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Speculative parallelization is a technique that allows code sections that cannot be fully analyzed
by the compiler to be aggressively executed in parallel. However, while speculative parallelization
can potentially deliver significant speedups, several overheads associated with this technique can
limit these speedups in practice. This paper proposes a novel compiler static cost model of specu-
lative multithreaded execution that can be used to predict the resulting performance. This model
attempts to predict the expected speedups, or slowdowns, of the candidate speculative sections
based on the estimation of the combined runtime effects of various overheads, and taking into ac-
count the scheduling restrictions of most speculative execution environments. The model is based
on estimating the likely execution duration of threads and considers all the possible permutations
of these threads. This model also produces a quantitative estimate of the speedup, which is differ-
ent from prior heuristics that only qualitatively estimate the benefits of speculative multithreaded
execution. In previous work, a limited version of the framework was evaluated on a number of
loops from a collection of SPEC benchmarks that suffer mainly from load imbalance and thread
dispatch and commit overheads. In this work, an extended framework is also evaluated on loops
that may suffer from data-dependence violations. Experimental results show that prediction ac-
curacy is lower when loops with violations are included. Nevertheless, accuracy is still very high
for a static model: the framework can identify, on average, 45% of the loops that cause slowdowns
and, on average, 96% of the loops that lead to speedups; it predicts the speedups or slowdowns
with an error of less than 20% for an average of 28% of the loops across the benchmarks and
with an error of less than 50% for an average of 80% of the loops. Overall, the framework often
outperforms, by as much as 25%, a naive approach that attempts to speculatively parallelize all
the loops considered, and is able to curb the large slowdowns caused in many cases by this naive
approach.
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1. INTRODUCTION

As exploitation of greater degrees of instruction level parallelism seems to
provide diminishing gains, thread-level parallelism becomes a more attrac-
tive choice, especially considering the current trend toward chip multiprocessor
(CMP) systems. Unfortunately, explicit parallel programming is not yet com-
monplace and parallelizing compilers still fail to parallelize a significant set
of codes when data-dependence information at compile time is incomplete. To
aid in the parallelization process, hardware support for speculative paralleliza-
tion (also known as thread-level speculation or speculative multithreading) has
been proposed [Akkary and Driscoll 1998; Dubey et al. 1995; Hammond et al.
1998; Krishnan and Torrellas 1999; Marcuello et al. 1998; Ooi et al. 2001; Sohi
et al. 1995; Steffan and Mowry 1998; Tsai et al. 1999]. In this approach, poten-
tially dependent threads are speculatively executed in parallel and hardware
mechanisms monitor the memory reference stream to detect and correct any
data-dependence violation.

While speculative parallelization can potentially deliver significant speedups
for code sections that would otherwise be executed sequentially, several over-
heads associated with the technique limit these speedups in practice. In fact,
in many cases, these overheads can lead to slowdowns with respect to a se-
quential execution. Thus, accurately identifying, and quantifying, these over-
heads is critical for good overall performance. Five major sources of overheads
in speculative parallelization have been identified [Ooi et al. 2001; Oplinger
et al. 1999; Vijaykumar 1998; Vijaykumar and Sohi 1998]: thread squash and
restart resulting from data-dependence violations, speculative buffer overflow,
load imbalance, thread dispatch and commit, and interthread communication.

Current compiler technology for speculative parallelization is still matur-
ing. Static compiler analyses to select speculative threads are still based on
simple heuristics and only indirectly estimate the speculative multithreaded
execution overheads [Bhowmik and Franklin 2002; Chen et al. 2003; Kim and
Eigenmann 2001; Li et al. 1996; Vijaykumar and Sohi 1998; Zhai et al. 2004].
These heuristics also tackle individual overheads and there is no integrated ap-
proach to jointly consider all overheads. Finally, these heuristics only provide
a qualitative prediction of the suitability of code sections for speculative mul-
tithreaded execution. Most recent compiler efforts have relied on profiling for
thread selection [Liu et al. 2005; Quinones et al. 2005]. Profiling complements
static analyses, but is not always applicable.
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The main contribution of this paper is to present a model of speculative
multithreaded execution that can be used by the compiler to reason about the
overheads and expected resulting performance gains, or losses, from specula-
tive parallelization. This model attempts to predict the expected speedups, or
slowdowns, of the candidate speculative sections based on the estimation of the
combined runtime effects of various speculation overheads, and taking into ac-
count the scheduling restrictions of most speculative execution environments.
The model is based on estimating the likely execution duration of threads and
considers all the possible permutations of these threads. Where compile-time
information is incomplete, the model can be easily parameterized to use run-
time or profile information. The output of the model is not a simple qualitative
prediction of whether a given section of code is “good” for speculative multi-
threaded execution, but rather a quantitative prediction of the actual speedup
or slowdown. This knowledge can assist the compiler or runtime system to make
more complex and educated tradeoff decisions. For instance, in a highly loaded
multiprogrammed environment the compiler or runtime system may decide to
switch off speculative parallelization, even when a speedup is expected, if this
speedup is too small and does not justify the use of the extra resources.

The proposed cost model was implemented in the SUIF research compiler
development framework. The resulting framework was used on a collection of
SPEC benchmarks to estimate the impact of load imbalance, thread dispatch
and commit, and squash and restart overheads on the resulting speedups of
speculative parallelization. The framework was also found to be very stable
and efficient with moderate compilation times. Experimental results show that
the framework can identify, on average, 45% of the loops that cause slowdowns
and, on average, 96% of the loops that lead to speedups. In fact, the framework
predicts the speedups or slowdowns with an error of less than 20% for an av-
erage of 28% of the loops across the benchmarks and with an error of less than
50% for an average of 80% of the loops. Compared to a limited version of the
framework that did not consider squash and restart overheads [Dou and Cintra
2004], the accuracy when loops with violations are included is lower, but still
very high for a static model. Overall, the framework often outperforms, by as
much as 25%, a naive approach that attempts to speculatively parallelize all
the loops considered, and is able to curb the large slowdowns caused, in many
cases, by this naive approach.

The rest of the paper is organized as follows: Section 2 describes speculative
parallelization and its sources of overheads. Section 3 presents our proposed
compiler framework for estimating the impact of various overheads on the per-
formance of speculative parallelization. Section 4 describes our compilation in-
frastructure and our evaluation methodology. Section 5 presents the experimen-
tal results. Section 6 discusses related work; and Section 7 concludes the paper.

2. SPECULATIVE PARALLELIZATION

2.1 Execution Model

Under the speculative parallelization (also called thread-level speculation
or speculative multithreading) approach, sequential sections of code are
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speculatively executed in parallel, hoping not to violate any sequential seman-
tics. The control flow of the sequential code imposes a total order on the threads.
At any time during execution, the earliest thread in program order is nonspecu-
lative, while the others are speculative. The terms predecessor and successor are
used to relate threads in this total order. Stores from speculative threads gener-
ate unsafe versions of variables that are stored in some sort of speculative buffer,
which can be simply the private caches or some additional storage dedicated
to speculative parallelization. If a speculative thread overflows its speculative
buffer it must stall and wait to become nonspeculative (or be squashed). Loads
from speculative threads are provided with potentially incorrect versions. As
execution proceeds, the system tracks memory references to identify any cross-
thread data-dependence violation. If a dependence violation is found, the of-
fending thread must be squashed, along with its successors, thus reverting the
state back to a safe position from which threads can be reexecuted. In addition
to this implicit memory communication mechanism, some hardware environ-
ments for speculative parallelization allow synchronized memory and register
communication between neighbor threads. When the execution of a nonspecu-
lative thread completes, it commits and the values it generated can be moved to
safe storage (usually main memory or some shared higher-level cache). At this
point, its immediate successor acquires nonspeculative status and is allowed to
commit. When a speculative thread completes it must wait for all predecessors
to commit before it can commit. After committing, the processor is free to start
executing a new speculative thread. Usually a processor that completes the ex-
ecution of a speculative thread before the predecessor threads have committed
is not allowed to start execution of a new speculative thread.

2.2 Speculative Parallelization Overheads

The execution model of speculative parallelization (Section 2.1) leads to five
major overheads: thread squash and restart as a result of data-dependence vio-
lations, speculative buffer overflow, load imbalance, thread dispatch and com-
mit, and interthread communication. The thread squash and restart overhead
is mainly composed in time to flush the speculative buffers and the redundant
reexecution of part of the thread prior to the violation (Figure 1a). This over-
head is dictated by the actual frequency of data-dependence violations and by
the location of the dependences within the threads. The speculative buffer over-
flow overhead relates to the amount of time the processor remains idle after
a speculative thread overflows its speculative buffer and until it is allowed to
proceed (Figure 1b). This overhead is dependent on the physical size and or-
ganization of the speculative buffer, the amount of data written by the thread,
and the size of threads. An associated overhead appears when there is no ded-
icated speculative buffer and the speculative dirty data is kept, and pinned, in
the cache, in which case there may be some degradation in cache performance.
The thread dispatch and commit overhead is mainly composed in time to move
the speculatively modified data from the speculative buffer to safe storage and
the time to update the system state to reflect the new status of the threads. This
overhead depends mainly on the amount of data written by the thread. The in-
terthread communication overhead relates to the time the processor remains
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Fig. 1. Some speculative parallelization overheads: squash and restart (a); speculative buffer
overflow, also leading to further load imbalance overhead (b); and load imbalance (c). The numbers
inside the bars correspond to the original sequential order of the threads.

idle while a speculative thread waits for a memory or register value produced
and communicated by a predecessor thread. This overhead is only relevant in
architectures that support synchronized register or memory communication
and is dependent on the frequency of such communication points and the loca-
tion of these within the threads. Finally, load imbalance overhead relates to the
time the processor remains idle after completing the execution of a speculative
thread and until this thread becomes nonspeculative (Figure 1b and 1c). This
overhead depends mainly on the differences in execution time among threads,
which is, in turn, heavily influenced by the other overheads above. We note
that the impact of load imbalance in speculative parallelization is far greater
than in traditional, nonspeculative, parallelization, because, in the latter, a new
thread can be assigned to a processor as soon as the current thread finishes,
while with speculative parallelization a processor cannot start work on a new
thread until its current thread becomes nonspeculative and commits. Finally,
another side-effect overhead of speculative parallelization is a degradation in
bandwidth performance on the coherence bus because of the significantly higher
traffic generated by the speculation protocol. Of the overheads discussed above,
thread squash and restart, speculative buffer overflow, and load imbalance have
been identified as the most significant overheads [Ooi et al. 2001; Vijaykumar
1998; Vijaykumar and Sohi 1998].

