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ABSTRACT
We propose signature-accelerated transactional memory (SigTM),
a hybrid TM system that reduces the overhead of software trans-
actions. SigTM uses hardware signatures to track the read-set and
write-set for pending transactions and perform conflict detection
between concurrent threads. All other transactional functionality,
including data versioning, is implemented in software. Unlike pre-
viously proposed hybrid TM systems, SigTM requires no modifi-
cations to the hardware caches, which reduces hardware cost and
simplifies support for nested transactions and multithreaded pro-
cessor cores. SigTM is also the first hybrid TM system to provide
strong isolation guarantees between transactional blocks and non-
transactional accesses without additional read and write barriers in
non-transactional code.

Using a set of parallel programs that make frequent use of coarse-
grain transactions, we show that SigTM accelerates software trans-
actions by 30% to 280%. For certain workloads, SigTM can match
the performance of a full-featured hardware TM system, while for
workloads with large read-sets it can be up to two times slower.
Overall, we show that SigTM combines the performance character-
istics and strong isolation guarantees of hardware TM implementa-
tions with the low cost and flexibility of software TM systems.

Categories and Subject Descriptors: C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures – MIMD processors;
D.1.3 [Programming Techniques]: Concurrent Programming – par-
allel programming

General Terms: Performance, Design, Languages

Keywords: Transactional Memory, Strong Isolation, Multi-core
Architectures, Parallel Programming

1. INTRODUCTION
Transactional Memory (TM) [16, 1] is emerging as a promis-

ing technology to address the difficulty of parallel programming
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for multi-core chips. With TM, programmers simply declare that
code blocks operating on shared data should execute as atomic and
isolated transactions with respect to all other code. Concurrency
control as multiple transactions execute in parallel is the responsi-
bility of the system.

Transactional memory can be implemented in hardware (HTM)
or software (STM). HTM systems use hardware caches to track the
data read or written by each transaction and leverage the cache
coherence protocol to detect conflicts between concurrent transac-
tions [13, 21]. The advantage of hardware support is low over-
head. Transactional bookkeeping takes place transparently as the
processor executes load and store instructions. The disadvantage
of HTM is complexity and cost, as the caches and the coherence
protocol must be redesigned. It is also difficult to justify new hard-
ware features without significant experience with a large body of
transactional software. STM systems implement all bookkeeping
in software using instrumentation code (read and write barriers)
and software data structures [14, 23, 11, 15]. STM frameworks run
on existing hardware and can be flexibly modified to introduce new
features, provide language support, or adapt to specific application
characteristics. The disadvantage of the software-only approach
is the runtime overhead due to transactional bookkeeping. Even
though the instrumentation code can be optimized by compilers [2,
15], STM can still slow down each thread by 40% or more.

Apart from the cost/performance tradeoff, there are important se-
mantic differences between HTM and STM. HTM systems support
strong isolation, which implies that transactional blocks are iso-
lated from non-transactional accesses [18]. There is also a consis-
tent ordering between committed transactions and non-transactional
accesses. In contrast, high-performance STM systems do not sup-
port strong isolation because it requires read and write barriers in
non-transactional code and leads to additional runtime overhead.
As as result, STM systems may produce incorrect or unpredictable
results even for simple parallel programs that would work correctly
with lock-based synchronization [18, 12, 25].

This paper introduces signature-accelerated TM (SigTM), a hy-
brid transactional memory implementation that reduces the over-
head of software transactions and guarantees strong isolation be-
tween transactional and non-transactional code. SigTM uses hard-
ware signatures to conservatively represent the transaction read-set
and write-set. Conflict detection and strong isolation are supported
by looking up coherence requests in the hardware signatures [5].
All other functionality, including transactional versioning, commit,
and rollback, is implemented in software. Unlike previously pro-
posed hybrid schemes [17, 10, 24], SigTM requires no modifica-
tions to hardware caches, which reduces SigTM’s hardware cost,



simplifies crucial features (support for OS events, nested trans-
actions, and multithreading), and eliminates negative interference
with other cache operations (prefetching and speculative accesses).
Moreover, SigTM is a stand-alone hybrid TM that does not require
two operation modes or two code paths. SigTM is also the first hy-
brid TM system to implement strong isolation without additional
barriers in non-transactional code.

The specific contributions of this work are:

• We describe the hardware and software components of SigTM,
a hybrid transactional memory system that uses hardware
signatures for read-set and write-set tracking. SigTM im-
proves the performance of software transactions while pro-
viding strong isolation guarantees.

• We compare SigTM to STM and HTM systems using a set of
parallel applications that make frequent use of coarse-grain
transactions. We show that SigTM outperforms software-
only TM by 30% to 280%. While for some workloads it
performs within 10% of HTM systems, for workloads with
large read-sets, SigTM trails HTM by up to 200%.

• We quantify that relatively small hardware signatures, 128
bits for the write-set and 1024 bits for the read-set, are suffi-
cient to eliminate false conflicts due to the inexact nature of
signature-based conflict detection.

The rest of the paper is organized as follows. Sections 2 and 3 re-
view STM and HTM systems and their differences in terms of per-
formance and isolation guarantees. Section 4 presents the SigTM
system. Sections 5 and 6 present the experiment methodology and
results respectively. Section 7 discusses related work, and Section
8 concludes the paper.

2. SOFTWARE AND HARDWARE TM
A TM system provides version management for the data writ-

ten by transactions and performs conflict detection as transactions
execute concurrently. This section summarizes hardware and soft-
ware implementation techniques, focusing on the specific STM and
HTM systems we used in this study. There are several alternative
implementations for both approaches [1, 18].

2.1 Software Transactional Memory
STM systems implement version management and conflict de-

tection using software-only techniques. In this work, we use Sun’s
TL2 as our base STM [11]. TL2 is a lock-based STM that imple-
ments optimistic concurrency control for both read and write ac-
cesses and scales well across a range of contention scenarios [12].

Algorithm 1 provides a simplified overview of the STM for a C-
style programming language. Refer to [11] for a discussion of TL2
for object-oriented languages. The STM maintains a global version
clock used to generate timestamps for all data. To implement con-
flict detection at word granularity, it also associates a lock to every
word in memory using a hash function. The first bit in the lock
word indicates if the corresponding word is currently locked. The
remaining bits are used to store the timestamp generated by the last
transaction to write the corresponding data.

