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tioneer’s goal is to hire a team and pay as little as possktem-
ples of this setting include shortest-path auctions antexerover
auctions. Recently, Karlin, Kempe and Tamir introducedva def-
inition of frugality ratio for this problem. Informally, the “frugality
ratio” is the ratio of the total payment of a mechanism to ardds

payment bound. The ratio captures the extent to which théasec

nism overpays, relative to perceived fair cost in a trutlafuction.
In this paper, we propose a new truthful polynomial-timetiunc
for the vertex cover problem and bound its frugality ratice $tiow
that the solution quality is with a constant factor of optiraad
the frugality ratio is within a constant factor of the bestsgible
worst-case bound; this is the first auction for this problerhave
these properties. Moreover, we show how to transform arj-tru
ful auction into a frugal one while preserving the approxiom
ratio. Also, we consider two natural modifications of the wigifin
of Karlin et al., and we analyse the properties of the rasylgay-
ment bounds, such as monotonicity, computational hardm@ess
robustness with respect to the draw-resolution rule. Weysthe
relationships between the different payment bounds, hmthén-
eral set systems and for specific set-system auctions, sugath
auctions and vertex-cover auctions. We use these new dafimit
in the proof of our main result for vertex-cover auctions aiaoot-
strapping technique, which may be of independent interest.
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1. INTRODUCTION

In aset system auctiathere is a single buyer and many vendors
that can provide various services. It is assumed that therlsuse-
quirements can be satisfied by various subsets of the ventiese
subsets are called tHeasible setsA widely-studied class of set-
system auctions igath auctionswhere each vendor is able to sell
access to a link in a network, and the feasible sets are thaise s
whose links contain a path from a given source to a given mesti
tion; the study of these auctions has been initiated in tharss
paper by Nisan and Ronen [19] (see also [1, 10, 9, 6, 15, 7, 20])

We assume that each vendor has a cost of providing his seyvice
but submits a possibly largéid to the auctioneer. Based on these
bids, the auctioneer selects a feasible subset of vendusnakes
payments to the vendors in this subset. Each selected venjibys
a profit of payment minus cost. Vendors want to maximise profit
while the buyer wants to minimise the amount he pays. A nhtura
goal in this setting is to designteuthful auction, in which vendors
have an incentive to bid their true cost. This can be achidyed
paying each selected vendor a premium above her bid in such a
way that the vendor has no incentive to overbid. An intengsti
question in mechanism design is how much the auctioneehait
to overpay in order to ensure truthful bids.

In the context of path auctions this topic was first addressed
Archer and Tardos [1]. They define tfreigality ratio of a mech-
anism as the ratio between its total payment and the costeof th
cheapest path disjoint from the path selected by the mestmani
They show that, for a large class of truthful mechanisms lfiig t
problem, the frugality ratio is as large as the number of edigéhe
shortest path. Talwar [21] extends this definition of frityadatio
to general set systems, and studies the frugality ratioeofigssical
VCG mechanism [22, 4, 14] for many specific set systems, ssich a
minimum spanning trees and set covers.

While the definition of frugality ratio proposed by [1] is vl
motivated and has been instrumental in studying truthfuthme
nisms for set systems, it is not completely satisfactorynsiter,
for example, the graph of Figure 1 with the costss = cge =

c
D

Figure 1: The diamond graph



ccp = 0, cac = cgp = 1. This graph is 2-connected and the
VCG payment to the winning path ABCD is bounded. However,
the graph contains no A-D path that is disjoint from ABCD, and
hence the frugality ratio of VCG on this graph remains undsfin
At the same time, there is nmonopoly that is, there is no ven-
dor that appears in all feasible sets. In auctions for otyyeed of
set systems, the requirement that there exist a feasihlé@obis-
joint from the selected one is even more severe: for exanfiple,
vertex-cover auctions (where vendors correspond to theesrof
some underlying graph, and the feasible sets are vertexs)abhe
requirement means that the graph must be bipartite. To digal w
this problem, Karlin et al. [16] suggest a better benchmatkich

is defined for any monopoly-free set system. This quantityctv
they denote by, intuitively corresponds to the value of a cheapest
Nash equilibrium. Based on this new definition, the authars-c
struct new mechanisms for the shortest path problem and staiw
the overpayment of these mechanisms is within a constatutrfat
optimal.

1.1 oOurresults

Vertex cover auctions We propose a truthful polynomial-time
auction for vertex cover that outputs a solution whose @sithin
a factor of 2 of optimal, and whose frugality ratio is at most,
where A is the maximum degree of the graph (Theorem 4). We
complement this result by proving (Theorem 5) that for angnd
n, there are graphs of maximum degeeend sized (n) for which
anytruthful mechanism has frugality ratio at ledst2. This means
that the solution quality of our auction is with a factor26f op-
timal and the frugality ratio is within a factor df of the best pos-
sible bound for worst-case inputs. To the best of our knogded
this is the first auction for this problem that enjoys thesappr-
ties. Moreover, we show how to transform any truthful mecsran
for the vertex-cover problem into a frugal one while pregegthe
approximation ratio.
Frugality ratios Our vertex cover results naturally suggest two
modifications of the definition of in [16]. These modifications
can be made independently of each other, resulting in fdterdi
ent payment bound§Umax, TUmin, NTUmax, andNTUmin,
whereNTUmin is equal to the original payment bounaf in [16].
All four payment bounds arise as Nash equilibria of cert@mgs
(see the full version of this paper [8]); the differenceswen
them can be seen as “the price of initiative” and “the pricemf
operation” (see Section 3). While our main result aboutevert
cover auctions (Theorem 4) is with respectN@ Umin = v, we
make use of the new definitions by first comparing the paymént o
our mechanism to a weaker bouNd'Umax, and then bootstrap-
ping from this result to obtain the desired bound.

Inspired by this application, we embark on a further study of
these payment bounds. Our results here are as follows:
1. We observe (Proposition 1) that the four payment bounds al-
ways obey a particular order that is independent of the ehoic
the set system and the cost vector, nanfElymin < NTUmin <
NTUmax < TUmax. We provide examples (Proposition 5 and
Corollaries 1 and 2) showing that for the vertex cover pnobéay
two consecutive bounds can differ by a factomof 2, wheren is
the number of agents. We then show (Theorem 2) that this @epar
tion is almost best possible for general set systems by pgaviat
for any set systerl'Umax/TUmin < n. In contrast, we demon-
strate (Theorem 3) that for path auctiof®max/TUmin < 2.
We provide examples (Propositions 2, 3 and 4) showing that th
bound is tight. We see this as an argument for the study oéxert
cover auctions, as they appear to be more representatikie gén-
eral team -selection problem than the widely studied patti@ns.

2. We show (Theorem 1) that for any set system, if there is a cost
vector for whichTUmin and NTUmin differ by a factor ofq,
there is another cost vector that separ&t@8dmin andNTUmax

by the same factor and vice versa; the same is true for the pair
(NTUmin, NTUmax) and (NTUmax, TUmax). This symme-

try is quite surprising, since, e.d[LUmin and NTUmax are ob-
tained fromNTUmin by two very different transformations. This
observation suggests that the four payment bounds shouwitlite

ied in a unified framework; moreover, it leads us to beliew the
bootstrapping technique of Theorem 4 may have other apiglica

3. We evaluate the payment bounds introduced here with respect
to a checklist of desirable features. In particular, we rbges the
payment bound = NTUmin of [16] exhibits some counterintu-
itive properties, such as nonmonotonicity with respectddiag a
new feasible set (Proposition 7), and is NP-hard to compithied-

rem 6), while some of the other payment bounds do not sufben fr
these problems. This can be seen as an argument in favoungf us
weaker but efficiently computable bounN§' Umax andTUmax.