3. FRAMEWORK FOR MODELING OVERHEADS

In Dou and Cintra [2004], we presented the base thread tuple model and dis-
cussed how it could be extended to accommodate all speculative parallelization
overheads. Here, we flesh out the extended and complete model.
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3.1 Basic Idea

Instead of using a collection of heuristics to identify “good” code sections for
speculative parallelization, we propose to compute a quantitative estimate of
the actual speedup. With this result, the compiler or runtime system can make
an informed decision on whether to try speculative parallelization or to run
those code sections sequentially.

To compute the estimated speedup (Sest) we use a compiler model of the
speculative multithreaded execution that is based on estimated thread sizes
and probabilities of occurrence of these sizes on the individual processors. The
inputs to the model are the number of processors in the system (P ), the pos-
sible sizes of threads, including overheads, and their probabilities. The model
then considers all possible groupings of thread sizes across the P processors.
Each grouping, which we call a thread tuple, has a probability of occurrence,
which is the joint probability of occurrence of each thread size in the tu-
ple, additionally taking into account the mapping of threads in the tuple to
physical processors. Each thread tuple also has a sequential and a parallel
execution time, which, together with the probability of occurrence of the tu-
ple, is used to compute the overall estimated sequential (Tseqest) and parallel
(T parest) execution times of the average tuple, and, thus, the estimated speedup
(Sest).

The computation of the possible thread tuples is divided in two parts.
First, we generate only thread sizes that appear through possible execution
of different control paths. These thread sizes are then intrinsic to the code
structure and do not include speculative execution overheads. We call these
the base thread sizes and, with them, we generate the base thread table.
Next we consider additional thread sizes that may appear as a result the
other speculative parallelization overheads. We call these the overhead thread
sizes and call the complete table with all thread sizes the extended thread
table.

3.2 Base Thread Sizes and Intrinsic Load Imbalance Overhead

In this section we discuss how to compute the base thread sizes from the static
program code. These appear through possible execution of different control
paths. Workload variations across threads are mainly caused by the following
factors: conditional statements, inner loops, and cache misses. In practice, the
load imbalance overhead will be amplified by combinations of these factors,
such as a conditional statement, with an inner loop.

To compute the base thread sizes, we use a variation of the control-flow
graph (CFG), which we call a collapsed control-flow graph (CCFG). To build
the CCFG we annotate each basic block node in the CFG with the estimated
execution time of the instructions in this basic block. When building the CCFG
for a particular loop that is also being considered for speculative execution, we
collapse all its inner loops and procedures into a subgraph with an estimate of
the execution time of the control paths in these inner loops or procedures. In this
way, the CCFG of properly structured programs should not have any backward
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Fig. 2. Example loop being considered for speculative parallel execution (a); and its corresponding
collapsed control-flow graph (CCFG) (b). The labels inside the basic blocks correspond to their
estimated execution times. In this example, M is the iteration count of the inner loop.

edges and is then a directed acyclic graph. The CCFG is somewhat similar to
the hierarchical task graph (HTG) [Girkar and Polychronopoulos 1994], except
that it contains no hierarchical information.

As an example, Figure 2a shows the skeleton of a loop in C-like syntax and
Figure 2b shows the corresponding CCFG. Note how in the CCFG a loop is
represented by an acyclic subgraph where the weights of the arcs are multiplied
by the iteration count, M .

For the base thread sizes to be accurate, it is important that the CCFG be
built from an intermediate representation, whose basic block code is very close
to the final machine code to be produced by the code generator. On the other
hand, some speculative parallelization analyses and transformations are likely
to be performed using some high-level representation. Thus, ideally, a close
collaboration between the code generator and the speculative parallelizer is
desirable.

With the CCFG, we can easily generate all the possible execution paths
from the start node to the end node, along with their respective esti-
mated execution times and execution probabilities. Execution probabilities
can be generated by simply assigning equal probability to each direction of
a conditional statement or through some more elaborate static or dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 12, Publication date: June 2007.



8 • J. Dou and M. Cintra

mechanism for estimating the probabilities of the different directions.1 Our re-
sults indicate that the simple equal probabilities heuristic leads to reasonable
results.

3.3 The Extended Thread Tuple Model

The tuple model proposed in Dou and Cintra [2004] starts with all possible
thread sizes and computes the probabilities associated with all possible tuples.
In doing so, that model assumes that the probability that a certain thread size
appears in a processor slot in a tuple does not depend on the processor slot.
A more accurate model should consider how the probabilities of occurrences
of thread sizes vary with the processor slot. For instance, a thread running
in processor zero, which we assume is always the nonspeculative thread in
a tuple, cannot have a size that corresponds to a thread that overflows the
speculative buffer. Similarly, the probability that a thread size that corresponds
to a thread that has been squashed appears in a certain processor slot in a tuple
actually depends on the processor slot: the probability that this squashed size
appears in a more speculative processor slot is greater than the probability that
it appears in a less speculative processor slot, since, in the first case, there are
more chances that the producer thread will appear in some of its predecessor
processor slots. Here the original tuple model is extended to accommodate these
variations in probability values.

In the tuple model, the possible thread sizes are divided in two groups: the
base thread sizes, which are those that correspond to the overhead-free execu-
tion of all possible execution paths, and the overhead thread sizes, which are
those that are generated by adding some overhead to a base thread size. Thus,
by definition, every overhead thread size has a corresponding base thread size
from which it originates. Section 3.2 showed how to obtain the base thread sizes
using the CCFG.

Assume that the possible control-flow paths originate thread sizes in an or-
dered set B, with M (or |B|) entries, with probabilities of occurrences p1, ..., pM .2

Further assume that B joined with the overhead thread sizes forms a new or-
dered set E, which has N (or |E|) possible thread sizes W1, · · · , WN . The sets
are ordered according to increasing thread sizes. Thus, E = {W1, W2, · · · , WN }
and W1 ≤ W2 ≤ · · · ≤ WN . Then, there are N P ways in which these thread
sizes can be combined to form thread tuples. More formally, a thread tuple is
an element of E P , where E × E is the Cartesian product. The probability of
occurrence of a particular thread tuple i, which we refer to by ptuplei , is the
product of the probabilities of occurrences of each thread size in a particular
processor slot in the tuple. These ptuplei are then used to compute the overall

1Note that the problem of estimating the probability of conditional statements is usually more
complex than the problem of estimating the probability of branches, in general. This is because
loop-controlling branches are usually more predictable than nonloop branches. This problem is also
more complex than the simpler problem of branch prediction, which only involves estimating the
most likely direction of a branch.
2We implicitly assume that the events associated with the parallel threads following some control
path are independent, which may not always be true when there is some correlation among certain
paths.
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estimated sequential and parallel execution times as:

Tseqest =
∑

tuplei∈BP

Tseqtuplei
ptuplei

(1)

Tparest =
∑

tuplei∈E P

Tpartuplei
ptuplei

(2)

where Tseqtuplei
and Tpartuplei

are the sequential and parallel execution times
for tuple i. Thus, to compute the overall estimated sequential execution time
of the average tuple, we only consider base thread tuples that are intrinsically
derived from the possible execution paths and do not suffer from overheads of
speculative execution, which is what one would expect from a sequential execu-
tion of the code section. For a given thread tuple i, the parallel and sequential
execution times for the tuple are given by:

Tseqtuplei
=

∑
W j ∈tuplei

W j (3)

Tpartuplei
= max

W j ∈tuplei

W j (4)

Equation (3) simply indicates that the sequential execution time of the group
of threads in a thread tuple is given by the sum of their execution times, while
Eq. (4) indicates that the parallel time of the same group of threads is simply
the execution time of the largest of the threads. Note that, in this way, Eq. (4)
is an approximation to the execution model of Figure 1c, as it does not take into
account the relative position of the largest thread.

A naive computation of Eq. (1) would involve enumerating all possible base
tuples and would, thus, have a computational complexity of O(M P ), where
M is the number of base threads. However, it can be easily shown that since
the assignment of thread sizes to processors in a thread tuple can be seen as
independent discrete random variables from the same distribution, Eq. (1) is
equivalent to:

Tseqest = P
∑

Wi∈B

Wi pi (5)

which can be computed in O(M ).
Similarly, to simplify the computation of Eq. (2), it is converted using Eq. (4)

into:

Tparest =
∑

W j ∈E

W j p(Tpartuplei
= W j ) (6)

where the second term is the probability that the parallel time of a tuple is equal
to a given thread size. To derive this term, we define pi, j as the probability that
thread size Wi ∈ E appears in processor j in a given tuple (the processor slots
are numbered from 0 to P − 1). The computation of these pi, j terms is divided
according to the type of thread Wi.
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Case 1: Wi is a base thread size and it does not generate any new thread
sizes with overheads. In this case, the probabilities are given by:

pi, j = pi (7)

where pi, as mentioned earlier, is simply the probability of execution of the
control path that leads to the base thread size Wi.

