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The traditional VLIW (very long instruction word) architecture with a single register file does not
scale up well to address growing performance demands on embedded media processors. However,
splitting a VLIW processor in smaller clusters, which are comprised of function units fully con-
nected to local register files, can significantly improve VLSI implementation characteristics of the
processor, such as speed, energy consumption, and area. In our paper we reveal that achieving the
best characteristics of a clustered VLIW requires a thorough selection of an Inter-cluster Commu-
nication (ICC) model, which is the way clustering is exposed in the Instruction Set Architecture.
For our study we, first, define a taxonomy of ICC models including copy operations, dedicated issue
slots, extended operands, extended results, and multicast. Evaluation of the execution time of the
models requires both the dynamic cycle count and clock period. We developed an advanced instruc-
tion scheduler for all the five ICC models in order to quantify the dynamic cycle counts of our
multimedia C benchmarks. To assess the clock period of the ICC models we designed and laid out
VLIW datapaths using the RTL hardware descriptions derived from a deeply pipelined commer-
cial TriMedia processor. In contrast to prior art, our research shows that fully distributed register
file architectures (with eight clusters in our study) often underperform compared to moderately
clustered machines with two or four clusters because of explosion of the cycle count overhead in
the former. Among the evaluated ICC models, performance of the copy operation model, popular
both in academia and industry, is severely limited by the copy operations hampering scheduling of
regular operations in high ILP (instruction-level parallelism) code. The dedicated issue slots model
combats this limitation by dedicating extra VLIW issue slots purely for ICC, reaching the highest
1.74 execution time speedup relative to the unicluster. Furthermore, our VLSI experiments show
that the lowest area and energy consumption of 42 and 57% relative to the unicluster, respectively,
are achieved by the extended operands model, which, nevertheless, provides higher performance
than the copy operation model.

Categories and Subject Descriptors: C.1.4 [Computer Systems Organization]: Processor Archi-
tectures—Parallel architectures; H.4.3 [Hardware]: Input/Output and Data Communications—
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1. INTRODUCTION

Convergence of digital video, vision, 3D graphics, still image, networking, secu-
rity, natural languages, and audio in embedded multimedia devices demands
high performance and low power consumption. On top of this, constantly emerg-
ing communication and content standards, along with requirements for device
customization and in-field upgrades, necessitate high-level programmability. To
meet these great demands embedded media processors rely heavily on optimiz-
ing compiler technology and hardware parallelism in the forms of pipelining,
ILP (instruction-level parallelism), vector parallelism, data-level parallelism,
and task-level parallelism [Fisher et al. 2004]. In this paper, we investigate ILP
exploitation, in which modern compilers for sequential high-level languages are
most mature. However, ILP extraction techniques can naturally coexist with
other parallelization methods.

Previous studies of ILP limits [Lam and Wilson 1992; Lee et al. 2000; Liao
and Wolfe 1997] indicate availability of potentially high operation concurrency
in (media) applications, spanning the range of a few tens up to hundreds of
independent operations. However, the ILP rates, extractable either statically
by efficient fast compilers or dynamically by (superscalar) hardware, are much
lower. Note, that fast compilation is crucial for quick time-to-market includ-
ing numerous “patch-compile-execute” cycles. Despite active ILP research in
the past 25 years, automatically extracted operation concurrency of full appli-
cations never neared the high potential. Extracting high ILP in future media
applications is limited by the growing control intensity of the code (e.g., the
context-based adaptive arithmetic coding from the H.264 video coding stan-
dard). On top of that, the rapidly widening gap between processor and memory
speeds further mitigates the achievable ILP. Indeed, because of the increase of
processor stall cycles (e.g., for cache misses) the number of instructions executed
per cycle (IPC) decreases. Furthermore, feeding a wider ILP processor with data
will be a major challenge for the bandwidth of slowing down memories. To match
capabilities of realistic compilers and hardware trends, we confine our study to
media processors with the issue width of 8. Thanks to our commercial optimiz-
ing C compiler, this amount of hardware parallelism is sufficient to sustain the
ILP rates of 4.8 to 7.5 concurrent operations on complex applications. In fact,
the achieved ILP is higher because of subword parallelism in SIMD operations.
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Fig. 1. Unicluster VLIW architecture.

Many embedded media processors exploit ILP using the VLIW (very long
instruction word) architecture [Fisher 1981; Fisher et al. 2004] resulting from
its high performance through parallel execution of operations and relatively
low power and die area. These competitive characteristics are conditioned on
the absence of costly hardware mechanisms to recover parallelism ILP from
sequential programs, as it is done in superscalars. The classical VLIW datapath
contains a number of parallel function units (FUs), a multiported register file
(RF) and, if the processor is pipelined, a bypass network (see Figure 1). The
single uniform RF simplifies code compilation for the processor, while the bypass
network enables fast forwarding of the produced results to the operations in
the earlier pipeline stages. For example, if the FUs in Figure 1 have pipeline
registers at their inputs, the bypass network can forward a result produced
by one FU to another even before this result is committed to the RF. This way
pipelined back-to-back execution of data-dependent operations is implemented.
Note the multiple FUs behind the five VLIW issue slots in Figure 1, which
designate (slightly) different functionalities supported by the issue slots.

Unfortunately, the large multiported RF and the bypass network hamper the
ILP scalability of the processor, which only aggravates with advance of VLSI
technologies [Ho et al. 2001; Agarwal et al. 2000; ITRS Technology Working
Group 2005]. According to our VLSI layout experiments, a multiported RF for
a unicluster VLIW with full connectivity to eight issue slots becomes imprac-
tically large and slow. Hence, increasing hardware ILP and, at the same time,
sustaining or boosting the clock frequency becomes impossible for unicluster
architectures. Therefore, (commercial) media processors (e.g., TMS320C6xxx,
Equator BSP, HP/ST Microelectronics ST2xx, Analog Devices Tiger Sharc,
BOPS Manarray) address this issue by splitting the monolithic architecture
in smaller clusters (see Figure 2). Each cluster contains a local RF fully inter-
connected with cluster’s FUs. Inter-cluster communication (ICC) is typically
exposed in the ISA (instruction-set architecture) in the spirit of the VLIW ap-
proach. The smaller clusters reach significantly higher clock frequency (e.g.,
1 GHz for the TI TMS320C6xxx DSPs) while preserving competitive low power
consumption and chip area.

Note the two pipeline registers on the ICC paths in Figure 2. If each clus-
ter occupies significant area or there are many clusters in the processor, the
ICC wires span across long distances on the chip, substantially compromising
the clock speed. This effect becomes especially prominent in the forthcoming IC
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Fig. 2. Two-cluster VLIW architecture.

technologies [Ho et al. 2001; Agarwal et al. 2000]. To achieve 1 GHz the popular
TI TMS320C64xx processor features intercluster pipeline registers (similar to
our two ICC registers in Figure 2) in order to combat the long ICC wire delays.
On the other hand, smaller and/or slower media processors can afford not in-
stantiating the pipeline registers and, thus, decrease the execution cycle count.
Our research concentrates on pipelined ICC paths aiming at high frequency
high-end media processors.

The existing scientific literature mainly focused on one ICC model (e.g., copy
operations) in the processor ISA. In contrast, the goal of our study is to charac-
terize and systematically compare several intercluster communication models
based on their execution time, area, and energy efficiency. Our scientific intu-
ition behind this goal is that choosing a proper ICC model in the ISA can bring
substantial performance and energy efficiency improvements. We strive to do
research by realistic experiments via IC layout exercises instead of analyti-
cal VLSI models and employing a deeply pipelined VLIW architecture, derived
from a commercial media processor. Low ILP code is a dangerous driver for
processor’s design space exploration, because it underutilizes parallel hard-
ware leading to poor design decisions. Therefore, we employ full optimized C
benchmark applications instead of out-of-the-box code with low ILP.

This paper is organized as follows. First, we introduce our taxonomy of inter-
cluster communication models in VLIW ISAs in Section 2. Section 3 elaborates
on our instruction scheduler capabilities. VLSI implementation characteristics
derived from our layout exercises of five ICC models constitute Section 4. Analy-
sis of the execution time of compiled C benchmarks for our models is presented
in Section 5. Furthermore, this section includes energy consumption figures
obtained from RTL power simulations. In Section 6 we put our research in per-
spective with prior studies. Finally, Section 7 concludes with recommendations
for selecting the best ICC model and promising future research directions.

2. TAXONOMY OF INTERCLUSTER COMMUNICATION MODELS

Taxonomy of ICC models and corresponding VLSI implementations is vast
[Parcerisa et al. 2005; Rixner et al. 1999; Zalamea et al. 2003; Gibert et al.
2005; Gangwar et al. 2003; Terechko et al. 2003a]. Before detailing the
evaluated ICC models, in the beginning of this section, we briefly traverse
the design space of intercluster communication mechanisms. For example,
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Fig. 3. Bus-based two-cluster architecture.

