our hardware.

4.3 Synchronization Errors
Synchronization errors shrink the object versions’ validity

ranges. If the STM is a multi-version STM and accesses old
versions, validity ranges will be decreased at the beginning
and at the end. Thus if the length of a transaction’s validity
range can be smaller than twice the error (see Algorithm 5),
then the transaction will abort more often.

For single-version STMs, the synchronization error only
affects the beginning of object versions (i.e., the commit
timestamps are virtually increased by the size of the error).
Whether that matters depends again on the workloads and
STM-specific costs.

Based on these observations, it is difficult to draw generic
conclusions about the influence of synchronization errors.
Benchmarks are typically more influenced by the perfor-
mance of the transactional memory’s implementation (e.g.,
object access costs) and very much by the properties of the
workload (e.g., locality, update frequencies, or the duration

 0

 1

 2

 3

 4

 5

 6

1 2 4 6 8 12 16

10
00

00
0

T
x/

s

Threads

10 accesses

Shared Integer Counter
MMTimer

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 6 8 12 16

Threads

50 accesses

Shared Integer Counter
MMTimer

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 6 8 12 16

Threads

100 accesses

Shared Integer Counter
MMTimer

Figure 2: Overhead of time bases for update transactions of different size.

of transaction). For example, if the synchronization error
is smaller than the complete overhead imposed by a cache
miss plus the commit of an update transaction, then the
error has no influence at all in single-version transactional
memories. This is because the vulnerability period associ-
ated with the possible synchronization error has elapsed at
the time when a reader could actually work with an object
version. Note as well that the synchronization error does not
need to be considered if a transaction reads local updates
(see Algorithm 5).

5. CONCLUSION
Time-based transactional memories use the notion of time

to reason about the consistency of data accessed by trans-
actions without requiring frequent and expensive validity
checks. It is our strong belief that time is an essential con-
cept for implementing scalable transactional memories.

In this paper, we have focused on transactional memories
that use real-time as a time base. Real-time clocks have
significant benefits over simple logical counters. In partic-
ular, one can more easily parallelize real-time clocks, e.g.,
using internal or external clock synchronization algorithms.
They provide increased scalability because they avoid the
contention on a single shared counter, which we have shown
to be a major bottleneck for short transactions or when ex-
ecuting many threads.

Perfectly synchronized clocks with a high frequency would
be the ideal basis for an time-based transactional memory.
Such clocks could be implemented with relative ease in hard-
ware. If not available, one can also implement clock synchro-
nization in software with lower accuracy. Tight external (or
internal) clock synchronization is achievable and the tighter
the clocks are synchronized, the better will the transactional
memory perform.

We have introduced a new lazy snapshot construction al-
gorithm that can use different time bases. We have specifi-
cally shown how it can be used with perfectly synchronized
clocks and externally synchronized clocks. However, it can
also be used in a straightforward way with internally syn-
chronized clocks or logical commit time counters. Using our
algorithm, one can balance the scalability of the time base
and the tightness of its synchronization. The trade-off will
be different for different systems: for small systems a sim-
ple shared commit time counter will be sufficient whereas,
for very large systems, a hardware based external clock syn-
chronization might be the best choice.

Acknowledgments
We thank Andreas Knüpfer for pointing us to the MMTimer.
Robin Holt and Reiner Vogelsang from SGI provided valu-
able information about MMTimer’s synchronization.

6. REFERENCES
[1] F. Cristian. A probabilistic approach to distributed

clock synchronization. Distributed Computing,
3:146–158, 1989.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional
Locking II. In 20th International Symposium on
Distributed Computing (DISC), September 2006.

[3] D. Dice and N. Shavit. What really makes
transactions fast? In TRANSACT, Jun 2006.

[4] C. Fetzer and F. Cristian. Integrating external and
internal clock synchronization. Journal of Real-Time
Systems, 12(2):123–171, March 1997.

[5] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proceedings of OOPSLA,
pages 388–402, Oct 2003.

[6] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing Memory Transactions. In PLDI ’06: ACM
SIGPLAN 2006 Conference on Programming
Language Design and Implementation, June 2006.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer
III. Software transactional memory for dynamic-sized
data structures. In Proceedings of PODC, Jul 2003.

[8] Robin Holt, SGI. Personal Communication.

[9] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot
Algorithm with Eager Validation. In 20th
International Symposium on Distributed Computing
(DISC), September 2006.

[10] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation
for software transactional memory. In TRANSACT06,
Jun 2006.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. McRT-STM: a high
performance software transactional memory system
for a multi-core runtime. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
187–197, New York, NY, USA, 2006. ACM Press.

[12] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L.
Scott. Conflict detection and validation strategies for
software transactional memory. In 20th International

Symposium on Distributed Computing (DISC),
September 2006.

[13] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization for
Transactional Memory Constructs in an Unmanaged
Language. In International Symposium on Code
Generation and Optimization (CGO), 2007.

	1 Introduction
	1.1 Time-based Transactional Memory
	1.2 Related Work
	1.3 Contributions and Organization

	2 Real-Time Lazy Snapshot Algorithm
	2.1 Time Bases
	2.2 Snapshot Construction
	2.3 Update Transactions
	2.4 Use of Real-Time Clocks

	3 Time Bases
	3.1 Perfectly Synchronized Real-Time Clocks
	3.2 Externally Synchronized Real-Time Clocks

	4 Case Study: MMTimer vs. Shared Integer Counter
	4.1 MMTimer
	4.2 Time Base Overheads
	4.3 Synchronization Errors

	5 Conclusion
	6 References

