
UCLA
Papers

Title
The ExoVM System for Automatic VM and Application Reduction

Permalink
https://escholarship.org/uc/item/6r96j4rb

Authors
Titzer, B L
Joshua Auerbach
David F. Bacon
et al.

Publication Date
2007

DOI
10.1145/1250734.1250775

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6r96j4rb
https://escholarship.org/uc/item/6r96j4rb#author
https://escholarship.org
http://www.cdlib.org/

The ExoVM System for Automatic VM and Application Reduction

Ben L. Titzer
UCLA Compilers

Group
titzer@cs.ucla.edu

Joshua Auerbach
IBM T.J. Watson
Research Center

josh@us.ibm.com

David F. Bacon
IBM T.J. Watson
Research Center

dfb@watson.ibm.com

Jens Palsberg
UCLA Compilers

Group
palsberg@cs.ucla.edu

Abstract
Embedded systems pose unique challenges to Java application
developers and virtual machine designers. Chief among these
challenges is the memory footprint of both the virtual machine
and the applications that run within it. With the rapidly increasing
set of features provided by the Java language, virtual machine
designers are often forced to build custom implementations that
make various tradeoffs between the footprint of the virtual
machine and the subset of the Java language and class libraries
that are supported. In this paper, we present the ExoVM, a system
in which an application is initialized in a fully featured virtual
machine, and then the code, data, and virtual machine features
necessary to execute it are packaged into a binary image. Key to
this process is feature analysis, a technique for computing the
reachable code and data of a Java program and its implementation
inside the VM simultaneously. The ExoVM reduces the need to
develop customized embedded virtual machines by reusing a
single VM infrastructure and automatically eliding the
implementation of unused Java features on a per-program basis.
We present a constraint-based instantiation of the analysis
technique, an implementation in IBM’s J9 Java VM, experiments
evaluating our technique for the EEMBC benchmark suite, and
some discussion of the individual costs of some of Java’s features.
Our evaluation shows that our system can reduce the non-heap
memory allocation of the virtual machine by as much as 75%. We
discuss VM and language design decisions that our work shows
are important in targeting embedded systems, supporting the long-
term goal of a common VM infrastructure spanning from motes to
large servers.
Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.2 [Programming Languages]: Java; D.3.4 [Programming
Languages]: Processors—run-time environments; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—program analysis.
General Terms Performance, Design, Languages, Verification.
Keywords pre-initialization, embedded systems, persistence,
dead code elimination, static compilation, static analysis, VM
design, VM modularity, feature analysis

1. INTRODUCTION
Developers have long recognized the advantages of virtual
machines for embedded systems; in fact, the development of Java

was originally motivated by the need to develop portable software
for cable set-top boxes. Embedded platforms such as sensor nodes
and cell phones are orders of magnitude smaller than desktop
systems, making resource limitations of paramount importance to
developers of both applications and virtual machines. The
limitations of such devices have slowed the adoption of Java and
other modern languages that require a large runtime system. We
believe that this is because a quality Java virtual machine that
supports dynamic class loading, JIT compilation, advanced
garbage collection, and the complete Java language specification
and accompanying class library is a dauntingly large piece of
software. A number of specialized embedded virtual machines
have been developed [5][7][13][15] that target embedded systems
and have investigated various subsets of the Java specification,
and a number of standards have arisen, for example, the
Connected Limited Device Configuration [4].
To combat the space limitations of these embedded domains,
researchers have investigated a number of techniques, including
heap compression [3], class file reduction [16], and VM
specialization [7]. Many of these systems begin with a custom
Java virtual machine implementation; i.e. a virtual machine
specifically designed for small footprint as opposed to feature
completeness or performance. For example, VM* [6] is an
extremely bare-bones customizable Java interpreter with a very
minimal class library targeting mote class devices. KVM [13] is a
specialized virtual machine with custom class libraries targeting
embedded devices with at least 192kb of RAM.
While developing a customized virtual machine and class library
for an embedded system domain has its advantages, it also has
important disadvantages. First, though a small VM is
comparatively less engineering effort than a fully featured one,
software development and maintenance effort is inevitably
duplicated. Secondly, both incremental improvements and
significant advancements in the state of the art in implementation
technology cannot be automatically utilized in the custom VM.
Thirdly, evaluations of research ideas and implementation
techniques inevitably have narrower scope because results are not
immediately comparable across domains that do not share a
common virtual machine infrastructure.
The ExoVM approaches this problem with the following
philosophy:

Reuse existing VM technology; make the program as static
and predictable as possible; and include only what is
necessary on a per-program basis.

The starting point of the ExoVM system is to reuse a complete
JVM implementation and Java class library. This could be any
industrial or research system that supports a sufficient feature set.
In our work, we chose an industrial strength virtual machine,
IBM’s J9 VM, but we believe that the general techniques
described here could be applicable to any virtual machine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, CA, USA.
Copyright © 2007 ACM 978-1-59593-633-2/07/0006…$5.00.

The second part of the philosophy is to limit the dynamism of the
program, or, almost equivalently, to restrict our attention to
programs that are largely static. While Java has a number of
dynamic features, in the embedded domain, many developers and
applications already assume a closed world scenario. Applications
are generally statically configured and then deployed onto the
device; execution on the device often does not require dynamic
class loading, reflection, etc. We believe this philosophy to be
sound for a large, important set of embedded programs.
The key insight in this paper is to recognize that the second and
third philosophical points allow pre-initialization, closure, and
persistence over both the program and the virtual machine
implementation together. Normally, the virtual machine builds
data structures for itself and the program during VM startup,
application loading, and also lazily during application execution;
with pre-initialization, all of these data structures are built before
running the program. Closure is the process of computing the
reachable portion of the complete system (both the VM and
application) over any execution, including the program and VM’s
code and the pre-initialized data structures. Persistence is the
process of copying these data structures from the pre-initialized
environment to the environment in which the program will run.
The ExoVM approach to each of these is to i.) perform pre-
initialization of the program and VM by loading the program into
the fully featured virtual machine and running the static
initializers of the Java classes; ii.) compute the closure using
feature analysis to analyze the program and VM simultaneously;
and iii.) persist the data structures computed by the closure
process into an image file that can be loaded by a specialized boot
VM that elides subsystems that are not needed to run the program.
Our work is similar to previous work by Courbot and Grimaud
[5], who built a customizable VM for the purpose of pre-
initializing and reducing embedded programs prior to deployment.
While the approaches share the same general philosophy, the
work we present in this paper has three key differences. First, we
begin with an existing industrial virtual machine implementation
and class library, because we believe in a larger goal of reusing
the same VM infrastructure for all classes of devices. Secondly,
we do not modify the virtual machine or its internal representation

of program quantities in order to support initialization or
reduction, but instead build our analysis on top of the virtual
machine without disturbing its implementation. Thirdly, we have
developed a constraint-based program analysis that allows our
system to approximate the implementation of native code for the
purpose of analysis and therefore express the interdependencies
between the virtual machine, the class library, and the class
libraries’ native code in a seamless framework.
The starting point for the system presented here is a development
configuration of the J9 virtual machine that does not precisely
correspond to a particular IBM product. We based our ExoVM
implementation on the CLDC 1.1 MT version of J9 and
additionally included some minimal Java reflection support that is
required to implement ExoVM pre-initialization and closure
computation. We developed the system on Linux x86, but the
ideas and results reported here should transfer to similar
configurations on different architectures, e.g. 32-bit ARM. We
studied two variants of this VM: one using the CLDC class library
(j9cldc, approximately 190kb), and another using a much larger
class library that approximates the J2SE 1.4 (j9max,
approximately 1.6mb).

