

Edinburgh Research Explorer

Implementing deterministic declarative concurrency using sieves

Citation for published version:
Lindley, S 2007, Implementing deterministic declarative concurrency using sieves. in Proceedings of the
POPL 2007 Workshop on Declarative Aspects of Multicore Programming, DAMP 2007, Nice, France,
January 16, 2007. ACM, pp. 45-49. https://doi.org/10.1145/1248648.1248657

Digital Object Identifier (DOI):
10.1145/1248648.1248657

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the POPL 2007 Workshop on Declarative Aspects of Multicore Programming, DAMP 2007, Nice,
France, January 16, 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. May. 2024

https://doi.org/10.1145/1248648.1248657
https://doi.org/10.1145/1248648.1248657
https://www.research.ed.ac.uk/en/publications/b73a01aa-7cef-476f-a173-46a08292f882

Implementing deterministic declarative concurrency using
sieves

Sam Lindley
University of Edinburgh

ABSTRACT
The predominant thread-based approach to concurrent pro-
gramming is bug-prone, difficult to reason about, and does
not scale well to large numbers of processors. Sieves provide
a simple way of adding deterministic declarative concurrency
to imperative programming languages. Sieve programs have
a straightforward semantics, are not significantly more dif-
ficult to reason about than sequential imperative programs,
and should scale to large numbers of processors as well as
different processor architectures.

1. INTRODUCTION
Multicore processors are becoming mainstream. In the

first quarter after its release, Intel shipped over six million
multi-core Core Duo 2 processors [4]. In order to take advan-
tage of multicore hardware, software developers must adapt
the way they write code, ideally without having to throw
away all of their existing imperative code.

Codeplay’s sieve system [6] gives a way of extending exist-
ing imperative programming languages with a form of deter-
ministic declarative concurrency, without requiring develop-
ers to rewrite all of their existing codebase. Codeplay has
extended their vectorising C++ compiler to support sieves.
This paper gives a brief overview of sieves through an op-
erational semantics for a core language of sieves CoreSieve
and presents some preliminary benchmarks for Codeplay’s
implementation of sieves in C++.

Sieve programs support declarative concurrency in that
they allow the programmer to specify what code should be
executed concurrently as opposed to how code should be
executed concurrently. Declarative concurrency has the ad-
vantage that it allows code to be automatically tailored to a
particular target architecture, at compile time, at run time
or both. For instance, Codeplay’s implementation of sieves
in C++ compiles the same source code into a choice of bina-
ries, which can take advantage of one CPU, multiple CPUs,
or even a PPU (physics processing unit).

Sieve programs are deterministic in that they have the

Declarative Aspects of Multicore Programming 2007

same observable behaviour no matter what architecture they
are executed on. Determinism ensures that sieve programs
can be robustly debugged on one architecture (e.g. a single
core machine) and deployed on another (e.g. a multi-core
machine with a PPU).

The key component of sieve programs is the sieve block.
A sieve block has the same semantics as any other block of
sequential code, except that any side-effects inside the block
are delayed until the end of the sieve block. Delaying side-
effects allows the compiler to use a straightforward depen-
dency analysis to automatically partition sieve blocks into
fragments that can be safely executed in parallel. Execution
of a sieve block produces a queue of side-effects. Once the
sieve block has finished executing, the queue of side-effects
is executed sequentially on a single processor.

2. OPERATIONAL SEMANTICS
In order to provide a formal basis for sieve programs, we

present the syntax and dynamic semantics of a core imper-
ative language CoreSieve extended with sieves.

(expressions) e, e′ ::= i | x | f(e) | e + e′ | e− e′ | e× e′

(programs) P, Q ::= e | int x = e | x = e | x := e

| fun f(x) = P in Q

| sievefun f(x) = P in Q

| print e | P ; Q | sieve {P}

Comparisons, iteration and recursion are omitted from the
language, but are straightforward to add. Integer constants
are ranged over by i and variables are ranged over by f, x.
For simplicity we assume that all variables have distinct
names, and well-formed programs do not have free vari-
ables. Expressions are integers, variables, function applica-
tions and the usual arithmetic operators excluding division.
Division is omitted in order to avoid having to handle the
possibility of division by zero.