A transaction starts (STMtxStart) by taking a checkpoint of
the current execution environment using setjmp and by reading
the current value of the global clock into variable RV . A transac-
tion updates a word using a write barrier (STMwriteBarrier).
The barrier first checks for a conflict with other committing or com-
mitted transactions using the corresponding lock. A conflict is sig-
naled if the word is locked or its timestamp is higher than the value

Algorithm 1 Pseudocode for the basic functions in the TL2 STM.

procedure STMTXSTART
checkpoint()
RV ← GlobalClock

procedure STMWRITEBARRIER(addr, data)
bloomFilter.insert(addr)
writeSet.insert(addr, data)

procedure STMREADBARRIER(addr)
if bloomFilter.member(addr) and writeSet.member(addr) then

return writeSet.lookup(addr)
if locked(addr) or (timeStamp(addr) > RV then

conflict()
readSet.insert(addr)
return Memory[addr]

procedure STMTXCOMMIT
for every addr in writeSet do

if locked(addr) then
conflict()

else
lock(addr)

WV ← Fetch&Increment(GlobalClock)
for every addr in readSet do

if locked(addr) or (timeStamp(addr) > RV ) then
conflict()

for every addr in writeSet do
Memory[addr]← writeSetLookup(addr)

for every addr in writeSet do
timeStamp(addr)←WV
unlock(addr)

in RV . Assuming no conflict, the store address and data are added
to the write-set, a hash table that buffers the transaction output un-
til it commits. The STM also maintains in software a 32-bit Bloom
filter for the addresses in the write-set. A transaction loads a word
using a read barrier (STMreadBarrier). The barrier first checks
if the latest value of the word is available in the write-set, using
the Bloom filter to reduce the number of hash table lookups. If the
address is not in the write-set, it checks for a conflict with other
committing or committed transactions. Assuming no conflict, it
inserts the address to the read-set, a simple FIFO that tracks read
addresses. Finally, it loads the word from memory and returns its
value to the user code.

In order to commit its work (STMtxCommit), a transaction first
attempts to acquire the lock for all words in its write-set. If it fails
on any lock then a conflict is signaled. Next, it atomically incre-
ments the global version clock using the atomic instructions in the
underlying ISA (e.g., cmpxchg in x86). It also validates all ad-
dresses in the read-set by verifying that they are unlocked and that
their timestamp is not greater than RV . At this point, the trans-
action is validated and guaranteed to complete successfully. The
final step is to scan the write-set twice in order to copy the new
values to memory, update their timestamp to WV , and release the
corresponding lock.

The STM handles conflicts in the following manner. If a trans-
action fails to acquire a lock while committing, it first spins for a
limited time and then aborts using longjmp. A transaction aborts
in all other conflict cases. To provide liveness, the STM retries
the transaction after a random backoff delay that is biased by the
number of aborts thus far.



2.2 Hardware Transactional Memory
HTM systems implement version management and conflict de-

tection by enhancing both caches and the cache coherence protocol
in a multi-core system [13, 21]. The HTM used in this study is the
hardware equivalent of the TL2 STM. It uses the cache to buffer the
write-set until the transaction commits. Conflict detection is imple-
mented using coherence messages when one transaction attempts to
commit (optimistic concurrency). In general, our HTM is similar to
the TCC system [13] with two key deviations. First, TCC executes
all user code in transactional mode, while our HTM uses transac-
tional mechanisms only for user-defined transactions. The rest of
the code executes as a conventional multithreaded program with
MESI cache coherence and sequential consistency. Second, TCC
uses a write-through coherence protocol that provides conflict reso-
lution at word granularity. Our HTM uses write-back caches which
requires conflict detection at the cache line granularity.

The HTM extends each cache line with one read bit (R) and one
write bit (W) that indicate membership in a transaction’s read-set
and write-set respectively. A transaction starts by taking a regis-
ter checkpoint using a hardware mechanism. A store writes to the
cache and sets the W bit. If there is a cache miss, the cache line is
requested in the shared state. If there is a hit but the line contains
modified data produced prior to the current transaction (modified
and W bit not set), it first writes back the data to lower levels of the
memory hierarchy. A load reads the corresponding word and sets
the R bit if the W bit is not already set. If there is a cache miss for
the load, we retrieve the line in the shared state as well.

When a transaction completes, it arbitrates for permission to
commit by acquiring a unique hardware lock. This implies that
only a single transaction may be committing at any point in time.
Parallel commit can be supported using a two-phase protocol [6],
but it was not necessary for the system sizes we studied in this
paper. Next, the HTM generates snooping messages to request ex-
clusive access for any lines in its write-set (W bit set) that are in
shared state. At this point, the transaction is validated. Finally,
it commits the write-set atomically by flash resetting all W and R
bits and then releasing the commit lock. All data in the write-set
are now modified in the processor’s cache but are non-transactional
and can be read by other processors.

An ongoing transaction detects a conflict when it receives a co-
herence message with an exclusive request for data in its read-set or
write-set. Such a message can be generated by a committing trans-
action or by a non-transactional store. A software abort handler is
invoked that rolls back the violated transaction by flash invalidating
all lines in the write-set, flash resetting all R and W bits, and restor-
ing the register checkpoint [20]. Transaction starvation is avoided
by allowing a transaction that has been retried multiple times to ac-
quire the commit lock at its very beginning. Forward progress is
guaranteed because a validated transaction cannot abort. To guar-
antee this, a validated transaction sends negative acknowledgments
(nacks) to all types of coherence requests for data in its write-set
and exclusive requests for data in its read-set. Once validated, an
HTM transaction must execute just a few instructions to flash reset
its W and R bits, hence the window of nacks is extremely short.
If a transaction receives a shared request for a line in its read-set
or write-set prior to reaching the commit stage, it responds that it
has a shared copy of the line and downgrades its cache line to the
shared state if needed.

3. STM - HTM DIFFERENCES
This section compares qualitatively the STM and HTM systems

in terms of their performance and strong isolation guarantees.
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Figure 1. The STM execution time breakdown for a single proces-
sor run. Execution time is normalized to that of the sequential code
without transaction markers or read/write barriers.

3.1 Performance
STM transactions run slower than HTM transactions due to the

overhead of software-based versioning and conflict detection. Even
though the two systems may enable the same degree of concurrency
and exhibit similar scaling, the latency of individual transactions is
a key parameter for the overall performance. Figure 1 shows the
execution time breakdown for STM running on a single processor
(no conflicts or aborts). Execution time is normalized to that of the
sequential code. STM is slower than sequential code by factors of
1.5× to 7.2×. In contrast, the overhead of HTM execution on one
processor is less than 10%.

The biggest bottleneck for STM is the maintenance and valida-
tion of the read-set. For every word read, the STM must execute at
least one read barrier and revalidate its timestamp during the com-
mit phase. Even after optimizations, the overhead is significant for
transactions that read non-trivial amounts of data. The next im-
portant bottleneck is the three traversals of the write-set needed to
validate and commit a transaction: first to acquire the locks, then
to copy the data values to memory, and finally to release the locks.
Lock handling is expensive as it involves atomic instructions and
causes additional cache misses and coherence traffic. The third im-
portant factor (not shown in Figure 1) is that an STM transaction
may not detect a conflict until it validates its read-set at the very
end of its execution. This is due to that fact that a read by an ongo-
ing transaction is not visible to any other transaction committing a
new value for the same word. Invisible reads increase the amount
of work wasted on aborted transactions.

There are also secondary sources of STM overhead. For exam-
ple, loads must first search the write-set for the latest value. Our ex-
perience is that the software Bloom filter eliminates most redundant
searches. Aborting a transaction on a conflict is also sufficiently
fast for our STM since no data are written to memory before the
transaction is validated. Finally, there can be false conflicts due to
the hash function used to map variable addresses to locks. We use
a million locks which makes this case rare.