2. FIXED AND PROPORTIONAL COSTS
The memory footprint of a Java application is not only comprised
of its own code and data and that of libraries, but also that of the
virtual machine. We can classify the cost of the virtual machine
into two main quantities: a fixed cost and a proportional cost. The
fixed cost corresponds to the VM’s code and static data structures
that are independent of the application, such as a garbage
collector, runtime class loading mechanism, interpreter, JIT
compiler, etc. The proportional cost corresponds to program’s
code and heap—e.g. the internal representation of its classes,
bytecodes, dispatch tables, compiled code, object type
information, method exception tables, Java objects, etc.
For many embedded applications, the fixed cost of the JVM
runtime system and its data structures may dwarf the size of the
application. For example, the j9cldc VM executable has more than
600kb of native code, 40kb of static data, and 190kb of Java
classes, while none of the 6 EEMBC benchmarks (Section 6)
requires more than 120kb for its class representations, and 5 of 6
execute successfully with a heap less of just 128kb. We believe
that this hampers the development of small Java applications for
small devices.
For larger applications, the fixed cost of the VM becomes less of
an issue, and eventually the proportional cost will dominate. Thus
an ideal situation would be a small fixed cost for small, simple
programs and a proportional cost that is related to the size and
characteristics of the application so that simplifications and
reductions of large programs produce predictable reductions in
total footprint.
Our observation is that the virtual machine’s fixed cost is not (or
should not be) as fixed as previously thought, and the VM can be
divided into fine-grained pieces of functionality that can be
related to features in the Java programming language. Dividing
the VM along feature lines allows costs that were previously fixed
to become proportional to the feature usage of the program.
Automated program analysis can then produce the set of features
used in a particular application and therefore allow a customized
Java VM with a smaller fixed cost to run the application.

Overview of ExoVM architecture

 J9VM

Program Meta Heap Data

Application
1. Pre-initialization: load+init app classes

2. Closure: compute reachable code+data

3. Persistence: save VM state

 J9VM

Program Meta Heap Data

 .img file

4. Run-time: load image into reduced VM

 booter

3. PRE-INITIALIZATION
Many large programs have sophisticated initialization routines
that build complex data structures for use throughout the life of
the program. In the case of a Java virtual machine, there are data
structures to represent and manage the program and the program’s
state, including threads, Java classes and methods, locks, the
garbage collector, JIT compiler, the Java heap, etc. The insight of
pre-initialization is that these complex, often long-lived data
structures that are normally built at the beginning of the program
execution can instead be built offline and saved for use when the
program begins execution. This saves the cost of the initialization
routines in both startup time and code footprint.
Our first goal is to reuse an existing virtual machine rather than
build a customized virtual machine. To support pre-initialization,
the data structures needed by the VM must be built offline
somehow and saved. We began studying our fully featured VM
and soon discovered that the mechanisms that build and maintain
internal data structures both at startup and throughout the
execution of the program (e.g. resolving and loading a class) are
remarkably complex. Our first approach was to attempt to
replicate the construction of these VM data structures in an offline
manner, but this foundered due to the complexity of trying to
replicate the effect of the startup routines. We quickly discovered
that a more elegant solution is to simply reuse the existing
initialization routines by running them to a consistent state, and
then taking a snapshot.
The ExoVM system implements this solution by loading the
program into the fully featured virtual machine using the standard
startup and loading routines in a non-intrusive manner. This
causes the virtual machine to initialize itself to a state that is ready
to begin executing the program. In particular, the VM has already
built the internal representation of the first of the program’s
classes and methods as well as parts of the class library. The VM
has already allocated threads, allocated some initial Java objects,
and resolved important Java classes needed in the internal
implementation of certain language features. Thus the ExoVM
analysis system has a complete picture of the initial data structures
that are required to begin executing the program. Pre-initialization
continues by forcing the VM to load rest of the application classes
(which would normally be dynamically loaded during application
execution), which causes it to build the internal representations of
these classes.

3.1 Class Initializers
In Java, a class may define an optional class initializer (also called
a static initializer), a static method that is executed upon the first
use of the class while the program is executing. While lazy
initialization gives rises to some semantic problems (e.g.
nondeterminism in initialization, exceptions in initializers, cyclic
dependencies, and dynamic incompatible class change
exceptions), in this paper, we are concerned with program
analysis and footprint, and this mechanism can be particularly
troublesome.
The dynamic resolution of class, method, and field references in
Java code has definite implementation costs. First, it requires that
the constant pool references include the metadata needed for
dynamic resolution, including the string names of methods, fields
and classes. Second, dynamic resolution may trigger class loading
and initialization. Third, the VM must also maintain more
metadata for every declared class, field, and method to anticipate
any new references in the future. Fourth, resolution mechanisms

inevitably include hash tables and other such fast search data
structures. Our view is that while dynamically loading application
classes may reduce the average case footprint for some
applications, the basic classes in the Java library have
dependencies that trigger large numbers of classes to be loaded
and initialized (many of which are never used by the program)
which leads to the effect of a large fixed JVM cost.
We consider dynamic resolution and initialization of classes as
unwarranted complexity and resource consumption, which lead us
to explore the implications of changing the model according to
our original design philosophy of making the program more static.
Thus, the ExoVM aggressively executes all class initializers for
the live classes of the program and resolves all constant pool
references to classes and methods as part of the pre-initialization
phase.
Changing the model has advantages as well as disadvantages.
First, it ensures that class initializers will not need to be executed
at runtime, which allows their code to be removed. Second, no
dynamic resolution of class, method, or field references will
occur, so the metadata that is needed for dynamic resolution can
be removed, and the mechanism can be removed from the VM.
Third, this allows a program written with the model in mind to
pre-allocate needed data structures in its static initialization
routines, which are discarded before runtime, yielding a staged
computation model closer to that proposed in [12].
One disadvantage of this approach is that it subtly alters the
semantics of Java’s class initializers, which some programs may
depend on. Also, eager initialization could trigger the execution of
routines that may not be triggered at runtime, which might
allocate large data structures that waste space, destroy the state of
other classes, and generally interact in unintended and
unpredictable ways. However, we believe that most programs for
this domain do not depend on the order or laziness of
initialization. For example, in the EEMBC benchmark suite, only
one program, Parallel, appears to do significant computation in
its class initializers. This initializer does not depend on other
classes, but simply allocates and initializes a static matrix of data
that is used during the benchmark. Moreover, we believe that the
closure technique described in the next section will automatically
remove many data structures that are allocated by the initialization
phase but are unused at runtime.

