
Automatic Granularity-Aware Parallelization of Programs
with Predicates, Functions, and Constraints

Manuel Hermenegildo12

http://www.cliplab.org/~herme

with Francisco Bueno,1 Manuel Carro,1 Amadeo Casas,2

Pedro López,1 Edison Mera,1 and Jorge Navas2

Departments of Computer Science
1 Technical University of Madrid, and

2 University of New México

http://www.cliplab.org/~herme

Slide 1

Objectives

• Parallelism (finally!) becoming mainstream thanks to multicore -even on laptops!

• Our objective herein is automatic parallelization of programs
with predicates, functions, and constraints.

• We concéntrate on detecting and-parallelism (corresponds to, e.g., loop
parallelization, task parallelism, divide and conquer, etc.):

Slide 1

Objectives

Parallelism (finally!) becoming mainstream thanks to multicore -even on laptops!

Our objective herein is automatic parallelization of programs
with predicates, functions, and constraints.

We concéntrate on detecting and-parallelism (corresponds to, e.g., loop
parallelization, task parallelism, divide and conquer, etc.):

fib(O)
f i b (l)
fib(N)

= 0.
= 1.
= fib(N-l)+fib(N-2)
- N>1.

f i b (0 , 0) .
f i b (l , i) .
fib(N, F) : -

N>1,
(NI i s N-1,

f ib(Nl , Fl)) &
(N2 i s N-2,

fib(N2, F2)) ,
F1+F2.

Need to detect independent tasks.

Slide 2

What is Independence? (for Functions, Predicates, Constraints, ...)

Correctness: "same" solutions as sequential execution.
Efficiency: execution time < than seq. program (or, at least, no-slowdown: <).
(We assume parallel execution has no overhead in this first stage.)

Running sx // s2:
Si

52

Impemtive

Y := W+2;

X := Y+Z;

read-write deps

Functions

(+ W 2)

(+ z)
strictness

Constraints

Y = W+2,

X = Y+Z,

costl

Slide 2

What is Independence? (for Functions, Predicates, Constraints, ...)

Correctness: "same" solutions as sequential execution.
Efficiency: execution time < than seq. program (or, at least, no-slowdown: <).
(We assume parallel execution has no overhead in this first stage.)

Running sx // s2:
Si

52

Imperative

Y := W+2;

X := Y+Z;

read-write deps

Functions

(+ W 2)

(+ z)
strictness

Constraints

Y = W+2,

X = Y+Z,

cost!

For Predicates (mú l t i p l e procedure d e f i n i t i o n s) :

ma in : -
5i p (X) ,

52 q (X) ,

w r i t e (X) .

p(X) : - X=a.

q(X) : - X=b, large computation.
q(X) : - X=a.

Again, cost issue: if p aífects q (prunes its choices) then q ahead of p is speculative.

• Independence: condition that guarantees correctness and efficiency.

Independence

• Strict independence (suff. condition): no "pointers" shared at run-time:

• Non-strict independence: only one thread accesses each shared variable.
• Requires global analysis.

• Required in programs using "incomplete structures" (difference lists, etc.).

Independence

• Strict independence (suff. condition): no "pointers" shared at run-time:

• Non-strict independence: only one thread accesses each shared variable.
• Requires global analysis.

• Required in programs using "incomplete structures" (difference lists, etc.).

• Constraint independennce-more involved:
main : - X .>. Y, Z .>. Y, p(X) & q (Z) , . . .
main : - X .>. Y, Y .>. Z, p(X) & q (Z) , . . .

Independence

• Strict independence (suff. condition): no "pointers" shared at run-time:

• Non-strict independence: only one thread accesses each shared variable.
• Requires global analysis.

• Required in programs using "incomplete structures" (difference lists, etc.).

• Constraint independennce-more involved:
main : - X .>. Y, Z .>. Y, p(X) & q (Z) , . . .
main : - X .>. Y, Y .>. Z, p(X) & q (Z) , . . .

Sufficient a-priori condition: given gx(x) and ^(y) , c state just before them:

(x n y C def(c)) and (3_xc A 3_yC -> EL^-c)

(def(c) = set of variables constrained to a unique valué in c)

• For c = {x > y, z > y} 3_{x}c = 3_{z}c = 3_{x^z}c = true

• For c = {x > y, y > z} 3_{x}c = 3_{z}c = true, 3{x^z}c = x> z

Approximation: presence of "links" through the store.