STM overheads can be reduced through manual or compiler-



Assume that initially x==y==0

// Thread 1
atomic {
t1=x;
...
t2=x;

}

// Thread 2
...
...
x=100;
...
...

// Thread 1
atomic {
t=x;
...
x=t+1;

}

// Thread 2
...
...
x=100;
...
...

// Thread 1
atomic {
x+=100;
y+=100;
...

}

// Thread 2
...
...
...
...
t=x+y;

(a) Non-repeatable Reads (b) Lost Updates (c) Overlapped Writes

Figure 2. Isolation and ordering violation cases for the STM system.

based optimizations [2, 15]. The primary goal is to eliminate redun-
dant or repeated barriers using techniques such as common subex-
pression elimination and loop hoisting or by identifying thread-
local and immutable data. Nevertheless, even optimized STM code
requires one barrier per unique address as well as the validation and
commit steps at the end of the transaction. A special case is read-
only transactions for which there is no need to build or validate the
read-set or the write-set [11]. Unfortunately, statically-identified,
read-only transactions are not common in most applications.

For the HTM, hardware support eliminates most overheads for
transactional bookkeeping. No additional instructions are needed to
maintain the read-set or write-set. Loads check the write-set auto-
matically for the latest values. Read-set validation occurs transpar-
ently and continuously as coherence requests are processed; hence,
conflicts are discovered as soon as a writing transaction commits.
The write-set is traversed a single time on commit. On the other
hand, the HTM may experience performance challenges on trans-
actions whose read-set and write-set overflow the available cache
space or associativity. There are several proposed techniques that
virtualize HTM systems using structures in virtual memory [22, 8,
7]. In most cases, the HTM performs similarly to an STM system
for the overflowed transactions due to the overhead of virtualiza-
tion. An additional source of overhead for HTM can be false con-
flicts due to conflict detection at cache line granularity. The STM
uses word granularity conflict detection. If STM-style compiler op-
timizations are not used with the HTM system, false conflicts can
be more frequent. For example, if an HTM transaction reads an
immutable field in the same cache line with a field written by an-
other transaction, there will be a false conflict. Ideally, the compiler
should instruct the HTM system to use a non-transactional load for
the immutable field that will not add its address to the read-set [20].

3.2 Strong Isolation and Ordering
The differences between HTM and STM extend beyond per-

formance. An important feature for TM systems is strong iso-
lation, which facilitates predictable code behavior [18]. Strong
isolation requires that transactional blocks are isolated from non-
transactional memory accesses. Moreover, there should be a con-
sistent ordering between transactional code and non-transactional
accesses throughout the system. High-performance STM systems
do not implement strong isolation because it requires additional
read and write barriers in non-transactional code that exacerbate
the overhead issues. We refer readers to [25] for a thorough discus-
sion of isolation and ordering issues in all types of STM systems.

Figure 2 presents the three isolation and ordering cases that lead
to unpredictable results with our STM. For the case in Figure 2.(a),
the non-transactional code in Thread 2 updates x while Thread 1
runs a transaction. Since Thread 2 does not use a write barrier,
Thread 1 has no means of detecting the conflict on x. The two
reads to x from Thread 1 may return different values (0 and 100
respectively). The expected behavior is that either both reads return
0 (Thread 1 before Thread 2) or both return 100 (Thread 2 before
Thread 1). For the case in Figure 2.(b), the lack of conflict detection

// Thread 1
ListNode res;
atomic {
res = lhead;
if (lhead != null)
lhead = lhead.next;

}
use res multiple times;

// Thread 2
atomic {
ListNode n = lhead;
while (n != null) {
n.val ++;
n = n.next;

}
}

Figure 3. The code for the privatization scenario.

between the two threads may lead to a lost update. If the write by
Thread 2 occurs after Thread 1 reads x and before it commits its
transaction, the final value of x will be 1. The expected behavior
is that either x has a final value of 100 (Thread 1 before Thread 2)
or 101 (Thread 2 before Thread 1). For the case in Figure 2.(c), the
problem arises because Thread 2 does not use a read barrier for x
and y. Hence, it is possible that, as Thread 1 is in the middle of its
transaction commit, Thread 2 reads the old value of x and the new
value of y or vice versa. In other words, t may have value 100,
while the expected behavior is that t is either 200 (Thread 1 before
Thread 2) or 0 (Thread 2 before Thread 1).

One can dismiss the cases in Figure 2 as examples of data races
that would lead to unpredictable behavior even with lock-based
synchronization. Instead of arguing whether or not TM should
eliminate the data races in lock-based synchronization, we exam-
ine the privatization code in Figure 3 [18]. Thread 1 atomically
removes an element from a linked-list and uses it multiple times.
Thread 2 atomically increments all elements in the list. There are
two acceptable outcomes for this code: either Thread 1 commits its
transaction first and subsequently uses only the non-incremented
value of the first element or Thread 2 commits first and Thread 1
subsequently uses only the incremented value of the first element.
If we implement the atomic blocks with a single coarse-grain lock,
this code will produce one of the expected results as it is race-free.

The lack of strong isolation causes this code to behave unpre-
dictably with all STM approaches [18]. As the two threads exe-
cute concurrently, lhead is included in the write-set for Thread 1
and the the read-set for Thread 2. Now assume Thread 2 initiates
its transaction commit, where it locks lhead.val and it verifies
all variables in its read-set have not changed in memory, including
lhead. While Thread 2 is copying its large write-set, Thread 1
starts its commit stage. It locks its write-set (lhead), validates its
read-set (lhead and lhead.next), and commits the new value
of lhead. Subsequently, Thread 1 uses res outside of a trans-
actional block as it believes that the element has been privatized
by atomically extracting from the list. Depending on the progress
rate of Thread 2 with copying its write-set, Thread 1 may get to use
the non-incremented value for res.val a few times before finally
observing the incremented value committed by Thread 2.

The privatization example in Figure 3 is not a unique case of
race-free code that performs unpredictably. Another source of cor-
rectness issues is that STM systems do not validate their read-set



Instruction Description
rsSigReset Reset all bits in read-set or write-set signature
wsSigReset
rsSigInsert r1 Insert the address in register r1 in the read-set
wsSigInsert r1 or write-set signature
rsSigMember r1, r2 Set register r2 to 1 if the address in register
wsSigMember r1, r2 r1 hits in the read-set or write-set signature
rsSigSave r1, r2 Save a portion of the read-set or write-set
wsSigSave r1, r2 signature into register r1
rsSigRestore r1, r2 Restore a portion of the read-set or write-set
wsSigRestore r1, r2 signature from register r1
fetchEx r1 Prefetch address in register r1 in exclusive

state; if address in cache, upgrade to
exclusive state if needed

Table 1. The user-level instructions for management of read-set
and write-set signatures in SigTM.

until they reach the commit stage. Hence, it is possible to have a
transaction use a pointer that has been modified in the meantime by
another transaction, ending up with an infinite loop or a memory
exception [12].