4. CLOSURE AND FEATURE ANALYSIS
To ensure the smallest possible program footprint, we would like
to automatically compute the smallest set of classes and methods
that are reachable over any execution of the program. There are a
number of whole-program techniques to address this problem,
including RTA [2], CHA [6], RMA [12], and flow analyses such
as 0-CFA, as well as whole-module analyses such as that used in
Jax [10]. All of these techniques share a common conceptual
approach to the problem, beginning at some entrypoint method(s)
in the program and building a static call graph that approximates
the reachable code in the program. If a closed world assumption is
made, code that is not reachable can be safely removed. If an open
world is assumed, constraints can be added to prevent unsafe
removal of possibly live code.
In the ExoVM system, we must compute reachability over not
only classes and methods in the Java program, but over the initial
Java heap as well as the data structures and code in the virtual
machine. Therefore our analysis builds on both RTA and RMA
and extends the class of whole-program, closed world techniques

that include live heap objects in the analysis. While RMA
operates on the live heap of a program and its code together and
removes code, objects and fields of objects, we need three new
types of constraints that relate entities at the program level to
entities at the implementation and VM level.

4.1 Feature Analysis
Now we will discuss feature analysis, which extends the
traditional approach of analysis over program entities to include
analysis of entities that are the explicit implementation of
language features within the virtual machine. We will use the term
entity to refer to a single data structure instance, Java object
instance, Java method, string constant, or VM native method that
consumes either code or data space. Unfortunately, in discussions
of programming languages, the term feature is perhaps the most
loosely used and most ill defined. However, we will use the term
feature to refer to the members of or operations on entities.
These definitions have the effect that we restrict our attention to
entities and features that have an isolatable implementation in the
virtual machine. Our analysis makes entities in the virtual
machine explicitly analyzable and will only include entities in the
final program image if they are reachable through feature usage in
the program.
Focusing in this way on entities and features with identifiable
implementation artifacts, we can reason more concretely about the
language in terms of these implementation artifacts. For example,
a large, coarse-grained service might be garbage collection—it
has a well-defined set of entities in its implementation that require
metadata about classes, objects, methods, and threads in order
support precise collection. Another example might be the ability
to invoke the getClass() method on an object, which allows
inspection of the run-time type of an object. This feature also has
an identifiable implementation; the VM has data structures that
represent classes that are exposed to the programs that call this
method. Another example is the use of the Class.forName()
static method; this method’s implementation requires the VM a
mapping between string names and class representations, as well
as the ability to search for a class if it is not already loaded. If the
program does not invoke this method at any point, then the data
structures corresponding to implementing this feature can be
removed. Other, finer-grained examples are floating point
arithmetic, explicit casts, synchronization operations, weak
references, JNI, reference arrays, static initializers, and
exceptions.
Many of these features correspond almost directly to Java
bytecodes, and some correspond to Java library methods and
classes. But other features become apparent after some study of a
virtual machine implementation, such as the ability to search for a
method by its name in a particular class, or to resolve constant
pool entries, which though they do not have a direct language
expression, are demanded by the implementation of other features.
For example, the ability to search for a class by its name is
necessary for the VM to resolve some internal Java classes such
as the exception classes.
The key idea behind feature analysis is that by treating these VM
data structures as first class entities in the closure process (just
like Java classes, objects and methods), the analysis can express
the implementation of the language as members and features of
these entities. Reachability over VM data structure instances then
becomes analogous to the familiar notion of reachability over
heap objects; an entity is only reachable if it is referred to by

another reachable entity through a feature. If an entity is not
reachable through a chain of feature uses in the program and the
virtual machine, then it can be safely removed from the image.

4.2 Constraint-based Analysis
Constraint-based program analyses separate the specification of a
correct solution to a program analysis problem from the
implementation of the algorithm that computes the best solution.
For example, in a program analysis problem such as flow analysis
or pointer analysis, the primary goal is to compute sets of program
quantities, such as “what variables may this pointer refer to over
any execution of the program?” or “what method
implementations are reachable at this call site in the program?”.
Constraint-based analyses usually have the property that there is
always a default, correct, but overly conservative solution such as
“this pointer might point to anything”. The art of getting a good
and verifiably correct solution to the analysis problem is deriving
a rule set that describes the minimal properties of a correct
solution. Once the constraint system is set up for a particular
program, a general constraint solver can compute the least
solution to the constraints, giving the most precise answer.

4.3 Entities and VM Types
The overall goal of our analysis is to compute the set of live
entities needed to implement the program, both at the Java level
and at the VM level. Each entity in our analysis has an associated
type, and each entity type has an associated set of live instances,
with the overall analysis result being the union of all entity sets.
An entity is considered live and should be included in the closure
if it is contained in its associated entity set. Our analysis models
Java-level entities such as methods, classes and objects in a
manner that is similar to RMA [12]. To simplify the constraints,
Java methods with implementations have type method, classes
have type Class, and each object instance’s type is its dynamic
Java type. Note that each of these Java-level entities may have one
or more associated VM-level entities, not all of which may be
ultimately considered live.
In addition to the Java entities of the program, our implementation
models 24 different types of VM data structures that are listed in
Figure 1. Among these types are: VMNative, which models the
native code implementations of java methods such as
Object.hashCode(); VMClass, the in-memory representation
of a Java class; VMMethod, the in-memory representation of a
method; VMROMClass, the on-disk and in-memory representation
of the read-only portion of a Java class such as string names, the
VMNative
VMJavaVM
VMClass
VMArrayClass
VMClassLoader
VMROMClass
VMMethod
VMROMMethod
VMConstantPool
VMROMConstantPool
VMITable
VMThread

VMStackWalkState
VMHashTable
VMMemorySegment
VMMemorySegmentList
VMPortLibrary
VMThreadMonitor
VMJavaLangString
VMJavaLangThread
VMInternalVMFunctions
VMMemoryManagerFunctions
VMInternalVMLabels
VMUTF8

Figure 1. A list of the VM types that we model in our
analysis. Each type has a list of associated features that are
used in implementing various language features. The
VMNative entity models implementations of Java native
methods from the class library that are supplied by the
VM.

constant pool, declared methods; VMThread, a representation of a
Java thread; and the all-important VMJavaVM data structure, which
contains pointers to important classes, the heap, collections of
classes, threads, and at least a dozen other subsystems.
Each pointer field within a native data structure is modeled as a
feature. This allows fine-grained precision in the analysis of the
data structures of the VM. Our analysis models dozens of features
for these types; space limitations preclude a complete list.