Programs are constructed from expressions, assignments,
print commands, function definitions, sequential composi-
tion and sieve blocks. There are three assignment operators:

• int x = e declares a new variable x and assigns the
value of the expression e to x.

• x = e performs an immediate assignment of the value
of the expression e to the immediate variable x.

• x := e performs a delayed assignment of the value of
the expression e to the delayed variable x.

The function definitions fun f(x) = P and sievefun g(y) = Q
define respectively standard functions and sieve functions.
The command print e prints the value of the expression e.
The sequential composition P ; Q runs P followed by Q. The
sieve block sieve {P} introduces a new scope {P} such that
side-effects are “sieved out” of P . Running sieve {P} first
performs the pure (i.e. side-effect free) part of P , and then
performs the side-effects.

We now elaborate on the semantics. A variable is immedi-
ate in a given scope if it is declared in that scope. A variable
is delayed in a given scope if it is declared in an outer scope.
Immediate assignment has the usual assignment semantics:
x = e assigns the value of e to x straight away. Immedi-
ate assignment is only valid for immediate variables. De-
layed assignment does not perform the assignment straight
away; instead, the assignment is stored in a queue which
is processed when the enclosing sieve block is exited. Like
delayed assignment, printing inside a sieve block is delayed
until the sieve block is exited. Printing and delayed assign-
ment share the same side-effect queue. Furthermore, if a call
to a standard function appears inside a sieve block then the
call will be delayed by placing it on the side-effect queue. A
call to a sieve function inside a sieve block is made immedi-
ately.

The scope in which a program is run is called the top-
level. Running a top-level program produces three entities:
a return value; a new environment, which is a mapping from
variable names to values; and a collection of side-effects,
which is a list of print commands. When a sieve block exits
to the top-level, the side-effect queue is run — performing a
series of assignment, function calls and printing operations.
When a nested sieve block exits to an enclosing sieve block,
any writes to variables which are immediate in the enclosing
sieve block are extracted from the queue and performed.
The remainder of the queue is appended to the queue of the
enclosing sieve block queue.

Values are ranged over by v. A value is either an in-
teger i, the unit value (), a standard function Fun (f, P),
or a sieve function Sieve (f, P). Environments are ranged
over by ρ, σ. We write ∅ for the empty environment, ρ, σ
for the concatenation of environments ρ and σ, and ρ, (x, v)
for the extension of the environment ρ with the binding
x = v. We distinguish between internal (ι) and external (ξ)
effects (ε). Internal effects only affect the internal state of
a program, whereas external effects are externally observ-
able. Delayed assignment is an internal effect. Printing is
an external effect. The semantics refers to lists of effects
[ε1, . . . , εk] ranged over by E and lists of external effects
[ξ1, . . . , ξk] ranged over by X. We write :: for the infix cons
operation on lists and ++ for the infix concatenation oper-
ation on lists. Arithmetic operators are ranged over by �.
Given a CoreSieve arithmetic operator � we write p�q for
the corresponding operator in the metalanguage.

Top-level evaluation. If we run a top-level program P with
initial environment σ, then we obtain a value v, a new envi-
ronment σ′, and a list of external side-effects X. We write:
σ ` P (v; σ′; X). The top-level evaluation relation ap-
pears in Figure 1. Reading an integer constant returns the
value of the integer, leaving the enviroment unchanged and
causing no side-effects. Similarly, reading a variable returns
the value of the variable, leaving the enviroment unchanged
and causing no side-effects. At the top-level, standard func-