Related work

Vertex-cover auctions have been studied in the past by TéR4d
and Calinescu [5]. Both of these papers are based on thetaefini
of frugality ratio used in [1]; as mentioned before, this me#hat
their results only apply to bipartite graphs. Talwar [21pwsis that
the frugality ratio of VCG is at mostf\. However, since finding
the cheapest vertex cover is an NP-hard problem, the VCG mech
anism is computationally infeasible. The first (and, to tkstlof
our knowledge, only) paper to investigate polynomial-timehful
mechanisms for vertex cover is [5]. This paper studies atiauc
that is based on the greedy allocation algorithm, which Inaapa
proximation ratio oflog n. While the main focus of [5] is the more
general set cover problem, the results of [5] imply a frugatatio

of 2A? for vertex cover. Our results improve on those of [21] as
our mechanism is polynomial-time computable, as well ahose

of [5], as our mechanism has a better approximation ratid,vea
prove a stronger bound on the frugality ratio; moreoves buund
also applies to the mechanism of [5].

2. PRELIMINARIES

In most of this paper, we discuss auctions for set systems. A
set systenis a pair(€,F), where is theground set|E| = n,
andF is a collection offeasible setswhich are subsets &. Two
particular types of set systems are of interest to ushertest path
systems, in which the ground set consists of all edges ofvaonkt
and the feasible sets are paths between two specified wertael
t, andvertex covesystems, in which the elements of the ground set
are the vertices of a graph, and the feasible sets are ventexscof
this graph.

In set system auctions, each elemeaf the ground set is owned
by an independent agent and has an associated non-negetive ¢
The goal of the centre is to select (purchase) a feasibleEsath
elemente in the selected set incurs a costf The elements that
are not selected incur no costs.

The auction proceeds as follows: all elements of the groend s
make their bids, the centre selects a feasible set based:dnds
and makes payments to the agents. Formally, an auction reedefi
by anallocation ruleA : R™ — F and apayment ruleP : R" +—
R™. The allocation rule takes as input a vector of bids and dscid
which of the sets iiF should be selected. The payment rule also
takes as input a vector of bids and decides how much to payto ea
agent. The standard requirements mdividual rationality, i.e.,
the payment to each agent should be at least as high as hissidcu
cost (0 for agents not in the selected set andor agents in the



selected set) anicicentive compatibilityor truthfulnessi.e., each
agent’s dominant strategy is to bid his true cost.

An allocation rule ismonotoneif an agent cannot increase his
chance of getting selected by raising his bid. Formallyaioy bid
vectorband anye € £,ife ¢ A(b)thene &€ A(b1,...,b.,...,by)
for any b, > b.. Given a monotone allocation rulé and a bid
vectorb, thethreshold bidt. of an agent € A(b) is the highest
bid of this agent that still wins the auction, given that thiesbof
other participants remain the same. Formally= sup{b, € R |
e € A(bi,...,b.,...,by)}. Itis well known (see, e.g. [19, 13])
that any auction that has a monotone allocation rule and gagis
agent his threshold bid is truthful; conversely, any trutfguction
has a monotone allocation rule.

The VCG mechanism is a truthful mechanism that maximises
the “social welfare” and pays 0 to the losing agents. Forysesm
auctions, this simply means picking a cheapest feasibj@aging
each agent in the selected set his threshold bid, and paytng 0
all other agents. Note, however, that the VCG mechanism reay b
difficult to implement, since finding a cheapest feasiblensay be
intractable.

If U is a set of agentsy(U) denotesy
denotesy s bu-

wey Cw- Similarly, b(U)

3. FRUGALITY RATIOS

We start by reproducing the definition of the quantitfrom [16,
Definition 4].

Let (£, F) be a set system and I8tbe a cheapest feasible set
with respect to the true costs. Thenv(c, S) is the solution to the
following optimisation problem.

Minimise B = 3 be subject to

(1) be > c.foralle € £
2 ZeES\T be < ZeGT\S cc.forall T € F

(3) for everye € S, there is a@l. € F such thate ¢ T. and
Ze’ES\TC ber = Ze/ETC\S Ce

The boundv(c, S) can be seen as an outcome of a two-stage
process, where first each agent S makes a bid. stating how
much it wants to be paid, and then the centre decides whaiher t
accept these bids. The behaviour of both parties is affdnetie
following considerations. From the centre’s point of vighe set
S must remain the most attractive choice, i.e., it must be gmon
the cheapest feasible sets under the new eQsts c. fore ¢ S,

c. = b for e € S (condition (2)). The reason for that is that
if (2) is violated for some seT’, the centre would preféef to S.

this kind of bidding behaviour is plausible. On the otherdhan a
game in which the centre proposes payments to the ageftarial
the agents accept them as long as (1), (2) and (3) are satisfed
would be likely to observe a total paymentufc, S). Hence, the
difference between these two definitions can be seen as fite p
of initiative”.

Second, the agents may be able to make payments to each other.
In this case, if they can extract more money from the centre by
agreeing on a vector of bids that violates individual raiday (i.e.,
condition (1)) for some bidders, they might be willing to dn as
the agents who are paid below their costs will be compendated
other members of the group. The bids must still be realigtc,
they have to satisfy. > 0. The resulting change in payments can
be seen as “the price of co-operation” and corresponds tadieg
condition (1) with the following weaker conditiofi™):

be >0foralle € €. (1%)
By considering all possible combinations of these modifbces,
we obtain four different payment bounds, namely

e TUmin(c, S), which is the solution to the optimisation prob-
lem “Minimise B” subject to(1*), (2), and (3).

e TUmax(c, S), which is the solution to the optimisation prob-
lem “Maximise B” subject to(1*), (2), and (3).

e NTUmin(c, S), which is the solution to the optimisation
problem “Minimise B” subject to (1), (2), and (3).

e NTUmax(c, S), which is the solution to the optimisation
problem “MaximiseB” subject to (1), (2), (3).

The abbreviations TU and NTU correspond, respectively;aos-
ferable utility and non-transferable utility, i.e., theeags’ abil-
ity/inability to make payments to each other. For concressn
we will take TUmin(c) to be TUmin(c, S) whereS is the lex-
icographically least amongst the cheapest feasible sets.d&V
fine TUmax(c), NTUmin(c), NTUmax(c) andv(c) similarly,

though we will see in Section 6.3 that, in fabtI'Umin(c, S) and

NTUmax(c, S) are independent of the choice 8f Note that the
quantityv(c) from [16] is NTUmin(c).

The second modification (transferable utility) is more itiely
appealing in the context of the maximisation problem, a$ last
sume some degree of co-operation between the agents. \Waile t
second modification can be made without the first, the regplti
payment bound’'Umin(c, S) is too strong to be a realistic bench-
mark, at least for general set systems. In particular, ibeesmaller
than the total cost of the cheapest feasible$é¢see Section 6).