Case 2: Wi is a thread size related to squash overheads (i.e., either an over-
head thread size generated from squash or the corresponding base thread size).
In this case, we define Wprod as the base thread size that produces the value
that causes the violation (and, thus, pprod is its probability), and Wbase as the
base thread size that consumes the value and may suffer the violation. Then,
the probabilities of both the squashed and the original, nonsquashed, thread
sizes are given by:

pi, j =

⎧⎪⎨
⎪⎩

(1 − pprod) j pbase + (1 − (1 − pprod) j )pbase(1 − pdep)

, if Wi is a base size

(1 − (1 − pprod) j )pbase pdep, if Wi is a squashed size

(8)

where pdep is the probability that the dependence occurs in an execution in-
stance of the pair Wprod and Wbase. Note that for a base thread size Wi and its
squashed counterpart Wk , we have pi, j + pk, j = pi for every processor j . Note
also that pi,0 = 0 for a squashed thread size Wi.

Case 3: Wi is a thread size related to overflow overheads (i.e., either an
overhead thread size generated from overflow or the corresponding base thread
size). In this case, we define: Wbase as the base thread size that may overflow
the buffer and become stalled; firstlonger as the rank in B of the first thread
size whose execution time is greater than the time of occurrence of the store
that causes the overflow, and the stall (a thread size Wi that overflows the
speculative buffer at time t can only stall because of predecessors of size greater
than t); and, for a stalled thread size, waitfor as the rank in B of the predecessor
thread for which the stalled thread has to wait. Note that for a given overhead
thread size Wi, waitfor, base, and firstlonger are unambiguously defined. The
probabilities of the overflowed and the original thread sizes are given by:

pi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − povflow)pbase + pbase povflow

(
1 − ∑|B|

k=firstlonger pk

) j

, if Wi is a base size((∑waitfor
k=1 pk

) j
−

(∑waitfor−1
k=1 pk

) j
)

· povflow · pbase

, if Wi is an overflowed size

(9)

where povflow is the probability that the overflow occurs in an execution in-
stance of Wbase. Note that for a base thread size Wi and its overflowed counter-
parts Wk1 , · · · , Wkn (each for a different longest predecessor firstlonger), we have
pi, j + pk1, j + · · · + pkn, j = pi. Note also that pi,0 = 0 for an overflowed thread
size Wi.
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Case 4: Wi is a thread size related to interthread communication overhead
(i.e., either an overhead thread size generated from waiting for communication
or the corresponding base thread size). In this case, we define Wprod as the base
thread size that produces the value that is involved in the communication and
Wbase as the base thread size that consumes the value and may have to wait
for the communication. When the interthread communication is set up dynam-
ically based on data addresses (Section 3.4.4 and Cintra and Torrellas [2002];
Moshovos et al. [1997]; Steffan et al. [2002]) the communication, and, thus, the
stall, will only occur when the dependence does occur. Then, the probabilities of
both the stalled and the original, nonstalled, thread sizes are given by Eq. (8).

When the interthread communication is set up statically based on the static
memory references (Section 3.4.4 and Krishnan and Torrellas [1999]; Sohi
et al. [1995]) the communication will always occur and it is assumed that a
suitable producer will always be present to avoid deadlocks. In this case, the
probabilities of both the stalled and the original, nonstalled, thread sizes are
given by:

pi, j =
⎧⎨
⎩

pbase , if Wi is a base size and j = 0; or Wi is a stalled size and j �= 0

0 , if Wi is a base size and j �= 0; or Wi is a stalled size and j = 0
(10)

Note that in Eq. (8) and (10) for a base thread size Wi and its stalled counter-
part Wk , we have pi, j + pk, j = pi for every processor j . Note also that pi,0 = 0
for a stalled thread size Wi in both equations.

With the values of pi, j computed as described above, we can now compute
p(Tpartuplei

= W j ), the probability that the parallel time of a tuple i is equal to
some thread size W j ∈ E. This term can be computed as (recall that the thread
sizes are sorted in increasing order):

p
(
Tpartuplei

= W j
) =

P−1∏
k=0

(
rank( j )∑

l=1

prank(l ),k

)
−

rank( j )−1∑
m=1

p
(
Tpartuplei′ = Wrank(m)

)
(11)

where rank(x) is a function that maps the indexes used to name threads, e.g.,
i in Wi, to the rank of each thread in the ordered set E.3 Note that to compute
the estimated average parallel execution time, we consider all N thread sizes,
including those that arise due to speculative execution overheads. The first term
in Eq. (11) is simply the probability that the parallel time of a tuple is equal
to any of the thread sizes up to rank( j ), inclusive. The second term in Eq. (11)
is then the probability that the parallel time of a tuple is equal to any of the
thread sizes up to rank( j − 1). Note that Eq. (11) can be computed recursively
and there is no need to recompute the second term for each j . In the notation
for summations, we assume that when the upper bound is less than the lower
bound, the sum defaults to a value of zero. Thus, the second term defaults to
zero when j = 1.

3This naming indirection is necessary, because we name overhead threads after all base threads
have been named and ordered in set B.
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With the results of Eq. (11) we can then compute Eq. (6), and, finally, with
this result and that of Eq. (5), we can compute the estimated speedup as:

Sest = Tseqest

Tparest
(12)

The Appendix contains an example of how to use the above equations; Sec-
tion 3.4 elaborates on how to generate the overhead thread sizes required by
the model. Finally, note that when the number of loop iterations is known to be
less than the number of processors in the system, the value of P in the formulas
above will be replaced with the number of iterations.

3.4 Overhead Thread Sizes

The previous section introduced the extended thread tuple model and assumed
that all thread sizes, base and overhead, had been created and ordered in the
B and E sets. The computations of the previous section also assumed that the
probabilities of occurrence of some overheads, such as pdep in Eq. (8) and povflow

in Eq. (9), had also been predetermined. This section explains in detail how the
thread sizes with overheads are created, starting from the base thread sizes
(whose generation is explained in Section 3.2).

3.4.1 Initial Considerations. The starting point of the tuple model is to
compute the base thread sizes and their probabilities of occurrence. As an ex-
ample, Figure 3a and b show a case where there are two possible base thread
sizes. Next, the model adds the overhead thread sizes and their probabilities.
As the overhead thread sizes are derived from the original base thread sizes,
the original probabilities of occurrence of the base threads are divided into two
separate probabilities: the overhead thread’s probabilities of occurrence and the
base, nonoverhead, thread size’s probabilities of occurrence. The sum of these
two terms must be the original probability of execution of the base thread size.

To simplify the problem, and to comply to the mathematical model of Sec-
tion 3.3, we impose the restriction that a base thread size can only possibly
suffer from one source of overhead. Thus, a base thread size cannot be squashed
and, at the same time, overflow the speculative buffer and stall. The only ex-
ception is dispatch and commit overheads, which can be added to all thread
sizes, including overhead ones, as described in Section 3.4.5. Another restric-
tion is that an extended thread size cannot generate any further thread sizes
by either squashing threads or by forcing stalled successors to wait. Note that
these restrictions imply that N < M 2, where N is the total number of thread
sizes and M is the number of base thread sizes. In case some base thread size
may suffer from more than one source of overhead, then one overhead must be
chosen. For this purpose, we propose choosing the overhead that would appear
first: e.g., if the squashing store in the producer predecessor is expected to ap-
pear before the stalling store in the thread itself, then consider that the thread
is only squashed, and vice versa.

3.4.2 Squash and Restart Overhead. Since the major contribution in the
squash and restart overhead is the reexecution of part of the thread after being
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Fig. 3. Example of modeling speculative parallelization overheads in the extended tuple model:
skeleton code to be speculatively parallelized (a); base thread sizes and probabilities from the two
possible execution paths (b); additional thread sizes and probabilities when overheads are included
(c), (d), and (e). The numbers inside the bars identify the base thread sizes.

squashed, the final size of the squashed thread is the original thread size plus
the execution time of the predecessor producer thread until the violation is
detected, which is usually shortly after the store involved in the RAW violation.
Figure 3c shows the case of a potential data dependence violation and squash,
in which case the original base thread size W2 originates a new thread size
W3.

The probabilities of occurrence of the squashed thread size and of the original
base thread size are computed through Eq. (8). The rationale behind this equa-
tion is the following. In order for a squashed thread size to appear in a given
processor slot it is necessary that three conditions be true: (1) the base thread
appears in this processor slot; (2) the producer thread is present in at least one
of its predecessor processor slots; and (3) the data dependence does occur in
this particular execution instance of the producer and consumer threads. The
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probability of the squashed thread is then the joint probability of these events
(which are considered to be independent). The term (1 − (1 − pprod ) j ) in Eq. (8)
is the probability that a producer thread is present in at least one of its pre-
decessor processor slots. The term pbase is the probability that the base thread
appears in a particular processor slot. Finally, the term pdep is the probability
that the data dependence does occur. Note that the result of Eq. (8) is zero for
a squashed thread size and processor zero, which is to be expected since no
squashed thread size should appear on the nonspeculative processor.