Slide 4

Parallelization Process

Conditional dependency graph (of some code segment, e.g., a clause):
• Vértices: possible tasks (statements, calis,...),
• Edges: possible dependencies (labels: conditions needed for independence).

Local or global analysis used to reduce/remove checks in the edges.
Annotation process converts graph back to parallel expressions in source.

f o o (. . .)

g l (.

g2(-

g3(-

icond(l-3) gl) =©
icond(l-2) ^v—-*y icond(2-3)

x¿
Local/Global analysis
and simplitication

"Annotation"

(t e s t (l - 3) - > (g l , g 2) & g 3
; g l , (g 2 & g 3))

Alternative: gl, (g2 & g3)

Concrete System Used in Examples: Ciao

• One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

• At the same time, new-generation multi-paradigm language/prog.env. with:

• Predicates, constraints, functions (including lazyness), higher-order,...
(And Prolog impure features only present as compatibility libraries.)

Concrete System Used in Examples: Ciao

• One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

• At the same time, new-generation multi-paradigm language/prog.env. with:

• Predicates, constraints, functions (including lazyness), higher-order,...
(And Prolog impure features only present as compatibility libraries.)

• Assertion language for expressing rich program properties
(types, shapes, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost,...).

• Static debugging, verification, program certification, PCC, ...

Concrete System Used in Examples: Ciao

One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

At the same time, new-generation multi-paradigm language/prog.env. with:

• Predicates, constraints, functions (including lazyness), higher-order,...
(And Prolog impure features only present as compatibility libraries.)

• Assertion language for expressing rich program properties
(types, shapes, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost,...).

• Static debugging, verification, program certification, PCC, ...

• Parallel, concurrent, and distributed execution primitives.

Automatic parallelization.

Automatic granularity and resource control.

Slide 5

Concrete System Used in Examples: Ciao

• One of the popular Prolog/CLP systems (supports ISO-Prolog fully).

• At the same time, new-generation multi-paradigm language/prog.env. with:

• Predicates, constraints, functions (including lazyness), higher-order,...
(And Prolog impure features only present as compatibility libraries.)

• Assertion language for expressing rich program properties
(types, shapes, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost,...).

• Static debugging, verification, program certification, PCC, ...

• Parallel, concurrent, and distributed execution primitives.

Automatic parallelization.

Automatic granularity and resource control.

• + several control rules (e.g., bf, id, Andorra), objects, syntactic/semantic extensibility, LGPL, ...

Some Speedups (for different analysis abstract domains)

Benchmark: ann
5.0

4.5

4.0

3.5

3.0

1 2.5-
" 2.0-

1.5

1.0

0.5

0.0
1 1 \ : \ i. \ ; \ (i > i í <

^-J|

r^jT

!> ib n
Number of Processors

-H— P*S
-•— P*SF/SF
-•— P
- D - S
-o- L
-o— N

The parallelizer, self-parallelized

Slide 7

Granularity Control

• Replace parallel with sequential execution based on task size and overheads.

• Cannot be done completely at compile-time: cost often depends on input (hard to
approximate at compile time, even w/abstract interpretation).
main : - r ead (X) , r e a d (Z) , inc_a l l (X,Y) & r (Z ,M) , . . .

Slide 7

Granularity Control

• Replace parallel with sequential execution based on task size and overheads.

• Cannot be done completely at compile-time: cost often depends on input (hard to
approximate at compile time, even w/abstract interpretation).
main : - r ead (X) , r e a d (Z) , inc_a l l (X,Y) & r (Z ,M) , . . .

v Our approach:
• Derive at compile-time cost functions (to be evaluated at run-time) that

efficiently bound task size (lower, upper bounds).
• Transform programs to carry out run-time granularity control.

test(l-3) ^—.

-<£)
- > g l , (g 2 & g 3) gl , (gran_cond->g2&g3 ; g2, g3)

2 Í "Annotation" Gran. Control

• For inc_aii, (assuming "threshold" is 100 units):

main : - r ead (X) , r e a d (Z) , (2*length(X)+l > 100 -> inc_a l l (X,Y) & r(Z,M)
; inc_a l l (X,Y) , r(Z,M))

Slide 8

Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP

1. Perform type/mode inference:
:- true inc_all(X,Y) : l i s t (X , i n t) , var(Y) => l i s t (Y , i n t) .

2. Infer size measures: list length.

3. Use data dependency graphs to determine the relative sizes of structures that
variables point to at different program points - infer argument size relations:

Size^nc all(0) = 0 (boundary condition from base case),
S Í Z e L c _ a l l M = 1 + S Í Z e L c _ a l l (™ - !) •

Sol = Size2nc_a l l(n) = n.