On the other hand, no agent would agree to a payment that doesNevertheless, we provide the definition as well as some tesul

not cover his costs (condition (1)), and moreover, eachtages
to maximise his profit by bidding as high as possible, i.eneno
of the agents can increase his bid without violating coodit(2)
(condition (3)). The centre wants to minimise the total payso

about TUmin(c, S) in the paper, both for completeness and be-
cause we believe that it may help to understand which prigsert
of the payment bounds are important for our proofs. Anottosr p
sibility would be to introduce an additional constraj}, . be >

v(c, S) corresponds to the best possible outcome from the centre’s 3.c s Ce in the definition of TUmin(e, S) (note that this condi-

point of view.

This definition captures many important aspects of our fiati
about ‘fair’ payments. However, it can be modified in two ways
both of which are still quite natural, but result in diffetgrayment
bounds.

First, we can consider the worst rather than the best pessitt
come for the centre. That is, we can consider the maximunh tota
payment that the agents can extract by jointly selecting thids
subject to (1), (2), and (3). Such a bound corresponds tomisxi
ing B subject to (1), (2), and (3) rather than minimising it. If it
is the agents who make the original bids (rather than ther&gnt

tion holds automatically fol'Umax(c, S), asTUmax(c, S) >
NTUmax(c, S)); however, such a definition would have no direct
game-theoretic interpretation, and some of our resultpditicu-
lar, the ones in Section 4) would no longer be true.

REMARK 1. Forthe payment bounds that are derived from max-
imisation problems, (i.eTUmax(c, S) andNTUmax(c, S)), con-
straints of type (3) are redundant and can be dropped. Hence,
TUmax(c, S) and NTUmax(c, S) are solutions to linear pro-
grams, and therefore can be computed in polynomial time g lo
as we have a separation oracle for constraints in (2). In castt



NTUmin(c, S) can be NP-hard to compute even if the siz&a$
polynomial (see Section 6).

The first and third inequalities in the following observatifol-
low from the fact that conditioiil ™) is strictly weaker than condi-
tion (1).

PROPOSITION 1.

TUmin(c, S) < NTUmin(c, S) <
NTUmax(c, S) < TUmax(c, S).

Let M be a truthful mechanism fdi€, 7). Letpa(c) denote
the total payments oM when the actual costs ate A frugality
ratio of M with respect to a payment bound is the ratio between
the payment of\1 and this payment bound. In particular,

¢TUmin(M) = sup pam(c)/TUmin(c),
@ TUmax(M) = sup pam(c)/TUmax(c),

(M) (c)
ANTUmin(M) = SUp P (c)/NTUmin(c),
(M) (c)

ONTUmax(M) = sup pm(c)/NTUmax(c).

We conclude this section by showing that there exist seesyst
and respective cost vectors for which all four payment beuse
different. In the next section, we quantify this differenbeth for
general set systems, and for specific types of set systemts,asu
path auctions or vertex cover auctions.

ExamMPLE 1. Consider the shortest-path auction on the graph
of Figure 1. The cheapest feasible sets are all paths ffotm D. It
can be verified, using the reasoning of Propositions 2 andi@he
that for the cost vectatag = ccp = 2,¢cc = 1,cac = cgp =
5, we have

e TUmax(c) = 10 (Withbas = bep = 5, bec = 0),
e NTUmax(c) =9 (withbap = bep =4, bpc = 1),
e NTUmin(c) = 7 Withbag = bep = 2, bsc = 3),
e TUmin(c) =5 (wWithbas = bop =0, bpc = 5).
4. COMPARING PAYMENT BOUNDS

4.1 Path auctions

We start by showing that for path auctions any two conseeutiv
payment bounds can differ by at least a factor of 2.

PROPOSITION 2. There is an instance of the shortest-path prob-
lem for which we hav&TUmax(c)/NTUmin(c) > 2.

PROOF This construction is due to David Kempe [17]. Con-
sider the graph of Figure 1 with the edge cosis; = cgc
ccp = 0, cac = e¢gp = 1. Under these costs, ABCD is the
cheapest path. The inequalities in (2) &rg; + bpc < cac = 1,
bec + bep < egp = 1. By condition (3), both of these inequal-
ities must be tight (the former one is the only inequalityolw
ing bag, and the latter one is the only inequality involvibgp).
The inequalities in (1) aréas > 0, bgc > 0, bep > 0. Now,
if the goal is to maximiséas + bsc + bep, the best choice is
bap = bep = 1, bpc = 0, SONTUmax(c) = 2. On the other
hand, if the goal is to minimisksas + brc + bep, one should set
bap =bep =0,bpc =1, SONTUmin(C) =1. O

PROPOSITION 3. There is an instance of the shortest-path prob-
lem for which we hav&Umax(c)/NTUmax(c) > 2.

PROOF. Again, consider the graph of Figure 1. Let the edge
costs becag ccp = 0, cge 1, cac = cgp = 1. ABCD
is the lexicographically-least cheapest path, so we camasshat
S = {AB, BC,CD}. The inequalities in (2) are the same as in
the previous example, and by the same argument both of them ar
in fact, equalities. The inequalities in (1) dres > 0, bpc > 1,
bep > 0. Our goal is to maximiséas + bpc + bep. If we have
to respect the inequalities in (1), we have tolset = bep = 0,
bpc = 1, soONTUmax(c) = 1. Otherwise, we can sétir
bep =1,bpe = 0,s0TUmax(c) > 2. O

PROPOSITION 4. There is an instance of the shortest-path prob-
lem for which we hav&TUmin(c)/TUmin(c) > 2.

PROOF This construction is also based on the graph of Figure 1.
The edge costs asp = ccp = 1, cgec = 0, cac = ¢cBp =
1. ABCD is the lexicographically least cheapest path, so we ca
assume that = {AB, BC,CD}. Again, the inequalities in (2)
are the same, and both are, in fact, equalities. The inaigsdh (1)
arebap > 1,bgc > 0,bcp > 1. Our goal is to minimiséas +
bsc +bep. If we have to respect the inequalities in (1), we have to
setbap = becp = 1, bpe = 0, SONTUmin(c) = 2. Otherwise,
we cansebap = bep =0, bpc = 1,50TUmin(c) < 1. O

In Section 4.4 (Theorem 3), we show that the separationtsesul
in Propositions 2, 3, and 4 are optimal.

4.2 Connections between separation results

The separation results for path auctions are obtained csaihe
graph using very similar cost vectors. It turns out that thisot
coincidental. Namely, we can prove the following theorem.

THEOREM 1. For any set systeif€, F), and any feasible sé&t,
max TUmax(c, S) max NTUmax(c, S)
¢ NTUmax(c, S) ¢ NTUmin(c, S)’
s NTUmax(c,S) s NTUmin(c, S)
¢ NTUmin(c,S) ¢ TUmin(c,S) ’
where the maximum is over all cost vectaersor which S is a
cheapest feasible set.

The proof of the theorem follows directly from the four lerrsna
proved below; more precisely, the first equality in Theoreris 1
obtained by combining Lemmas 1 and 2, and the second egisality
obtained by combining Lemmas 3 and 4. We prove Lemma 1 here;
the proofs of Lemmas 2— 4 are similar and can be found in the ful
version of this paper [8].

LEMMA 1. Suppose that is a cost vector fo(€, F) such that
S is a cheapest feasible set atiimax(c, S)/NTUmax(c, S) =
«. Then there is a cost vectef such thatS is a cheapest feasible
set andNTUmax(c’, S)/NTUmin(c’, S) > a.

PROOF Suppose thal Umax(c, S) = X andNTUmax(c, S) =
Y where X/Y = «. Assume without loss of generality that
consists of elements, . .., k, and letb* = (b1, ...,b;) andb® =
(b3,...,b7) be the bid vectors that correspond TdJmax(c, S)
andNTUmax(c, S), respectively.