In order for the original base, nonsquashed, thread size to appear in a given
processor slot, it is necessary that the base thread appears in this processor slot
and that one of two conditions occur: (1) the producer thread is not present in
any predecessor processor slot or (2) if that is not the case, the data dependence
does not occur. The term (1− pprod) j in Eq. (8) is the probability that no producer
thread appears in any predecessor processor slot and corresponds to the first
condition. The term (1− (1− pprod) j ) is the probability that a producer thread is
present in at least one of its predecessor processor slots and the term (1 − pdep)
is the probability that the data dependence does not occur. Thus, combined,
these two terms correspond to the second combination of conditions. Note that
the result of Eq. (8) is simply pbase for a nonsquashed thread size and processor
zero, which is to be expected, since only the nonsquashed size should appear on
a nonspeculative processor.

The methodology described above to model squash and restart overheads
does not take into account the fact that at a violation not only the consumer
thread but also all its successors must be squashed. This inaccuracy is likely to
have more significant impact in systems with large number of processors. We
decide to trade off accuracy for simplicity of the model.

Estimating the probability of data-dependence violations under speculative
parallelization (i.e., pdep) is difficult, because, by construction, these are highly
unpredictable (more predictable data dependences are more efficiently handled
by explicit synchronization [Cintra and Torrellas 2002; Moshovos et al. 1997;
Steffan et al. 2002]). Estimating the likelihood of violations can be done with
static probabilistic memory disambiguation analysis [Chen et al. 2003; Zhai
et al. 2004] or profiling [Liu et al. 2005; Marcuello and González 2002; Olukotun
et al. 1999].

3.4.3 Speculative Buffer Overflow Overhead. The major contribution in the
speculative buffer overflow overhead is the idle time the thread spends waiting
for all its predecessor threads to commit, which is approximately the idle time
waiting for its longest predecessor to complete execution. Thus, the size of a
thread that stalls because of speculative buffer overflow is equal to the execution
time of the predecessor thread plus the execution time remaining to complete
execution once the thread is released. In practice, several thread sizes could
assume this role of longest predecessor, as long as their execution time is longer
than the timestamp of the stalling store. To keep the model simple we only
consider predecessor thread sizes that are base thread sizes. Thus, in the model,
from the original thread size (the one suffering the speculative buffer overflow),
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we generate as many new thread sizes as there are base thread sizes with
execution times longer than the timestamp of the stalling store (note that this
includes the original base thread size itself). Figure 3d shows the case of a
potential speculative buffer overflow of thread size W1, in which case it must
wait for either another instance of W1 or an instance of W2 generating W4 or
W5, respectively.

The probabilities of occurrence of an overflowed thread size and of the orig-
inal base thread size are computed through Eq. (9). The rationale behind this
equation is the following. In order for an overflowed thread size, corresponding
to a certain stalling predecessor thread, to appear in a given processor slot it
is necessary that four conditions be true: (1) the base thread appears in this
processor slot; (2) the stalling thread is present in at least one of its predeces-
sor processor slots; (3) no thread longer than the stalling thread appears in
any predecessor processor slot; and (4) the overflow does occur in this partic-
ular execution instance of the base thread. The probability of an overflowed
thread is then the joint probability of these events (which are assumed to be
independent). The term (

∑waitfor
k=1 pk) j in Eq. (9) is the probability that only base

thread sizes in the range k = 1 to k = waitfor appear in all of its predecessor
processor slots. Similarly, the term (

∑waitfor−1
k=1 pk) j is the probability that only

base thread sizes in the range k = 1 to k = waitfor − 1 appear in all of its
predecessor processor slots. Thus, the difference of the two terms corresponds
to conditions (2) and (3). The term pbase is the probability that the base thread
appears in a particular processor slot. Finally, the term povflow is the probabil-
ity that the overflow does occur. Note that the result of Eq. (9) is zero for an
overflowed thread size and processor zero, which is to be expected since the
nonspeculative processor will never stall.

In order for the original base, nonoverflowed, thread size to appear in a given
processor slot, it is necessary that the base thread appears in this processor slot
and that one of two conditions occur: (1) the overflow does not occur or (2) if that
is not the case, no thread size with running time larger than the timestamp of
the stalling store appears in any of the predecessor processor slots. The term
pbase in Eq. (9) is the probability that the base thread appears in a particular
processor slot. The term 1 − povflow is the probability that the overflow does not
occur and corresponds to the first condition. The term (1 − ∑|B|

k=firstlonger pk) j is
the probability that no thread size between k = firstlonger to k = |B| appears in
any of the predecessor processor slots and corresponds to the second condition.
Note that the result of Eq. (9) is simply pbase for a nonoverflowed thread size
and processor zero, which is to be expected, since only the nonoverflowed size
should appear on a nonspeculative processor.

As a new overflowed thread size is generated for each base thread size Wwaitfor

in the range firstlonger ≤ waitfor ≤ |B|, after generating all the overflowed
thread sizes, the worst case number of the overflowed thread sizes is |B|2, when
base thread size overflows with firstlonger = 1.

Determining the probability of a speculative buffer overflow (i.e., povflow) is
also a very difficult problem. In systems that have dedicated fully-associative
speculative buffers, as in Hammond et al. [1998], this problem reverts to the
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problem of counting the number of speculative buffer lines covered by the stores
in the execution path under consideration. In systems that have only the set-
associative L1 caches, as in Sohi et al. [1995], the problem is that of finding
whether two memory accesses conflict in the cache. This problem has been well
addressed for regular applications (e.g., Chatterjee et al. [2001]; Vera and Xue
[2002]), but is still an open problem for irregular applications.

3.4.4 Interthread Communication Overhead. Some systems support, in
addition to data speculation, explicit synchronized communication through
memory or registers [Cintra and Torrellas 2002; Krishnan and Torrellas 1999;
Moshovos et al. 1997; Sohi et al. 1995; Steffan et al. 2002]. This can be mod-
eled as additional execution time added to the base thread between the time
of the consumption and the production of the data. Thus, the size of a thread
that stalls because of synchronized interthread communication is its original
execution time plus the time between the stalling load and the releasing store.
Figure 3e shows the case of a potential synchronization and interthread commu-
nication, in which case the potential memory dependence on array X is handled
by explicit synchronization and the original base thread size W2 originates a
new thread size W6.

Two approaches for synchronized interthread communication have been
proposed. In one approach the synchronization is placed dynamically at run-
time [Cintra and Torrellas 2002; Moshovos et al. 1997; Steffan et al. 2002] and
is usually triggered only when a dependence does occur, or is thought to occur.
In this case, the probabilities of occurrence of the synchronized thread size and
of the original base thread size are computed through Eq. (8). The rationale
behind this equation is analogous to that explained in Section 3.4.2 and is not
repeated here for the sake of brevity.

In the second approach, the synchronization is placed statically [Krishnan
and Torrellas 1999; Sohi et al. 1995] and is usually triggered each time the load
appears. In this case, the probabilities of occurrence of the synchronized and of
the original base thread size are computed through Eq. (10). The rationale be-
hind this equation is the following. The synchronized thread size cannot appear
in the nonspeculative processor slot and will appear each time the original base
thread size would have appeared in any other processor slot. The original thread
size, on the other hand, cannot appear in any speculative processor slot and will
not be replaced when it appears in the nonspeculative processor slot. Thus, the
probability that the original base thread size (synchronized thread size) appears
in processor zero is pbase (zero) and in the other processor slots is zero (pbase).

3.4.5 Dispatch and Commit Overheads. Different from the other over-
heads, thread dispatch and commit overhead is not represented as additional
thread sizes in the model. Instead, the time required by these operations is
added to the execution time of the existing thread sizes. However, because of the
in-order commit requirement, the amount of dispatch and commit overhead ob-
served by a thread is not exactly the nominal time required by these operations,
but depends on the position of the longest thread in the tuple. Simply adding the
nominal cost of the operations to the thread sizes would incorrectly overlap some
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of the commit costs. In reality, when the longest thread is the nonspeculative
one, the total overhead is equal to P times the nominal dispatch and commit
time, and when the longest thread is the mostspeculative one, the total over-
head is simply equal to the nominal dispatch and commit time. In the, average
case, the total overhead is equal to Tdisp/comm(

∑P
j=1 j )/P = Tdisp/comm(P + 1)/2,

where Tdisp/comm is the nominal dispatch and commit time, which we assume
constant for simplicity. Figure 3 shows the commit and dispatch overheads
added to all the thread sizes.

The thread dispatch time is usually a somewhat fixed time required to up-
date some system data structures, possibly copy-in some register values, and
dispatch the new thread on the processor. The commit time, however, is more
variable as it depends on the amount of data that is modified by the thread,
while it is speculative. The analysis required to compute this is very simi-
lar to that required to estimate speculative buffer overflows. This overhead
also depends on the contention at the bus during the write-backs of data from
the speculative buffers. Some speculative multithreaded systems support “lazy
commit,” whereby data modified by a nonspeculative thread may reside in the
speculative buffer after the processor starts work on a more speculative thread
and is lazily written back to memory on demand [Garzarán et al. 2003]. This,
however, requires additional costly hardware.

3.5 Complexity Analysis

The computational complexity of the proposed framework is composed of two
parts: the generation of all thread sizes and the computation of the estimated
speedup. The first is mainly a function of the number of control paths in the
program (M ) and the number of memory references tracked for all base thread
sizes (R). The latter is mainly a function of the number of base thread sizes
(M ) and the number of processors (P ).