4. Use this, set up recurrence equations for the computational cost of procedures:

Costincal l(0) = 1 (boundary condition from base case),
Cost^nc_a l l(n) = 2 + Cost^nc_a l l(n - 1).

Sol = Cost^nc_a l l(n) = 2 n + l .

• We obtain lower/upper bounds on task granularities.

• Non-failure (absence of exceptions) analysis needed for lower bounds.

Refinements (1): Granularity Control Optimizations

• Simplification of cost functions:

. . . , (length(X) > 50 -> inc_a l l (X,Y) & r(Z,M)
; i n c a l í (X , Y) , r(Z,M)) ,

Refinements (1): Granularity Control Optimizations

• Simplification of cost functions:

. . . , (length(X) > 50 -> inc_a l l (X,Y) & r(Z,M)
; i n c . a l l (X , Y) , r(Z,M)) , .

. . . , (length_gt(LX,50) -> i n c a l í (X , Y) & r(Z,M)

; i n c a l í (X , Y) , r(Z,M)) ,

Refinements (1): Granularity Control Optimizations

• Simplification of cost functions:
. . . , (length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc .a l l (X,Y) , r(Z,M)) , . . .

. . . , (length_gt(LX,50) -> i n c a l í (X , Y) & r(Z,M)
; i n c a l í (X , Y) , r(Z,M)) , . . .

• Complex thresholds: use also communication cost functions, load,...
Example:| Assume C ommC ost{inc_all(X)) =0.1 (length(X) + lengthiY
We know ubJength(Y) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) =

2 length(X) > 0.2 length(X) =

2 > 0.2

Refinements (1): Granularity Control Optimizations

• Simplification of cost functions:
. . . , (length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc .a l l (X,Y) , r(Z,M)) , . . .

. . . , (length_gt(LX,50) -> i n c a l í (X , Y) & r(Z,M)
; i n c a l í (X , Y) , r(Z,M)) , . . .

• Complex thresholds: use also communication cost functions, load,...
Example:| Assume C ommC ost{inc_all(X)) =0.1 (length(X) + lengthiY
We know ubJength(Y) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) =

2 length(X) > 0.2 length(X) =
Guaranteed speedup for any data size! <= 2 > 0.2

Refinements (1): Granularity Control Optimizations

• Simplification of cost functions:
. . . , (length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc .a l l (X,Y) , r(Z,M)) , . . .

. . . , (length_gt(LX,50) -> i n c a l í (X , Y) & r(Z,M)
; i n c a l í (X , Y) , r(Z,M)) , . . .

• Complex thresholds: use also communication cost functions, load,...
Example:| Assume C ommC ost{inc_all(X)) =0.1 (length(X) + lengthiY
We know ubJength(Y) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) =

2 length(X) > 0.2 length(X) =
Guaranteed speedup for any data size! <= 2 > 0.2
Checking of data sizes can be stopped once under threshold.
Data size computations can often be done on-the-fly.
Static task clustering (loop unrolling), static placement, etc.

Slide 10

Granularity Control System Output Example

g_qsort([], []).

g_qsort([First|Ll], L2) :-

partition3o4o(First, Ll, Ls, Lg, Size_Ls, Size_Lg),

Size_Ls > 20 -> (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2)

; g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))

; (Size_Lg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2)

; s _ q s o r t (L s , Ls2) , s_qsor t (Lg , L g 2))) ,
append(Ls2, [F i r s t | L g 2] , L2) .

p a r t i t i o n 3 o 4 o (F , [] , [] , [] , 0, 0) .
p a r t i t i o n 3 o 4 o (F , [X|Y], [X|Y1], Y2, SL, SG) : -

X =< F, p a r t i t i o n 3 o 4 o (F , Y, Yl, Y2, SLl, SG), SL i s SLl + 1.
p a r t i t i o n 3 o 4 o (F , [X|Y], Yl, [X|Y2], SL, SG) : -

X > F, p a r t i t i o n 3 o 4 o (F , Y, Yl, Y2, SL, SGl) , SG i s SGl + 1.