tions can be applied, but sieve functions cannot. The rule for
arithmetic operators evaluates the left argument followed by
the right argument, updating the environment accordingly,
and concatenating the resulting side-effect queues, before
performing the actual arithmetic operation. Declarations
and assignments always return (). A variable declaration
creates a new variable and assigns a value to it, whereas
an immediate assignment updates the value of an existing
variable. Delayed assignments are not allowed at the top-
level. Printing appends a print effect to the list of external
side-effects. Standard and sieve function definitions add a
corresponding value to the environment. The composition
P ; Q of programs P and Q discards the return value of P
giving the return value of Q when run in the environment
created by running P . The side-effect queues are concate-
nated. The last rule is the most interesting. It describes how
to evaluate a sieve block. First, the program P is evaluated
using the sieve block evaluation relation, then the resulting
side-effects are evaluated. The semantics of a sieve block
are only defined if the evaluation of E removes all internal
effects. The definition of · ` · · depends on two auxiliary
evaluation relations: one for evaluation inside sieve blocks,
and the other for evaluation of side-effects (on exiting a top-
level sieve block).

Evaluation inside sieve blocks. Given a delayed environ-
ment ρ, an immediate environment σ and a program P , we
obtain a return value v, a new immediate environment σ′,
and a list of side-effects E. We write: ρ; σ ` P −→ (v; σ′; E).
The sieve block evaluation relation appears in Figure 2. The
sieve block evaluation relation is much like the top-level eval-
uation relation. The main difference is the separation of the
environment into a delayed environment and an immediate
environment. Accordingly, there are rules for reading and
writing delayed variables. Reading a delayed variable is just
like reading an immediate variable, except that the variable
comes from the delayed environment instead of the imme-
diate environment. Writing to a delayed variable (with a
delayed assignment), places the assignment in the side-effect
list. Functions can only be defined at the top-level. Inside a
sieve block, a call to a standard function is delayed, whereas
a call to a sieve function is made immediately. The rule
for nested sieve blocks looks rather similar to the rule for
top-level sieve blocks. For a nested sieve block, the immedi-
ate environment σ of the outer sieve block becomes part of
the delayed environment of the inner sieve block. When the
inner sieve block exits, only the writes to σ are performed,
leaving the rest of the effect list intact.

Evaluation of side-effects. Given an environment σ and
a list of side-effects E, we obtain a new environment σ′ and
a new list of side-effects E′. We write: σ ` E =⇒ (σ′; E′).
The side-effect evaluation relation appears in Figure 3. Side-
effects are evaluated in the order in which they appear in the
input list. For an assignment x = v, if x is in the domain of
the environment then the environment is updated and the
assignment is performed; otherwise the side-effect is trans-
ferred to the new side-effect list. Similarly, a delayed func-
tion delay (f, v) is called if f is in the domain of the environ-
ment, and transferred to the new side-effect list otherwise.
Note that delayed functions must return (). Print commands
are transferred to the new side-effect list. When evaluating
side-effects at the top-level the new side-effect list will con-

σ ` i (i; σ; []) σ, (x, v) ` x (v; σ, (x, v); [])

σ ` f (Fun (x, P); σ; [])
σ ` e (v; σ′; X)
σ′, (x, v) ` P (v′; σ′′; X ′)

σ ` f(e) (v′; σ′′; X ++ X ′)

σ ` e (v; σ′; X)
σ′ ` e′ (v′; σ′′; X ′)

σ ` e� e′ (v p�q v′; σ′′; X ++ X ′)

σ ` e (v; σ′; X)

σ ` int x = e ((); σ′, (x, v); X)

σ ` e (v′; σ′; X)

σ, (x, v) ` x = e ((); σ′, (x, v′); X)

σ ` e (v; σ′; X)

σ ` print e ((); σ′; X ++ [print v])

σ, (f, Sieve (ρ, x, P)) ` Q (v; σ′; X)

σ ` sievefun f(x) = P in Q (v; σ′; X)

σ, (f, Fun (ρ, x, P)) ` Q (v; σ′; X)

σ ` fun f(x) = P in Q (v; σ′; X)

σ ` P (v; σ′; X)
σ′ ` Q (v′; σ′′; X ′)

σ ` P ; Q (v′; σ′′; X ++ X ′)