4.4 Constraint Sets
Our analysis uses two kinds of sets. The first kind of set, an E
(entity) set, contains live entities such as Java objects, VM data
structure instances, or Java method implementations. For
example, for a Java class C, the set EC represents the set of all
reachable objects of exact dynamic type C in the initial heap.
The second kind of set is an F (feature) set, which is a set that
contains the used features of a particular type. The set FC for a
Java class C contains the declared fields and methods of C that
have been used explicitly within the program. Similarly, the FT set
for a VM type T contains the declared fields of T that are used by
the program and the VM. Consider the VMMethod type. It has
declared fields name and signature that reference UTF8 strings.
These fields are modeled as features of the VMMethod type, and if
the fields (features) are used, then they will be added to the
FVMMethod set. Further constraints will ensure that the strings to
which these fields refer will be included in the closure.
There is one EC set and one FC set for every Java class C in the
program and one ET set and one FT set for every type T of VM data
structure types. To simplify the number of different types of
constraints, our analysis models a Java method implementation
(i.e. a method that contains code) as an entity of type method, and
the set of all reachable method implementations with Emethod.

4.5 Constraint Forms in Feature Analysis
Our analysis generates 8 types of constraints. Some of these
constraint forms should be familiar to readers who have prior
experience with RTA [2] or RMA [12].

(1) Base case for entities: expresses initially reachable
entities. If an entity e of type T is present at the beginning of the
program execution, for example the main method, then e is
reachable.

e ∈ ET

(2) Call site: analyzes call sites in the code of reachable
methods in the program. For each method M and each call site
e.p() in the code of M, where the static type of e is C, we have
the constraint:

M ∈ Emethod ⇒ p ∈ FC

(3) New object: analyzes allocation sites in the code of
reachable methods in the program. We use dummyC to denote a
dummy entity of type C. For each method M and each new C() in
the code of M, we have the constraint:

M ∈ Emethod ⇒ dummyC ∈ EC

(4) Feature use: approximates the result of using a
feature of a type by using the feature on all live instances of that
type. Specifically, if the entity e0 of type S is live, and the feature
f of type S is live, then the entity referred to by e.f is also live:

f ∈ FS ∧ e0 ∈ ES ⇒ e0.f ∈ Etypeof(e0.f)

(5) Subtyping: establishes the relationship between
used features in a supertype to the used features in a subtype.

Specifically, for types S and T in the Java program, where S is a
subtype of T, we have the constraint:

FT ⊆ FS

(6) Feature implication: expresses cases where the use
of a feature entails that some other feature is also used.
Specifically, for a type S with feature f, and a type T with feature
g we may have a constraint of the form:

f ∈ FS ⇒ g ∈ FT

(7) Entity implication: expresses cases where the
reachability of one entity implies the reachability of some other
entity. Specifically, for an entity d of type S, and another entity e
of type T, we can have constraints of the form:

d ∈ ES ⇒ e ∈ ET

(8) Entity implies feature: expresses cases where the
reachability of one entity entails the use of a feature of some other
type. Specifically, for an entity e of type S, and for a type T with
feature f, we may have the constraint:

e ∈ ES ⇒ f ∈ FT

The constraints (1), (2), and (3) are basically equivalent to rapid
type analysis, which maintains a set of possibly instantiated
classes RTAC and a set of reachable method implementations RTAM.
We can take this view if we consider the existence of dummyC in EC
is equivalent to C being in the live set RTAC maintained in RTA.
However, constraints (4) and (5) extend this basic view with live
entity sets that are similar to those maintained in the RMA [12]
analysis. The key insight is that the new constraints (6), (7), and
(8) extend the power of the analysis even further, allowing us to
specify per-language and per-VM constraints that relate Java
entities to their implementation and vice versa.

(a) fillInStackTrace ∈ EVMNative

⇒ dummy[I ∈ E[I

(b) fillInStackTrace ∈ EVMNative

⇒ classSegmentList ∈ FVMJavaVM

(c) startThread ∈ EVMNative

⇒ run ∈ Fjava.lang.Runnable

(d) startThread ∈ EVMNative

⇒ J9VMInternals.threadCleanup ∈ Emethod

(e) forName ∈ EVMNative

⇒ classTable ∈ FVMClassLoader

(f) indexOf ∈ EVMNative

⇒ bytes ∈ Fjava.lang.String

(g) javaVM ∈ EVMJavaVM

(h) e ∈ EVMJavaVM

⇒ mainThread ∈ FVMJavaVM

(i) m ∈ Emethod

⇒ repof(m) ∈ EVMMethod

Figure 2: Example per-VM constraints that relate native
methods to their implementation requirements. Natives
can (a) allocate new Java objects (b) use features of VM
structures (c) invoke Java virtual methods, (d) invoke
Java static methods (f) use fields of Java objects. Default
constraints assert certain entities (g) and features (h) to be
live. The constraint (i) ensures that if a Java method
implementation is live, then its representation in the VM
is live.

Figure 2 gives examples of some constraints that handle native
method implementations in the class library. These constraints
model the fact that native methods can trigger Java-level features
such as creating new Java objects and arrays, as well as directly
manipulating the VM’s internal data structures.
Consider the example constraint (e) in Figure 2, which models the
need for the class table, a hashtable that maps strings to class
representations in implementing the Class.forName Java native
method. If this native method is never called (i.e. it never is added
to the set EVMNative), then the classTable pointer need not be
analyzed, and consequently, this data structure can be removed.

