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Objectives 

• Parallelism (finally!) becoming mainstream thanks to multicore -even on laptops! 

• Our objective herein is automatic parallelization of programs 
with predicates, functions, and constraints. 

• We concéntrate on detecting and-parallelism (corresponds to, e.g., loop 
parallelization, task parallelism, divide and conquer, etc.): 
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Our objective herein is automatic parallelization of programs 
with predicates, functions, and constraints. 

We concéntrate on detecting and-parallelism (corresponds to, e.g., loop 
parallelization, task parallelism, divide and conquer, etc.): 

fib(O) 
f i b ( l ) 
fib(N) 

= 0. 
= 1. 
= fib(N-l)+fib(N-2) 
- N>1. 

f i b (0 , 0 ) . 
f i b ( l , i ) . 
fib(N, F) : -

N>1, 
( NI i s N-1, 

f ib(Nl , Fl) ) & 
( N2 i s N-2, 

fib(N2, F2) ) , 
F1+F2. 

Need to detect independent tasks. 
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What is Independence? (for Functions, Predicates, Constraints, ...) 

Correctness: "same" solutions as sequential execution. 
Efficiency: execution time < than seq. program (or, at least, no-slowdown: <). 
(We assume parallel execution has no overhead in this first stage.) 

Running sx // s2: 
Si 

52 

Impemtive 

Y := W+2; 

X := Y+Z; 

read-write deps 

Functions 

(+ W 2) 

(+ z) 
strictness 

Constraints 

Y = W+2, 

X = Y+Z, 

costl 
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What is Independence? (for Functions, Predicates, Constraints, ...) 

Correctness: "same" solutions as sequential execution. 
Efficiency: execution time < than seq. program (or, at least, no-slowdown: <). 
(We assume parallel execution has no overhead in this first stage.) 

Running sx // s2: 
Si 

52 

Imperative 

Y := W+2; 

X := Y+Z; 

read-write deps 

Functions 

(+ W 2) 

(+ z) 
strictness 

Constraints 

Y = W+2, 

X = Y+Z, 

cost! 

For Predicates (mú l t i p l e procedure d e f i n i t i o n s ) : 

ma in : -
5i p ( X ) , 

52 q ( X ) , 

w r i t e ( X ) . 

p(X) : - X=a. 

q(X) : - X=b, large computation. 
q(X) : - X=a. 

Again, cost issue: if p aífects q (prunes its choices) then q ahead of p is speculative. 

• Independence: condition that guarantees correctness and efficiency. 



Independence 

• Strict independence (suff. condition): no "pointers" shared at run-time: 

• Non-strict independence: only one thread accesses each shared variable. 
• Requires global analysis. 

• Required in programs using "incomplete structures" (difference lists, etc.). 



Independence 

• Strict independence (suff. condition): no "pointers" shared at run-time: 

• Non-strict independence: only one thread accesses each shared variable. 
• Requires global analysis. 

• Required in programs using "incomplete structures" (difference lists, etc.). 

• Constraint independennce-more involved: 
main : - X .>. Y, Z .>. Y, p(X) & q (Z) , . . . 
main : - X .>. Y, Y .>. Z, p(X) & q (Z) , . . . 



Independence 

• Strict independence (suff. condition): no "pointers" shared at run-time: 

• Non-strict independence: only one thread accesses each shared variable. 
• Requires global analysis. 

• Required in programs using "incomplete structures" (difference lists, etc.). 

• Constraint independennce-more involved: 
main : - X .>. Y, Z .>. Y, p(X) & q (Z) , . . . 
main : - X .>. Y, Y .>. Z, p(X) & q (Z) , . . . 

Sufficient a-priori condition: given gx(x) and ^(y) , c state just before them: 

(x n y C def(c)) and (3_xc A 3_yC -> EL^-c) 

(def(c) = set of variables constrained to a unique valué in c) 

• For c = {x > y, z > y} 3_{x}c = 3_{z}c = 3_{x^z}c = true 

• For c = {x > y, y > z} 3_{x}c = 3_{z}c = true, 3{x^z}c = x> z 

Approximation: presence of "links" through the store. 
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Parallelization Process 

Conditional dependency graph (of some code segment, e.g., a clause): 
• Vértices: possible tasks (statements, calis,...), 
• Edges: possible dependencies (labels: conditions needed for independence). 

Local or global analysis used to reduce/remove checks in the edges. 
Annotation process converts graph back to parallel expressions in source. 

f o o ( . . . ) 

g l ( . 

g2(-

g3(-

icond(l-3) gl) =© 
icond(l-2) ^v—-*y icond(2-3) 

x¿ 
Local/Global analysis 
and simplitication 

"Annotation" 

( t e s t ( l - 3 ) - > ( g l , g 2 ) & g 3 
; g l , ( g 2 & g 3 ) ) 

Alternative: gl, ( g2 & g3 ) 



Concrete System Used in Examples: Ciao 

• One of the popular Prolog/CLP systems (supports ISO-Prolog fully). 