Fig. 4. Partially connected four-cluster VLIW with bus-based ICC.

there exist point-to-point and bus-based clustered VLIW processors. Point-
to-point networks of clusters contain dedicated connections among clusters
(see Figure 2). If some point-to-point connections are merged, we can derive
the popular bus-based ICC model [Faraboschi et al. 2000; Gangwar et al. 2005;
Lapinskii et al. 2002; Bekooij 2004] (see Figure 3). According to Bekooij [2004],
a global bus can significantly simplify scheduling for a partially connected
VLIW. However, as concluded in Gangwar [2005] and Parcerisa et al. [2005],
the (global) bus substantially limits the clock frequency. In this study, we focus
on point-to-point networks of clusters, but some of our results are also appli-
cable to bus-based clustered architectures. For example, some ICC constraints
incurring a cycle count overhead of a clustered VLIW are independent of the
actual implementation of the interconnect (bus-based or point-to-point).

We also differentiate fully and partially connected networks of clusters. In
the fully connected VLIW, each cluster has a direct connection to all others. This
naturally speeds up ICC and simplifies the job of the instruction scheduler. On
the other hand, the scalability of the fully connected VLIW is limited. This is-
sue is overcome by partially connected and tiled architectures [Lee et al. 2000;
Roos et al. 2002; Colavin and Rizzo 2003] (see Figure 4). The VLIW clusters in
Figure 4 are organized in a ring fashion, so, for example, clusters 1 and 3 have no
direct connection between each other. Unfortunately, partially connected clus-
tered architectures are notorious for complex instruction scheduling, struggling
with deadlock avoidance, which occurs when a copy path between two clusters
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cannot be scheduled [Roos et al. 2002]. Our work focuses on fully connected
deadlock-free networks. Moreover, as we expressed in Section 1, the achievable
ILP of media applications is modest, and, thus, the benefit of extreme scala-
bility is arguable for media applications (e.g., control-intensive video codecs).
Note, how clustering simplifies the bypass network and reduces the number of
ports on the registers (see Figures 1, 3, and 4).

The intercluster data transports have to satisfy constraints of the imple-
mentation of a clustered VLIW. In the VLIW tradition, mapping of operations
to time slots and function units is visible in the code. Hence, the number of
time slots between data-dependent operations scheduled in different clusters
must increase by the latency of intercluster data transfers. Moreover, the num-
ber of intercluster transports per instruction should not exceed the intercluster
bandwidth. These hardware restrictions require explicit specification of the in-
tercluster communication in the VLIW code and, consequently, the VLIW ISA.
Naturally, the compiler for a clustered VLIW processor gets complicated by
this exposure of the hardware restrictions in the ISA. There exist many ways
to express intercluster communication in the ISA. As this paper shows, the ICC
model, to a large extent, determines the execution time of a clustered proces-
sor. In this section, we define and qualitatively analyze five models of ICC.
To introduce each ICC model, we only sketch its architecture with simplified
pipelines. The actual pipelined microarchitecture used for our experiments is
further detailed in Section 4. Table I (see later) summarizes hardware complex-
ity characteristics of the considered models.

Each description of an ICC model is accompanied by a scheduled VLIW as-
sembly snippet to show intercluster transport in this model. Below is an example
of code showing two data-dependent VLIW instructions of a four-issue-slot uni-
cluster VLIW. Semicolons separate VLIW instructions and symbol | separates
operations within an instruction. Symbol * designates an operation that is ir-
relevant for the example. Commas are used to divide the operands and results
(if an operation has multiple results), and symbol → separates operands from
results. In the examples for the ICC models (shown in the following sections),
sequences of operations in the first one-half of the columns belong to one clus-
ter and in the other one-half, to the other cluster; index in square brackets
identify the cluster. Each presented instance of the ICC models has the ICC
bandwidth of a single ICC transfer per cluster per VLIW instruction. The la-
tency of the inter-cluster transfers in the examples is one cycle. Note that in
the unicluster code example below, there is merely a single cycle delay between
two data-dependent operations op1 and op2.

2.1 Copy Operations

Inter-cluster communication in this model is specified as copy operations in
regular VLIW issue slots. An example code with intercluster transport by means
of copy operations is presented below. The value of r3 from RF1 in cluster 1 is
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Fig. 5. Copy operations.

transferred to r1 of RF2 in cluster 2. The intercluster data transfer is carried
out solely by copy operations. All other operations access only their local RFs.

Figure 5 depicts an implementation of the copy operation of the ICC model.
In the operand read stage of a copy operation, the value is read from the local
RF, passed through the bypass network, and clocked in the intercluster pipeline
register (see Figure 5). In the next cycle in the execute stage of the copy, the
value is sent to the other cluster and fed into the remote bypass. This model,
evidently, requires one extra write port on the RFs per intercluster path and
has a rather simple bypass network compared to other models (see columns 2,
3, 4, and 5 in Table I).

This encoding of ICC implies that some VLIW issue slots will be occupied with
intercluster copy operations. In the dense high ILP code, the copy operations
will consequently block scheduling of regular operations, which evidently in-
creases the schedule length. On the other hand, this model does not expand the
VLIW instruction, and keeps the instruction decoder simple. However, in the
scheduled code there will be extra operations (copies) enlarging the code size.

A bus-based variant of this ICC model is used in the ISA of ST Microelectron-
ics and Hewlett Packard ST2xx [Faraboschi et al. 2000]. In fact, Lx requires two
copy operations per intercluster transfer: send and receive. The send initiates
the data transfer in the source cluster and the receive obtains the data in the
destination cluster. In fact, this scheme removes the extra write port on the
RFs and, consequently, simplifies the bypass network. On the other hand, in-
stead of a single copy operation for each transfer, this scheme needs two, which
negatively impacts the code size and scheduling freedom for other operations.
Remarkably, the send and receive model can easily be extended to support mul-
ticast (Section 2.5). A multicast would be carried out by a single send operations,
putting a value on the bus, and multiple receive operations in several clusters,
picking up the value. This technique, however, adds significant complexity in
register allocation and scheduling.

2.2 Dedicated Issue Slots

In this model, the VLIW instruction is extended with extra issue slots dedicated
to intercluster communication (see Figure 6). For example, each processing
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Fig. 6. Dedicated issue slots.

element (cluster) of BOPS’s ManArray [Levy 2001] has a dedicated issue slot
to control the cluster switch that exchanges data among the processing ele-
ments. Inter-cluster transport in the dedicated issue slot model can take place in
any VLIW instruction between the producer and consumer operations without
blocking regular operations. In fact, this model provides the highest operation
scheduling freedom among the considered models. Although this model seems
similar to the copy operation model, the dedicated slots have very different
performance and VLSI implementation characteristics.

Implementation of this model is relatively expensive. Extra dedicated issue
slots lead to expansion of the VLIW instruction, complicating the instruction
decoder and instruction fetch unit. Moreover, this ICC model needs two extra RF
ports per dedicated slot and the number of multiplexers in the bypass network
is comparatively high (Table I). Below is the code for the machine, shown in
Figure 6, with two dedicated issue slots for intercluster transport in slots 3
and 4. In fact, the two extra slots make the total issue width equal to six. The
intercluster transfer of r3 in cluster 1 to r1 in cluster 2 takes place in slot 3 in
the second instruction.

Dedicated issue slots cannot issue regular operations, because they have
insufficient read ports for dual-source operand operations. If we added an ex-
tra read port (possibly sacrificing the achievable clock frequency) and allow
scheduling regular operations in the dedicated slots, our wider VLIW machine
would implement the copy operation model. In the view of a possible clock
frequency decrease and the limited scheduling freedom of intercluster com-
munication in the copy operation model, we did not consider the wider VLIW
configuration with dedicated issue slots that can start regular operations.

2.3 Extended Operands

The source operands in this ICC model are extended with cluster identification.
For example, the Texas Instruments VelociTI architecture extends some of the
operands with cluster-id fields. These fields specify the RF where the values
should be read from. VelociTI restricts the intercluster bandwidth to one inter-
cluster read per VLIW instruction per cluster. This model allows using a value

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 11, Publication date: June 2007.
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Fig. 7. Extended operands.

from a remote RF without storing it in the local RF (see Figure 7), which evi-
dently lessens the register pressure. On the other hand, since the transferred
value is immediately consumed by the operation without being stored in the
local RF, “reuse” of the copied value is complicated. Note that this model has
more multiplexers in the bypass than the unicluster.

The code below illustrates the extended operand model. The first argument
of the operations is extended with specification of the RF. op1, thus, reads the
local value of r1 from RF1 and writes to r3 in RF1. In the mnemonics of op1,
we could have omitted [1]. However, in the binary encoding of the operation,
there will be a bit indicating what RF the value should be read from. Two cy-
cles later, op2, in the second cluster, consumes the result of op1 (r3 from RF1)
without storing it in RF2. A downside of this ICC model is that the hardware
should detect and initiate the intercluster transfer rather early in the pipeline,
which may complicate the bypass logic in deep pipelines. Moreover, the cluster-
id extension is always fixed to the VLIW instruction with the correspond-
ing operand, which limits the scheduling freedom of intercluster transfers in
time.