Strong isolation can be implemented in an STM using additional
read and write barriers in non-transactional accesses. Shpeisman et
al. [25] developed a set of compiler techniques that minimize their
performance impact by differentiating between private and shared
data, identifying data never accessed within a transaction, and ag-
gregating multiple barriers to the same address. For a set of Java
programs that make infrequent use of transactions, their optimiza-
tions reduce the overhead of strong isolation from 180% to 40%.
This overhead is significant as it is in addition to the regular over-
head of STM instrumentation code. Moreover, the overhead may
actually be higher for applications that make frequent use of trans-
actional synchronization or are written in languages like C/C++. If
strong isolation forces programmers to pick between performance
and correctness, we have failed to deliver on the basic promise of
TM: simple-to-write parallel code that performs well.

HTM systems naturally implement strong isolation as all thread
interactions, whether they execute transactions or not, are visible
through the coherence protocol and can be properly handled. For
the cases in Figure 2.(a) and 2.(b), the write to x by Thread 2 on
our HTM will generate a coherence request for exclusive access. If
Thread 1 has already read x, the coherence request will facilitate
conflict detection and will cause Thread 1 to abort and re-execute
its transaction. For the case in Figure 2.(c), once the transaction
in Thread 1 is validated, it will generate nacks to any incoming
coherence request (shared or exclusive) for an address in its write-
set. Since there is one transaction committing at the time, there can
be no deadlock or livelock. Hence, Thread 2 will either read the
new or old values for both x and y. The HTM executes correctly
the privatization code in Figure 3 as Thread 1 cannot read partially
committed state from Thread 2.

4. SIGNATURE-ACCELERATED TM
This section describes signature-accelerated transactional mem-

ory (SigTM), a hybrid TM system that reduces the runtime overhead
of software transactions and transparently provides strong isolation
and ordering guarantees.

4.1 Hardware Signatures
SigTM enhances the architecture of a TM system with hardware

signatures for read-set and write-set tracking. Our work was in-
spired by the use of signatures for transactional bookkeeping in the
Bulk HTM [5].

A hardware signature is a Bloom filter [3] that conservatively
encodes a set of addresses using a fixed-size register. SigTM uses
two signatures per hardware thread: one for the read-set and the
other for the write-set. Table 1 summarizes the instructions used
by software to manage the signatures. Software can reset each sig-
nature, insert an address, check if an address hits in the signature,
and save/restore its content. To insert address A in a signature,
hardware first truncates the cache line offset field from the address.
Next, it applies one or more deterministic hash functions on the re-
maining bits. Each function identifies one bit in the signature to be
set to one. To check address A for a hit, the hardware truncates the
address and applies the same set of hash functions. If all identified
bits in the signature register are set, A is considered a signature hit.
Given the fixed-size of the signature register and the nature of hash
functions, multiple addresses will map to the same signature bits.
Hence, hits are conservative: they will correctly identify addresses
that were previously added to the set but may also identify some
addresses the were never inserted in the signature. We discuss the
signature length and the choice of hash functions in Section 6. The
last instruction in Table 1 allows software to prefetch or upgrade
a cache line to one of the exclusive states of the coherence proto-
col (E for MESI). If the address is already in the M or E state, the
instruction has no effect.

The hardware can also lookup the signatures for hits using ad-
dresses from incoming coherence requests. A user-level configu-
ration register per hardware thread is used to select if addresses
from shared and/or exclusive requests should be looked up in the
read-set and/or write-set signatures. If an enabled lookup produces
a signature hit, a user-level exception is signaled that jumps to a
pre-registered software handler [20]. Coherence lookups are tem-
porarily disabled when the handler is invoked to avoid repeated in-
vocations of the handler that prohibit forward progress. The con-
figuration register also indicates if coherence requests that hit in the
write-set signature should be properly acknowledged by the local
cache or should receive a nack reply.

Apart from hardware signatures and the nack mechanism in the
coherence protocol, SigTM requires no further hardware support.
Caches are not modified in any way.

4.2 SigTM Operation
Algorithm 2 summarizes the operation of software transactions

under SigTM. Even though we present a hybrid scheme based on
the TL2 STM, the approach is generally applicable to other STMs
(see Section 4.5). SigTM is a standalone implementation. Unlike
other hybrid proposals [17, 10, 24], there is no backup STM, no
switch between HTM and STM modes, and no fast vs. slow code
paths.

SigTM eliminates the global version clock and the locks in the
base STM. While it also eliminates the software read-set, a software
write-set is still necessary in order to buffer transactional updates
until the transaction commits. The transaction initialization code
(SigTMtxStart) takes a checkpoint and enables read-set signa-
ture lookups for exclusive coherence requests. The write barrier
code (SigTMwriteBarrier) inserts the address in the write-
set signature and updates the software write-set. The read barrier
(SigTMreadBarrier) first checks if the address is in the soft-
ware write-set, using the hardware write-set signature as a filtering
mechanism to avoid most unnecessary write-set lookups. If not, it
simply adds it to the read-set signature and reads the word from
memory. During the transaction execution, if the address from an
exclusive coherence request produces a hit in the read-set signa-
ture, a conflict is signaled and the transaction aborts. The abort
process includes resetting both signatures and discarding the soft-



Algorithm 2 Pseudocode for the basic functions in SigTM.

procedure SIGTMTXSTART
checkpoint()
enableRSlookup(exclusive)

procedure SIGTMWRITEBARRIER(addr, data)
wsSigInsert(addr)
writeSet.insert(addr, data)

procedure SIGTMREADBARRIER(addr)
if wsSigMember(addr) and writeSet.member(addr) then

return writeSet.lookup(addr)
rsSigInsert(addr)
return Memory[addr]

procedure SIGTMTXCOMMIT
enableWSlookup(exclusive, shared)
for every addr in writeSet do

fetchEx(addr)
enableWSnack(exclusive, shared)
rsSigReset()
disableRSlookup()
for every addr in writeSet do

Memory[addr]← writeSet.lookup(addr)
wsSigReset()
disableWSnack()

ware write-set. During the transaction execution, addresses from
coherence requests are not looked up in the write-set filter until the
commit stage.

To commit a transaction (SigTMtxCommit), SigTM first en-
ables coherence lookups in the write-set signatures for all types of
requests. Next, it scans the write-set and acquires exclusive ac-
cess for every address in the set using the fetchEx instruction.
This step validates the transaction by removing the corresponding
cache lines from the caches of other processors in the system. Note
that a fetchEx access may replace the line brought by another
fetchEx access without any correctness issues. Correctness is
provided by the signature lookups for incoming coherence requests,
not by cache hits or misses. If a fetchEx instruction time-outs
due to nacks, a software handler is invoked that repeats the valida-
tion from scratch. The same handler is invoked if the write-set sig-
nature identifies a conflict with any incoming coherence message
(exclusive or shared request). If the read-set signature produces a
hit with an exclusive request, it is a conflict that leads to an abort.

To complete the commit process, SigTM enables nacking of any
coherence request that hits in the write-set signature. This is neces-
sary for store isolation. The read-set signature is reset as a validated
transaction can no longer roll back. Next, SigTM scans the write-
set and updates the actual memory locations. Finally, software re-
sets the write-set signature and disables any nacks or lookup hits it
can produce.