The complexity analysis of generating all thread sizes is as follows. From the
CCFG representation it is possible to generate all base thread sizes in O(M ),
if information is carried and stored at intermediate nodes to avoid traversing
any path segment more than once. Searching for possible speculative buffer
overflow occurrences requires considering all memory references for each base
thread, which leads to O(R). Afterward, generating the stalled thread sizes
because of overflow requires comparing the timestamps of overflowing stores
against all base thread sizes, which leads to O(M 2). Searching for possible data-
dependence violations would require comparing the target and timestamps of
each memory reference in a base thread against all memory references in all
other threads. By storing all the memory references in a hash table, it is possible
to reduce the expected complexity to O(R) (with O(R2) worst-case). Thus, the
overall expected complexity of generating all thread sizes is O(M 2 + R).

The complexity analysis of computing the estimated speedup, given the
thread sizes, is as follows. The complexity of Eq. (5) is O(M ). The complexity
of Eq. (6) is determined by the complexity of computing the p(T partuplei = W j )
terms, which, using Eq. (11), is O(NP) once all pi, j terms are computed. The
computation of each pi, j term through Eqs. (7), (8), and (10) is O(1), but is O(M )
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through Eq. (9). Since there are NP pi, j terms, the complexity of generating all
such terms is O(NMP). Thus, the overall complexity of Eq. (11), and, thus,
Eq. (6), is O(NMP). Finally, the complexity of the computation of the estimated
speedup through Eq. (12) is then also O(NMP). Recall that, as explained in
Section 3.4.1, N = O(M 2) in the worst case. Finally, the overall complexity of
the framework is then O(M 2 + R + NMP).

3.6 Limitations and Optimizations

To keep the complexity of the framework tolerable, we were forced to make
some simplifications. These simplifications can be classified into two categories:
model simplifications and implementation simplifications. The first are those
that aim to reduce the complexity of the cost model and are, thus, intrinsic to
the model itself. Eliminating such simplifications would require reworking the
model. The latter are those that were required in order to keep the implementa-
tion of the compiler framework prototype manageable. These are not intrinsic
to the model itself and can be reduced, or eliminated, with the incorporation
of more elaborate static and/or profile analyses to the compiler framework.
Many of the model limitations were already discussed alongside the presen-
tation of the model. Next, we discuss some other limitations, along with some
optimizations.

3.6.1 Limitations of the CCFG and Optimizations. As described, the CCFG
does not correctly represent the execution paths and execution times in the
presence of inner loops. An inner loop with M iterations and with conditional
structures leading to N , possible control paths can generate up to N M combi-
nations of paths at runtime. Instead of trying to represent these (prohibitively)
many paths in the CCFG, we choose to represent only a total of N possible
paths that are executed M times (Figure 2). This corresponds to the case where
all iterations in the inner loop execute the same path in a given execution of the
inner loop (different execution instances of the inner loop can follow different
paths). It is clear, then, that some possible execution paths (and, thus, thread
sizes) would not be considered by the cost model. It can be shown that the range
of thread sizes is the same in both cases, despite the model having fewer sizes.
For this reason, we expect the model to predict more load imbalance, which is
likely to result in an underprediction of the speedup.

Another weakness of the CCFG is that it cannot easily handle recursive
procedure calls. In the presence of recursion, we choose to represent in the
CCFG only a limited number of the recursive calls and decide whether to build
the procedure’s subgraph depending on the probability of occurrence of the path
leading to the recursive call. If the probability is below a threshold, then we
simply ignore the procedure call and assign it a null workload.

As an optimization of our CCFG representation, we ignore thread sizes on
paths leading directly to exit and break statements. This is reasonable, since
these paths lead to the termination of the speculative execution and, thus,
should not be included in the thread size mix.

3.6.2 Limitations of the Model and Optimizations. One limitation of the
model is that we decide not to consider cascaded thread interactions. For
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instance, a thread may stall because of a speculative buffer overflow before
it reaches the store that causes a data-dependence violation with a successor
thread; or a thread may stall because of a speculative buffer overflow and then
wait for a predecessor that has also stalled as a result of a speculative buffer
overflow. To model these, we would have to apply the overhead models not only
to base thread sizes, but also to thread sizes that already incorporate some
overheads. In practice, this would make the model significantly more complex.
Note also that there is the possibility of a combination on the same thread
of a data-dependence violation followed by a speculative buffer overflow when
the thread is reexecuted. There is no other possible combination except with
dispatch and commit overhead.4 Again, we decide not to model this compound
overhead to keep the model simple.

Another limitation of the model is that it focuses on estimating sources of
overheads and assumes that all performance gains come from the parallel ex-
ecution of threads. However, it has been observed that, in some cases, a signif-
icant fraction of the performance gains from speculative parallelization come
from a prefetching effect to lower level shared caches. In this case, despite the
speculative threads not being able to commit a significant amount of work, they
still help the nonspeculative thread by accessing data that it will need later.
Incorporating this source of speedup in the model is left as future work.

Another limitation is also, that the compiler model attempts to emulate the
simple execution model described in Section 2.1. Some hardware architectures
support a more flexible execution model by way of more complex hardware
[Colohan et al. 2006; Garzarán et al. 2003; Renau et al. 2005]. Such support,
however, is not yet well established and the complexity versus performance
tradeoffs are still being explored. Thus, extending the compiler model to handle
such execution models is left as future work.

Section 3.5 argued that the formulas used by the model have only a poly-
nomial complexity dependence on the number of thread sizes. Nevertheless,
when the speculative section has several possible execution paths and many
potential overheads, the model we propose may result in too many thread sizes.
If compilation time becomes an issue, then some general optimizations may be
applied to reduce the number of thread sizes while introducing small errors.
One possible optimization is to group threads whose sizes differ by only a small
percentage. The resulting thread size could be as long as the average of the in-
dividual thread sizes and the resulting probability of occurrence would be the
sum of the probabilities of the thread sizes. Another optimization is to ignore
some thread sizes whose probabilities of occurrence are too small and whose
sizes are within a certain fraction of the remaining thread sizes. Such threads
would have a small impact on the overall speedup.

3.6.3 Limitations of the Prototype Implementation. A significant problem
of all static compiler models, such as ours, is the fact that many parameters to

4In case the squashed thread has already finished and is waiting to commit by the time the violation
is detected, the idle time is attributed to squash overhead and not load imbalance overhead. Also,
in case a thread stalls because of overflow and is squashed before it can resume, the idle time is
attributed to squash overhead and not overflow overhead.
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the model may only be available at runtime. For example, the model requires
the probability of occurrence of the two directions in conditional statements to
compute the probability of each thread size. Another example of an important
parameter to the model is the iteration count of inner loops. While there exist
a few static techniques that may help (e.g., Patterson [1995]; Wagner et al.
[1994]), implementing those would significantly digress from the focus of our
work. Nevertheless, we note that integrating such static analyses with our
model is straightforward, as the result of the analyses could be easily added to
the CCFG. An alternative to such static analyses is profiling. Again, we note
that such techniques could be easily integrated with our model, but doing so is
beyond the scope of this paper.

4. EXPERIMENTAL SETUP

4.1 Compilation Infrastructure

We implemented the algorithms and formulas described in Section 3 using the
SUIF1 compiler infrastructure [Hall et al. 1996]. All the compiler analyses are
done at the high-level intermediate representation (IR) of SUIF. Our new pass
was added to the end of the pscc chain.

In this work we only consider the tuple model and the heuristics for esti-
mating load imbalance and squash and restart overheads. Thus, we do not yet
add buffer overflow overheads to the model, as described in Section 3.4.3. De-
pendences are assumed to be true (i.e., pdep = 1) whenever threads reading
and writing the same program symbol are executed concurrently, so that the
overall probability of violations relates directly to the probabilities of execution
of paths as in Chen et al. [2003]. For the dispatch and commit overhead, we
use the methodology described in Section 3.4.5, but we assume that the nom-
inal commit time is a fixed time, required to write back all the entries in the
speculative buffer with some hardware support [Hammond et al. 1998] and
that the dispatch overhead is also a fixed time, as suggested in previous work
[Hammond et al. 1998; Steffan and Mowry 1998]. Based on the results of
Wagner et al. [1994], loops with unknown iteration counts are assumed to have
five iterations.

4.2 Applications and Loop Selection

To evaluate our scheme, we use a subset of the SPEC2000 benchmarks, compris-
ing of four floating-point and five integer applications.5 These applications are
representative of the workloads typical for current and future CMP’s. To keep
the execution time in our simulation environment (Section 4.3) manageable,
we use reduced input sets [KleinOsowski and Lilja 2002] and we simulate only
500 million instructions after discarding the initial 100 million instructions.