2.4 Extended Results

An architecture with extended results is presented in Figure 2, Section 1. In
this ICC model, the result of an operation is stored in the cluster specified by the
cluster-id bits attached to the destination register address. Since the operation’s
result is not stored locally, this model implements intercluster moves rather
than copies. Therefore, if the result of an operation is required in both the local
and remote clusters, the instruction scheduler must add an extra operation to
the data-flow graph (DFG). In the code example below, the result of op1 is moved
to register r1 in cluster 2 without being stored in cluster 1. Note that according
to our mnemonics, op2writes to r3 in RF2 specified by r3[2]. Obviously, [2] could
have been omitted in the assembly, but not in binary encoding of the operation.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 11, Publication date: June 2007.
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The hardware implementation of this model is comparable to that of the copy
operation. Furthermore, in contrast to the extended operands, the pipeline of
the extended results model can initiate the ICC transfer relatively late, in or
after the execute stage.

2.5 Multicast

To specify multicasting, the operation’s destination field is extended with (mul-
tiple) register- and cluster-ids. This way the ICC value can be sent to a selected
number of remote clusters within a single transfer, which relative to broadcast-
ing, reduces RF pressure by not duplicating registers in clusters where the value
will not be used. In terms of implementation complexity, the multicast model
is similar to the extended results and copy operations models (Table I). Concep-
tually, this model resembles the sendb operation from the CRB scheme [Kailas
et al. 2002, 2001], however, various realizations of this model, for example, in
the binary instruction format, can be devised. In the code below, operation op1
writes its result to the local register r1 and to the register r1 in cluster 2. The
latency of transporting the result to the cluster executing op2 is accounted for
by delaying op2 until the third VLIW instruction.

An important trade-off between the code size and register allocation freedom
in the scheduler is whether to extend the multicast operation with both cluster-
and register-ids in the remote RFs or only cluster-ids (and write to the same
destination register-id in all specified clusters). After our initial experiments
showed the high impact of scheduling freedom on the final performance of the
clustered processor, we selected the multicast with both register- and cluster-ids
for our performance evaluation.

A peculiar instance of the multicast model is broadcasting to shared register
addresses used to communicate between clusters. The registers corresponding
to the shared addresses can be both read and written in all clusters. This nat-
urally suggests a shared resource, which contradicts our notion of clustering.
However, for example, the Sun MAJC architecture [Sudharsanan et al. 2000]
avoids a shared RF by replicating the “shared registers” in all clusters. The
contents of the replicated registers are kept synchronized (see Figure 8).

The FUs always read the “shared registers” from the local copy, whereas the
writes to the “shared registers” are broadcast to all replicas. Consequently, all
clusters receive the values written to the shared RF, but not at the same time.
A remote cluster can only read the broadcast value from its copy of the shared
registers after the delay of the intercluster transfer. Besides the “shared reg-
isters,” this model allows local RFs that are accessible only within one cluster.
The FUs are fully connected to the local RF of a cluster and the local copy of
the global RF.

From the implementation point of view, replication of the registers costs extra
area. To lessen the number of write ports on the replicated RFs, we can restrict
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Fig. 8. Shared register addresses.

the number of writes to the “shared registers” per instruction. In Figure 8, for
example, only one operation per cluster can write to a “shared register” via two
2-to-1 multiplexers. Nevertheless, broadcasting to all clusters is never power
efficient.

In the example code below, the register address space is split, like in Sun
MAJC-5200. Shared register r127 is used to communicate the result of op1 to
op2. The result of op1 arrives in the cluster of op2 one cycle later than in the
cluster of op1. op2 is, consequently, delayed until the third instruction by the
scheduler.

In contrast to our previous publication [Terechko et al. 2003a], broadcast does
not outperform other models. We attribute this to the unrealistic modeling of
allocation of global values (alive on the scheduling units’ boundaries), which
were assumed in Terechko et al. 2003a to be accessible, with no penalty from
the global register file. However, our new benchmarks showed that the globals
do not always fit in the “shared” RF. Furthermore, broadcasting has a higher
register pressure, since every ICC data transport duplicates the values in all
clusters. The latter effect led to overutilization of the registers during spilling,
which our instruction scheduler could not efficiently cope with. Since multicast
is potentially superior, in terms of performance, than broadcasting, we used
only the multicast model in our performance evaluation.

In Table I, we summarize the main characteristics of all the presented ICC
models. Interestingly, the instruction-size column indicates a trade-off between
the shrunk operand sizes and extra ICC fields. Note, that in Table I, we did not
include possible instruction-size expansion because of increased VLIW head-
ers (e.g., in the dedicated issue slots model), because of high dependency on
a concrete binary encoding of the VLIW instructions. Validation of an inter-
cluster transfer within a multicast can be encoded by using a constant register
as the destination (instead of the shown +1), indicating that the corresponding
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intercluster transport is disabled. Note, that log2(C) in the last column equals
to the number of bits reduced in each operand as a result fewer addressable
registers in a cluster.

3. COMPILATION FOR ICC MODELS

Although clustering boosts higher clock speed, it also incurs overhead in the
number of execution cycles. We recognize the following factors of the cycle count
overhead:

1. extra latency of intercluster data transfers
2. limited intercluster bandwidth
3. higher register pressure
4. intercluster communication model constraints
5. extra cache stall cycles because of code size overhead and higher register

pressure

Clustering affects the code size with respect to the unicluster and, conse-
quently, the instruction cache stall cycles. Smaller partitioned register files
obviously require fewer bits to encode operands and results of the operation.
However, the instruction of a clustered VLIW must include specification of the
intercluster communication (e.g., in the form of the copy operation). Further-
more, longer schedules for the clustered VLIW require more instructions to
encode a program. This also expands the code. In our experiments, we found
that these effects partly compensate each other, which leads to the static code
size deviation within ±5% with respect to the unicluster. Having measured the
small variation of the code size, we decided to neglect the instruction cache
effects.

The design space of data memory hierarchies for clustered processors is huge.
One of the major decisions is whether to distribute the caches among the clus-
ters (and somehow maintain cache coherence) or to share the cache among all
clusters. Having considered the complexity of the trade-offs, we conclude that
evaluation of data memory for clustered processors deserves a separate study,
such as Gibert et al. [2002, 2005] and, therefore, we assume an ideal shared
memory (no cache misses) in the remainder of this paper.

We measured the cycle count overhead using the commercial state-of-the-art
TriMedia C/C++ compiler TCS 4.6. For our study we enhanced the TriMedia’s
unicluster instruction scheduler to schedule the intercluster communication in
all the five ICC models. The scheduling unit is the guarded decision tree of basic
blocks [Hsu and Davidson 1986; Hoogerbrugge and Augusteijn 1999; Havanki
et al. 1998]. The guarded decision tree is an acyclic control-flow graph without
join points and side entries, which is a more general case than hyper and su-
perblocks. Furthermore, our instruction scheduler employs an advanced intra-
function analysis for cluster assignment of global values described in Terechko
et al. [2003b]. Inspired by Özer et al. [1998], Janssen [2001], Kailas et al. [2001]
and Codina et al. [2001], we integrated cluster assignment, instruction schedul-
ing, and register allocation in a single phase. Thanks to the integration of the
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phases, our algorithm avoids the well-known problem of phase coupling [Kailas
et al. 2001; Özer et al. 1998] and yields significantly denser code [Janssen
2001].

3.1 Instruction Scheduling

Our scheduling algorithm is operation-based. First, the scheduler computes
operation priorities according to the heuristic presented by Hsu and Davidson
[1986]. It then, composes a list of ready-to-schedule operations that have no de-
pendencies on not yet, scheduled operations. Next, from the ready-to-schedule
list, the scheduler selects an operation with the highest priority and sched-
ules it according to Algorithm 1. Function build ordered cluster list() from
Algorithm 1 builds an ordered list of possible cluster assignments based on the
following cost function:

C = cc Nc + crfNliveregs/Nregs + cslotsNopers/Nslots (1)

where C is the cost of a cluster assignment, Nc, number of copies required,
Nliveregs, number of live registers in the cluster, Nregs, total number of registers
in the architecture, Nopers, number of operations scheduled in the cluster, Nslots,
number of issue slots in the cluster, and cc, crf, cslots term coefficients, cc > 0,
crf > 0, cslots > 0.

This cost function gives higher costs to cluster assignments requiring more
copy operations, with higher RF pressure and issue slot utilization. Essen-
tially, it stimulates load balancing of operations among the clusters and mini-
mization of expensive intercluster transfers. The term coefficients were exper-
imentally fine-tuned and equal to 1, 1, and 0.9 for cc, crf, cslots, respectively. If
the RF pressure exceeds a certain threshold (85% of registers or fewer than
five free registers in our experiments), then coefficient crf is automatically
multiplied by 5. The coefficients were kept the same for all the ICC models,
since we discovered no consistent improvements from tailoring them to each
model.