ρ; ∅ ` P −→ (v; σ; E)
ρ ` E =⇒ (ρ′; X)

ρ ` sieve {P} ((); ρ′; X)

Figure 1: Top-level evaluation relation

ρ; σ ` i −→ (i; σ; []) ρ; σ, (x, v) ` x −→ (v; σ, (x, v); []) ρ, (x, v); σ ` x −→ (v; σ; [])

ρ; σ ` f −→ (Sieve (x, P); σ; [])
ρ; σ ` e −→ (v; σ′; E)
ρ; σ′, (x, v) ` P −→ (v′; σ′′; E′)

ρ; σ ` f(e) −→ (v′; σ′′; E ++ E′)

ρ; σ ` f −→ (Fun (x, P); σ; [])
ρ; σ ` e −→ (v; σ′; E)

ρ; σ ` f(e) −→ ((); σ′; E ++ [delay (f, v)])

ρ; σ ` e −→ (v; σ′; E)
ρ; σ′ ` e′ −→ (v′; σ′′; E′)

ρ; σ ` e� e′ −→ (v p�q v′; σ′′; E ++ E′)

ρ; σ ` e −→ (v; σ′; E)

ρ; σ ` int x = e −→ ((); σ′, (x, v); E)

ρ; σ ` e −→ (v′; σ′; E)

ρ; σ, (x, v) ` x = e −→ ((); σ′, (x, v′); E)

ρ; σ ` e −→ (v′; σ′; E)

ρ, (x, v); σ ` x := e −→ ((); σ′; E ++ [x = v′])

ρ; σ ` e −→ (v; σ′; E)

ρ; σ ` print e −→ ((); σ′; E ++ [print v])

ρ; σ ` P −→ (v; σ′; E)
ρ; σ′ ` Q −→ (v′; σ′′; E′)

ρ; σ ` P ; Q −→ (v′; σ′′; E ++ E′)

ρ, σ; ∅ ` P −→ (v; σ′′; E)
σ ` E =⇒ (σ′; E′)

ρ; σ ` sieve {P} −→ ((); σ′; E′)

Figure 2: Sieve block evaluation relation

tain only external effects. This constraint is expressed in
the top-level sieve block rule of Figure 1 and enforced by
the side-conditions on x and f in the side-effect relation.
The side-conditions guarantee that an internal side-effect
can only appear in the output if the side-effect refers to a
variable that is not bound by the environment. At the top-
level this could only happen if the variable was free, and
hence the program was ill-formed.

3. IMPLEMENTATION IN C++
Codeplay has implemented sieves as an extension to C++.

Currently three backends have been implemented for: a
single-processor machine, a multi-processor machine and a
single-processor machine with an Ageia PhysX PPU. The
same source code can be compiled for each different archi-
tecture.

In single-threaded mode the compiler essentially imple-
ments the operational semantics of Section 2 (with many
optimisations and a number of extensions that deal with
special features of C++ and make the system more useful).

In multi-threaded mode the compiler takes advantage of
the delaying of side-effects in order to partition sieve blocks

into fragments of code that can be executed in parallel. The
different fragments are dispatched using the threading sys-
tem provided by the host operating system.

In PPU mode the compiler performs the same kind of
partitioning of sieve blocks. However, unlike the multi-core
x86 architecture in which each processor has an equal sta-
tus and memory is shared, the PPU has a radically different
architecture. An Ageia PhysX chip [5] has many cores (the
exact figure is not public), a high internal memory band-
with (nearly two terabits per second), but it has limited
bandwidth to main memory via a PCI bus interface. Spe-
cial code has to be compiled in order to load fragments onto
the PPU.

In the future it would be interesting to formalise the sieve
block partitioning algorithm in the context of CoreSieve, and
prove that the parallel output code is observationally equiv-
alent to the semantics described in Section 2.