To focus on the tuple model and the heuristics for estimating load imbal-
ance and squash and restart overheads, we do not consider loops that overflow
the speculative buffer at runtime. In addition, to isolate the tuple model and

5The benchmarks not included are those incompatible with the SUIF1 front end pass, snoot.
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Table I. Characteristics of the Applications Studied

Benchmark Number of Loops % of Seq. Time
Application Type Without Dep. With Dep. Spec Doall
177.mesa Floating point 7 2 93 0
179.art Floating point 10 (5) 8 (6) 99 ≈ 0
183.equake Floating point 28 (18) 24 (16) 74 26
188.ammp Floating point 4 1 50 0
175.vpr Integer 4 5 (4) 96 ≈ 0
181.mcf Integer 4 3 40 0
186.crafty Integer 16 16 23 0
255.vortex Integer 4 0 < 1 0
256.bzip2 Integer 24 (17) 37 (29) 91 5

load imbalance overhead from the heuristics for squash and restart overhead,
we separate the loops into two groups: those that we identify, by manual in-
spection, as not having dependences and those having dependences. Note that
loops in the latter group may or may not suffer data-dependence violations at
runtime resulting from the actual timing of speculative loads and stores and
the scheduling of threads. The loops in the first group correspond to those used
in Dou and Cintra [2004]. To estimate the accuracy of the model, we consider
for speculative parallelization all loops except those that are parallelizable by
SUIF1 alone (we call these Doall loops). When reporting speedups, we also do
not consider for speculative parallelization loops that are inside Doall loops or
are inside loops chosen for speculative parallelization (this is because our ar-
chitecture does not support nested parallelism). Table I lists the applications
we use along with the number of loops we consider for speculative execution
(the numbers in parenthesis are those discounting inner loops), the fraction of
the sequential execution time that is taken by these, and by Doall loops.

4.3 Simulation Environment

Several architectures for speculative execution in CMPlike systems have been
proposed (e.g. Akkary and Driscoll [1998]; Hammond et al. [1998]; Krishnan
and Torrellas [1999]; Marcuello et al. [1998]; Sohi et al. [1995]; Steffan and
Mowry [1998]; Tsai et al. [1999]). In this paper, we assume a CMP along the
lines of the Stanford Hydra CMP Hammond et al. [1998, 2000]. This system
consists of four single-issue processors, each with a private L1 data cache, and
a shared on-chip L2 cache with separate read and write buses. Each processor
has also a private fully associative speculative buffer. The bus protocol sup-
ports both cache coherence and speculative parallelization. Data-dependence
violations are handled with squashes and there is no support for direct register
communication. Table II shows the configuration parameters of the system we
model, which are similar to those listed in a recent publication on the Hydra
CMP [Prabhu and Olukotun 2003].

To measure the sequential execution times, we run the applications on a x86
simulator based on Virtutech’s Simics [Magnusson et al. 2002]. During these
simulations, we collect traces with the start and end times of all the loop it-
erations. These traces also include all the memory addresses with timestamps
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Table II. Parameters of the Speculative CMP Modeled

Processor Param. Value
Number of processors 4
Issue width 1
Memory Param. Value
L1, L2 size 16KB, 2MB
L1, L2 assoc. 4-way, 4-way
L1, L2 line size 32B, 64B
L1, L2 latency 1, 5 cycles
Main memory latency 50 cycles
Spec. buffer size, assoc. 2 KB, full
Spec. buffer latency 1 cycle

relative to the beginning of the iteration. The total sequential execution time
of the speculative loops is then easily computed. Before simulating the parallel
execution, we manually eliminate from the traces any cross-iteration commu-
nication through registers, since our speculative CMP does not support direct
register communication. A nominal dispatch and commit time of 12 processor
cycles is assumed. The traces are then fed into a trace-driven simulator that
simulates the parallel execution of these threads in a speculative CMP. This
simulator properly takes into account the scheduling restrictions of the spec-
ulative CMP and performs squashes based on the timestamps of conflicting
memory operations. For the loops that are parallelizable with SUIF1, we sim-
ply compute their sequential execution time and assume perfect speedup to
compute their parallel time. We then report speedups for the execution of all
500 million instructions, including the Doall loops. Note that these loops only
contribute to a significant fraction of the speedup in the cases of 183.equake
(Table I).

5. EVALUATION

5.1 Speculative Parallelization Performance

To assess how often speculative parallelization leads to speedups or slowdowns
with respect to sequential execution, Figure 4 shows, for each application, a
histogram of the actual speedups obtained with the simulations for four pro-
cessors. From this figure we observe that speculative parallelization leads to
a broad range of speedups and slowdowns: on average6 56% of the loops lead
to slowdowns, while the other 44% lead to speedups. These results show the
importance of being able to selectively apply speculative parallelization.

5.2 Model Accuracy

5.2.1 Outcome Prediction Accuracy. The output of our compiler model is
an estimate of the actual value of the speedup. The primary use of this pre-
diction is to switch off speculative parallelization of loops that are expected
to lead to slowdowns and speculatively parallelize those that are expected to

6This average is computed with the number of loops for each application as the weighting factor.
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Fig. 4. Histogram of speedups for the speculative loops. A speedup (S) less than one is a slowdown.
All loops except Doall are considered.

Fig. 5. Outcome of speedup predictions with respect to actual observed speedup or slowdown. All
loops except Doall are considered.

lead to speedups. Figure 5 shows, for each application, a breakdown of the
fraction of loops that are correctly predicted as leading to speedups (Predict
speedup/Actual speedup), correctly predicted as leading to slowdowns (Predict
slowdown/Actual slowdown), incorrectly predicted as leading to speedups (Pre-
dict speedup/Actual slowdown), and incorrectly predicted as leading to slow-
downs (Predict slowdown/Actual speedup).

From this figure we can see that our model is accurate enough to correctly
identify the speedup or slowdown outcome of the speculative execution in 67%
of the cases, on average. Also, it seems that when the model is incorrect, the
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Fig. 6. Outcome of squash predictions with respect to actual observed squash or no squash. All
loops except Doall are considered.

tendency is to overestimate the performance gains. This means that the model
rarely misses a valid opportunity to speculatively parallelize loops, but that it
does not prevent all of the performance degradation from slowdown cases.

5.2.2 Dependence Violation Prediction Accuracy. When considering
squash and restart overheads, an important intermediate result of the compiler
prediction model is its prediction of the occurrence or not of data-dependence
violations and, thus, squashes. Figure 6 shows, for each application, a break-
down of the fraction of loops that are correctly predicted as suffering violations
(Predict squash/Actual squash), correctly predicted as not suffering violations
(Predict no squash/Actual no squash), incorrectly predicted as suffering vi-
olations (Predict squash/Actual no squash), and incorrectly predicted as not
suffering violations (Predict no squash/Actual squash). The third case, Predict
squash/Actual no squash, occurs for two reasons: first, our compiler infrastruc-
ture does not yet take the indexes of arrays into consideration; and, second, true
data dependences may be hidden at runtime if the statically computed times-
tamps are incorrect and the load actually appears after the store. The fourth
case, Predict no squash/Actual squash, occurs only because our compiler in-
frastructure does not yet consider violations on scalar variables. Note that we
consider that a loop suffers violations as long as a violation occurs in at least
one of the invocations of the loop.

From this figure we can see that the model is very accurate in identifying
when a loop will not suffer data-dependence violations. On average, 79% of the
loops are correctly predicted as not suffering violations and, of those that do not
suffer violations, 97% are correctly predicted. Many of such correct predictions
are for loops that do have data dependences, but that do not turn into violations,
which indicates that the use of (static) timestamps in the model is enough to
correctly model the runtime events. However, from this figure we can see that
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Fig. 7. Cumulative error distributions. All loops except Doall are considered.

the model fails to detect a significant fraction of data-dependence violations. On
average, 16% of the loops are incorrectly predicted as not suffering violations
and, of those that do suffer violations, only 11% are correctly identified. This is
mainly because the current implementation of the model does not take scalar
variables into account when looking for possible data dependences.

5.2.3 Prediction Errors. In some cases, it may be useful to have an accurate
prediction of the actual value of the speedup or slowdown. Figure 7 shows the cu-
mulative error distribution for each application plotted at 10% boundaries. The
errors are computed as the absolute difference between the estimated speedups
and the actual speedups obtained with the simulation, divided by the actual
speedup. Thus, in this figure, a point (x, y) in the curve means that y% of the
loops have errors less than x%.

From this figure we can see that our model is reasonably accurate and is able
to predict the actual speedup or slowdown within 20% for 28% of the loops, on
average,7 and within 50% for 80% of the loops on average.

A closer look at the results shows that the largest errors appear when the
model estimates a smaller speedup (or larger slowdown) than what is actually
observed. These cases tend to relate to relatively small loops and the reason
for this overestimation of the slowdowns can be attributed to differences be-
tween the thread sizes estimated from the SUIF IR and the actual thread sizes.
Table III lists the sources of errors for the top 10% loops with the largest errors
(19 loops in total), along with the number of times these sources created such
large errors.

Finally, while a detailed quantification of the errors induced by the limita-
tions described in Section 3.6 are beyond the scope of this paper, we attempt to
provide some quantitative insight into their possible impact.

7This average is computed with the number of loops for each application as the weighting factor.
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Table III. Observed sources of prediction errors for the top 10% of loops
with the largest errorsa

Number of Range of
Description of Source Instances Errors (%)
Inaccurate thread size estimation with SUIF 8 57 to 137
Biased conditional 5 58 to 67
Unknown iteration count of inner loop 4 77 to 390
Misprediction of the squash overhead 2 58 to 62

a(One instance under the category of misprediction of the squash overhead is also present
in the category of biased conditional.)

Considering the unavailability of control-flow probabilities: Out of the 190
loops studied, 57% contain one or more conditional statements. Of these, 30%
have error less than 20% and 80% have error less than 50%. In contrast, 43% of
the 190 loops contain no control-flow statements and, of these, 34% have error
less than 20% and 91% have error less than 50%. Thus, overall there seems to
be some degradation in accuracy when conditional statements are present, but
this does not seem to be a significant source of errors across the loop suite.