Algorithm 1 Instruction scheduling algorithm

1: schedule operation(oper, tree) {
2: cluster list = build ordered cluster list(oper, tree);
3: for (instr->cycle = i min; instr->cycle <= i max; instr = instr->next) {
4: for (cl = cluster list->head; cl; cl = cl->next) {
5: if (!assign oper to slot (oper, cl, instr))
6: continue;
7: if (!schedule floaters(oper, cl, instr) {
8: unschedule floaters(oper);
9: continue; }
10 if (!schedule copies(oper, cl, instr)) {
11: unschedule copies(oper);
12: unschedule floaters(oper);
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13: continue; }
14: if (!assign register(oper, cl, instr))
15: if (!schedule spill restore(oper, cl, instr)) {
16 unschedule copies(oper);
17: unschedule floaters(oper);
18: continue; }
19: early jump = too optimistic jumps(tree);
20: if (early jump)
21: /* unschedule & restart scheduling from early jump */
22: backtrack (early jump, tree);
23: return TRUE; /* successfully scheduled operation oper */
24: }
25: }
26: return FALSE; /* failed to schedule operation oper */
27:}

Register live range information is kept in register bit vectors per VLIW
instruction. To shorten register live ranges, the scheduler employs floater
operations using function schedule floaters() in Algorithm 1, as described
in Hoogerbrugge and Augusteijn [1999]. Copy operations are scheduled in
schedule copies() by adding new operation nodes to the data-flow graph
and, subsequently, scheduling them just like regular operations. Note, that
if scheduling of the operation in question fails, the corresponding copy oper-
ations are unscheduled and removed from the data-flow graph. To efficiently
fill in the eight branch delay slots of the TriMedia, the scheduler uses back-
tracking. The jumps are scheduled optimistically in an early cycle, and, if the
scheduler does not manage to fit the remaining operations in the branch delay
slots (checked by too optimistic jumps() in Algorithm 1), it backtracks us-
ing the backtrack() function. If no available register is found for operation’s
results in assign register(), spill and restore code is inserted on the fly by
schedule spill restore(). Remarkably, spill and restore operations may trig-
ger scheduling of extra copy operations.

Minimization of intercluster traffic plays a major role in our cluster assign-
ment by having a high contribution to the cost with the ccNc term in Formula
(1). In contrast to prior research, our scheduler assigns an operation to the
cluster that requires the fewest intercluster data transfers by examining pre-
decessors and successors of the operation. If we considered only predecessors
p1 and p2 of operation o1 from Figure 9, assignments of o1 to cluster 1 and 2
would seem to need only one copy operation each. However, including succes-
sor s1 into consideration indicates that assignment of o1 to cluster 1 will later
require another copy operation from p3. In fact, one can analyze even larger
neighborhoods of the data-flow graph around the operation being scheduled to
count required copies. However, our experiments showed no substantial benefit
from considering larger neighborhoods, which, on the other hand, increase the
compilation time.
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Fig. 9. Accounting for future copy operations.

Fig. 10. Model-specific scheduling.

3.2 Model-Specific Instruction Scheduling

The ICC models require various scheduling techniques specific to each ICC
model. For example, in the extended results model, a result of an operation
may be copied to a remote RF. However, if some consumers of this result reside
in clusters, where the result was not copied to, the scheduler has to add and
schedule a compensation operation, transferring the same result to the other
cluster(s). For example, in Figure 10 the def operation has to feed both use and
use1. If use is scheduled in cluster 1, we need to add compensation operation
def1 to feed use1 sitting in the other cluster 2. Compensation operation def1, in
this example, can be merely a duplicate of operation def. If the same code was
to be scheduled for the dedicated issue slots model, the result of def will also
be available in cluster 2 and def1 will not be required. Therefore, this effect
in the extended results model leads to unfortunate performance loss resulting
from the occupation of regular issue slots.

Another important model’s peculiarity is present in the extended operands
model. If two source operands of the same operation use1 (see Figure 10, right
side) require intercluster transfers from operations def1 and def2 residing in a
different cluster and the intercluster communication bandwidth is restricted to
one transfer per cluster per cycle, then our scheduler has to add compensation
code def3. use1, then, reads one operand from a local register produced by def3,
and the other operand using an extended operand’s cluster identification. On
top of that, in the extended operands model “reuse” of intercluster transferred
values is quite cumbersome, since the operation being scheduled immediately
consumes the sent value without storing it locally. At least two options resolve
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this for operation use2 in Figure 10: to use compensation code def3 to feed
use2 from a local register or to postpone use2 until the next instruction. The
first option is more expensive, because def3 occupies a regular issue slot and
postpones (not shown in the figure) both use1 and use2 to satisfy the intercluster
read delay for def3. Our scheduling experiments with high ILP code showed
that the second approach of postponing use2 to the next instruction outperforms
the first one.

For scheduling the multicast operation, we employ the same technique as
described in Kailas et al. [2002] for scheduling operation sendb. According to
this technique, our scheduler attaches new intercluster data transfers to the
already scheduled ones.

The ICC models expose different degree of scheduling freedom. For exam-
ple, in the dedicated-issue slots model, the ICC transport can be scheduled in
any time slot between the producer and consumer, whereas, in other models,
it is typically fixed to the cycle of the producer or consumer. The presented
model-specific scheduling constraints will further impact the final schedules.
In conclusion, we can expect that the scheduling freedom provided by the mod-
els will influence the cycle count overhead and the overall VLIW performance.
Note, that our performance and energy measurements in subsequent sections
are sensitive to the quality of the compiler and the instruction scheduler, in par-
ticular. According to comparisons of our schedule quality against a vast random
search [Terechko et al. 2003b], our results are only few percentage off, relative
to the lowest achieved bounds. Further compiler tuning and optimizations for
particular ICC models and global values can increase the presented benefits
from clustering.

4. MICROARCHITECTURE AND LAYOUT EXPERIMENTS

Although there exist deep studies of the cycle count overhead of clustered ILP
processors [Faraboschi et al. 2000; Kailas et al. 2001; Colavin and Rizzo 2003],
few studied the clock period thoroughly. A lower clock period of a processor
can be achieved by various techniques: pipelining, clustering, RTL optimiza-
tions, VLSI circuit optimizations, etc. Therefore, to measure the added benefit
of clustering solely and stay realistic, we used the deep 16-stage pipeline of the
optimized-for-speed VLIW media processor TriMedia TM5250 [Halfhill 2004]
as the starting point. The pipeline features a two-stage register file access, a
dedicated stage for bypassing (data forwarding), and a fast single-cycle ALU de-
sign. Figure 11 illustrates our microarchitecture and pipeline of a single cluster
for the copy operation model. To transfer a value to another cluster, the value
is, first, read from the local RF in stages READ1 and READ2. It is then fed into the
bypass network of, say, source operand src1 of slot2. In the execute stage, it
is transferred to remote clusters, which takes a complete cycle. Upon arrival to
the remote cluster, the value is multiplexed with values sent from other clus-
ters and registered, see block ICC in the figure. This multiplexer allows fixing
the number of RF ports dedicated to ICC, despite the growth of the number of
clusters, keeping the ICC bandwidth constant (one ICC read or one ICC write
in our example). In the next cycle, the value is forwarded to the bypasses of
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Fig. 11. Microarchitecture of the copy operation model (single cluster, two issue slots per cluster).

the destination cluster and to the write-back multiplexer, just as any other
local result. Forwarding the value into the bypass network allows operations
in flight to consume their operands that are not yet committed to the RF. Note
that only the bypasses for the first issue slot are fully shown in Figure 11, to
simplify the drawing. The register file in this model has one extra write port
for intercluster communication.

The implementation of the copy operations, extended results and multi-
cast differs by few logic gates in the instruction decoding and ICC interfaces,
whereas the major datapath blocks (RF, bypass network, write-back bus mul-
tiplexing, etc.) are the same. We have neglected differences between these ICC
models and, consequently, these models have the same VLSI properties in our
evaluation. The hardware for the dedicated slots and extended operands was
implemented differently, but with the same pipeline structure as depicted in
Figure 11. The microarchitecture and pipeline of the dedicated issue slots model
is presented in Figure 12. One can notice the extra register file read port and an
accompanying bypass multiplexer required for the dedicated issue slot, compli-
cating the hardware implementation. Figure 13 presents the extended operands
microarchitecture. This model benefits from no extra RF write ports relative to
the unicluster and, thus, a simple write-back multiplexer.

To quickly create RTL (register transfer level) descriptions for various clus-
tered VLIW datapaths, we built an RTL generator. The generated RTL code was
placed and routed by Cadence tools in standard cell CMOS 130-nm technology.
To characterize VLSI properties of the presented ICC models, we laid out eight-
issue-slot 32-bit VLIW data paths for the unicluster and clustered machines in
two, four, and eight-cluster configurations. On top of the deep pipelining, we
manually applied various RTL timing optimizations (bit slicing, substituting
multiplexer gates with faster logic gates, logic redesign, register duplication
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Fig. 12. Microarchitecture of the dedicated slots model (single cluster, two issue slots per cluster).