Construct the cost vectat’ by settingc;, = ¢; for i ¢ S,
¢; = min{c;, b; } fori € S. Clearly,S is a cheapest set undef.
Moreover, as the costs of elements outsid& oémained the same,
the right-hand sides of all constraints in (2) did not charsgeany
bid vector that satisfies (2) and (3) with respectt@lso satisfies
them with respect te’. We will construct two bid vectork® and
b* that satisfy conditions (1), (2), and (3) for the cost veeforand



Figure 2: Graph that separates payment bounds for vertex
cover,n =7

haved >, o b7 = X, >, .gbi = Y. AsNTUmax(c’,5) > X
andNTUmm(c’, S) <Y, this implies the lemma.

We can set? = b}: this bid vector satisfies conditions (2)
and (3) sinceb' does, and we havé > min{c;,b;} = ¢,
which means thab® satisfies condition (1). Furthermore, we can
setb} = b?. Again, b* satisfies conditions (2) and (3) sinbé
does, and sinck? satisfies condition (1), we ha¥g > ¢; > ¢/,
which means thab* satisfies condition (1). O

LEMMA 2. Suppose is a cost vector fo(£, F) such thatS is
a cheapest feasible set ahdl'Umax(c, S)/NTUmin(c, S) = a.
Then there is a cost vectef such thatS is a cheapest feasible set
andTUmax(c’, S)/NTUmax(c’, S) > a.

LEMMA 3. Suppose that is a cost vector fof€, F) such that
S'is a cheapest feasible set aNd'Umax(c, S)/NTUmin(c, S) =
a. Then there is a cost vectef such thatS is a cheapest feasible
set andNTUmin(c’, S)/TUmin(c’, S) > a.

LEMMA 4. Suppose that is a cost vector fof€, F) such that
S is a cheapest feasible set aNdl Umin(c, S)/TUmin(c, S) =
a. Then there is a cost vectef such thatS is a cheapest feasible
set andNTUmax(c’, S)/NTUmin(c’, S) > a.

4.3 \ertex-cover auctions

In contrast to the case of path auctions, for vertex-cover au
tions the gap betweeNTUmin(c) andNTUmax(c) (and hence
betweenNTUmax(c) and TUmax(c), and betweel'Umin(c)
andNTUmin(c)) can be proportional to the size of the graph.

PROPOSITION 5. For anyn > 3, there is a am-vertex graph
and a cost vectoe for whichTUmax(c)/NTUmax(c) > n — 2.

PROOF The underlying graph consists of &m — 1)-clique on
the verticesX,..., X,—1, and an extra verteX, adjacent to
Xn-1. The costs arex, = cx, = --- = c¢x,_, = 0,¢cx, =
¢x,_, = 1. We can assume that = {Xo, X1,..., Xn_2} (this
is the lexicographically first vertex cover of cagt For this set
system, the constraints in (2) abg, + bx, < cx,_, = 1 for
i =1,...,n — 2. Clearly, we can satisfy conditions (2) and (3)
by settingbx, = 1fori = 1,...,n — 2, bx, = 0. Hence,
TUmax(c) > n — 2. For NTUmax(c), there is an additional
constraintbx, > 1, so the best we can do is to det, = 0 for
i=1,...,n—2,bx, =1, which impliesNTUmax(c) = 1. O

Combining Proposition 5 with Lemmas 1 and 3, we derive the
following corollaries.

COROLLARY 1. For anyn > 3, we can construct an instance
of the vertex cover problem on a graph of sizehat satisfies
NTUmax(c)/NTUmin(c) > n — 2.

COROLLARY 2. For anyn > 3, we can construct an instance
of the vertex cover problem on a graph of sizehat satisfies
NTUmin(c)/TUmin(c) > n — 2.

Pij\P Pij+2\P

eij eij+1 m
i XWV'M Yijez

ij+1

Figure 3: Proof of Theorem 3: constralntsforP and P, do

not overlap

i+2

4.4 Upper bounds

It turns out that the lower bound proved in the previous scbse
tion is almost tight. More precisely, the following theoresmows
that no two payment bounds can differ by more than a facter; of
moreover, this is the case not just for the vertex cover probbut
for general set systems. We bound the gap betii@émax(c) and
TUmin(c). Since€TUmin(c) < NTUmin(c) < NTUmax(c) <
TUmax(c), this bound applies to any pair of payment bounds.

THEOREM 2. For any set systert€, F) and any cost vecto,
we haveél'Umax(c)/TUmin(c) < n.

PrROOF Assume wlog that the winning s& consists of ele-
mentsl, ..., k. Letcy,...,cx be the true costs of elements$h
letdy, ..., b, be their bids that correspond ®@Umin(c), and let

Y, ..., by, be their bids that correspond T max(c).

Consider the conditions (2) and (3) f6t One can pick a subset
L of at mostk inequalities in (2) so that for each= 1, ..., k there
is at least one inequality if that is tight forb]. Suppose that the
jthiinequality inL is of the formb;;, + - - - + b;, < c(T5 \ S). For
b;, all inequalities inL are, in fact, equalities. Hence, by adding
up all of them we obtaik 3>, _, ,b; > >, ,c(T;\S).
On the other hand, all these mequalltles appear in comd(ﬂyq SO
they must hold fow;’, i.e.,>>,_, b < etk c(Ti\ S).
Combining these two inequalities, we obtain

nTUmin(c) > kTUmin(c) > TUmax(c).

yeeey

O

REMARK 2. The final line of the proof of Theorem 2 shows
that, in fact, the upper bound dfiUmax(c)/TUmin(c) can be
strengthened to the size of the winning éetiNote that in Proposi-
tion 5, as well as in Corollaries 1 and 2,= n— 1, so these results
do not contradict each other.

For path auctions, this upper bound can be improved to 2 hmatc
ing the lower bounds of Section 4.1.

THEOREM 3. For any instance of the shortest path problem,
TUmax(c) < 2 TUmin(c).

PROOF Given a networkG, s, t), assume without loss of gen-
erality that the lexicographically-least cheapest path, P, in G

is {e1,...,ex}, whereer = (s,v1),e2 = (v1,v2),...,ex =
(Vk-1,t). Letes,...,cr be the true costs afy,. .., ek, and let
b’ = (bi,...,b},) andb” = (b7,...,b}) be bid vectors that cor-

respond tol'Umin(c) andTUmax( ) respectively.

Forany: = 1,...,k, there is a constraint in (2) that is tight for
b; with respect to the bid vectdy’, i.e., ans—t path P; that avoids
e; and satisfies’ (P\ P;) = c¢(P;\ P). We can assume without loss
of generality thatP; coincides withP up to some vertex;, then
deviates fromP to avoide;, and finally returns taP at a vertex



y; and coincides withP from then on (clearly, it might happen
thats = z; ort = y;). Indeed, ifP; deviates fromP more than
once, one of these deviations is not necessary to ayogohd can
be replaced with the respective segmenPafithout increasing the
cost of P;. Among all paths of this form, leP; be the one with the
largest value ofy;, i.e., the “rightmost” one. This path corresponds
to an inequalityl; of the formb;,, 1 +--- + b}, < c(P; \ P).