Contention management in SigTM is similar to that in the base
STM. Aborted transactions are retried after a backoff delay. If the
transaction validation is repeated multiple times due to conflicts
identified by the write-set signature, we eventually abort the trans-
action and use the same contention management approach.

4.3 Performance
SigTM transactions execute exactly the same number of soft-

ware barriers as STM transactions. Nevertheless, the overhead of
SigTM barriers is significantly lower. Table 2 presents the com-
mon case dynamic instruction count for STM and SigTM barriers.

Read Write Commit
Barrier Barrier Barrier

STM 19 43 44 + 16R + 31W
SigTM 8 35 41 + 12W

Table 2. The common-case dynamic instruction counts for the
STM and SigTM barriers. R and W represent the number of words
in the transaction read-set and write-set, respectively.

SigTM reduces the overhead of read and commit barriers, the two
biggest sources of overhead for STM code (see Figure 1). SigTM
accelerates read-barriers by replacing the software read-set with the
hardware read-set signature. It also eliminates the need for lock or
timestamp checks. The commit overhead is reduced as the write-
set is traversed twice and there is no need for read-set validation.
Moreover, the SigTM commit process uses fetchEx instructions,
which are faster than lock acquisitions. SigTM does not provide
a large performance advantage for write barriers. It eliminates the
lock and timestamp checks but it still has to insert the data in the
software hash table. Nevertheless, write barrier overhead is a sec-
ondary issue as most transactions read more than they write.

An additional advantage for SigTM is that coherence lookups in
the read-set signature make transactional reads visible. Hence, a
transaction detects read-set conflicts as soon as other transactions
commit and not when it attempts to commit itself. The early con-
flict detection reduces the cost of aborts. Finally, the elimination of
lock words reduces the pressure on cache capacity and coherence
bandwidth.

The performance challenge for SigTM is the inexact nature of
the read-set and write-set signatures. If the signatures produce sig-
nificant false hits, the system will spend more time in unnecessary
rollbacks. False hits can occur due to negative interaction between
the application’s access pattern and the hash functions used for the
signatures. It is also possible that a specific implementation uses
signatures that are too short to accurately represent the large read-
sets and write-sets in some applications. However, the signature
length is not directly visible to user code and can be changed in sub-
sequent systems. The read-set signature is a more likely source of
false hits as read-sets are typically larger than write-sets. Moreover,
coherence lookups in the read-set signature are enabled throughout
the entire execution of a SigTM transaction.

Another source of false conflicts is that SigTM performs con-
flict detection at cache line granularity. The HTM uses cache line
granularity as well, but the STM uses word granularity. SigTM
cannot track word addresses in the hardware signatures because co-
herence requests are at the granularity of full cache lines. Finally,
it is difficult for SigTM to be faster than the HTM system. While
SigTM barriers are significantly faster than STM barriers, they are
still slower than the transparent transactional bookkeeping in the
HTM. The performance gap between the two depends on the num-
ber of barriers per transaction and the amount of useful work by
which they are amortized.

4.4 Strong Isolation and Ordering
SigTM provides software transactions with strong isolation and

ordering guarantees without additional barriers in non-transactional
code. The continuous read-set validation through the read-set sig-
nature eliminates non-repeatable reads and lost updates (Figure 2.(a)
and (b) respectively). In both cases, the non-transactional write in
Thread 2 will generate an exclusive coherence request that hits in
the read-set signature of Thread 1. Hence, Thread 1 will abort and
re-execute its transaction, which will lead to one of the expected
final results. Moreover, the continuous read-set validation ensures



that a transaction will not operate on inconsistent state that leads to
infinite loops or memory faults.

Overlapped writes (Figure 2.(c)) and the privatization problem
(Figure 3) are addressed by nacking all coherence requests that hit
in the write-set signature while a validated transaction copies its
write-set to memory. Note that nacking requests for an address
is equivalent to holding a lock on it and can cause serialization
and performance issues. SigTM uses nacks only during write-set
copying which is typically a short event.

4.5 Alternative SigTM Implementations
This section discusses the implementation of SigTM based on

alternative STMs or targeting alternative multi-core systems.
Object-based conflict detection: To support programming lan-

guages like C, SigTM performs conflict detection at cache line
granularity. For object-oriented environments like Java, it is prefer-
able to perform conflict detection at the granularity of objects. Object-
based detection is closer to the programmer’s understanding of the
application behavior. Moreover, it typically leads to fewer barriers
than cache-based detection as it is sufficient to track object headers
instead of all the fields in the object.

To implement an object-based SigTM, we would insert in the
hardware signatures only the addresses of headers for the objects
in the transaction read-set and write-set. All other fields would
be accessed using regular operations. We would also change the
software write-set to support versioning at object granularity. Note
that the hardware signatures could still produce false conflicts due
to their inexact nature or if multiple objects are stored in the same
cache line. Nevertheless, since fewer addresses will be tracked by
the signatures, false conflicts should be less frequent.

The SigTM hardware presented in Section 4.1 can also support a
mixed environment where cache line conflict detection is used for
large objects like multi-dimensional arrays, while other data types
are tracked at the object level.

Eager data versioning: Because of its TL2 heritage, SigTM im-
plements lazy data versioning. Transactional updates are buffered
in the write-set until the transaction commits. Alternatively, we
could start with an STM that uses eager versioning [2, 15]. Writes
within a transaction update memory locations in place, logging the
original value in an undo log in case of an abort. Since SigTM
implements data versioning in software, no hardware changes are
necessary to support the eager-based scheme. Nevertheless, the
hardware features would be used differently. Transactional write
accesses that miss in the cache would retrieve the cache line in ex-
clusive mode. Apart from looking up exclusive coherence requests
in the read-set signature, we would also lookup both shared and
exclusive requests in the write-set signature throughout the trans-
action. If the commit barrier is reached without a conflict, the
transaction can complete by simply resetting its signatures. On the
other hand, while a transaction aborts it must nack any coherence
requests to addresses in its write-set to ensure that restoring the
memory values appears atomic.

Eager-based STMs have two additional cases that can lead to un-
predictable behavior without strong isolation: speculative lost up-
dates and speculative dirty reads [25]. The hardware signatures in
SigTM can address both cases. Speculative lost updates are elimi-
nated because nacks are used to guarantee that rolling back a trans-
action is atomic. Speculative dirty reads are eliminated because
shared coherence requests are looked up in the write-set signature
throughout the transaction runtime.

Multi-core systems without broadcast coherence: Thus far,
we assumed a broadcast protocol that makes coherence updates vis-
ible to all processors in the system. The snooping coherence used

in current multi-core systems meets this requirement. Broadcast
coherence allows the hardware signatures to view all coherence re-
quests even for cache lines that have been accessed by this trans-
action but have been replaced from the local cache. Larger-scale
multi-core systems may use directories to filter coherence traffic.
To implement SigTM correctly in such systems, we can use the
LogTM sticky directory states [21]. In the LogTM, cache replace-
ment does not immediately modify the directory state. Hence, the
directory will continue to forward coherence requests to a proces-
sor even after it evicts a cache line from its caches.