• At the same time, new-generation multi-paradigm language/prog.env. with: 

• Predicates, constraints, functions (including lazyness), higher-order,... 
(And Prolog impure features only present as compatibility libraries.) 
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Automatic granularity and resource control. 
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Concrete System Used in Examples: Ciao 

• One of the popular Prolog/CLP systems (supports ISO-Prolog fully). 

• At the same time, new-generation multi-paradigm language/prog.env. with: 

• Predicates, constraints, functions (including lazyness), higher-order,... 
(And Prolog impure features only present as compatibility libraries.) 

• Assertion language for expressing rich program properties 
(types, shapes, pointer aliasing, non-failure, 
determinacy, termination, data sizes, cost,...). 

• Static debugging, verification, program certification, PCC, ... 

• Parallel, concurrent, and distributed execution primitives. 

Automatic parallelization. 

Automatic granularity and resource control. 

• + several control rules (e.g., bf, id, Andorra), objects, syntactic/semantic extensibility, LGPL, ... 



Some Speedups (for different analysis abstract domains) 

Benchmark: ann 
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The parallelizer, self-parallelized 
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Granularity Control 

• Replace parallel with sequential execution based on task size and overheads. 

• Cannot be done completely at compile-time: cost often depends on input (hard to 
approximate at compile time, even w/abstract interpretation). 
main : - r ead (X) , r e a d ( Z ) , inc_a l l (X,Y) & r (Z ,M) , . . . 
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Granularity Control 

• Replace parallel with sequential execution based on task size and overheads. 

• Cannot be done completely at compile-time: cost often depends on input (hard to 
approximate at compile time, even w/abstract interpretation). 
main : - r ead (X) , r e a d ( Z ) , inc_a l l (X,Y) & r (Z ,M) , . . . 

v Our approach: 
• Derive at compile-time cost functions (to be evaluated at run-time) that 

efficiently bound task size (lower, upper bounds). 
• Transform programs to carry out run-time granularity control. 

test(l-3) ^—. 

-<£) 
- > g l , ( g 2 & g 3 ) gl , (gran_cond->g2&g3 ; g2, g3 ) 

2 Í "Annotation" Gran. Control 

• For inc_aii, (assuming "threshold" is 100 units): 

main : - r ead (X) , r e a d ( Z ) , ( 2*length(X)+l > 100 -> inc_a l l (X,Y) & r(Z,M) 
; inc_a l l (X,Y) , r(Z,M) ) 
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Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP 

1. Perform type/mode inference: 
:- true inc_all(X,Y) : l i s t ( X , i n t ) , var(Y) => l i s t ( Y , i n t ) . 

2. Infer size measures: list length. 

3. Use data dependency graphs to determine the relative sizes of structures that 
variables point to at different program points - infer argument size relations: 

Size^nc all(0) = 0 (boundary condition from base case), 
S Í Z e L c _ a l l M = 1 + S Í Z e L c _ a l l ( ™ - ! ) • 

Sol = Size2nc_a l l(n) = n. 

4. Use this, set up recurrence equations for the computational cost of procedures: 

Costincal l(0) = 1 (boundary condition from base case), 
Cost^nc_a l l(n) = 2 + Cost^nc_a l l(n - 1). 

Sol = Cost^nc_a l l(n) = 2 n + l . 

• We obtain lower/upper bounds on task granularities. 

• Non-failure (absence of exceptions) analysis needed for lower bounds. 
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• Simplification of cost functions: 
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; i n c a l í ( X , Y ) , r(Z,M) ) , 
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2 > 0.2 
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Refinements (1): Granularity Control Optimizations 

• Simplification of cost functions: 
. . . , ( length(X) > 50 -> inc_all(X,Y) & r(Z,M) 

; inc .a l l (X,Y) , r(Z,M) ) , . . . 

. . . , ( length_gt(LX,50) -> i n c a l í ( X , Y ) & r(Z,M) 
; i n c a l í ( X , Y ) , r(Z,M) ) , . . . 

• Complex thresholds: use also communication cost functions, load,... 
Example:| Assume C ommC ost{inc_all(X)) =0.1 (length(X) + lengthiY 
We know ubJength(Y) (actually, exact size) = length(X); thus: 

2 length(X) + 1 > 0.1 (length(X) + length(X)) = 

2 length(X) > 0.2 length(X) = 
Guaranteed speedup for any data size! <= 2 > 0.2 
Checking of data sizes can be stopped once under threshold. 
Data size computations can often be done on-the-fly. 
Static task clustering (loop unrolling), static placement, etc. 
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Granularity Control System Output Example 

g_qsort([], []). 

g_qsort([First|Ll], L2) :-

partition3o4o(First, Ll, Ls, Lg, Size_Ls, Size_Lg), 

Size_Ls > 20 -> (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2) 

; g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2)) 

; (Size_Lg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2) 