As in the proof of Theorem 2 we construct a set of tight con-

straints£ such that every variablé appears in at least one of these

constraints; however, now we have to be more careful abaut th

choice of constraints iff. We construct inductively as follows.
Start by settingl = {I:}. At the jth step, suppose that all vari-
ables up to (but not includingzjij appear in at least one inequality
in £. Add[;; to L.

Note that for anyj we havey;,,, > yi;. This is because the
inequalities added t@ during the firstj steps did not coveb’i].+1
See Figure 3. Sincgij+2 > Yi;.,,» We must also have,; , >
i, otherwise PJ+ would not be the “rightmost” constraint for
b’L 41+ Therefore, the variables ih, , and/;; do not overlap, and
hence na; can appear in more than two inequalities(in

Now we follow the argument of the proof of Theorem 2 to finish.
By adding up all of the (tight) inequalities id for b; we obtain
23 iy kb > . c(P; \ P). On the other hand, all
these |nequaI|t|es appear |n condition (2), so they must fiot
b ien 30 . ¢(P; \ P), soTUmax(c) <
2TUmin(c). D

=1,...,

5. TRUTHFUL MECHANISMS FOR VER-
TEX COVER

Recall that for a vertex-cover auction on a gré@ph= (V, E), an
allocation ruleis an algorithm that takes as input a bidfor each
vertex and returns a vertex covérof G. As explained in Sec-
tion 2, we can combine a monotone allocation rule with thotsh
payments to obtain a truthful auction.

Two natural examples of monotone allocation rules&sg, i.e.,
the algorithm that finds an optimal vertex cover, and the dyee
algorithm Agr. However, A,p¢ cannot be guaranteed to run in
polynomial time unles? = NP and Agr has approximation
ratio oflog n.

Another approximation algorithm for vertex cover, whicls ag-
proximation ratio 2, is théocal ratio algorithm A,z [2, 3]. This
algorithm considers the edges @f one by one. Given an edge
e = (u,v), it computes = min{b,, b, } and setd, = b, — ¢,

b, = b, — e. After all edges have been processeld,r returns
the set of verticedv | b, = 0}. It is not hard to check that if
the order in which the edges are considered is independeheof
bids, then this algorithm is monotone as well. Hence, we caritu
to construct a truthful auction that is guaranteed to seleartex
cover whose cost is within a factor of 2 from the optimal.

However, while the quality of the solution produced Ry r is
much better than that o r, we still need to show that its total
payment is not too high. In the next subsection, we boundrthe f
gality ratio of A r (and, more generally, all algorithms that satisfy
the condition oflocal optimality, defined later) b2 A, whereA is
the maximum degree @¥. We then prove a matching lower bound
showing that for some graphs the frugality ratio of any tiuithuc-
tion is at leastA /2.

5.1 Upper bound

We say that an allocation rulelscally optimalif whenever,, >
> wew bw, the vertexv is not chosen. Note that for any such rule
the threshold bid of satisfies, < >

w~v

CLAaiM 1. The algorithmsA,,:, Acr, and Apr are locally
optimal.

THEOREM 4. Any vertex cover auctio that has a locally

optimal and monotone allocation rule and pays each agent his

threshold bid has frugality rati@®nTumin (M) < 2A.

To prove Theorem 4, we first show that the total payment of
any locally optimal mechanism does not exceed V). We then
demonstrate thaNTUmin(c) > ¢(V)/2. By combining these
two results, the theorem follows.

LEMMA 5. Consider a graphG = (V, E) with maximum de-
gree A. Let M be a vertex-cover auction off that satisfies the
conditions of Theorem 4. Then for any cost veetahe total pay-
ment of M satisfiepa(c) < Ac(V).

PROOF. First note that any such auction is truthful, so we can
assume that each agent’s bid is equal to his cost. SLee the
vertex cover selected by1. Then by local optimality

c) = Zt” < Z Z cw < Z Acy = Ac(V).

vES ves wv weV
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We now derive a lower bound dhUmax(c); while not essential
for the proof of Theorem 4, it helps us build the intuition essary
for that proof.

LEMMA 6. For a vertex cover instanc@ = (V, E) in whichS
is @ minimum vertex coveéE Umax(c, S) > ¢(V '\ 5)

PROOF. For a vertexw with at least one neighbour if, let
d(w) denote the number of neighbours thahas inS. Consider
the bid vectomb in which, for eachv € S, by = 3>, wes 7055
Thenzues Y = Zves ZwNU,wgs cw/d(w) = ngs Cw =

¢(V'\ S). To finish we want to show thai is feasible in the sense
that it satisfies (2). Consider a vertex co&rand extend the bid
vectorb by assigning, = ¢, forv ¢ S. Then
Cuw
> X Ty

veSNT weSNT:w~v

b(T) = c(T\S)+b(SNT) > ¢(T\S)+

and since all edges betwed T and.S go to.S N T, the right-
hand-side is equal to

(T\S)+ D cw=c(T\S)+c(SNT) =c(V\S) = b(S).
weSNT

O

Next, we prove a lower bound ddTUmax(c, S); we will then
use it to obtain a lower bound AT Umin(c).

LEMMA 7. For avertex cover instano& = (V, E) in whichS
is @ minimum vertex coveNTUmax(c, S) > ¢(V '\ 5)

PROOF If ¢(S) > ¢(V \ S), by condition (1) we are done.
Therefore, for the rest of the proof we assume &) < ¢(V \
S). We show how to construct a bid vectgr.).cs that satisfies
conditions (1) and (2) such thatS) > c¢(V \ S); clearly, this
impliesNTUmax(c, S) > ¢(V '\ 5).

Recall that a network flow problem is described by a directed

graphT" = (Vr, Er), a source node € Vi, a sink nodet €
Vr, and a vector of capacity constraints, e € Er. Consider a
network(Vr, Er) such thal’r = VU{s, t}, Er = E1UE;UEs3,
whereEy = {(s,v) | v € S}, E2 = {(v,w) | v € S,w €



VS, (v,w) € E}, E3 = {(w,t) | w € V\ S}. SinceS is
a vertex cover fol7, no edge off’ can have both of its endpoints
in V '\ S, and by constructionE» contains no edges with both
endpoints inS. Therefore, the grapfi/, E-) is bipartite with parts
(S, V\9).

Set the capacity constraints ferc Er as follows: a¢s ) =
Cos Q) = Cuw, Guw) = oo forallv € S, w € V\ 5.
Recall that acut is a partition of the vertices i into two sets
C:1 and C; so thats € C, t € Cs; we denote such a cut by
C = (C4,C2). Abusing notation, we write = (u,v) € C if
u € Cr,v € Cy0oru € Cy,v € C1, and say that such an edge
e = (u,v) crosseghe cutC'. Thecapacityof a cutC' is computed
ascap(C) = 32, w)ec G(v,w)- We havecap(s, VU{t}) = ¢(S),
cap({s} UV, 1) = ¢(V \ 5).

Let Cmin = ({s}US " UW' {t} U S”" UW") be a minimum
cutinT, whereS’, 5" C S, W', W" C V'\ S. See Figure 4. As
cap(Cmin) < cap(s,V U {t}) = ¢(S) < 400, and any edge in
E» has infinite capacity, no edde, v) € E> crossemix.

Consider the network” = (Viv, Er/), whereVy, = {s} U
S UW’ u{t}, Err = {(u,v) € Er | u,v € Vp/}. Clearly,
C' = ({s}u S UW' {t}) is a minimum cut in["” (otherwise,
there would exist a smaller cut fdr). As cap(C’) = ¢(W’), we
havec(S’) > c¢(W").