Fig. 13. Microarchitecture of the extended operands model (single cluster, two issue slots per
cluster).

to reduce fan-out, pipeline retiming moving timing critical logic to early/later
stages). The outcome of our optimizations was a well-balanced pipeline with
the critical path in the FU bypasses, except for the unicluster, where the criti-
cal path lied in the big register file. Figure 14 demonstrates the cluster layout
approach used for our evaluations, showing the floorplan of an eight-cluster
VLIW machine. Each cluster was allocated to a rectangular region on the
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Fig. 14. Layout of an eight-cluster eight issue slot VLIW data path with extended results.

Table II. Microarchitecture Parameters of the Evaluated VLIW Machinesa

Copy Operations;
Inter-cluster Extended Results; Dedicated Extended
Communication Model Multicast Slots Operands
Total issue slots 8 8 +C 8
Slots per cluster 8/C (8 + C)/C 8/C
ICC bandwidth 0 : 1 1 : 1 1 : 0
(read:write)
Register ports 2 • 8/C : 1 • 8/C + 1 2 • 8/C + 1 : 1 • 8/C + 1 2 • 8/C + 1 : 1 • 8/C
(read:write)
Bypass complexity 3 • (8/C + 1) + 1 : 2 • 8/C 3 • (8/C + 1) + 1 : 2 • 8/C + C 3 • (8/C) + 1 : 2 • 8/C + C
(#inputs: #bypass trees)

aC, number of clusters.

floorplan, which guided the cell placement tool. In this case, the place-and-
route tool has the freedom of selecting different layouts for each cluster, which
is demonstrated by the layout in Figure 14.

Before discussing the layout results, Table II summarizes the microarchitec-
ture parameters of our VLIW machines. The machines contained 128 registers,
in total, evenly distributed among the clusters. Each issue slot had four or five
FUs, except for the dedicated slots with a single ICC FU. The intercluster com-
munication latency was one cycle. The presented ICC bandwidth, RF ports, and
bypass complexity are per cluster.

Figure 15 presents the clock frequencies of the layouts after detailed routing
and extraction of parasitic capacitances. The clock frequency of the unicluster
reached only 200 MHz, being severely limited by the slow shared RF and by-
pass network. As expected, the layouts of smaller clusters reach higher clock
frequency. Figure 15 shows a significant clock frequency leap from 200 MHz
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Fig. 15. Clock frequencies of the clustered VLIW datapaths (unicluster: 200 MHz).

Fig. 16. Area of the clustered VLIW datapaths (unicluster: 10.6 mm2).

unicluster to about 320 MHz for the two-cluster machines, indicating that even
modest clustering may provide substantial speedups. Furthermore, the clock
frequency variation among the ICC models is low, suggesting that the cycle
count overhead will play the decisive role for execution time of the ICC models.
Note that the copy operations, extended results, and multicast models have the
same physical characteristics in our evaluation.

Processor area is an important cost factor, especially, in a chip multiprocessor,
where one processor is replicated several times. In Figure 16, we present the
area of the laid out clustered VLIW datapaths. Because of the huge monolithic
RF of 5.4 mm2, the unicluster was the biggest VLIW datapath occupying a
total area of 10.6 mm2. Interestingly, the two cluster configurations are still
penalized by a comparatively large area. The main reason for this penalty is
high routing complexity of the RFs that demanded a low row utilization. The
four-cluster VLIWs, on the other hand, are compact.

According to Figure 16, the eight cluster machines do not provide (signifi-
cant) area advantage over the four cluster data paths. First, this effect is caused
by diminishing returns from clustering. Indeed, reducing the number of ports
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Fig. 17. Cell area breakdown of the clustered VLIW data paths.

on the registers only influences the RF multiplexer structures and not the con-
stant area of register flip-flops. Furthermore, other components of the data path
grow with clustering. For example, the ICC multiplexer, which reaches for the
eight cluster machine the size of a 7-to-1 32-bit multiplexer, is instantiated
eight times in the data path. Finally, our experiments favored speed over area
optimizations, especially in the eight-cluster machines, where we wanted to
obtain the highest clock frequency to evaluate performance limits of clustering.

Figure 17 shows the cell area breakdown of the VLIW data paths. Note that
the cell area does not include area required for routing and, therefore, it is
always smaller than the final layout. Especially for wire-limited RF designs,
the gap between the cell area and layout area is large. Figure 17 shows that the
major area savings come from reducing register files, denoted as rf. Although
area of bypasses also benefits from clustering, its contribution to the total VLIW
data path area is limited. Interestingly, the alu area varies across the layouts
mainly because of the buffer insertion for speed optimizations performed by the
synthesis tool.

5. PERFORMANCE AND ENERGY EVALUATIONS

In this section, we evaluate the ICC models in terms of execution time, en-
ergy consumption, and performance density. These three metrics are impor-
tant factors in selecting proper ICC models for three embedded processor
platforms—single-core media processors, mobile processors, and chip multi-
processors. Speeding up the execution time often dominates the design of a
fast single-core media processor. Low energy consumption is crucial for mobile
battery-operated processors, because it largely influences the operation time of
a mobile device. Performance density is a measure quantifying computational
capabilities of a processor per IC area unit (e.g., square millimeter). This mea-
sure is important for evaluation of efficiency of a processor architecture in a
chip multiprocessor system, where a single processor core is replicated. Indeed,
if the performance density of an architecture is low, replication of the processor
will not efficiently utilize the given IC area. Therefore, the fastest single core
architecture may be not the best match for a chip multiprocessor. Note, however,
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Table III. Multimedia Benchmark Characteristics

Number of Number of C Lines of
Benchmark Category Weight ILP DFGs Functions C Code
dpl2 Audio 0.5 5.1 45 12 2410
downmix Audio 0.2 0.7 18 6 290
dtsdec Audio 0.5 1.2 652 85 53782
mlpdec Audio 0.5 1.2 242 35 2387
filmdetect Video 1 6.3 24 4 1777
majorityselect Video 1 6.2 22 5 676
median Video 1 3.8 23 4 367
mpeg2vdec Video 1 4.8 106 10 4555
sharpen Video 0.2 2.6 19 4 345
rgb2cmyk Video 0.2 7.5 12 2 209
autcor pulse Filter 0.2 2.4 48 6 422
fft pulse Filter 0.2 2.2 63 7 370
viterbi Filter 0.2 0.7 50 6 792
mpeg2dec Video 0 1.9 1055 114 8680
pegwit encrypt Encryption 0 1.4 758 97 5691
pegwit decrypt Encryption 0 1.4 756 97 5691
rasta Speech 0 1.5 1441 114 7161
unepic Image 0 1.0 725 49 3524
adpcm decode Audio 0 3.0 41 5 741

that on top of performance density, other issues, such as ease of programma-
bility, extractable degree of thread-level parallelism in the applications, and
predictability requirements play important roles in choosing between a single-
and multicore processor architectures. However, we believe that these issues
are orthogonal to our study.

5.1 Benchmarks

Our benchmark suite consisted of multimedia C applications hand-optimized
for the Philips TriMedia VLIW media processor, which features a rich SIMD
operation set [Van de Waerdt et al. 2005]. Furthermore, we included six nonop-
timized C applications (mpeg2dec, pegwit encrypt, pegwit decrypt, rasta,
unepic, adpcm decode) from the Mediabench suite to observe clustering ef-
fects in out-of-the-box code. To cover a significant area of the application do-
main, the benchmarks were chosen from different media application categories
(see Table III). Using unweighted means in benchmarking ignores relative im-
portance of the benchmarks in a real workload [Smith 2006]. Therefore, our
benchmarks were assigned weights based on the industrial practice of pro-
cessor benchmarking for the TriMedia architecture. The weights indicate the
performance requirements of the applications in a realistic workload of a me-
dia processor. For example, the performance-demanding video codec mpeg2vdec
(weight 1.0) influences architectural decisions more than the small FFT filter
fft pulse (weight 0.2). Audio applications have medium performance require-
ments and, hence, have the weight of 0.5.

The optimized benchmarks underwent optimizing source-to-source transfor-
mations to increase ILP. Furthermore, the code was enhanced with 32-bit SIMD
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Table IV. Baseline Unicluster Architecture

Function Units Issue Slots Latency
simple alu 1,2,3,4,5,6,7,8 1
alu, shifter 1,2,3,4,5,6,7,8 2
imul, fmul 1,3,5,7 6
dsp alu 2,4,6,8 3
fp alu 2,4,6,8 6
branch 1,3,5,7 9
load/store 1,3,5,7 5

intrinsics, cache prefetch operations, loop unrolling, software pipelining, func-
tion inlining, restricted pointers, etc. The presented ILP rates were measured
dynamically in the simulator for the unicluster eight issue slot VLIW machine.
Note, that SIMD operations are equivalent to 2 to 5 RISC operations and, there-
fore, the extracted ILP rates of the optimized code are understated. This makes
the actual ILP for the optimized code much higher than presented in Table III.
In total, the optimization of these applications brought 10x–20x speedups with
respect to the initial source code. We believe that in the embedded domain it
is heavily optimized benchmarks, reflecting high utilization of the target ma-
chine, that should be used to evaluate compiler/architecture performance, as
opposed to nonoptimized mostly sequential code. In the low ILP code (as used
in evaluations in some other publications) the compiler does not get confronted
with complex and dense data-flow graphs, and some negative effects from clus-
tering are mitigated (e.g., cycle count explosion in deeply clustered VLIWs).
Therefore, despite the fact that we included several nonoptimized benchmarks
from the Mediabench suite to observe clustering effects in low ILP code, we
assign weight 0 to them to avoid biased architectural decisions.