4.6 Granularity and Natives vs. Sanity
In our experience, writing the constraints for all of Java’s
bytecodes was comparatively little effort, as this problem is
generally well understood and has already been explored in many
previous analysis techniques. If we make the assumption that the
constant pool entries are resolved and that classes are loaded and
initialized, then each bytecode amounts to little more than
manipulating Java objects and the stack and performing calls to
some simple VM services such as the allocator. At the bytecode
level, it is easy to have confidence that our analysis constraints for
each bytecode will force the inclusion of the necessary data
structures into the image, and that “pure Java” programs will
execute without problems on the ExoVM.
However, the bulk of Java—its class library—is not so simple.
Java has dozens of classes in its standard library that are
wormholes into the VM; many have native methods that
manipulate internal VM data structures directly. In our
development branch of J9, the VM and the native code that
implements the class library are developed separately but
significantly interdependent. In the j9cldc class library, there are
75 such native methods, many of which are implemented in
assembly code. In the J2SE (j9max) class library, there are more
than 200. Some use JNI or internal services to call back into Java
code or allocate Java objects. Each of these methods requires
constraints that trigger the inclusion of Java code and VM
structures that are required to implement them. We were able to
derive constraints for many of the most important ones. For some
we simply coarsen the granularity of the analysis of data
structures and conservatively include some possibly unreachable
data structures. Otherwise, we forbid native methods that we do
not yet support by dynamically trapping calls to them.
An example of tuning the analysis between fine-grained and
coarse-grained is the idea of modeling every pointer in every data
structure in the virtual machine as a feature that is only used when
certain constraints are triggered, such as the use of a particular
native method or VM service. While the most fine-grained
approach is attractive because it allows the maximum possible
reduction of data structures, only including them under the most
specific circumstances, the VM is complex enough that
determining the most specific constraints for each pointer
becomes infeasible. For many pointers, we were forced to simply
assert them either dead or live, depending on whether we intend to
support the associated feature in the ExoVM. Asserting them live
is always conservative and correct, provided that the data structure
that they refer to is correctly identified and copied into the image,
but this may bloat the image with data structures unneeded for the
particular program. However, asserting these pointers dead may
be too aggressive because if the associated language feature or
service is needed at runtime, the virtual machine or native
libraries will crash due to the missing data structures.

Our approach has taken the middle of the road, asserting many
pointers to be dead that correspond to VM features that we do not
intend to support, such as dynamic class loading, and asserting
some pointers live and always copying the referred data structures
because the right constraints may be elusive. Some data structures
are always necessary, such as the VMJavaVM data structure and the
VMThread structure for the main java thread. We’ve developed a
suite of micro-programs that target individual features in order to
expedite testing and debugging, allowing us to pinpoint the usage
of many pointers of VM structures and relate them to language
features. Individual tests cover the basic bytecode set of the JVM
and target specific native methods and language services. For
more complex correctness validation including native methods,
we rely on running larger benchmark programs and verifying that
each program computes the same results as it does on the
complete JVM. An industrial scale, feature-complete
implementation of our technique would have to test against the
Java language compliance kit, since we do not believe that it is
possible to directly prove the correctness of the analysis technique
due to the sheer size and complexity of the VM’s implementation
of native methods and language services.

5. PERSISTENCE
Persistence is the process of taking a snapshot of the fully
initialized virtual machine, including the data structures that
represent the program and the program’s state, and saving it to an
image file or other persistent store to be loaded later. Persistence
has been studied widely in programming languages and database
systems [19] and has a number of compelling advantages for
programming systems. Key issues are the transparency and
efficiency of the persistence mechanism, as well as data evolution
and versioning.
In our system, we perform imaging of the VM only once as part of
an offline analysis, so the efficiency considerations do not apply,
and we do not support data evolution simply because the kinds of
data we are saving are heavily tied to one particular VM
implementation. As such, our persistence framework, which we
refer to as the imager, need not be as general as that in previous
systems. After the closure process has computed a set of reachable
Java methods, classes, objects, and VM data structures, the imager
copies and relocates the data structures that exist inside the virtual
machine to a special region of memory which is then saved to the
disk. This image file is a compacted snapshot of the VM data
structures that represents only the reachable parts of the program.
The image file contains essentially a complete ready-to-go VM
that can be used immediately by simply mapping it into memory.

5.1 Persisting C-based Data Structures
Once the closure process has computed the set of reachable data
structures of the VM that are needed to correctly execute the
program, the imager must copy and relocate these data structures
to persistent store. These data structures are declared in C but are
manipulated by C, C++, and assembly code. The imager therefore
needs to persist C data structures in a way that preserves the
invariants that are implicit in the code that manipulates them. We
began studying the layout of these data structures and the code
that manipulates them, discovering that many had implicit and
complex structure and invariants. This manual process represents
a particularly unromantic but significant amount of our
development time, approximately 3-5 man-months. From our
efforts we were able to develop a description of each important
data structure: its layout, address alignment constraints, contents,

and its pointers to other data structures. The imager uses the
description to determine how to copy and relocate VM data
structures of each type, which includes computing the size and
layout of a particular instance and where pointers to other data
structures lie within the structure. This is similar to the description
of a Java object that a garbage collector needs in order to scan a
Java object for references to other objects, but can be considerably
more complicated. We discovered a number of implicit
constraints on data structures. Two constraints of note are implicit
adjacency/layout requirements, and strangely encoded pointers.
Many kinds of data structures are segregated into segments, which
allows mass allocation and deallocation as well as fast traversal
over all data structures of a given type. The dependence on this
layout is buried deep in the assembly and C code of the VM; to
reuse this code without modification requires preserving the
invariants it expects. This requires the imager to collect certain
structures into new segments during the copy process.
Furthermore, some data structures have grown very complex as
they evolved over time. For example, the representation of a
class has numerous adjacent, embedded members of variable size;
code throughout the VM relies on being able to find known
structures at computed offsets from the beginning of the structure.
Other data structures throughout the VM point into the middle of
the class structure. A correct description of this data structure for
the imager required a lot of manual analysis of the code to
determine its undocumented layout and implicit constraints.
Some pointers are not only pointers, but contain some extra high
or low-order bits that are used in implementation tricks for
monitors [8], virtual tables, and object headers, etc. These pointers
are assumed to point to structures aligned on addresses that are
particular powers of two (most often 8, 16, and 256 bytes), which
allows the lower bits to be reused. To address this common
undocumented tendency, the description of each data structure in
the imager contains alignment constraints that are used when the
imager chooses a new address for a data structure, making the
undocumented constraint explicit. Similarly, pointers that contain
extra information bits have special types that instruct the imager
to preserve the appropriate low-order bits; the type makes it
obvious that the pointer contains extra information. Another
problematic feature of the system is the use of self-relative
pointers within some data structures; a self-relative pointer stores
an offset instead of an actual address; instead, code that uses the
pointer computes the actual address by adding the pointer’s value
to the pointer’s location. This allows some data structures to be
copied to and from disk and shared across processes without
relocation. Because the imager moves pieces of these data
structures around independently, to reuse the VM code
unmodified the imager must encode and decode self-relative
pointers while moving data structures. Like pointers with extra
bits, self-relative pointers have a special type in the data structure
description that documents this fact and allows the imager to
handle these pointers with equal ease as normal pointers.