For systems with two levels of private caches, addresses from
coherence requests must be looked up in the hardware signatures
even if the L2 cache filters them from the L1 cache.

4.6 System Issues
Nesting: SigTM supports an unbounded number of nested trans-

actions [20]. Since data versioning is in software, SigTM can man-
age separately, and merge when necessary, the write buffer or undo
log for the parent and children transactions.

Conflict detection for nested transactions is supported by sav-
ing and restoring signatures at nested transaction boundaries. At
the beginning of a nested transaction (closed or open), we save a
copy of the current contents of the two signatures in thread-private
storage. The signatures are not reset at this point. As the nested
transaction executes, its read and write barriers will insert addi-
tional addresses to the signatures, which will represent the com-
bined read-set and write-set for the parent and the child transaction.
If the nested transaction detects a conflict before it commits, after
ensuring that the conflict was not for the parent, we restore the sig-
natures of the parent transaction as part of the abort process. If a
closed-nested transaction commits, we discard the saved parent’s
signatures and continue with the current signature contents. If an
open-nested transaction commits, we restore the parent’s signature
to indicate that the child transaction committed independently.

Multithreading: For processor cores that support multiple hard-
ware threads, SigTM requires a separate set of signature and con-
figuration registers per thread. Since the signatures are maintained
outside the cache, it is straightforward to introduce support for ad-
ditional threads. The hardware must also facilitate conflict detec-
tion between threads executing in the same processor. Since one
thread may fetch a line that is later accessed by another thread, sig-
nature lookups on misses and coherence upgrades are no longer
sufficient. Stores to lines in exclusive states (M or E) must be
looked up in the signatures of other threads. Moreover, if any thread
is currently copying the write-set for its validated transaction, load
hits to lines in exclusive states (M or E) must be also looked up in
the write-set signatures of other threads.

Thread Suspension & Migration: Due to interrupts or schedul-
ing decisions, the OS may decide to suspend a thread while it is ex-
ecuting a SigTM transaction. An efficient way to handle interrupts
within transactions is the three-pronged approach of the XTM sys-
tem [8]. First, the transaction is allowed to complete before the
thread is suspended. Second, if the interrupt is critical or becomes
critical after some waiting period, the transaction is aborted before
the thread is suspended. No transactional state needs to be saved or
restored in these two cases. These two cases work well if transac-
tions are short relative to the inherent overhead of context switch-
ing. Transactional state must be saved and restored only when sus-
pending very long transactions. Currently, this case is uncommon
(see Section 6.1 and [9]).

To suspend an on-going SigTM transaction, the OS must save
the current contents of the two signatures as it does with all other
hardware registers for this thread. The SigTM write-set does not re-



Feature Description
Processors 1 to 16 x86 cores, in-order, single-issue
L1 Cache 64KB, private, 4-way assoc., 32B line, 1-cycle access
Network 256-bit bus, split transactions, pipelined, MESI protocol
L2 cache 8MB, shared, 32-way assoc., 32B line, 12-cycle access
Memory 100-cycle off-chip access
Signatures 32 to 2048 bits per signature register
SigTM (1) unpermuted cache line address
Hash (2) cache line address permuted as in [5]
Functions (3) address from (2) shifted right by 10 bits

(4) a permutation of 16 LS bits of cache line address

Table 3. The simulation parameters for the multi-core system.

quire special handling as it is a software structure stored in virtual
memory. To facilitate conflict detection for suspended threads the
OS can use an additional set of hardware signatures. The OS uses
them to store a combined version of the signatures for all suspended
threads (bitwise logical or) and detect conflicts with on-going trans-
actions. Alternatively, the OS can overload the hardware signatures
of a running thread to also store the combined signatures of sus-
pended threads. In both cases, software processing is necessary
to determine which of combined transactions should be be aborted
due to the signature hit. When a thread is resumed, the OS restores
its saved signatures. It must also recompute the combined signature
for suspended threads.

Thread migration occurs by suspending and resuming a thread or
by directly copying its signatures from one set of hardware registers
to another.

Paging: Disk paging and remapping is a challenge for SigTM
because the signatures are built using physical addresses. To handle
conflict detection correctly in the presence of paging, the system
should track when a page accessed by active transactions is being
remapped. In this case, the OS must conservatively insert all cache
line addresses from the new mapping in the signatures of all threads
that have accessed data in this page. This approach may lead to
extra false hits but will not miss any true conflicts.

Nevertheless, since paging is typically rare, it is best handled
using the XTM three-pronged approach. Moreover, if an applica-
tion experiences heavy paging, its performance is already so low
that thread serialization is probably an acceptable method to han-
dle paging within transactions.

5. METHODOLOGY
We compared SigTM to STM and HTM systems using execution-

driven simulation and a novel set of parallel benchmarks.

5.1 Simulation and Code Generation
Table 3 presents the main parameters of the simulated multi-core

system. Insertions and lookups in the SigTM signatures use the
four hash functions listed. Each function identifies a bit in the reg-
ister to set or check respectively. The processor model assumes an
IPC of 1 for all instructions that do not access memory. However,
the simulator captures all the memory hierarchy timings including
contention and queuing events.

All applications were coded in C or C++ using a low-level API
to identify parallel threads and manually insert transaction markers
and barriers. All TM versions share the same annotation of trans-
action boundaries. The STM and SigTM systems run the same ap-
plication code that has been linked with a different barrier library
in each case. Read and write barriers for accesses to shared data
were optimized as much as possible following the guidelines in [2,

15]. The speedups reported in Section 6 are relative to sequential
execution with code that includes no annotations for threads, trans-
actions, or barriers.

5.2 Applications
Most studies of TM systems thus far have used microbenchmarks

or parallel applications from the SPLASH-2 suite. Microbench-
marks are useful to stress specific system features but do not rep-
resent the behavior of any real application. The SPLASH-2 bench-
marks have been carefully optimized over the years to avoid syn-
chronization [26]. Turning their lock-protected regions into trans-
actional blocks leads to programs that spend a small portion of their
runtime in fine-grain transactions. This behavior may not be repre-
sentative of new parallel programs developed with TM techniques.
After all, the main promise of transactional memory is to provide
good performance with simple parallel code that frequently uses
coarse-grain synchronization (transactions).

For this study, we parallelized four applications from scratch us-
ing transactions. The parallel code for each application uses coarse-
grain transactions to execute concurrent tasks that operate on one
or more irregular data structures such as a graph or a tree. Parallel
coding at this level is easy because the programmer does not have
to understand or manually manage the inter-thread dependencies
within the data structure code. The parallel code is very close to the
sequential algorithm. The resulting runtime behavior is frequent,
coarse-grain transactions. The following are brief descriptions of
the four applications:

Delaunay implements Delaunay mesh generation, an algorithm
for producing guaranteed quality meshes for applications such as
graphics rendering and PDE solvers. The basic data structure is a
graph that stores the mesh data. Each parallel task involves three
transactions. The first one removes a “bad” triangle from a work
queue, the second processes the cavity around the triangle, and the
third inserts newly created triangles to the work queue.