Considering the unavailability of inner loop iteration count: Out of the 190
loops studied, 18% contain inner loops with statically unknown inner loop iter-
ation counts. Of these, 11% have error less than 20% and 62% have error less
than 50%. In contrast, 3% of the 190 loops contain inner loops with statically
known iteration counts. Of these, 20% have error less than 20% and 80% have
error less than 50%. Again, there seems to be some degradation in accuracy
when inner loops with unknown iteration counts are present, but this does not
seem to be a significant source of errors across the loop suite.

5.2.4 Comparison with Original Tuple Model [Do and Cintra 2004]. Com-
paring the results with the extended tuple model and including loops that may
suffer data-dependence violations against the results with the original tuple
model and not including such loops, we can see that prediction accuracy has
decreased slightly, but not significantly. The errors reported in Section 5.2.3
are much larger than the ones with the original model, but are mainly because
of the larger number of outer loops that have inner loops with statically un-
known iteration counts. The main effect of this reduction in accuracy is the
increase in the fraction of incorrectly predicted speedups at the expense of cor-
rectly predicted speedups; there is little change in the fractions of correctly and
incorrectly predicted slowdowns.

5.3 Performance Improvements

Finally, we estimate the actual performance impact of using our model to spec-
ulatively parallelize only loops that are predicted to have speedups. Figure 8
shows the overall speedups obtained for the execution of all the loops under
consideration. In this plot, a speedup of one means an execution time equal
to the sequential execution time. This figure shows the result of speculatively
parallelizing loops following the predictions of our framework (Selective) and
following a policy to speculatively parallelize all the loops (Naive). The figure
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Fig. 8. Overall performance gains. Only loops that are neither Doall nor inner loops of Doall or
speculatively parallelized loops are considered.

also shows the result of following a simple selection policy based on a minimum
predicted thread size of 50 instructions (Threshold). Such policy has been used
in previous work (e.g. Vijaykumar and Sohi [1998]) as a heuristic to amortize
any potential overheads from speculative multithreaded execution. For refer-
ence, the figure also shows the result of parallelizing only the Doall loops (Doall),
assuming perfect speedup for these loops (i.e., 4). Finally, the figure also shows
the result of selecting the loops, based on a perfect knowledge of the expected
speedups and slowdowns (Oracle).

From this figure, we observe that the selections based on the results of our
model perform as well as or better than Naive for all applications, and as well
as or better than Threshold for all applications except 179.art. The performance
gains of our model over these schemes are 8%, on average,8 for both cases and as
high as 25 and 67%, respectively. The selection policy based on our model is also
able to curb the slowdowns with Naive in the cases of 177.mesa and 181.mcf.
This was expected, since our model incorrectly predicts speedups in only 31%
of the cases, on average (Figure 5). Finally, our selection policy achieved per-
formance within 2% of that of Oracle, on average. This was expected, since
our model incorrectly predicts slowdowns in less than 2% of the cases, on
average (Figure 5).

5.4 Compilation Performance

In closing, in addition to evaluating the quality of our model and the impact
it has on the performance of speculative parallelization, we also evaluate the
performance of the model itself. Table IV shows, for each application, the wall-
clock execution time of our SUIF1 pass on a 2.8-GHz Pentium 4 Xeon machine
with 1 GB of main memory and running Red Hat Linux 3.2.2-5. The table also

8This average is computed with the simulated sequential execution time for each application as the
weighting factor.
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Table IV. Analysis Statistics and Performancea

Spec. pass gcc Base table size Extd. table size
Application KLOC exec. time (s) exec.time (s) Avg. Max. Avg. Max.
177.mesa 50 1.67 19.8 7 54 7 54
179.art 1.3 0.08 0.52 3 8 3 8
183.equake 1.5 0.14 0.65 1.8 12 1.9 12
188.ammp 13 45.57 5.38 7 97 7.8 194
175.vpr 17 3.71 5.16 3.2 9 3.2 9
181.mcf 1.9 0.04 0.95 6 16 6 16
186.crafty 21 25.56 8.93 4.8 90 6.8 162
255.vortex 53 0.62 17.86 1.5 3 1.5 3
256.bzip2 4.6 0.66 1.23 2.8 64 3.8 128

aPerformance comparison of speculative parallelization pass and gcc and average and maximum number of
different thread sizes used in the speculative parallelization cost model.

shows the number of lines of executable code, in thousands (KLOC), for each
application. For comparison, the table also shows the wall-clock execution time
of gcc 3.2.2 with -DSPEC CPU2000 -O3 -fomit-frame-pointer flags set.

From this table we can see that, except for 188.ammp and 186.crafty, the
execution time of the pass is comparable or shorter than a full compilation with
gcc. The execution time of the speculative parallelization cost model is very
reasonable, in practice, because the number of thread sizes generated in the
benchmark suite is relatively small, except for the two benchmarks mentioned.
The last four columns of Table IV also shows the average and maximum sizes
of the base and extended thread tables. From these we can see that, on average,
the number of thread sizes that the model has to manipulate (N in Section 3) is,
indeed, small, although it can become large for a few loops in some applications.
We also note that, with the exception of 188.ammp, 186.crafty, and 256.bzip2,
the addition of overhead thread sizes does not significantly increase the average
and maximum number of thread sizes. This is partly because the model does
not incorrectly identify too many violations.

6. RELATED WORK

Architectural support for speculative parallelization in CMP or multithreaded
processors has been extensively investigated [Akkary and Driscoll 1998;
Hammond et al. 1998; Krishnan and Torrellas 1999; Marcuello et al. 1998; Ooi
et al. 2001; Sohi et al. 1995; Steffan and Mowry 1998; Tsai et al. 1999]. Some of
these works have identified and measured the main overheads of speculative
parallelization. Additional hardware-based support to reduce some of these
overheads have also been investigated [Cintra and Torrellas 2002; Moshovos
et al. 1997; Steffan et al. 2002], but such support tend to be costly.

Compiler technology for speculative parallelization is still a maturing field
and most current techniques are based on heuristics or simple analyses. Most
compilers for speculative parallelization use a simple heuristic that tries to
amortize the overheads by considering only threads with estimated sizes within
a certain range [Kim and Eigenmann 2001; Vijaykumar 1998; Vijaykumar
and Sohi 1998]. To identify sources of speculative buffer overflow, the work
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in Kim and Eigenmann [2001] uses cache-miss equations to statically detect
potential conflicts. Cache-miss equations work well for affine array references,
but are not well suited for more irregular access patterns. The work in Zhai
et al. [2002, 2004] explores optimized compiler scheduling of instructions to
reduce the critical communication path between speculative threads, for both
register- and memory-resident values. Probabilistic dependence analysis has
been used in Chen et al. [2003], and Zhai et al. [2004] to estimate the like-
lihood of data-dependence violations, while a simple count of possible cross-
thread dependences has been used in Bhowmik and Franklin [2002]. To the
best of our knowledge, no previous work has investigated a compiler frame-
work that models all speculative parallelization overheads and attempts to
quantitatively estimate the performance gain, or loss, of the speculative ex-
ecution. Concurrently with our work, Du et al. [2004] developed a quantita-
tive cost model to estimate the performance loss of speculative parallelization
in the presence of data-dependence violations and squashes. Our works dif-
fer in that our proposed framework attempts to accommodate all speculative
parallelization overheads and, in this paper, we focus on the load imbalance
overhead.

In addition to static compiler optimizations, others have investigated the use
of profiling to identify good thread partitioning for speculative execution [Liu
et al. 2005; Marcuello and González 2002; Olukotun et al. 1999; Whaley
and Kozyrakis 2005]. Alternatively, dynamic partitioning of threads with
on-the-fly performance information through hardware monitors has been
proposed in Chen and Olukotun [2003], and Warg and Stenstrom [2003]. Both
approaches usually consider all the overheads combined, but require either
feedback-directed or dynamic recompilation of the code. There has also been
some work on compiler support for speculative multithreading based on “helper
threads” [Quinones et al. 2005]. This model of speculative multithreading
differs significantly from speculative parallelization and leads to very different
cost models and optimizations.

Perhaps the closest work to ours is Quinones et al. [2005], which also an-
alyzes all control flow paths and attempts to estimate the performance gains
from speculative multithreading. With respect to the execution and cost model,
that work differs from ours in that it attempts to emulate a trace-driven-like
execution of the threads using the control, flow graph, while, in our work, we
attempt to model the execution of threads mathematically. Another important
difference is with respect to the way threads are generated from the sequential
code. While we only consider loop iterations as threads, that work considers
threads created from basic blocks between what are called “control quasiinde-
pendent points.” Finally, unlike ours, that work also considered the possibility,
and costs, of adding precomputation slices to minimize some of the squash and
communication overheads.

7. CONCLUSIONS

In this paper we have proposed and evaluated a model of speculative mul-
tithreaded execution that can be used by the compiler to reason about the
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overheads and expected resulting performance gains, or losses, from specu-
lative parallelization. This model is based on estimating the likely execution
duration of threads and properly takes into account the scheduling restrictions
of most speculative execution environments. In this way, the model is flexible
enough to include all speculative parallelization overheads. Different from pre-
vious work, which present heuristics that attempt to estimate “good” or “bad”
sections for speculative multithreaded execution, our compiler framework at-
tempts to quantitatively estimate the speedup or slowdown. Such an estimate
can then be used by the compiler or runtime system to make more complex and
educated tradeoff decisions. For instance, in a highly loaded multiprogrammed
environment, the compiler or runtime system may decide to switch off specu-
lative parallelization even when a speedup is expected, if this speedup is too
small and does not justify the use of the extra resources.