Now, consider the network” = (Vv Err), where Vi, =
{S} @] S” U W” U {t}, EF// = {(U,’U) € El“ | U, v c VF//}.
Similarly, C" = ({s}, 8" UW" U {t}) is a minimum cut irl"",
cap(C") = ¢(S"). As the size of a maximum flow froma to
t is equal to the capacity of a minimum cut separatingnd ¢,
there exists a flowF = (f.)cer,., Of sizec(S”). This flow has
to saturate all edges betweerand S”, i.e., f(s.,) = ¢, for all
v € S”. Now, increase the capacities of all edges betweand
S” to +oo. In the modified network, the capacity of a minimum cut
(and hence the size of a maximum flow}{8V""), and a maximum
flow ' = (f¢)eer,, can be constructed by greedily augmenting
F.

Setb, = ¢, forallv € §',b, = f(, ,y forallv € S”. AsF'is
constructed by augmentirig, we haveb, > ¢, forallv € S, i.e.,
condition (1) is satisfied.

Now, let us check that no vertex covérC V can violate con-
dition (2) Setl' = TnN Sl, T = TN S", T35 = TN W’,
Ty = TNW"; our goal is to show that(S" \ T1) + b(S” \ Tz) <
c(Ts)+c(T4). Consider all edgeg, v) € E suchthat € S'\T1.

If (u,v) € E2thenv € T3 (no edge ink; can cross the cut), and if
u,v € Sthenv € TyUT». Hence 1 UT3US” is a vertex cover for
G, and therefore(Ty) + c(T5) +¢(S”") > ¢(S) = c(T1) +c(S"\
Ti) + c¢(S"). Consequentlye(Ts) > (S’ \ Ti) = b(S’ \ Th).
Now, consider the vertices ii’ \ T». Any edge inE, that starts in
one of these vertices has to endin(this edge has to be covered by
T, and it cannot go across the cut). Therefore, the total flavobu
S""\ T» is at most the total flow out &fy, i.e.,b(S" \ Tz) < c(T4).
Henceb(S' \ Th) + b(S" \ T2) < ¢(T3) + ¢(T4). O

Finally, we derive a lower bound on the payment bound that is
of interest to us, namelWTUmin(c).

LEMMA 8. For a vertex cover instanc@ = (V, E) inwhich S
is @ minimum vertex coveNTUmin(c, S) > ¢(V '\ 5)

PROOF Suppose for contradiction thatis a cost vector with
minimum-cost vertex cove$ andNTUmin(c, S) < ¢(V'\5). Let
b be the corresponding bid vector and ¢tbe a new cost vector
with ¢}, = b, forv € S andc], = ¢, forv ¢ S. Condition (2)
guarantees tha is an optimal solution to the cost vectdr. Now
compute a bid vectob’ corresponding ttNTUmax(c’, S). We

Figure 4: Proof of Lemma 7. Dashed lines correspond to edges
in B \ E>

claim thatb), = ¢, for anyv € S. Indeed, suppose thaf > ¢
for somev € S (b), = ¢, forv € S by construction). Ab satisfies
conditions (1)—(3), among the inequalities in (2) thereris that is
tight for v and the bid vectob. That is,b(S\ T') = ¢(T"\ S). By
the construction o', ¢/ (S\ T') = ¢/(T'\ S). Now sinceb,, > c,
forallw € S, b, > ¢, impliesd’(S\T) > ¢'(S\T) = (T'\ 9).
But this violates (2). So we now knoWw’ = ¢’. Hence, we have
NTUmax(c’,S) = Y, .gbs = NTUmin(c,S) < ¢(V \ S),
giving a contradiction to the fact thA&*TUmax(c’, S) > ¢/(V'\.9)
which we proved in Lemma 7.

As NTUmin(c, S) satisfies condition (1), it follows that we
haveNTUmin(c, S) > ¢(S). Together will Lemma 8, this implies
NTUmin(e, S) > max{c(V \ S),c(S)} > ¢(V)/2. Combined
with Lemma 5, this completes the proof of Theorem 4.

REMARK 3. ASNTUmin(c) < NTUmax(c) < TUmax(c),
our bound oRA extends to the smaller frugality ratios that we con-
sider, i.e.,oNTUmax (M) and¢rumax(M). Itis not clear whether
it extends to the larger frugality rati¢Tumin (M). However, the
frugality ratio ¢rumin (M) is not realistic because the payment
boundTUmin(c) is inappropriately low — we show in Section 6
that TUmin(c) can be significantly smaller than the total cost of a
cheapest vertex cover.

Extensions

We can also apply our results to monotone vertex-cover idhgos
that do not necessarily output locally-optimal solutiofis.do so,
we simply take the vertex cover produced by any such alguarith
and transform it into a locally-optimal one, considering tlertices
in lexicographic order and replacing a vertewith its neighbours
wheneveb, > 3" b,. Note that if a vertex. has been added to
the vertex cover during this process, it means that it haggnbeur
whose bid is higher thah,, so after one pass all vertices in the ver-
tex cover satisfyp, < > b.. This procedure is monotone in
bids, and it can only decrease the cost of the vertex covesrefrh
fore, using it on top of a monotone allocation rule with appro



imation ratioc,, we obtain a monotone locally-optimal allocation
rule with approximation ratia.. Combining it with threshold pay-
ments, we get an auction withhtumin < 2A. Since any truthful
auction has a monotone allocation rule, this proceduresfoams
any truthful mechanism for the vertex-cover problem intoumél
one while preserving the approximation ratio.

5.2 Lower bound

6. PROPERTIES OF PAYMENT BOUNDS

In this section we consider several desirable propertigzagf
ment bounds and evaluate the four payment bounds proposed in
this paper with respect to them. The particular properties we
are interested in are independence of the choicg (&ection 6.3),
monotonicity (Section 6.4.1), computational hardnesst{Se 6.4.2),
and the relationship with other reasonable bounds, sudieastal
cost of the cheapest set (Section 6.1), or the total VCG payme

In this subsection, we prove that the upper bound of Theorem 4 (Section 6.2).

is essentially optimal. Our proof uses the techniques ofvire
the authors prove a similar result for shortest-path anstio

THEOREM 5. For any A > 0 and anyn, there exist a grapld+
of maximum degre& and sizeN > n such that for any truthful
mechanism\l on G we havepntumin(M) > A/2.

PROOF Givenn andA, setk = [n/2A]. Let G be the graph
that consists ok blocks By, . . ., By, of size2A each, where each
B; is a complete bipartite graph with parfs and R;, |L;| =
|R;| = A.

We will consider two families of cost vectors fa¥. Under a
cost vectorx € X, each blockB; has one vertex of cost 1; all
other vertices cost 0. Under a cost vegtoe Y, there is one block
that has two vertices of cost 1, one in each part, all otheckslo
have one vertex of cost 1, and all other vertices cost 0. Hlear
|X| = (2A)%, |Y| = k(2A) 'A% We will now construct a
bipartite grapHV with the vertex sefX U Y as follows.

Consider a cost vectyr € Y that has two vertices of cost 1 in
B;; let these vertices be, € L, andv, € R,;. By changing the
cost of either of these vertices to 0, we obtain a cost veotox.i

Let x; andx, be the cost vectors obtained by changing the cost of

v; andv,., respectively. The vertex cover chosen by(y) must
either contain all vertices ih; or it must contain all vertices iR;.
In the former case, we put i an edge fromy to x; and in the
latter case we put i an edge frony to x. (if the vertex cover
includes all of B;, W contains both of these edges).