Genome is a bioinformatics application and performs gene se-
quencing: from a very large pool of gene segments, it finds the
most likely original gene sequence. The basic data structure is a
hash table for unmatched segments. In the parallel version of the
segment matching phase, each thread tries to add to its partition
of currently matched segments by searching the shared pool of un-
matched segments. Since multiple threads may try to grab the same
segment, transactions are used to ensure atomicity.

Kmeans is an algorithm that clusters objects into k partitions
based on some attributes. It is commonly used in data mining
workloads. Input objects are partitioned across threads and syn-
chronization is necessary when two threads attempt to insert ob-
jects in the same partition. Thus, the amount of contention varies
with the value of k. For our experiments, we use two such values
to observe kmeans with high (kmeans-high) and low (kmeans-low)
contention in its runtime behavior.

Vacation implements a travel reservation system powered by an
in-memory database using trees to track items, orders, and cus-
tomer data. Vacation is similar in design to the SPECjbb2000 bench-
mark. The workload consists of several client threads interacting
with the database via the system’s task manager. The workload
generator can be configured to produce a certain percentage of
read-only (e.g., ticket lookups) and read-write (e.g., reservations)
tasks. For our experiments, we use two workload scenarios, one
with a balanced set of read-only and read-write tasks (vacation-
high) and one dominated by read-only tasks (vacation-low). Tasks
operate on multiple trees and execute fully within transactions to
maintain the database’s atomicity, consistency, and isolation.



6. EVALUATION

6.1 Application Characterization
Table 4 presents averages for the basic application statistics on

the STM and HTM systems. Transactions include a significant
number of instructions, ranging from 3K to 30K instructions for the
HTM. Instruction counts for STM transactions are higher by 2× to
8×, depending on the distribution of read and write barriers per
transaction. The instruction counts for SigTM are typically closer
to the HTM counts due to reduced overhead of SigTM barriers.

For HTM, the read-sets vary between 20 and 120 cache lines.
While such read-set sizes do not put significant pressure on the ca-
pacity of L1 caches, they can cause associativity conflicts. Write-
sets are smaller, 4 to 30 cache lines. This is not surprising as most
transactions first search a data structure performing O(logN) or
O(
√

N) reads and then update a single new element. Transactions
that write a lot, for example by rebalancing a tree, are rare. It is
interesting to notice that the read-set to write-set size ratio in HTM
does not necessarily match the read to write barrier ratio in STM.
The STM does not include barriers for immutable or thread-local
fields, while the HTM automatically inserts them in the read-set.
On the other hand, the STM can have redundant barriers for fields
accessed multiple times per transaction in a statically unpredictable
manner. Finally, the STM will use multiple barriers for fields allo-
cated in the same cache line, while the HTM will include the line
in the read-set just once.

A final interesting point is that transactions account for 96% to
99% of the runtime for these applications. Hence, they place signif-
icant stress on the TM support in all three systems. This behavior
is because the application code encloses, in a coarse-grain transac-
tion, any task that operates on shared data. It is possible to reduce
the percentage of time in transactions by using finer-grain synchro-
nization or by manually partitioning and merging the shared data
structures across threads. Nevertheless, such optimizations compli-
cate parallel programming significantly and increase the likelihood
of both correctness and performance bugs.

6.2 Performance Analysis
Figure 4 presents the speedups of the three TM systems as we

scale the number of processors from 1 to 16. Higher speedups are
better. For these experiments, SigTM uses 2Kbits per read-set and
write-set signature. To provide further insights into performance
issues, Figure 5 shows the execution time breakdown for the runs
with 16 processors. For HTM, execution time is broken into “busy”
(useful instructions and cache misses), “rollback” (time spent on
aborted transactions), “commit” (commit overhead), and “other”
(work imbalance, etc.). For STM and SigTM, we separate time
spent on read and write barriers from busy time. Miscellaneous
barriers, like those starting a software transaction, are accounted
for in the “other” segment. Lower execution times are better.

Figure 4 shows that three systems scale similarly for all applica-
tions. Nevertheless, the actual speedups differ significantly. Com-
pared to STM, the SigTM design provides a performance advantage
that ranges from 30% (genome) to 280% (vacation), with an aver-
age advantage of 130%. SigTM comes within 10% of the HTM
performance for delaunay and genome, but is approximately two
times slower than HTM for vacation. The average advantage of
HTM over SigTM is 70%. The differences between the three sys-
tems do not change significantly as we scale the number of proces-
sors.

For delaunay, STM suffers from the late discovery of frequent
conflicts and from read barrier overhead. SigTM discovers con-
flicts early and drastically reduces the read barrier time. At 16 pro-

cessors, the SigTM speedup is 8.6, only 7% lower than the HTM
speedup and 78% higher than the STM speedup. Genome behaves
similarly to delaunay. SigTM reaches a speedup of 6.9, which is
9% lower than the HTM speedup and 27% higher than the STM
speedup. At large processor counts, genome exhibits some work
imbalance on STM and SigTM and experiences some commit seri-
alization on the HTM.

For kmeans, the STM performance is primarily limited by write-
set management. Figure 5 shows that a significant portion of time
is spent in write and commit barriers. SigTM accelerates the com-
mit process but does not significantly reduce the write barrier over-
head. Hence, SigTM reaches maximum speedups of 8.7 and 11
for the two kmeans workloads, which is 27% and 13% lower than
the HTM speedups respectively, but 81% and 41% higher than the
STM speedups. Obviously, the differences between the three sys-
tems are higher in low contention scenarios.

The two vacation workloads exhibit the biggest differences among
the three TM implementations. Most transactions involve large
read-sets as they search one or more trees in the database. Since
tree traversals have no temporal locality, it is difficult to reduce
the number of read barriers. Hence, the STM performance suffers
heavily from read barrier overhead and read-set validation time dur-
ing the commit stage. SigTM reduces both overheads and leads to
a 280% improvement over STM for both workloads. Neverthe-
less, SigTM is still 200% (vacation-high) and 160% (vacation-low)
slower than the HTM system which handles all transactional book-
keeping transparently. The overall speedups for SigTM are 4.6 and
11 for the two workloads.

6.3 Sensitivity to Signature Length
The SigTM results in Section 6.2 assume long read-set and write-

set signatures that eliminate virtually all false conflicts due to sig-
nature inaccuracies (2 Kbits per signatures). Figure 6 presents the
normalized performance of SigTM with 16 processors as we scale
the read-set and write-set signature lengths from 2 Kbits down to
32 bits. Higher performance is better. We use the same set of hash
functions in all experiments (see Table 3).

The top graph in Figure 6 shows that SigTM’s performance is
highly sensitive to the read-set signature length. Delaunay and
genome are particularly problematic as they have a significant num-
ber of conflicts to begin with. Their performance drops dramati-
cally with signature lengths less than 1 Kbits. The two vacation
workloads are also sensitive to the read-set signature length. Due
to their large read-sets, they start experiencing an increasing num-
ber of false conflicts for signature lengths less than 512 bits. At
64 bits, vacation achieves 40% of its original performance with 2
Kbits per signature. Kmeans is less sensitive due to its small read-
sets and does not experience significant performance improvement
with more than 64 bits per signature.