5.2 Compilation
By completely initializing the VM before imaging, the system can
also save any compiled code of the application that has been
produced by the JIT. In fact, because of the offline nature of the
imaging process, we can simply compile all of the reachable
methods with the JIT compiler ahead of time. The JIT and its data
structures can then be removed completely from the ExoVM,
effectively turning the original VM into a static compiler – albeit
one which generates superior code because all classes are resolved

and initialization code has already been executed. Because the
compilation takes place in a closed-world scenario, there is no
need to invalidate code and recompile.
The imaging process can support pre-compilation of all the
methods in the reachable program by running the JIT compiler
after feature analysis and directing it to generate code into the
image. Some small modifications to the JIT compiler are
necessary to support this; for example, the JIT often writes the
absolute address of data structures and functions that it assumes
do not move into the compiled code; the imager must make sure
that these pointers are found and relocated before the image is
finished. We can support this simply by instrumenting the JIT to
record where it writes absolute addresses into the compiled code,
and then patching the addresses at image load time. With this
approach, there is no need to alter the machine code that the JIT
generates. This feature was not fully operational due to time
constraints, and our experimental results use the interpreter and do
not include any compiled code. The size of the compiled code
depends on the quality of the JIT compiler and the total amount of
reachable code of the program.

5.3 Loading a VM Image
Although the imager is capable of producing an image that
contains a complete collection of data structures that represent the
program and the VM needed to run the program, the imager is not
capable of actually copying the machine code of the VM into the
image. The implementation technology of the VM, particularly
the linking model of C and C++, precludes this, and computed
jumps and branches within machine code cannot be supported
without linking information. Our approach to this problem is to
separate the data structures (which are stored in the image file)
from the boot VM, a specialized offline build of the fully featured
VM that contains little or no internal data structures. The boot VM
lacks the normal VM initialization routines that build these
internal data structures, as well as mechanisms such as the JIT
compiler and dynamic class loader, but instead only contains VM
subsystems that will be needed at runtime for each application,
such as the interpreter, garbage collector, natives of the class
library, etc. The boot VM loads all of the needed data structures
from the image.
Our imager produces image files that are intentionally not
relocatable; i.e. all of the internal data structures and code within
an image file contain absolute pointers to each other that assume
the image starts at a fixed memory address. This simplifies both
the imager and the boot VM, allowing the boot VM to simply
memory map the image from the file to the specific address and
thus begin using the image in memory without relocating any
internal pointers. Additionally, the image header contains pointers
to the main class, the main method of the program, and to
important global VM data structures so that the boot VM need not
search the image for where to begin execution.

5.4 Patching and Rebuilding
The separation between the code and data of a VM instance is not
perfectly clean, and many internal data structures that are saved in
the image contain pointers to internal VM functions that do not
exist in the image. The boot VM must supply the implementation
of these functions by patching these pointers when the image is
loaded into memory.
For example, the VM-level method data structure contains a
pointer to code that implements the calling convention for that
method when it is called. An interpreted method contains a

pointer to machine code in the interpreter to set up the interpreter
state, while a synchronized method has a pointer to code that
obtains the lock on its receiver object before executing the
method, and so on. When the imager copies a data structure and
encounters pointers to VM machine code or a C function, it uses a
table of known VM routines to identify the target routine. At load
time the boot VM loads the image and replaces these pointers
with pointers to its implementation of the corresponding routines.
One further complication with the imaging process is that not all
internal data structures can be persisted. In particular, the VM has
data structures that correspond to operating-system level resources
such as threads that are not transferable from one process to the
next. The boot VM rebuilds certain data structures as necessary
when it loads the image into memory.

6. EXPERIMENTS

6.1 Footprint
We have implemented pre-initialization, closure, and persistence
in a J9-based virtual machine with the j9cldc and j9max class
libraries to investigate the memory footprint of the VM and the
application in an embedded scenario. These numbers are obtained
on the x86 build of J9 running on Linux 2.6. We did not
specifically measure the execution time for the imaging process,
but even with our completely untuned implementation written
mostly in Java and running in interpreted mode, the entire load,
initialize, closure, and copy process of the ExoVM took less than
5 seconds on a fast Pentium IV workstation for all our
benchmarks.
To evaluate the effectiveness of the ExoVM approach, we
measured a number of footprint factors for our benchmark
programs. First, we evaluate the fixed cost of the VM in terms of
the VM’s static code and data footprint for the two original VM
configurations and the ExoVM specialized boot VM. The j9cldc
configuration consists of 600kb of compiled VM code and
natives, 260k of read-only data (of which 190kb is the class
library compiled into the executable), 20kb of initialized data and
17kb of uninitialized data. The j9max configuration consists of
750kb of compiled VM code and natives, 90kb of read only data,

25kb or initialized data, and 17kb of uninitialized data. To reduce
the size of the boot VM, we statically compiled out some
subsystems, including the JIT compiler, bytecode parser and
verifier, zip library support, and some initialization routines,
saving about 200kb of compiled code. We believe that there is
more code that can be removed from this specialized VM, but
linking issues and time constraints limited our ability to explore
this.
In Figure 3, we compare the dynamic memory footprint
measurements for the data structures and loaded classes across our
benchmarks for the j9cldc configuration. The first row of each
benchmark contains the measurements of several footprint factors
on the unmodified VM running the applications with the j9cldc
class library. These footprint factors are CLIB; the size of the
j9cldc class library which is compiled into the binary executable;
ROCL, or read-only portions of the application classes
(VMROMClasses); RWCL, or the read-write portions of these
same application classes (VMClasses); NHA, or non-heap
allocations, which are data structures allocated by the VM that are
not Java objects and thus not part of the heap. Each of these
numbers is given in kilobytes. The two remaining footprint factors
apply only to ExoVM images. These are INH, or imaged non-
heap data structures, which are non-heap data structures that were
allocated during pre-initialization and have been persisted; and
IHEAP, which is the initial heap of Java objects, consisting of
everything from string constants to application objects that have
been determined to be reachable by the closure process. Note that
we do not measure the heap of the program here; we were able to
successfully execute the benchmarks with just 128kb of heap
(except kXML, which required 512kb), which makes the VM data
structures by far the dominating factor.
These measurements show the effectiveness of pre-initializing the
virtual machine and the application. With a completely built
image, the ExoVM has no need of an external class library
(CLIB). Feature analysis detects that a number of classes are
unused and removes them, showing a moderate reduction in the
size of the read-write class representations (RWCL). The size of
the initial heap (IHEAP) generated by running the class
initializers in the virtual machine is relatively small. But by far the

J9MAX Dynamic Footprint

 CLIB ROCL RWCL INH NHA IHEAP total

Chess 0 597 162 0 557 0 1316

-exo 0 619 172 27 10 171 999

Crypto 0 595 163 0 591 0 1349

-exo 0 615 173 26 10 195 1019

kXML 0 588 159 0 646 0 1393

-exo 0 610 169 26 11 204 1020

Parallel 0 574 147 0 549 0 1270

-exo 0 0 0 0 0 0 0

PNG 0 549 148 0 504 0 1201

-exo 0 577 160 25 11 181 954

RegExp 0 571 156 0 518 0 1245

-exo 0 598 168 26 11 173 976
 Figure 4 shows dynamic non-heap memory footprint for six

benchmarks on the j9max configuration. Each benchmark
has two rows: one for its footprint in the standard VM, and
the next row for its footprint using the ExoVM system.