The graphiV has at leask(2A)F~'A? edges, so there must
exist anx € X of degree at leastA/2. Letyi,...,yxa, 2 be
the other endpoints of the edges incidentxtoand for each =
1,...,kA/2, letv; be the vertex whose cost is different under
andy;; note that allv; are distinct.

It is not hard to see th&f TUmin(x) < k: the cheapest vertex
cover contains the all-0 part of each block, and we can yatisfi-
ditions (1)—(3) by letting one of the vertices in the all-Gtpaf each
block to bid 1, while all other the vertices in the cheapesbgik0.

On the other hand, by monotonicity 8# we havev; € M(x)
fori = 1,...,kA/2 (v; is in the winning set undey;, andx is
obtained fromy; by decreasing the cost of), and moreover, the
threshold bid of each; is at least 1, so the total paymentf onx
is atleaskA /2. Hence pnTumin(M) > M(x)/NTUmin(x) >
A2, O

REMARK 4. The lower bound of Theorem 5 can be generalised

to randomised mechanisms, where a randomised mechanism-is ¢
sidered to be truthful if it can be represented as a probabdistri-
bution over truthful mechanisms. In this case, instead obsing
the vertexz € X with the highest degree, we put bath, x;)
and (y, x,) into W, label each edge with the probability that the
respective part of the block is chosen, and picke X with the
highest weighted degree. The argument can be further extetod
a more permissive definition of truthfulness for randomisegth-
anisms, but this discussion is beyond the scope of this paper

6.1 Comparison with total cost

Ouir first requirement is that a payment bound should not k= les
than the total cost of the selected set. Payment bounds edetais
evaluate the performance of set-system auctions. The latte to
satisfy individual rationality, i.e., the payment to eagjeat must
be at least as large as his incurred costs; it is only reasotab
require the payment bound to satisfy the same requirement.

Clearly, NTUmax(c) andNTUmin(c) satisfy this requirement
due to condition (1), and so do@%Jmax(c), sinceTUmax(c) >
NTUmax(c). However,TUmin(c) fails this test. The example
of Proposition 4 shows that for path auctiofi8Jmin(c) can be
smaller than the total cost by a factor of 2. Moreover, theessat
systems and cost vectors for whi@iUmin(c) is smaller than the
cost of the cheapest sstby a factor ofQ2(n). Consider, for ex-
ample, the vertex-cover auction for the graph of Propas#iovith
the costsex, = - =c¢x,,_, = ¢cx,,_, = 1, cx, = 0. The cost
of a cheapest vertex coversis— 2, and the lexicographically first
vertex cover of cost —2is { Xo, X1, ..., Xn—2}. The constraints
in (2) arebx, + bx, < cx,_, = 1. Clearly, we can satisfy con-
ditions (2) and (3) by settingx, = --- = bx,_, =0, bx, = 1,
which means thal'Umin(c) < 1. This observation suggests that
the payment boun@Umin(c) is too strong to be realistic, since it
can be substantially lower than the cost of the cheapesbfeast.

Nevertheless, some of the positive results that were priovdd)]
for NTUmin(c) go through forTUmin(c) as well. In particular,
one can show that if the feasible sets are the bases of a mgnopo
free matroid, therumin(VCG) = 1. To show thatr rumin (VCG)
is at mostl, one must prove that the VCG payment is at most
TUmin(c). This is shown folNTUmin(c) in the first paragraph
of the proof of Theorem 5in [16]. Their argument does not use ¢
dition (1) at all, so it also applies @Umin(c). On the other hand,
¢TUmin(VCG) > 1 sinCe ¢1umin(VCG) > éNTUmin(VCG)
and ontumin(VCG) > 1 by Proposition 7 of [16] (and also by
Proposition 6 below).

6.2 Comparison with VCG payments

Another measure of suitability for payment bounds is thayth
should not result in frugality ratios that are less then 1vietl-
known truthful mechanisms. If this is indeed the case, thyarant
bound may be too weak, as it becomes too easy to design mecha-
nisms that perform well with respect to it. It particulareasonable
requirement is that a payment bound should not exceed the tot
payment of the classical VCG mechanism.

The following proposition shows th&¥TUmax(c), and there-
fore alsoNTUmin(c) and TUmin(c), do not exceed the VCG
paymentpvce(c). The proof essentially follows the argument of
Proposition 7 of [16] and can be found in the full version afth
paper [8].

PROPOSITION 6. ¢nTUmax(VCG) > 1.

Proposition 6 shows that none of the payment bouidsnin(c),
NTUmin(c) andNTUmax(c) exceeds the payment of VCG. How-
ever, the payment bour@Umax(c) can be larger that the total



VCG payment. In particular, for the instance in Propositiorthe
VCG payment is smaller thafilUmax(c) by a factor ofn — 2. We
have already seen thatUmax(c) > n — 2. On the other hand,
under VCG, the threshold bid of any;, 7 = 1,...,n — 2, is 0:
if any such vertex bids above 0, it is deleted from the winrgeg
together withX, and replaced withX,,_;. Similarly, the threshold
bid of X is 1, because X bids above 1, it can be replaced with
Xn—1. So the VCG payment is.

This result is not surprising: the definition @fUmax(c) im-
plicitly assumes there is co-operation between the ageviige
the computation of VCG payments does not take into account an
interaction between them. Indeed, co-operation enabéagdbnts
to extract higher payments under VCG. That is, VCG is not grou
strategyproof. This suggests that as a payment boliidnax(c)
may be too liberal, at least in a context where there is little
no co-operation between agents. Perh@pdmax(c) can be a
good benchmark for measuring the performance of mecharmisms
signed for agents that can form coalitions or make side pagsne
to each other, in particular, group-strategyproof mectrasi

Another setting in which boundingrumax is still of some in-
terest is when, for the underlying problem, the optimal ctoon
and VCG payments are NP-hard to compute. In this case, finding
a polynomial-time computablmechanism with good frugality ra-
tio with respect tal'Umax(c) is a non-trivial task, while bounding
the frugality ratio with respect to more challenging payirtesunds
could be too difficult. To illustrate this point, compare th®ofs
of Lemma 6 and Lemma 7: both require some effort, but therlatte
is much more difficult than the former.

6.3 The choice ofs

All payment bounds defined in this paper correspond to tla tot
bid of all elements in the cheapest feasible set, where tebra-
ken lexicographically. While this definition ensures that pay-
ment bounds are well-defined, the particular choice of ttzaver
resolution rule appears arbitrary, and one might wondeurifpay-
ment bounds are sufficiently robust to be independent ottiogce.
Itturns out that is indeed the case T Umin(c) andNTUmax(c),
i.e., these bounds do not depend on the draw-resolution fide
see this, suppose that two feasible s&tsand S> have the same
cost. In the computation &f TUmin(c, S1), all vertices inS1 \ Sa
would have to bid their true cost, since otherwi$e would be-
come cheaper thafh,. Hence, any bid vector fo¥, can only have
be # c. fore € S1 N Sz, and hence constitutes a valid bid vector
for Sz and vice versa. A similar argument applieSN@ Umax(c).