5.2 Cycle Count Performance

To reduce long simulation time required for our design space exploration, we
utilized our scheduler’s capability to exactly calculate the execution cycle count
based on basic block execution frequencies, as described in Hekstra et al. [1999].
The execution frequencies were obtained from a single simulation run on a uni-
cluster; the cycle counts for all other models were merely calculated based on
the new instruction schedules for the models. The baseline unicluster archi-
tecture for our experiments is an eight-issue slot VLIW with the TriMedia
operation set. All operations are pipelined and can contain a guard (predicate),
two operands, and one result. The distribution of the function units among slots
was made such that the derived clusters contained equal functionality among
each other (see Table IV). In the eight-cluster machines, though, some function
units (e.g. load/store, imul) were available only in one-half of the clusters.

Dynamic cycle counts of the benchmarks are presented in Tables V, VI, and
VII, where 100% is the cycle count of the unicluster. The cycle count primar-
ily illustrates the overhead incurred by clustering according to the first four
factors introduced in the beginning of Section 3. Each table with cycle counts
is accompanied by the weighted average of the cycle counts according to the
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Table V. Cycle Count Overhead for Two-cluster VLIW Machines

Dedicated Extended Extended
Weights Copy (%) Slots (%) Results (%) Operands (%) Multicast (%)

dpl2 0.5 137.9 109.3 117.3 110.8 109.3
downmix 0.2 101.8 101.8 101.8 101.8 101.8
dtsdec 0.5 102.8 102.0 102.0 102.1 102.0
mlpdec 0.5 101.4 101.2 101.2 101.3 101.2
filmdetect 1 111.5 111.2 111.2 111.5 111.2
majorityselect 1 103.6 103.2 103.3 103.3 103.2
median 1 106.7 106.7 106.7 107.2 106.7
mpeg2vdec 1 121.1 105.9 108.8 111.3 105.9
sharpen 0.2 107.2 107.2 107.2 113.3 107.2
rgb2cmyk 0.2 182.2 108.5 110.6 110.8 108.5
autcor pulse 0.2 107.6 103.8 103.8 103.8 103.8
fft pulse 0.2 108.6 110.7 110.7 110.7 110.7
viterbi 0.2 100.0 100.0 100.0 100.0 100.0
mpeg2dec 0 103.5 101.7 102.1 102.8 101.7
pegwit encrypt 0 101.1 101.0 101.0 101.2 101.0
pegwit decrypt 0 101.0 101.0 101.0 101.2 101.0
rasta 0 104.1 103.9 104.0 104.4 103.9
unepic 0 103.2 103.1 103.1 103.3 103.1
adpcm decode 0 104.5 104.5 104.5 104.5 104.5
W. AVERAGE 112.8 105.9 107.0 107.2 105.9

Table VI. Cycle Count Overhead for Four-cluster VLIW Machines

Dedicated Extended Extended
Weights Copy (%) Slots (%) Results (%) Operands (%) Multicast (%)

dpl2 0.5 192.1 119.9 122.5 124.5 121.1
downmix 0.2 108.0 108.0 108.0 108.0 108.0
dtsdec 0.5 108.1 103.8 103.9 105.4 103.7
mlpdec 0.5 104.2 102.8 102.8 103.1 102.8
filmdetect 1 132.4 113.4 116.1 118.6 115.5
majorityselect 1 130.0 103.2 103.6 103.6 103.2
median 1 122.3 106.8 107.0 107.9 106.8
mpeg2vdec 1 170.7 115.0 119.5 121.1 111.0
sharpen 0.2 121.9 119.6 119.6 119.6 119.9
rgb2cmyk 0.2 277.4 114.8 138.1 150.7 119.0
autcor pulse 0.2 112.7 106.4 106.4 107.1 106.2
fft pulse 0.2 113.3 111.5 108.8 111.6 106.5
viterbi 0.2 100.8 100.7 100.7 100.7 100.7
mpeg2dec 0 107.3 103.3 102.7 104.0 102.6
pegwit encrypt 0 103.2 101.6 101.6 101.9 101.6
pegwit decrypt 0 102.8 101.5 101.5 101.7 101.5
rasta 0 111.7 106.9 107.8 107.4 106.8
unepic 0 110.6 106.7 108.2 107.5 106.7
adpcm decode 0 120.4 115.9 115.9 118.1 115.9
W. AVERAGE 138.0 109.5 111.5 113.0 109.3
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Table VII. Cycle Count Overhead for Eight-cluster VLIW Machines

Dedicated Extended Extended
Weights Copy (%) Slots (%) Results (%) Operands (%) Multicast (%)

dpl2 0.5 208.5 138.9 160.2 149.6 164.2
downmix 0.2 108.0 108.0 108.0 108.0 108.9
dtsdec 0.5 115.3 109.0 110.6 110.8 113.6
mlpdec 0.5 115.0 112.2 111.6 112.6 119.2
filmdetect 1 198.3 118.3 151.8 123.8 168.1
majorityselect 1 211.1 106.5 119.8 107.1 144.9
median 1 126.1 124.6 124.3 125.3 133.8
mpeg2vdec 1 224.1 130.0 147.7 141.1 151.3
sharpen 0.2 137.2 133.2 133.5 139.2 134.7
rgb2cmyk 0.2 362.2 144.3 251.7 176.0 272.9
autcor pulse 0.2 128.7 113.8 119.2 117.5 116.7
fft pulse 0.2 124.4 111.7 116.1 120.0 111.5
viterbi 0.2 104.6 104.4 104.4 104.4 102.2
mpeg2dec 0 114.4 106.1 110.1 107.3 112.2
pegwit encrypt 0 121.6 107.3 110.7 107.3 112.0
pegwit decrypt 0 122.9 110.5 112.1 109.4 118.3
rasta 0 121.9 110.1 115.2 112.2 116.3
unepic 0 118.9 111.9 113.4 112.0 116.6
adpcm decode 0 138.6 131.8 156.7 134.1 131.8
W. AVERAGE 174.9 119.8 134.5 124.9 144.2

following formula:

W.AVERAGE =

∑
i∈all benchmarks

weighti · cycle counti

∑
i∈all benchmarks

weighti
(2)

Later, in Figure 18, we combine the weighted averages of cycle count over-
heads for all models and all cluster configurations.

The tables above show that the ICC models have distinctly different cycle
counts, which is mainly conditioned on the corresponding architectural con-
straints of the ICC models. Mediabench benchmarks are much less sensitive
to clustering, showing low overhead numbers. This is mainly caused by low
utilization of the VLIW (ILP), which could have exaggerated the final perfor-
mance benefits from clustering, unless the weights were 0.0. Noteworthy, some
benchmarks (e.g., rgb2cmyk and dpl2) from the above tables show a drastic cycle
count overhead. Their cycle counts are mainly defined by small high ILP loop,
which get severely penalized by clustering.

Figure 18 presents cycle count overheads of clustered machines relative to
the unicluster. Two series of overheads are presented—the low bandwidth of
one intercluster transfer per cluster (denoted as BWL) and the doubled high
bandwidth of two intercluster transfers per cluster (denoted as BWH). Among
the ICC models, the copy operation clearly performs the worst. The main factor
of this performance degradation is that copy operations reside in regular VLIW
slots, which interfere with scheduling of regular operations. No surprise that
the dedicated issue slots model performs the best in terms of cycle count. This
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Fig. 18. Weighted averages of the cycle count overheads for low and high ICC bandwidth networks.

architecture boasts a very modest cycle count overhead for all cluster config-
uration as a result of extra resources solely dedicated to intercluster commu-
nication. Figure 18 clearly shows that the growing number of clusters results
in a significant cycle count overhead, especially for the eight-cluster configura-
tions. The latter suffers from insufficient issue slots per cluster, forcing a lot
of expensive intercluster communication. On top of that, the distributed RF
architectures with eight clusters lack registers because of value duplications,
which badly hurts performance in case of register spilling.

For bandwidth sensitivity analysis, we increased both the input and output
bandwidth from one to two transfers per cycle per cluster. Note, that the eight-
cluster configurations of the copy operation, extended results, and multicast
models do not naturally support the output bandwidth higher than the number
of slots in each cluster (i.e., one). Therefore, these clustered VLIW configura-
tions could only benefit from the higher input bandwidth. Figure 18 shows the
copy operation model benefits the most from the increased bandwidth (e.g.,
for the four-cluster VLIW the overhead drops from 38 to 21%). This is caused
by increased scheduling freedom for intercluster communication, which in the
low-bandwidth case was severely limited by a single VLIW issue slot per clus-
ter. To further benefit from this effect (especially, in the eight-cluster VLIW), a
hybrid model with a higher bandwidth can be formed by combining the copy op-
erations model, for example, with extended operands. Furthermore, Figure 18
shows that the eight-cluster VLIWs profit more from higher bandwidth than the
two-cluster configurations, which is conditioned on the presence of more inten-
sive ICC in deeply clustered machines requiring higher bandwidth. In general,
our bandwidth sensitivity analysis shows only a moderate overhead reduction.
According to Table I, the increased bandwidth incurs a higher number of RF
ports, which may negatively contribute to the clock frequency of the complete
VLIW datapath. In view of the modest cycle count reduction, our subsequent
experiments are carried out with the minimum bandwidth, aiming at achieving
the highest clock frequency.