Slide 11

Refinements (2): Granularity-Aware Annotation

• With classic annotators (MEL, UDG, CDG, . . .) we applied granularity control
after parallelization:

gl, (g2 & g3) gl, (gran_cond -> g2 & g3 ; g2, g3)
2 ' "Annotation" Gran. Control

Slide

Refinements (2): Granularity-Aware Annotation

• With classic annotators (MEL, UDG, CDG, . . .) we applied granularity control
after parallelization:

gl, (g2 & g3) gl, (gran_cond -> g2 & g3 ; g2, g3)
2' "Annotation" Gran. Control

Developed new annotation algorithm that takes task granularity into account:

• Annotation is a heuristic process (several alternatives possible).

• Taking task granularity into account during annotation can help make better
choices and speed up annotation process.

• Tasks with larger cost bounds given priority, small ones not parallelized.
test(l-3) x—^

gl) > (g3 J

X_^ ; > (gran_cond, testl3 -> (g l , g2)&g3
(Zj) Granularity-driven annotation ; gl, g2, g3)

assuming g2 "small" and gl large if gran_cond)

Slide 12

Granularity-Aware Annotation: Concrete Example

• Considerthe clause: p : - a, b, c, d, e.

• Assume that the dependencies detected between the subgoals of p are given by:

Assume also that:

T(á) < T(c) < T(e) < T{b) < T(d),

where T(í) < T(j) means: cost of subgoal i is smaller than the cost of j

Slide 12

Granularity-Aware Annotation: Concrete Example

Considerthe clause: p : - a, b, c, d, e.

Assume that the dependencies detected between the subgoals of p are given by:

Assume also that:

Tía) < Tic] < T(e) < T(b) < T(d

where T{%) < T{j) means: cost of subgoal i is smaller than the cost of j

MEL annotator:
UDG annotator:
Granularity-aware:

(a, b & c, d & e)
(c & (a, b, e) , d)
(a , c, (b & d) , e)

Slide 13

Refinements (3): Using Execution Time Bounds/Estimates

• Use estimations/bounds on execution time for controlling granularity (instead of
steps/reductions).

• Execution time generally dependent on platform characteristics (« constants) and
input data sizes (unknowns).

• Platform-dependent, one-time calibration using fixed set of programs:

• Obtains valué of the platform-dependent constants (costs of basic operations).

• Platform-independent, compile-time analysis:

• Infers cost functions (using modification of previous method),
which return count of basic operations given input data sizes.

• Incorpórate the constants from the calibration.

—• we obtain functions yielding execution times depending on size of input.

• Predicts execution times with reasonable accuracy (challenging!).

• Improving by taking into account lower level factors (current work).

Execution Time Estimation: Concrete Example

• Consider nrev with mode:
:- pred nrev/2 : list(int) * var.

• Estimation of execution time for a concrete input —consider:

A = [1 , 2 , 3 , 4 , 5] , ñ = length(A) = 5

component
step
nargs
giunif
gounif

vounif

Once

K*i
21.27

9.96
10.30
8.23
6.46
5.69

Static Analysis
Costp(J(u;¿),ñ) = Q(ñ)
0.5 x n2 + 1.5 x n + 1
1.5 x n2 + 3.5 x n + 2
0.5 x n2 + 3.5 x n + 1
0.5 x n2 + 0.5 x n + 1
1.5 x n2 + 1.5 x n + 1

n2 + n

Application
Ci(5)

21
57
31
16
45
30

bxecution time K0 • Costp(7(&2),ñ):

K^ x C¿(5)
446.7
567.7
319.3
131.7
290.7
170.7

1926.8

Slide 15

Visualization of And-parallelism - (small) qsort, 4 processors

F:r!¿

r
..tí

J====:

Fib 15, 1 processor
Slide 16

Slide 17

Fib 15, 8 processors (same scale)

m"mmmW\

JL. J§ *==SM "miMi
B*

IÍIIR5 Jar ; m %

Fib 15, 8 processors (full scale)
Slide 18

ü
1

I i

Si a
1 :
A\

N

¡II i!

ñ1

i m % i
•••' \ \ . r * \

LBI n
~é\

I1V! i - . i í

J3B-
fl

n
II

! l

TV "̂ III
rE

ííí

HRN
i

i « 1 a » . . «

Slide 19

Fib 15, 8 processors, with granularity control (same scale)