In contrast, the bottom graph in Figure 6 shows that none of the
applications exhibit particular sensitivity to the write-set signature
length. With 128 bit signatures, all workloads are virtually unaf-
fected excluding delaunay, which performs 10% slower. This is
due to two reasons. First, most applications have small write-sets
that can be accurately represented even with small signatures. Sec-
ond, our SigTM uses lazy versioning: write-set signatures detect
conflicts only during the commit stage to guarantee write isolation
as the write-set is copied to memory. Since the commit stage is
short, the write-set signature accuracy is less critical. SigTM with
eager versioning will likely be more sensitive to write-set signature
length as it enables coherence lookups in the write-set throughout
the transaction execution.

Given the applications and system sizes we studied, our recom-



Application STM SigTM HTM
# instr/Tx # rdBarrier/Tx # wrBarrier/Tx # instr/Tx # instr/Tx # rd Lines/Tx #wr Lines/Tx Time in Tx

delaunay 60519.8 88.8 14.5 38488.3 33995.4 88.9 30.7 99%
genome 4336.0 16.9 2.0 3214.0 2742.8 37.1 9.4 97%

kmeans-high 2503.3 5.7 6.3 1581.1 1118.2 23.9 4.1 98%
kmeans-low 3546.4 5.7 6.3 2649.8 2192.8 38.0 4.1 99%

vacation-high 25876.2 351.4 3.0 7976.8 3360.8 88.2 10.9 96%
vacation-low 27841.2 385.0 3.0 9323.4 3492.2 123.9 10.8 97%

Table 4. The basic application statistics for the STM, SigTM, and HTM systems. STM and SigTM have the same number of read and write
barriers per transaction. For the HTM, we present the number of cache lines in the transaction’s read-set and write-set. All numbers are
averages across the whole program execution. All kmeans statistics follow a bipolar distribution. For vacation, the number of instructions
per transaction and read-set related statistics follow an even distribution. The remaining statistics follow roughly a normal distribution.
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Figure 4. Speedups over sequential code for the three TM implementations.

mendation is 1-Kbit read-set signatures and 128-bit write-set signa-
tures. Hence, the per hardware thread cost of SigTM is 1152 bits of
storage plus the logic for the hash functions. Further experiments
are necessary to determine if such signatures are sufficient for other
applications and larger-scale systems. The choice of hash function
can also play a significant role in the signature accuracy.

7. RELATED WORK
In the past few years, there has been significant research activ-

ity on transactional memory, covering topics such as implemen-
tation techniques, programming constructs, runtime systems, and
contention management. We refer readers to Larus and Rajwar for
a thorough coverage of transactional memory research [18].

Hybrid TM: The first hybrid TM systems were proposed to ad-
dress the virtualization challenges of HTM [17, 10]. These systems
combine an HTM with an STM implementation, switching from
the former to the latter if the hardware resources are exhausted.
These hybrid TMs introduce modifications to caches (for the HTM)
and require two versions of the code for every transaction.

Subsequent hybrid schemes introduced modifications to caches

and coherence protocols in order to address performance bottle-
necks of software transactions [19, 24]. SigTM is closest to the
HASTM system that adds software-controlled mark bits to each
cache line [24]. Transactions use these extra bits to create filters
for conflict detection. However, there are significant differences
between HASTM and SigTM. HASTM cannot rely exclusively on
mark bits for conflict detection as cache lines from the read-set or
write-set may be replaced at any time. Hence, the HASTM barriers
must be able to fall back to the slower STM bookkeeping. SigTM is
a stand-alone system without a backup STM mode. An additional
issue for HASTM is that cache updates due to prefetching or spec-
ulative execution can evict transactional data causing unnecessary
rollbacks or switches to the STM mode. The SigTM signatures are
maintained in registers outside of the cache, hence their contents
are not affected by speculative cache activity in the local processor.
To avoid false conflicts due to speculative activity in remote proces-
sors, signature hits should signal a conflict only when this activity
is committed. Finally, introducing support for multithreaded cores
and nested transactions in HASTM can be expensive as it requires
multiple sets of mark bits per cache line.

SigTM is the first hybrid scheme with strong isolation guarantees
without barriers in non-transactional code.
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Figure 5. Execution time breakdowns with 16 processors on the three TM systems.

Signature-based HTMs: SigTM was inspired by the Bulk HTM
that first proposed the use of signatures for conflict detection [5].
As an HTM, the Bulk design requires additional hardware to imple-
ment lazy data versioning in caches and must deal with cache ca-
pacity limitations. In contrast, SigTM implements data versioning
in software and requires no hardware support beyond the read-set
and write-set signatures. LogTM-SE is similar to Bulk but imple-
ments eager data versioning [27]. It requires additional hardware
to implement the undo log, including an array of recently logged
cache lines. Using the SPLASH-2 suite, LogTM-SE suggests the
use of short signature registers (32 to 64 bits). Our results indicate
that longer registers are needed, in particular for the read-set.

Strong Isolation: Several researchers observed that strong iso-
lation is necessary for predictable behavior in TM system [4, 18].
Shpeisman et al. [25] have categorized the problematic cases for
both eager and lazy TM systems that do not provide strong isola-
tion. They also presented a compiler methodology, including opti-
mizations, that use additional barriers in non-transactional code in
order to provide strong isolation guarantees. Blundell et al. also
claim that there are cases for which strong isolation leads to unex-
pected results [4]. We argue that strong isolation is not the issue
in these cases. They are simply observing that transactions can re-
place lock-based synchronization in some cases (atomicity) but not
in others (coordination).

8. CONCLUSIONS
This paper presented signature-accelerated transactional mem-

ory, a hybrid TM implementation that reduces the overhead of soft-
ware transactions. SigTM uses hardware signatures to track the
read-set and write-set for pending transactions, but implements data
versioning and all other transactional functionality in software. Un-
like previous hybrid designs, SigTM requires no modifications to
the hardware caches in a multi-core system, which reduces hard-
ware cost and simplifies support for features such as nested trans-
actions and multithreaded cores. SigTM is also the first hybrid TM

system that transparently provides strong isolation guarantees that
lead to predictable interactions between transactional blocks and
non-transactional accesses.

Using a set of applications that make frequent use of coarse-grain
transactions, we compared SigTM to STM and HTM systems. We
show that SigTM outperforms software-only transactions by 30%
to 280%. While for some workloads it performs within 10% of
HTM systems, for workloads with large read-sets SigTM trails
HTM by up to 200%. We also demonstrated that 1-Kbit signa-
tures for the read-set and 128-bit signatures for the write-set are
sufficient to eliminate most false conflicts due to the inexact nature
of signature-based conflict detection.

Overall, SigTM combines the performance characteristics and
strong isolation guarantees of hardware TM techniques with the
low cost and flexibility of software TM systems.
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