J9CLDC Dynamic Footprint

 CLIB ROCL RWCL INH NHA IHEAP total

Chess 188 74 60 0 394 0 716

-exo 0 113 42 33 10 14 212

Crypto 188 70 62 0 466 0 786

-exo 0 114 46 25 10 41 236

kXML 188 56 58 0 483 0 785

-exo 0 113 45 27 11 50 246

Parallel 188 49 45 0 415 0 697

-exo 0 87 26 30 89 33 265

PNG 188 26 48 0 383 0 645

-exo 0 74 32 23 11 30 170

RegExp 188 47 55 0 389 0 679

-exo 0 98 41 26 11 21 197
 Figure 3 shows dynamic non-heap memory footprint for six

benchmarks on the j9cldc configuration. Each benchmark
has two rows: one for its footprint in the standard VM, and
the next row for its footprint using the ExoVM system.

biggest factor is the reduction of the VM’s dynamic non-heap
memory allocations. This shows that pre-initialization of the VM
and feature analysis allow the ExoVM to remove the dominant
factor of space consumption in these benchmarks. The reduction
of nonheap memory allocations is between 62 and 73% for these
six benchmark applications.
Figure 4 evaluates the ExoVM system over the j9max
configuration, which consists of the same VM, but a more
complex, fully featured class library. In this scenario, the class
library is much larger and not compiled directly into the virtual
machine’s binary. However, we can see that the dominant cost is
now the size of loaded classes, because the more fully featured
class library has many more interdependencies that force many
classes to be loaded and initialized.
The most surprising result is that running the feature analysis to
produce an image for each of these programs does not yield a
smaller ROM or RAM class footprint. We investigated the reason
for this and discovered that the j9max’s Class.getName()
implementation uses a HashMap that maps a class representation
to its String name. Because our analysis is partly written in Java
and runs on this underlying class library to compute the closure, if
the program being analyzed calls the Class.getName() method,
then the analyzer will discover that this HashMap is reachable, and
begin analyzing its contents. Because these classes are reachable
through Java references, it therefore concludes that all loaded
classes are live, and none are removed from the image.
We were not able to successfully run the Parallel benchmark on
the ExoVM because the larger class library demanded an
implementation of protection domains. This highlights another
problem with a larger class library. Adding a security layer tends
to demand reflective features from the VM that thwart our
program analysis.

6.2 Feature study
During the course of developing the ExoVM system and testing
feature analysis for correctness, we wrote a large number of Java
micro-programs that each uses a specific language feature, such as
virtual dispatch, throwing an exception, calling API methods,
running threads, etc. While primarily intended for our internal use
in testing correctness, they had the side effect of exposing just
how much of the class library and VM is tied to a particular
language feature. Though we don’t claim that our micro-program
suite is fully comprehensive of the Java language, it did highlight
important issues.

Our micro-programs were
all less than 25 lines of
code and primarily target a
single language-level
feature. We found a good
approximation of the cost
of a feature to be the size
of the image generated by
our analysis, which
includes not only VM data
structures, but also
persisted classes and
objects. As a starting
point, we tested how small
an image our system could
generate for the empty
program; i.e. a single static

main method that just returns. On both j9cldc and j9max, our
system generates a 5kb image that contains the main class (1kb),
java.lang.Object (1kb), the VMJavaVM structure (1.3kb), a
thread (0.6kb), and a small number of other data structures. This is
enough to reuse the existing VM code unmodified and execute
successfully.
From this starting point, we investigated the incremental cost of
supporting individual languages features; Figure 5 shows several
microprograms and the resulting image size for the j9cldc and
j9max configurations. From the table, we can see that several of
the programs that generate small images on the j9cldc
configuration have large images on j9max.
We were able to pinpoint the problems that cause this
phenomenon of “feature explosion” in j9max by using these unit
feature tests. Our analysis revealed that the larger class library
contains a small number of “precarious” dependencies, such as the
HashMap in the Class.getName() implementation mentioned
previously. When one such dependency is triggered, it tends to
pull in a large subset of the class library as a whole. This can be
seen in the tests that construct and print exceptions: they tend to
pull in a large portion of the class library, which ultimately dwarfs
their small size. Our conclusion from this study is that future
design of class libraries and careful implementations should strive
for modularity in features so as to avoid penalizing small
programs and avoid precarious dependencies. Another approach
might be to embed more special knowledge into analysis about the
Java-level entities that implement Java features, such as
introducing a special case for the Class.getName()’s internal
data structures. This remains as future work.

6.3 Experience
In our experience developing the ExoVM system in J9, we
learned important specific lessons about its implementation and
virtual machine design in general that we think are valuable to
others. The first is that complex and arcane data structures
frustrate automated imaging techniques, and judging from the
implementation complexity that seems to replicate itself over and
over throughout the virtual machine, we simply do not believe
they are worth whatever gain they intend. By far most of our
manual effort was inferring implicit constraints of data structures
and fixing problems with pointers and layout tricks, working
backwards from VM crashes. Although certain techniques have
advantages for performance or space usage, our overwhelming
sense after studying the code is that the most complicated data
structures have evolved by accretion and their deep entanglement
with the VM makes them particularly dangerous to migrate or
refactor. We think that our work shows the value of persisting the
internal VM data structures for an embedded domain, and simpler,
more regular data structures make this technique far easier.
The second lesson we learned from our experience is that there
appears to be more modularity to source-level language features
than previously thought. This dimension of modularity does not
seem to be borne out in current virtual machine design and class
library implementations, including J9 and those with which the
authors have previous experience. We believe that this dimension
of modularity has important applications in the embedded domain,
and that valuing it more highly in the design of new virtual
machines will have positive consequences for the ability to scale
from small devices to server class machines.
The third lesson that we learned is that the implementation
technology of the virtual machine itself matters considerably. We

Image Size: microprograms

 cldc max

empty 5 5

arrays 38 225

checkcast 42 228

constructors 13 31

floating point 7 7

nullptr 13 31

.getClass() 30 872

refarray 40 226

Hello world 75 872

Figure 5

cannot achieve our ultimate goal of total automatic VM
specialization given J9’s current implementation technology, in
particular the static linking model inherent in C and C++
applications. A large amount of our development effort has been
spent in recovering implicit usage patterns of data structures in the
virtual machine which is difficult to automate in these languages.
Given our experience with large applications written in higher-
level, statically typed languages like Java, we believe that much of
this analysis can be streamlined, if not automated completely, if
the VM itself were implemented in a language that is more
amenable to disciplined program analysis.
Not surprisingly, we found that complexity of the class library
makes an important difference to the footprint of an application,
especially with the implementation of the basic language features
such as exceptions. The CLDC implementation of the class library
contains not only fewer classes over all, but the implementation of
basic classes such as exceptions has fewer dependencies, resulting
in smaller image sizes. The difference between the CLDC
exceptions and those in j9max is many more live classes and
consequently more used language features. Further, the
implementation of exceptions and I/O (particularly international
formatting of strings) is significantly more complex in the j9max
library. For this technique to work well on such class libraries,
more modularity in these implementations seems to be necessary,
or the analysis must be improved.
Java’s dynamic invocation of class initializers may work well for
a bigger domain, but our results with pre-initialization of the
classes in an image tends to suggest that for this domain,
significant gains can be made by changing the model.