Iterators and accumulators. In order to make sieve blocks
more concurrent, the number of dependencies between vari-
ables needs to be reduced. Sometimes a dependency can be
broken by observing that a variable is only ever accessed in

σ, (x, v) ` [x = v′] =⇒ (σ, (x, v′); []) σ ` [x = v′] =⇒ (σ, (x, v′); [x = v′])
x /∈ dom(σ)

σ, (x, v) ` P ((); σ′; E)

σ, (f, Fun (x, P)) ` [delay (f, v)] =⇒ (σ′; E) σ ` [delay (f, v)] =⇒ (σ; [delay (f, v)])
f /∈ dom(σ)

σ ` [print v] =⇒ (σ; [print v])

σ ` [ε] =⇒ (σ′; E′)
σ′ ` E =⇒ (σ′′; E′′)

σ ` ε :: E =⇒ (σ′′; E′ ++ E′′)

Figure 3: Side-effect evaluation relation

a certain way.
An important case is a loop iterator that is only ever in-

cremented at the end of the loop. In this case we should
be able to execute different iterations of the loop in paral-
lel. A näıve dependency analysis on such a loop will fail,
as each loop iteration depends on the previous value of the
iterator. However, because we know that the iterator is only
ever incremented in one place, we can statically determine
the value of the iterator on subsequent iterations, and so
break the dependency.

Another case is an accumulator variable that is: initialised
to 0, write-only inside a sieve block and whose only admiss-
able operation inside the sieve block is addition. Here we can
safely break the dependencies by initialising the variable to
0 in each fragment, and adding all the results together at the
end of the sieve block. This construction can be generalised
to any monoid.

Sieve C++ provides special support for user-defined iter-
ators and accumulators using C++ classes.

4. PERFORMANCE
Some preliminary performance figures for Sieve C++ pro-

grams appear in Table 1. All benchmarks were performed
using a PC equipped with: Intel PentiumD 2.8 Ghz dual-
core CPU, 2GB RAM, 200GB HDD, Intel Express Graph-
ics adaptor and an Ageia PhysX PCI card. The Mandel-
brot benchmark draws a Mandelbrot set and zooms in ten
times, following a fixed path. The FFT benchmark a Fast
Fourier Transform for an input size of 4194304. The CRC
benchmark performs a 32-bit cyclic redundancy check. First
it calculates the parity bits, then it checks that the mes-
sage+parity passes and finally it checks that with errors
introduced the CRC correctly detects them. The matrix
multiplication benchmark uses the standard algorithm to
multiply two 500×500 matrices. The raytracing benchmark
ray traces a three-dimensional Julia set.

Each benchmark has three versions: no sieves, single-
threaded sieves and multi-threaded sieves. In the latter two
cases the source code is identical, but the binary is different.
Unfortunately, we are unable to publish performance figures
for sieve programs that use the Ageia PhysX card yet. Each
number is the average of running the benchmark five times.
The timings were quite consistent in that they never varied
by more than 1% for the same benchmark.

Single-threaded sieves cost a small penalty for the Man-
delbrot, CRC, matrix multiplication and raytracing bench-
marks. This is unsurprising, as sieves require a queue of
side-effects to be maintained. For these benchmarks, multi-
threaded sieves lead to roughly a two times speedup over

single-threaded sieves. The FFT results are more interest-
ing. The single-threaded sieve version is 15% slower than the
non-sieve version, and even the multi-threaded sieve version
is 10% slower than the non-sieve version. Further investi-
gation revealed that the sieve version of the FFT algorithm
is performing a large number of delayed writes, and this
is dominating the running time. These writes arise from
the algorithm copying an array containing all of the output
data. The entire array has to be copied to the side-effects
queue and then the side-effects queue is executed, effectively
copying the array again. In the non-sieve version, the array
only needs to be copied once. To make matters worse, the
current version of the compiler takes advantage of vector in-
structions to optimise array copies, but the corresponding
optimisation is not yet implemented for delayed writes. We
believe that it should be possible to eliminate the delayed
writes by using an array accumulator.

5. RELATED SYSTEMS
Many existing systems have similarities with the sieve sys-

tem. We briefly mention three of them: STM [2], Cilk [1]
and BSPlib [3].