Although multicast is a very promising mechanism, in our experiments it
performs well only on two- and four-cluster machines. Multicast allows to
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Fig. 19. Execution time relative to the unicluster.

simultaneously carry out multiple intercluster data transports. However, as
explained in our microarchitecture description section of the model, the incom-
ing ICC writes get multiplexed onto a single write port of the RF. This obviously
limits the number of destinations of a multicast. Furthermore, our scheduler
does not employ any advanced techniques to optimize the scheduling of multi-
casts, which further confines the performance of this model in our experiments.
In fact, this leads, in the eight-cluster architectures, to a paradox that the po-
tentially less powerful extended results model outperforms the multicast. We
discovered, that this effect is caused by the greedy nature of multicasting in our
scheduler, which quickly saturates the small RFs in the eight-cluster machine,
causing an explosion of spill/restore code.

5.3 Execution Time, Performance Density, and Energy Consumption

The execution time being a product of the cycle count (evaluated in Section 3)
and clock period (measured in Section 4) is shown in Figure 19. First, we ob-
serve that clustering obviously drastically reduces the execution time by up to
42%. Note that the popular copy operation model performs the worst and, re-
markably, increasing the number of clusters beyond two results in slower VLIW
machines. The extra resources for intercluster communication in the dedicated
issue slots do not hamper the clock frequency and, thus, this model performs
the best. Moreover, the dedicated slots model has a positive trend of increasing
performance with more aggressive clustering; however, the execution speedup
is diminishing for higher number of clusters. Therefore, the dedicated slots
model is the best candidate for a single processor core IC targeting at high-
performance applications. Other models (extended results, extended operands,
and multicast) perform similarly to each other. Noteworthy for these models,
clustering above four clusters degrades the performance because of a high cycle
count overhead in the eight-cluster machines.

Figure 19 presents performance characteristics measured for clustered
VLIW architectures with point-to-point ICC networks. In fact, the presented
ICC models can be implemented with either point-to-point or bus-based
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Fig. 20. Performance densities relative to the unicluster.

interconnects. The point-to-point interconnect in our experiments occupied a
negligible area of less than 0,1%, which does not motivate for the employment
of a bus-based model from the area standpoint. From the architecture per-
spective, the intercluster transport is more constrained in a bus-based system
than in a point-to-point network, because of wire sharing in the former. At
the same time, the bus model does not decrease the number of RF and bypass
ports, and, consequently, no clock frequency improvement in the datapath is
achieved. Therefore, the bus-based interconnect is unlikely to improve perfor-
mance of clustered VLIW architectures, unless the point-to-point interconnect
becomes not routable. We expect inter-cluster routability issues to appear only
in massively parallel architectures with many clusters, which do not match
our media application domain. Note, that Gangwar et al. [2005] and Parcerisa
et al. [2005] also report, that the bus-based model underperforms compared to
point-to-point networks.

In Figure 20 we present performance densities of the intercluster communi-
cation models. In our evaluation performance, density is the reciprocal of the
product of execution time and area: PD = 1/(E · A), normalized to the perfor-
mance density of the unicluster. Hence, the performance density of the uniclus-
ter is 100%. The extended operands model is a clear winner, achieving a 3.9x
better performance density than the unicluster. Therefore, this architecture is
a good candidate for forming a chip multiprocessor. Note, that the dedicated
issue slots architecture had the highest absolute performance, but due to the
area penalty, it is less efficient as a basis of a chip multiprocessor. Interestingly,
the eight-cluster machines often perform worse than the four-cluster VLIWs as
a result of the high cycle count overhead in the former.

Energy consumption (or the product of power dissipation and execution time)
of a clustered VLIW processor is determined by a complex tradeoff. On one
hand, the smaller clusters dissipate less power. On the other hand, the pro-
gram takes longer to execute on a clustered machine (running at the same
clock frequency) and, consequently, causes higher switching activity than the
unicluster. To quantify for this tradeoff, we conducted power simulations of all
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Fig. 21. Energy consumption relative to the unicluster (fixed program; shortest execution time).

our (clustered) VLIW machines at the RTL level using Synopsys Power Com-
piler V-2004.06 under worst-case conditions of the process, voltage 1.2 V, and
temperature 125◦C in CMOS 130-nm technology. The total of static and dynamic
power dissipation was then multiplied by the execution time from Figure 19,
yielding energy consumption of the clustered machines shown in Figure 21.
Thus, Figure 21 presents energy for all VLIWs required to execute a set of
fixed programs in a shortest possible time. Burd and Brodersen [2002] term
this mode as a “maximum throughput” (of operations). The power consumption
of the 200 MHz unicluster in our measurements reached 234 mW, including
1.7 mW of leakage power. Figure 21 shows that for most of the ICC models
the lower power dissipation of smaller clusters outweighs the higher switch-
ing activity rates. In other words, despite being faster, most of the clustered
VLIWs consume less energy than the corresponding unicluster. However, the
copy operation model in the eight-cluster configuration turns out to consume
substantially more energy than the unicluster because of the exploded cycle
count, yet again emphasizing the importance of choosing a proper ICC model.
Furthermore, all fully distributed RF architectures (with eight clusters in our
experiments) consume more energy than modestly clustered machines, clearly
indicating that extensive clustering is not energy-efficient.

Figure 21 shows energy consumption for the VLIWs executing the same pro-
gram in a shortest possible time. However, for real-time media processing (e.g.,
video decoding) there is no need to process media faster than the real time (e.g.,
to decode frames faster than the video frame rate). In fact, we can trade the
speed surplus of clustered VLIWs for energy. Indeed, if we assume that the
unicluster is fast enough for real-time processing, we can measure energy con-
sumption of clustered VLIWs required to execute the fixed program in a fixed
execution time. Burd and Brodersen [2002] term this mode as a “fixed through-
put” (of operations). Let the fixed execution time be equal to the execution time
of our program on the uniprocessor. Subsequently, we can reduce the clock fre-
quency of the clustered VLIWs, since they do not have to run faster. However,
to save energy, we should also reduce the supply voltage Vdd [Burd and Broder-
sen 2002]. Note that reducing Vdd limits the highest achievable clock frequency.
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Fig. 22. Voltage scaling effect on energy consumption (fixed program; fixed execution time).

Consider the following energy equation:

Energy = Power·ExecutionTime ≈ (Ceff·V 2
dd· f )

(
Ncycles

f

)
= CeffV 2

ddNcycles (3)

where Ceff is the effective switched capacitance, Vdd is the supply voltage,
and Ncyclesis the number of cycles required to execute our fixed program. In
Equation (3), we neglected leakage and short-circuit power dissipation, since
it was less than 1% of the total power dissipation for our technology. Ceff and
Ncycles will remain unchanged if the Vdd is scaled. Therefore, based on simulated
energy from Figure 21 and Equation (3), we can calculate energy consumption
of the clustered VLIWs running at 1.0 V relative to the unicluster at 1.2 V (see
Figure 22). Using CMOS 130-nm technology data sheets for voltage and tem-
perature derating factors, we verified that the clock frequencies (required to
achieve our fixed execution time on clustered processors) were indeed achiev-
able at the lowest 1.0 V supply voltage of our technology. Note that we cannot
drop voltage for the unicluster, since, otherwise, it will run at a lower clock fre-
quency and will not manage to execute the fixed program in our fixed execution
time [Chandrakasan and Brodersen 1995].

With voltage scaling, all clustered machines consume significantly less en-
ergy than the unicluster. Furthermore, the energy savings now reach a sub-
stantial factor of 1.75 times for the four-cluster VLIWs of the extended operands
models. Therefore, this ICC model is a good candidate for battery-operated em-
bedded processors in a mobile device. In general, the presented reduction of
energy consumption could be further improved if our microarchitecture and
RTL are tuned for low power rather than for speed. For example, the hard-
ware can be extended with clock gating or power shut-down of unused clusters,
function units, and registers.

6. RELATED WORK

Many prior studies in clustered VLIW architectures based their research on
one intercluster communication model, typically, in the form of copy operations.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 11, Publication date: June 2007.