; s _ q s o r t ( L s , Ls2) , s_qsor t (Lg , L g 2 ) ) ) , 
append(Ls2, [ F i r s t | L g 2 ] , L2) . 

p a r t i t i o n 3 o 4 o ( F , [] , [] , [] , 0, 0 ) . 
p a r t i t i o n 3 o 4 o ( F , [X|Y], [X|Y1], Y2, SL, SG) : -

X =< F, p a r t i t i o n 3 o 4 o ( F , Y, Yl, Y2, SLl, SG), SL i s SLl + 1. 
p a r t i t i o n 3 o 4 o ( F , [X|Y], Yl, [X|Y2], SL, SG) : -

X > F, p a r t i t i o n 3 o 4 o ( F , Y, Yl, Y2, SL, SGl) , SG i s SGl + 1. 
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Refinements (2): Granularity-Aware Annotation 

• With classic annotators (MEL, UDG, CDG, . . . ) we applied granularity control 
after parallelization: 

gl, ( g2 & g3 ) gl, (gran_cond -> g2 & g3 ; g2, g3 ) 
2 ' "Annotation" Gran. Control 
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Refinements (2): Granularity-Aware Annotation 

• With classic annotators (MEL, UDG, CDG, . . . ) we applied granularity control 
after parallelization: 

gl, ( g2 & g3 ) gl, (gran_cond -> g2 & g3 ; g2, g3 ) 
2' "Annotation" Gran. Control 

Developed new annotation algorithm that takes task granularity into account: 

• Annotation is a heuristic process (several alternatives possible). 

• Taking task granularity into account during annotation can help make better 
choices and speed up annotation process. 

• Tasks with larger cost bounds given priority, small ones not parallelized. 
test(l-3) x—^ 

gl ) > ( g3 J 

X\_^ ; > (gran_cond, testl3 -> (g l , g2 )&g3 
(Zj) Granularity-driven annotation ; gl, g2, g3) 

assuming g2 "small" and gl large if gran_cond) 
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Granularity-Aware Annotation: Concrete Example 

• Considerthe clause: p : - a, b, c, d, e. 

• Assume that the dependencies detected between the subgoals of p are given by: 

Assume also that: 

T(á) < T(c) < T(e) < T{b) < T(d), 

where T(í) < T(j) means: cost of subgoal i is smaller than the cost of j 
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Granularity-Aware Annotation: Concrete Example 

Considerthe clause: p : - a, b, c, d, e. 

Assume that the dependencies detected between the subgoals of p are given by: 

Assume also that: 

Tía) < Tic] < T(e) < T(b) < T(d 

where T{%) < T{j) means: cost of subgoal i is smaller than the cost of j 

MEL annotator: 
UDG annotator: 
Granularity-aware: 

( a, b & c, d & e) 
( c & ( a, b, e ) , d ) 
( a , c, ( b & d ) , e ) 
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Refinements (3): Using Execution Time Bounds/Estimates 

• Use estimations/bounds on execution time for controlling granularity (instead of 
steps/reductions). 

• Execution time generally dependent on platform characteristics (« constants) and 
input data sizes (unknowns). 

• Platform-dependent, one-time calibration using fixed set of programs: 

• Obtains valué of the platform-dependent constants (costs of basic operations). 

• Platform-independent, compile-time analysis: 

• Infers cost functions (using modification of previous method), 
which return count of basic operations given input data sizes. 

• Incorpórate the constants from the calibration. 

—• we obtain functions yielding execution times depending on size of input. 

• Predicts execution times with reasonable accuracy (challenging!). 

• Improving by taking into account lower level factors (current work). 



Execution Time Estimation: Concrete Example 

• Consider nrev with mode: 
:- pred nrev/2 : list(int) * var. 

• Estimation of execution time for a concrete input —consider: 

A = [ 1 , 2 , 3 , 4 , 5 ] , ñ = length(A) = 5 

component 
step 
nargs 
giunif 
gounif 

vounif 

Once 

K*i 
21.27 

9.96 
10.30 
8.23 
6.46 
5.69 

Static Analysis 
Costp(J(u;¿),ñ) = Q(ñ) 
0.5 x n2 + 1.5 x n + 1 
1.5 x n2 + 3.5 x n + 2 
0.5 x n2 + 3.5 x n + 1 
0.5 x n2 + 0.5 x n + 1 
1.5 x n2 + 1.5 x n + 1 

n2 + n 

Application 
Ci(5) 

21 
57 
31 
16 
45 
30 

bxecution time K0 • Costp(7(&2),ñ): 

K^ x C¿(5) 
446.7 
567.7 
319.3 
131.7 
290.7 
170.7 

1926.8 
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Visualization of And-parallelism - (small) qsort, 4 processors 

F:r!¿ 

r 
..tí 

J====: 



Fib 15, 1 processor 
Slide 16 



Slide 17 

Fib 15, 8 processors (same scale) 
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Fib 15, 8 processors (full scale) 
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Fib 15, 8 processors, with granularity control (same scale) 