However, forTUmin(c) and TUmax(c) this is not the case.
For example, consider the set system

E ={e1,ea,e3,€e4,65},
F = {Sl = {61762}752 = {62763764}753 = {64765}}

with the costs; = 2, ¢c2 = ¢3 = ca = 1, ¢s = 3. The cheapest
sets areS; and.Sz. Now TUmax(c, S1) < 4, as the total bid of
the elements ir$; cannot exceed the total cost8f. On the other
hand, TUmax(c, S2) > 5, as we can séf; = 3,b3 = 0,bs = 2.
Similarly, TUmin(e, S1) = 4, because the inequalities in (2) are
b1 < 2andb; + b2 < 4. But TUmin(c, S2) < 3 as we can set
bo =1,b3 =2,bs =0.

6.4 Negative results fONTUmin(c) and TUmin(c)

The results in [16] and our vertex cover results are provethi®
frugality ratio pntumin- Indeed, it can be argued thatrumin IS
the “best” definition of frugality ratio, because among ahson-
able payment bounds (i.e., ones that are at least as large aest
of the cheapest feasible set), it is most demanding of therigthon.

However NTUmin(c) is not always the easiest or the most natural
payment bound to work with. In this subsection, we discusersé
disadvantages df TUmin(c) (and als6I'Umin(c)) as compared
to NTUmax(c) andTUmax(c).

6.4.1 Nonmonotonicity

The first problem withNTUmin(c) is that it is not monotone
with respect taf, i.e., it may increase when one adds a feasible
set toF. (Itis, however, monotone in the sense that a losing agent
cannot become a winner by raising his cost.) Intuitively,oad)
payment bound should satisfy this monotonicity requiretnas
adding a feasible set increases the competition, so it diarive
the prices down. Note that this indeed the caseN@Umax(c)
and TUmax(c) since a new feasible set adds a constraint in (2),
thus limiting the solution space for the respective lineagpam.

PROPOSITION 7. Adding a feasible set t& can increase the
value ofNTUmin(c) by a factor ofQ2(n).

PROOF Let& = {z,zz,y1,...,Yn,21,...,2n}. S€tY =
{y1,...,un}, S=YU{z}, T, =Y \{yi}U{z},i=1,...,n,
and suppose that = {S,Ti1,...,T,}. The costs are, = 0,
Czx = 0,¢y; = 0,¢,; = 1fori = 1,...,n. Note thatS is
the cheapest feasible set. LBt = F U {T,}, whereTo = Y U
{zz}. For F, the bid vectorb,, = --- = by, = 0, b 1
satisfies (1), (2), and (3), ¥TUmin(c) < 1. For F', S is still
the lexicographically-least cheapest set. Any optimaltsmh has
b, = 0 (by constraint in (2) withlp). Condition (3) fory; implies
by + by, = cz; = 1,80b,, = 1andNTUmin(c) =n. O

For path auctions, it has been shown [18] tNGfUmin(c) is
non-monotone in a slightly different sense, i.e., with extpto
adding a new edge (agent) rather than a new feasible setr(a tea
of existing agents).

REMARK 5. We can also show th&TUmin(c) is non-monotone
for vertex cover. In this case, adding a new feasible seesponds
to deletingedges from the graph. It turns out that deleting a single
edge can increasB'TUmin(c) by a factor ofn — 2; the construc-
tion is similar to that of Proposition 5.

6.4.2 NP-Hardness

Another problem withNTUmin(c, S) is that it is NP-hard to
compute even if the number of feasible sets is polynomiab.in
Again, this puts it at a disadvantage comparetNtUmax(c, S)
andTUmax(c, S) (see Remark 1).

THEOREM 6. ComputingNTUmin(c) is NP-hard, even when
the lexicographically-least feasible sgtis given in the input.

PROOF We reduce EACT COVER BY 3-SETYX3C) to our prob-
lem. An instance of X3C is given by a univer§e= {g1, ..., gn}
and a collection of subsets,, . ..,Cn, C; C G, |C;| = 3, where
the goal is to decide whether one can caueoy n/3 of these sets.
Observe that if this is indeed the case, each element isf con-
tained in exactly one set of the cover.

LEMMA 9. Consider a minimisation problem P of the following
form: Minimise_,_, , b; under conditions (1p; > 0 for all
i=1,...,n;(2)foranyj =1,...,k we havezbiesj bi < aj,
whereS; C {b1,...,bn}; (3) for eachb;, one of the constraints
in (2) involving it is tight. For any such P, one can constract
set system S and a vector of costsuch thatNTUmin(c) is the
optimal solution to P.

PROOF The construction is straightforward: there is an element
of cost 0 for eaclh;, an element of cost; for eacha;, the feasible
solutions are{by, ..., b, }, or any set obtained frorfbq, ..., b,}
by replacing the elements i$}; by a;. [



By this lemma, all we have to do to prove Theorem 6 is to show
how to solve X3C by using the solution to a minimisation pesbl
of the form given in Lemma 9. We do this as follows. For each
C;, we introduce 4 variables;, z;, a;, andb;. Also, for each
elementy; of G there is a variabld;. We use the following set of
constraints:

e In (1), we have constraints; > 0, z; > 0,a; > 0,b; > 0,
d;j >0foralli=1,...,m,j5=1,...,n.

e In(2), foralli = 1,...,m, we have the following 5 con-
straintsiz; +7; < 1,z +a; < 1,Z;4+a; <1,z +b; <1,
Zi +b; < 1. Also, forallj = 1,...,n we have a constraint
of the formz;, + - - + x4, + d; < 1, whereC;,,...,C;,
are the sets that contain.
The goal is to minimize: = 3=, (z; + & + a; + bi) + >, d;.

Observe that for eacly, there is only one constraint involving
d;, so by condition (3) it must be tight.

Consider the two constraints involvirg. One of them must be
tight, and therefore; +z;+a; +b; > z;+=;+a; > 1. Hence, for
any feasible solution to (1)—(3) we have> m. Now, suppose that
there is an exact set cover. @gt=0forj = 1,...,n. Also, if C;
is included in this cover, sat; = 1, Z; = a; = b; = 0, otherwise
setz; = 1, x; = a; = b; = 0. Clearly, all inequalities in (2)
are satisfied (we use the fact that each element is coveretlyexa
once), and for each variable, one of the constraints inkgl is
tight. This assignment results in= m.

Conversely, suppose there is a feasible solution with: m.
As each addend of the formy + Z; + a; + b; contributes at least
1, we haver; + Z; + a; + b; = 1 for all 4, d; = 0 for all j.
We will now show that for each, eitherz; = 1 andz; = 0, or
z; = 0 andz; = 1. For the sake of contradiction, suppose that
z; =6 < 1,z = & < 1. As one of the constraints involving
a; must be tight, we have;, > min{l — §,1 — §'}. Similarly,
b; > min{l — (5,1 — (5’} Hence,z; + z; + a; + b; = 1 =
§+6"+2min{l1—4,1—4'} > 1. To finish the proof, note that for
eachj =1,...,mwehaver;, +---+z;, +d; = 1andd; =0,
so the subsets that correspond:to= 1 constitute a set cover.

REMARK 6. In the proofs of Proposition 7 and Theorem 6 all
constraints in (1) are of the fori. > 0. Hence, the same results
are true forTUmin(c).

REMARK 7. For shortest-path auctions, the size Bfcan be
superpolynomial. However, there is a polynomial-time safan
oracle for constraints in (2) (to construct one, use any &ikjmn
for finding shortest paths), so one can compNfEUmax(c) and
TUmax(c) in polynomial time. On the other hand, recently and
independently it was shown [18] that computiNg" Umin(c) for
shortest-path auctions is NP-hard.
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