32 • A. S. Terechko and H. Corporaal

Our study, in contrast, analyzes a large taxonomy of intercluster communica-
tion models in terms of execution time and VLSI characteristics. This research
extended our previous publications in the following directions. Instead of the
hypothetical 64-bit CPU64 architecture [van Eijndhoven et al. 1999] used in
our previous studies, which has never been implemented in VLSI, we employed
the 32-bit ISA and the deep VLIW pipeline from the commercial Philips Tri-
Media TM5250 VLIW core [Halfhill 2004]. Furthermore, on top of the VLSI
layouts of the copy operations ICC model from Terechko et al. [2005] we de-
signed and laid out hardware for the other four ICC models in CMOS 130-nm
IC technology. Moreover, we conducted experiments to quantify the energy con-
sumption trade-off for all the evaluated clustered VLIW machines. Instead of
the register-hungry broadcast ICC model from Terechko [2003a], we employed
the more promising multicast ICC model. Finally, cluster assignment heuris-
tics of global values presented in Terechko et al. [2003b] have been extended
from the dedicated issue slot machine to extended results, extended operands,
copy operations, and multicast ICC models. In general, all the above-mentioned
extensions enabled a comprehensive comparison of all the models within the
same ISA, compiler optimizations, and hardware template.

6.1 Alternative Clustered Architectures

In partitioned ILP architectures [Janssen 2001], the register file is split in a
similar way to the clustered architectures presented in our work. However, the
bypass network remains shared among all issue slots, which may negatively
impact the clock frequency of the processor. On top of clustering the data path of
an ILP processor, there has been substantial work published on clustering the
memory hierarchy [Gibert et al. 2002, 2003, 2005]. The ideas span the range of
distributed caches with interleaved addressing [Gibert et al. 2002] to compiler-
managed L0 buffers [Gibert et al. 2003] to cache coherence support [Gibert
et al. 2005]. Furthermore, several elaborate concepts are developed for hier-
archical clustered RF architectures and instruction-scheduling algorithms for
them [Zalamea et al. 2003, Rixner et al. 1999, Kapasi et al. 2002].

6.2 Inter-cluster Communication Models

Gangwar et al. [2003] further developed our initial taxonomy along with
advanced-scheduling algorithms for clustered VLIWs. In 2003, they expand
into hybrid ICC models, combining several simpler ICC models. Furthermore,
on top of our point-to-point ICC model evaluations, they studied bus-based ICC
models in more detail Gangwar et al. [2005], concluding that it underperforms
relative to the point-to-point models. An important auxiliary study performed
in Gangwar et al. [2005] was the layout-based analysis of pipeline registers
in the ICC paths. The outcome was that the pipeline registers are essential
for achieving high clock frequencies for VLIW machines with more than two
clusters. For example, VLIW machines with a high number of clusters may
require a higher ICC bandwidth to sustain higher performance. In 2003, Gang-
war et al. quantify the impact of the bandwidth parameter on clustered VLIW
performance. Furthermore, Codina et al. [2001] proposed the memory-based
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ICC mechanism, which can be used if the regular ICC means, such as a bus or
a point-to-point network, is overloaded. Another interesting option to reduce
intercluster communication has been presented by Aletà et al. [2003], where,
instead of communicating data, it is recomputed in the destination cluster,
which results in substantial performance speedups.

In the multicast ICC model from Kailas et al. [2001, 2002], a special broad-
cast operation sendb was proposed to communicate between clusters, which is
scheduled the same way as our multicast. Unfortunately, no feasibility study
demonstrated clock frequency implications of their caching register buffer, and,
hence, no conclusion was drawn on whether this ICC model provides substan-
tial performance improvement. We feel that scheduling heuristics for sendb
and our multicast presented by Kailas et al. can be improved to enable more
effective use of this operation, because potentially the multicast operation can
better utilize the ICC bandwidth than the other models by triggering several
intercluster transfers of the same value.

In the early 1980s, Fisher pioneered the design of clustered VLIW proces-
sors with the Multiflow Trace mini-supercomputer. Later, Fisher et al. [2004]
accumulated an impressive expertise on clustered VLIWs, including advanced
instruction-scheduling algorithms and cycle count evaluations using optimized
benchmarks. Their effort resulted in a commercial design of the ST2xx VLIW
processor, but investigation of diverse ICC models was not pursued. Fur-
thermore, there exist studies of partially connected clustered ILP processors
[Colavin and Rizzo 2003; Roos et al. 2002; Veredas et al. 2005], which did not
gain popularity because of deadlock issues in the scheduling process and reg-
ister allocation.

6.3 Instruction Scheduling for Clustered VLIW Architectures

Related studies focusing on integrating cluster-assignment heuristics into ex-
isting optimizing ILP compilers can be categorized into acyclic [Ellis 1985; Özer
et al. 1998; Kailas et al. 2001; Chu et al. 2003; Nagpal and Srikant 2004] and
cyclic scheduling algorithms [Codina et al. 2001; Aletà et al. 2002, Zalamea
et al. 2003; Lapinskii et al. 2002; Gibert et al. 2005]. Cyclic algorithms typi-
cally apply a software pipelining technique to cyclic data-dependency graphs
(loops), while acyclic schedulers concentrate on global scheduling involving code
motion beyond control points in acyclic data-dependency graphs. To combat the
notorious phase-coupling problem, some instruction schedulers merge cluster
assignment, register allocation and instruction scheduling in a single phase
[Kailas et al. 2001; Codina et al. 2001]. The research group at the Universi-
tat Politècnica de Catalunya greatly contributed to innovations on (software
pipelined) instruction scheduling and microarchitecture for clustered ILP pro-
cessors [Aletà et al. 2002; 2003; Codina et al. 2001; Gibert et al. 2005; Parcerisa
et al. 2005; Zalamea et al. 2003]. For example, in Parcerisa et al. [2005], they
present a comprehensive analysis of ICC models for superscalar processors. Re-
markably, just as Gangwar, they also conclude that point-to-point ICC networks
(considered in our publication) outperform the bus-based implementations. Un-
fortunately, there exist very few studies on optimization of cluster assignment
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of values that are alive across scheduling units (e.g. regions) [Kailas et al. 2001],
whereas our prior research [Terechko et al. 2003b] indicates potentially high
performance gains in this area.

6.4 Characterization of VLSI Properties of Clustered VLIW Architectures

From the VLSI implementation perspective, our study resorts to actual layout
implementation of the complete data paths, in contrast to many prior research
works judging clock frequency improvements based on analytical models of
register files presented in Rixner et al. [1999]. Our layout experiments demon-
strate that the bypass network often is slower than the easily pipelined RF and,
hence, the clock frequency of the distributed RF architectures was often exag-
gerated in prior works that neglected the bypasses. Furthermore, we focus on
the standard cell design popular in embedded computing, instead of full custom
designs of PC and server processors [Palacharla et al. 1997].

7. CONCLUSIONS

Our experiments demonstrate that clustering can bring a substantial 1.74 ex-
ecution time speedup for a deeply pipelined wide eight-issue slot VLIW pro-
cessor and drastically reduce the energy consumption and area by a factor
of 1.75 and a factor of 1.81, respectively. However, to achieve these improve-
ments from clustering a processor architect has to thoroughly select a proper
Inter-cluster Communication model. For example, we show that copy opera-
tions of the popular copy operation ICC model severely hamper scheduling of
regular operations, and, therefore, aggressive clustering only worsens the per-
formance. On the other hand, the dedicated issue slots model, where ICC is
carried out by dedicated VLIW issue slots, performs the best, and consistently
boosts performance with clustering. If the code size of this model is acceptable
for a particular design, then this model appears to be the best choice for fast
single-core VLIW processors. In contrast to prior art, our research shows that
fully distributed RF architectures (in our study with eight clusters) often under-
perform compared to modestly clustered (two to four clusters) machines result-
ing from explosion of the cycle count overhead in the former. Interestingly, the
lower power dissipation of smaller clusters in the trade-off for energy consump-
tion outweighs the higher cycle counts, resulting in lower energy dissipation
of most of the evaluated clustered VLIWs relative to the unicluster. Moreover,
the higher speed of the clustered VLIWs can be traded for even lower energy
consumption with the help of voltage scaling. However, extensive clustering
turns out to be not energy efficient. The energy savings are the highest for
the frugal extended operands model, making it the best candidate for battery-
operated VLIW processors. Furthermore, the extended operands model is a good
building block for chip multiprocessor systems thanks to its high performance
density.

Another important conclusion we draw is that only realistic experimenta-
tion unveils crucial aspects of clustering. For example, revealing the explosion
of the cycle-count overhead for the copy operation model and distributed RF
architectures was conditioned on the usage of optimized full C applications for

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 11, Publication date: June 2007.



Inter-cluster Communication in VLIW Architectures • 35

our instruction-scheduling experiments instead of out-of-the-box code with low
ILP. Furthermore, only the VLSI layout experiments demonstrated that the by-
pass network in clustered VLIWs is often slower than the register files, which
are easy to pipeline.

Future research includes exploration of binary instruction formats for the
ICC models with related code size, clustering of memory hierarchy, and ad-
vanced scheduling algorithms for the promising multicast model.
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GIBERT, E., SÁNCHEZ, J., AND GONZÁLEZ, A. 2003. Flexible compiler-managed L0 buffers for clus-
tered VLIW processors. In Proceedings of the 36th Annual International Symposium on Microar-
chitecture, San Diego, CA, USA, IEEE Computer Society Press/ACM Press, New York. 315–
325.
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