STM (Software Transactional Memory) is a form of op-
timistic concurrency for programming languages. An STM
transaction is similar to a sieve block in that inside an STM
transaction side-effects are not visible to the outside world,
and they only become visible when the transaction commits.
The main difference is that unlike a sieve block, an STM
transaction can read the values it has written to non-local
memory. This can allow for more concurrency, but leads
to a non-deterministic system (though each transaction is
internally deterministic).

Cilk has similar goals to Sieve C++, providing a small
declarative concurrency extension to C. Cilk uses futures to
allow blocks of code to execute in parallel, and includes an
explicit synchronisation mechanism. As with STM, Cilk is
non-deterministic.

BSPlib (Bulk Synchronous Processing) is a declarative
concurrency library with implementations in C and Fortran.
BSP divides a computation into a series of supersteps. A
superstep is similar to a sieve block, in that it consists of a
parallel computation phase that allows each process direct
access only to local memory, followed by a synchronisation
phase that transfers data between processes. Supersteps dif-
fer from sieve blocks in several ways.

• In a superstep each process must run the same code,
whereas sieve blocks can be decomposed into arbitrary
fragments by the compiler.

• Unlike the execution of side-effects at the end of a sieve

Table 1: Sieve C++ running times (in seconds)
no sieves single-threaded sieves multi-threaded sieves

Mandelbrot 51.15 59.53 29.29
FFT 2.25 2.58 2.48
CRC 17.28 21.11 9.55
matrix multiplication 0.60 0.63 0.33
raytracing 6.20 6.53 3.48

block, superstep synchronisation is non-deterministic.
Global reads and writes are not guaranteed to happen
in any particular order.

• Side-effects and message passing are allowed inside a
superstep computation, but not inside a sieve compu-
tation.

6. CONCLUSION
Sieves are a promising approach to the problem of multi-

core programming. They have a straightforward semantics,
support debugging on a single core machine, and preliminary
testing indicates that they can be made to scale to differ-
ent architectures. Initial performance figures suggest that
sieves can be implemented efficiently. In future more real-
istic benchmarks should be performed using different target
architectures. It would be particularly interesting to see how
well sieves scale to more than two x86 cores, and how much
source programs need to be tweaked in order to make the
best use of different target architectures.

Acknowledgements. Thanks to Andrew Cook, Colin Riley
and Verena Achenbach, for providing the preliminary per-
formance figures, and to Ezra Cooper and Jeremy Yallop for
helpful feedback.

7. REFERENCES
[1] The Cilk project.

http://supertech.csail.mit.edu/cilk/index.html.

[2] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In PPoPP, pages
48–60, New York, NY, USA, 2005. ACM Press.

[3] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W.
Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas,
and R. H. Bisseling. BSPlib: The BSP programming
library. Parallel Computing, 24(14):1947–1980, 1998.

[4] Intel earnings release: Q3, 2006.
http://www.intel.com/intel/finance/earnings/

IntelQ32006EarningsRelease.pdf.

[5] Advanced gaming physics defining the new reality in
PC hardware, Mar. 2006. White paper.
http://www.ageia.com/pdf/wp_advanced_gaming_

physics.pdf.

[6] A. Richards. The Codeplay Sieve C++ parallel
programming system, 2006.
http://www.codeplay.com/downloads_public/

sievepaper-2columns-normal.pdf.

http://supertech.csail.mit.edu/cilk/index.html
http://www.intel.com/intel/finance/earnings/IntelQ32006EarningsRelease.pdf
http://www.intel.com/intel/finance/earnings/IntelQ32006EarningsRelease.pdf
http://www.ageia.com/pdf/wp_advanced_gaming_physics.pdf
http://www.ageia.com/pdf/wp_advanced_gaming_physics.pdf
http://www.codeplay.com/downloads_public/sievepaper-2columns-normal.pdf
http://www.codeplay.com/downloads_public/sievepaper-2columns-normal.pdf