The model proposed requires data structures that are simple to generate and
manage and formulas that are fast to compute. Where compile-time information
is too incomplete, the accuracy of the model could also be improved with only
simple profile information that can be obtained from a sequential execution
of the program. Finally, the model can be easily added to existing compiler
frameworks and requires little, if any, modification to common intermediate
representations.

Experimental results on a number of loops from SPEC benchmarks show that
our framework can identify, on average, 53% of the loops that cause slowdowns
and, on average, 95% of the loops that lead to speedups. In fact, our framework
predicts the speedups with an error of less than 20% for an average of 33%
of the loops across the benchmarks and with an error of less than 50% for an
average of 79% of the loops. Overall, the framework often outperforms, by as
much as 38%, a naive approach that attempts to speculatively parallelize all
the loops considered and is able to curb the large slowdowns caused, in many
cases, by this naive approach.

APPENDIX

An Example Computation of Sest

As an example, consider the code section in Figure 3a. The corresponding base
table is shown in Table AI. Thus, B = {W1, W2}. Assume a system with four
processors.

Looking at the memory operations associated with W2, we can assume the
possibility of a data-dependence violation when two different instances of this
thread size appear in the same tuple and the address of the store of the prede-
cessor is the same as the address of the load of the successor. This leads to a
new possible thread size W3, as shown in Table AII and Figure 3c. For the sake
of the example, assume that the probability that the same memory addresses
are accessed by two instances of W2 is pdep = 0.1.

Looking at the memory operations associated with W1, we can also assume
the possibility of a speculative buffer overflow at the store of this thread. This
leads to two new possible thread sizes W4, when the predecessor to wait for is an
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Table AI. Base Thread Sizes, Probabilities, and Memory Operations with Timestamps
(i.e., base table) for the Example in Figure 3aa

Thread Probability of Memory Example
name occurrence (pi) Execution time operations parameters
W1 50% w1 + w5 + w6 st Y@T1 W = 100; T1 = 50
W2 50% w1 + w2 + w3 + w4 ld X@T2 W = 200

st X@T3 T2 = 30; T3 = 120
aThe thread sizes are sorted in increasing order (thus w2 + w3 + w4 > w5 + w6). The values in the
last column are arbitrary and only for the sake of the example

Table AII. Base and Extended Thread Sizes (i.e., Extended
Table) for the Example in Figure 3a

Thread Final Example
name rank Execution time size
W1 1 w1 + w5 + w6 100
W2 3 w1 + w2 + w3 + w4 200
W3 5 2 ∗ (w1 + w2 + w3) + w4 320
W4 2 (w1 + w5 + w6) + w6 150
W5 4 (w1 + w2 + w3 + w4) + w6 250

instantiation of W1, and W5, when the predecessor to wait for is an instantiation
of W2, as shown in Table AII and Figure 3d. For the sake of the example,
assume that the probability that the store will overflow the speculative buffer
is povflow = 0.3. Thus, E = {W1, W4, W2, W5, W3}.

The next step is to compute the terms pi, j , the probabilities that thread size
Wi appears in processor j in a given tuple. The terms for i = 2 and i = 3
decrease in Case 2 of Section 3.3, as W2 is associated with a squash overhead.
Thus, using Eq. (8) and substituting both pprod and pbase with p2:

p2,0 = (1 − p2)0 ∗ p2 + (1 − (1 − p2)0) ∗ p2 ∗ (1 − pdep) = 0.5

p2,1 = (1 − p2)1 ∗ p2 + (1 − (1 − p2)1) ∗ p2 ∗ (1 − pdep) = 0.475

p2,2 = (1 − p2)2 ∗ p2 + (1 − (1 − p2)2) ∗ p2 ∗ (1 − pdep) = 0.4625

p2,3 = (1 − p2)3 ∗ p2 + (1 − (1 − p2)3) ∗ p2 ∗ (1 − pdep) = 0.45625

p3,0 = (1 − (1 − p2)0) ∗ p2 ∗ pdep = 0

p3,1 = (1 − (1 − p2)1) ∗ p2 ∗ pdep = 0.025

p3,2 = (1 − (1 − p2)2) ∗ p2 ∗ pdep = 0.0375

p3,3 = (1 − (1 − p2)3) ∗ p2 ∗ pdep = 0.04375

Note that for every j , the sum of p2, j and p3, j equals p2 = 0.5, as expected.
Also note that for increasing j the value of p2, j decreases and the value of p3, j

increases. This is also expected as the chances of a data-dependence violation
increases with more predecessors. This behavior is not captured in the model
of Dou and Cintra [2004] and in any of the current compiler models.

The terms for i = 1, i = 4, and i = 5 decrease in Case 3 of Section 3.3, as W1
is associated with a speculative buffer overflow overhead. Thus, using Eq. (9)
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and substituting pbase with p1, pf irstlonger with p1, pwait f or with p1 for W4, and
pwait f or with p2 for W5:

p1,0 = p1 ∗ (1 − povflow) + p1 ∗ povflow ∗
(

1 −
2∑

k = 1

pk

)0

= 0.5

p1,1 = p1 ∗ (1 − povflow) + p1 ∗ povflow ∗
(

1 −
2∑

k = 1

pk

)1

= 0.35

p1,2 = p1 ∗ (1 − povflow) + p1 ∗ povflow ∗
(

1 −
2∑

k = 1

pk

)2

= 0.35

p1,3 = p1 ∗ (1 − povflow) + p1 ∗ povflow ∗
(

1 −
2∑

k = 1

pk

)3

= 0.35

p4,0 =
⎛
⎝(

1∑
k = 1

pk

)0

−
(

0∑
k = 1

pk

)0
⎞
⎠ ∗ povflow ∗ p2 = 0

p4,1 =
⎛
⎝(

1∑
k = 1

pk

)1

−
(

0∑
k = 1

pk

)1
⎞
⎠ ∗ povflow ∗ p2 = 0.075

p4,2 =
⎛
⎝(

1∑
k = 1

pk

)2

−
(

0∑
k = 1

pk

)2
⎞
⎠ ∗ povflow ∗ p2 = 0.0375

p4,3 =
⎛
⎝(

1∑
k = 1

pk

)3

−
(

0∑
k = 1

pk

)3
⎞
⎠ ∗ povflow ∗ p2 = 0.01875

p5,0 =
⎛
⎝(

2∑
k = 1

pk

)0

−
(

1∑
k = 1

pk

)0
⎞
⎠ ∗ povflow ∗ p2 = 0

p5,1 =
⎛
⎝(

2∑
k = 1

pk

)1

−
(

1∑
k = 1

pk

)1
⎞
⎠ ∗ povflow ∗ p2 = 0.075

p5,2 =
⎛
⎝(

2∑
k = 1

pk

)2

−
(

1∑
k = 1

pk

)2
⎞
⎠ ∗ povflow ∗ p2 = 0.1125

p5,3 =
⎛
⎝(

2∑
k = 1

pk

)3

−
(

1∑
k = 1

pk

)3
⎞
⎠ ∗ povflow ∗ p2 = 0.13125
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Note that for every j , the sum of p1, j , p4, j , and p5, j equals p1 = 0.5, as
expected. Also note that for every j p4, j ≤ p5, j . This is also expected, as for W4
to appear, it is necessary that W2 does not appear in any predecessor processor,
while W5 can appear even if W1 appears in several predecessor processors, as
long as W2 appears in at least one predecessor processor.

Now using Eq. (11) we compute the probabilities of the parallel execution
time of a given thread tuple i (the correspondence between Wrank( j ) and some
Wk are given in Table AII):

p(Tpartuplei
= Wrank(1)) =

3∏
k = 0

(
1∑

l = 1

prank(l ),k

)

−
0∑

m = 1

p(Tpartuplei′ = Wrank(m)) = 0.0214

p(Tpartuplei
= Wrank(2)) =

3∏
k = 0

(
2∑

l = 1

prank(l ),k

)

−
1∑

m = 1

p(Tpartuplei′ = Wrank(m)) = 0.009

p(Tpartuplei
= Wrank(3)) =

3∏
k = 0

(
3∑

l = 1

prank(l ),k

)

−
2∑

m = 1

p(Tpartuplei′ = Wrank(m)) = 0.6007

p(Tpartuplei
= Wrank(4)) =

3∏
k = 0

(
4∑

l = 1

prank(l ),k

)

−
3∑

m = 1

p(Tpartuplei′ = Wrank(m)) = 0.2663

p(Tpartuplei
= Wrank(5)) =

3∏
k = 0

(
5∑

l = 1

prank(l ),k

)

−
4∑

m = 1

p(Tpartuplei′ = Wrank(m)) = 0.1026

Note that for every j the sum of p(Tpartuplei
= W j ) equals 1, as expected.

Also note that p(Tpartuplei
= W2) and p(Tpartuplei

= W5) are by far the largest
terms. The first is expected, since W2 is a base size that is only replaced with
a small probability (pdep). The later occurs because, despite W5 having smaller
probabilities of appearing in any given processor than its corresponding base
thread size, i.e. p5, j < p1, j for every j , W5 has a larger probability of deciding
the parallel time since it is much larger than W1. Finally, using Eq. (5), (6), and
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(12), we compute Tseqest, Tparest, and Sest:

Tseqest = 4
2∑

i = 1

Wi pi = 600

Tparest =
5∑

j = 1

W j p(Tpartuplei
= W j ) = 223

Sest = Tseqest

Tparest
= 600

223
= 2.69
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