7. CONCLUSION
We believe the investigation of feature analysis contributes
positively to a grand challenge in virtual machine construction:
the design and implementation of a language runtime and
compilation model that seamlessly adapts across static and
dynamic views of compilation and scales from extremely small
systems up to very large systems. Our experimental results show
that pre-initialization coupled with feature analysis can reduce the
non-heap footprint of the java virtual machine’s data structures by
as much as 73% and the VM code size by as much as 30% by
removing unnecessary subsystems.
This work also has wider applicability because it can provide the
basis for relating language features to their efficiency
considerations more directly. We illustrated how feature analysis
has shed light on the interconnectedness of the virtual machine
and the class library implementation with constraints. We believe
that this is just a first step to exposing the efficiency implications
of feature use to application developers to whom footprint
matters, such as embedded system programmers.

8. FUTURE WORK
Our VM persisting techniques are an artifact of the
implementation technology of the virtual machine we chose for
our research. We believe that much more would be possible if we
could automate the derivation of constraints and the persistence
mechanism.
We believe there are more opportunities for static optimization
such as in an ideally static closed-world scenario, where the
imaging process might be able to copy both the application’s
code, the internal data structures of the VM, and also the live code
of the VM into the image, producing a completely customized

VM compiled together with the application into a standalone
program. This would allow the VM and its JIT compiler to be
reused as a static compilation system, perhaps allowing it to
employ sophisticated compiler optimizations like partial
evaluation or static specialization to itself and the application code
together.
Conversely, we believe this work might have applicability for
dynamic languages as well, where in a dynamic open-world
scenario, a more flexible VM infrastructure that was decomposed
modularly according the features of the language might employ a
dynamic feature analysis so that parts of the program and VM
infrastructure are loaded on demand as they are needed by the
program. The VM might reduce the granularity of dynamic
loading to single methods rather than single classes, only loading
methods as they are used. Similarly, the VM might defer the
construction of internal data structures until they are demanded by
the first use of a particular programming language feature. This
may significantly improve performance for small dynamic
programs and help combat large class libraries.
Shorter-term work in this area would be to further extend the
development of the analysis technique to larger sets of features
and to a more powerful runtime and JIT compiler.

9. REFERENCES
[1] C. Ananian and M. Rinard. Data Size Optimizations for Java

Programs. In 2003 Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’03). San Diego, CA.
June 2003.

[2] D. Bacon and P. Sweeney. Fast Static Analysis of C++
Virtual Calls. In Proceedings of the 11th Annual Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA ’96). San Jose, CA. Oct. 1996.

[3] G. Chen, M. Kandemir, N. Vijaykrishnan, M. Irwin, B.
Mathiske, and M. Wolczko. Heap Compression for Memory-
constrained Java Environments. In Proceedings of the 18th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’03).
Anaheim, CA. Oct 2003.

[4] Connected Limited Device Configuration (CLDC).
http://java.sun.com/j2me

[5] A. Courbot, G. Grimaud, and J.-J. Vandewalle. Romization:
Early Deployment and Customization of Java Systems for
Constrained Devices. In Proceedings of Second
International Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices (CASSIS).
Nice, France, Mar 2005.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs using Static Class Hierarchy
Analysis. In the 9th European Conference on Object-
Oriented Programming (ECOOP ’95). Aarhus, Denmark.
Aug. 1995.

[7] J. Koshy and R. Pandey. VM*: A Scalable Runtime
Environment for Sensor Networks. In The 3rd annual
conference on Embedded Network Sensor Systems (SENSYS
’05). San Diego, CA. Nov. 2005.

[8] T. Onodera and K. Kawachiya. A study of locking objects
with bimodal fields. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA ’99). New York,
New York. Nov. 1999.

[9] D. Spoonhower, J. Auerbach, D. Bacon, P. Cheng, and D.
Grove. Eventrons: A Safe Programming Construct for High-
Frequency Hard Real-Time Applications. In Proceedings of
the ACM Conference on Programming Language Design and
Implementation (PLDI ’06) Ottawa, CN. June 2006.

[10] F. Tip, C. Laffra, P. Sweeney, and D. Streeter. Practical
experience with an application extractor for Java. In
Proceedings of the 14th Annual Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA ’99). New York, New York. Nov.
1999.

[11] F. Tip and J. Palsberg. Scalable Propagation-based Call
Graph Construction Algorithms. In the 15th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’00). Minneapolis,
MN. Oct. 2000.

[12] B. L. Titzer. Virgil: Objects on the Head of a Pin. In
Proceedings of the 21th Annual Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA ’06). Portland, Oregon. Oct. 2006.

[13] Sun Microsystems, J2ME Building Blocks for Mobile
Devices, 2000.

[14] D. Rayside and K. Kontogiannis, Extracting Java library
subsets for deployment on embedded systems," Sci. Comput.
Program., vol. 45, no. 2-3, pp. 245-270, 2002.

[15] Z. Chen, Java Card Technology for Smart Cards:
Architecture and Programmer's Guide. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[16] D. Rayside, E. Mamas, and E. Hons, Compact java binaries
for embedded systems," in Proceedings of the 1999
conference of the Centre for Advanced Studies on
Collaborative research, p. 9, IBM Press, 1999.

[17] D.-W. Chang and R.-C. Chang, Ejvm: an economic java run-
time environment for embedded devices," Software Practice
& Experience, vol. 31, no. 2, pp. 129-146, 2001.

[18] D. Mulchandani, Java for embedded systems," Internet
Computing, IEEE, vol. 2, no. 3, pp. 30-39, 1998.

[19] M. P. Atkinson, M. Dmitriev, C. Hamilton, T. Printezis:
Scalable and Recoverable Implementation of Object
Evolution for the PJama1 Platform. POS 2000: 292-314.

