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Users of online retrieval systems experience many difficulties, particularly with search tactics,
User studies have indicated that searchers use vocabulary incorrectly and do not take full

advantage of iteration to improve their queries. To address these problems, an expert system for
online search assistance was developed. This prototype augments the searching capabilities of
novice users by providing automatic query reformulation to improve the search results, and

automatic ranking of the retrieved passages to speed the identification of relevant information.

Users’ search performance using the expert system was compared with their search performance

on their own, and their search performance using an online thesaurus. The following conclusions

were reached: (1) the expert system significantly reduced the number of queries necessary to find
relevant passages compared with the user searching alone or with the thesaurus. (2) The expert
system produced marginally significant improvements in precision compared with the user

searching on their own. There was no significant difference in the recall achieved by the three
system configurations. (3) Overall, the expert system ranked relevant passages above irrelevant
passages.

Categories and Subject Descriptors: H. 1.2 [Models and Principles]: User/Machine

System–human factors; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—search process; 1.2.1 [Artificial Intelligence]: Applications and Expert Systems

General Terms: Human Factors

Additional Key Words and Phrases: Expert Systems, full-text information retrieval, online

search assistance, query reformulation, textbases

1. INTRODUCTION

1.1 Driving Problem

Technological advances are causing a revolution in information retrieval.

Optical character recognition, word processors, and computer publishing

software are capable of producing massive quarkities of online text. The

development of optical storage media is making the storage and distribu-

tion of large collections of online text feasible. Proliferation of personal
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workstations, combined with modems, are allowing an increasing number of

end-users to do their own searching of online databases. Textbases, online

full-text databases, are becoming more common. All these trends lead to

end-user’s performing their own textbase searches.
The main roadblock to widespread use of online textbases will soon be the

inability of end-users to search effectively. Bergman [5] identifies two types of

knowledge necessary to search: knowledge of the mechanical aspects of

searching (e. g., syntax and semantics of both the query language and the

system interaction commands) and knowledge of the conceptual aspects (e. g.,

ways to broaden and narrow searches using alternative vocabulary, choosing

alternative search paths). She summarizes the results of many different user

studies, concluding that, whereas system mechanics are rarely a problem for

any but very inexperienced and infrequent users, even experienced searchers

have significant problems with search strategy and output performance.

User difficulty with search strategy shows up in many different studies on

searching online bibliographic databases. Fenichel [15] finds that even expe-

rienced searchers could improve their search results. The searchers lost sight

of the search logic, missed obvious synonyms, and searched too simply.

Search performance is often measured by recall, the ratio of relevant docu-

ments retrieved to the number of relevant documents in the entire database.

The searchers were satisfied with 51 percent recall on average, indicating

that almost half of the relevant information was not retrieved. The lack of

successively refining queries, called iteration, is another problem identified.

In spite of the low recall, half of the searchers never modified the original

query in an attempt to improve their results.

Studies of inexperienced searchers find even more problems with search

strategy. In one study [6], a quarter of the subjects were unable to pass a

benchmark test of minimum searching skill. In another experiment [18],

contrasting the searching of novices versus experienced searchers, the novices

found some relevant documents easily, but they failed to achieve high recall

and were unable to reformulate queries well. The experienced searchers in

this study were more persistent and willing to experiment than the novices.

Blair and Maron [3] paint an even bleaker picture for searching full-text

databases. Legal assistants searching a legal database achieved only 20

percent recall, although they were attempting to do a high recall search. The

factors, as identified by the authors, leading to this poor performance were

poor searching technique (failure to use stemming and synonyms), stopping

the query iteration too soon, and the inability to search on interdocument
relationships. The authors argued that vocabulary problems make high

recall impossible on full-text databases.

1.2 Related Work

Research to improve access to online information is proceeding in many

directions. The hope is that by helping users with the mechanics of their

search, and by providing access to an online thesaurus, better user interfaces
can lead to improved search results with existing databases. Similarly,

allowing the user to query the database in his natural language, rather than

requiring him to form a Boolean query, may lead to simpler searching.
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Accessing relevant information may also become easier by improving the

quality of the information that is stored in the database. The three main

approaches are (1) representing documents and search term as an associative

network; (2) using natural language processing techniques to select index

terms; and (3) building a knowledge base from the document contents.

Researchers in artificial intelligence are investigating systems which, based

on the contents of a knowledge base, produce direct answers to user queries,

rather than documents or document passages.

Search performance may be improved by using statistical methods to

reformulate the query. The user’s initial query is used to rank-order the

documents in the database. The top-ranked documents are presented to the

user who indicates which are relevant. Index terlms from the relevant docu.

ments are used to reformulate the query [22]. Finally, queries may be

reformulated by a knowledge-based online search assistant acting as the

front-end to existing retrieval systems. Research in this area is summarized

in Section 1.2.1. The knowledge base for our system is built on existing

searching practice. Current knowledge on good search technique is presented

in Section 1.2.2.

1.2.1 Expert Systems. The exploration of possible applications of expert

system techniques to information retrieval systems has generated interest.

Early projects are surveyed by Sparck Jones [281 and Brooks [91, whereas

Belkin et al. [21 discusses design issues for distributed expert-based informa-

tion systems. The most common goal is to develop an expert system to help

with the retrieval process by assuming some of the tasks of the search

intermediary. An exception is Driscoll et al,’s [14] expert system whose task

is to index documents. This section will give an overview of expert system

projects designed for bibliographic retrieval and those which work with

full-text databases.

Pollitt [19] has built one of the earliest expert systems for bibliographic

retrieval. It is designed to search the MEDLINE medical database for cancer

literature. The expert system can search cancer literature only, since the

knowledge base contains information on cancer, rather than on search strate-

gies in general. The performance of this prototype system has not been

formally analysed. The current version of CANSEARCH [20] is an expert

system to guide users in the use of menus to form their own queries.

IR-NLI II [8] incorporates user modeling into a domain-independent biblio-

graphic retrieval expert system. Domain knowledge is supplied by an online

thesaurus. A user model is built based on the user’s amount of domain

knowledge and search experience. This model is used to tailor the dialogue

between the system and the user. Initially, the user lists some terms which

describe his interests. The expert system, through a lengthy dialogue, clari-

fies its model of the query, proposes terms to expand the query, and com-

ments on the user’s search strategy. No automatic query reformulation is

done.

IOTA [11] is a bibliographic expert system which incorporates a natural

language interface. Whereas the expert system does passage retrieval from

an online book, we include the system with the bibliographic systems because
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retrieval is done on keyvvords which index each passage. Much of the

research effort has gone into processing the user’s queries, but some simple

query reformulation is also done. Specifically, queries are broadened by

replacing a term by its parent from an online thesaurus and narrowed by

removing OR terms. Their results show an increase in precision and recall

using the expert system. These results are tentative, since the textbase is

very small (3,000 words), the thesaurus is small (118 classes), and only 12

queries were run.

PLEXUS [33] is an expert system to help novice users find information

about gardening. The initial query formation consists of a dialogue with the

user. Natural language queries are accepted, and information is extracted to

fill in frames. If a frame is too incomplete, the user is asked for more

information. Once the frames contain enough information, a query is sent to

the online database. The system has a knowledge base of search strategies

and term classifications similar to a thesaurus. Most of the domain knowl-

edge is in the classification, but some appears in the rule base, itself. If

queries are too broad (defined as more than 10 references), no narrowing is

attempted. The references are displayed 5 at a time to the user. If the query

is too narrow (defined as nothing retrieved at all), three strategies are

attempted: (1) if two or more terms appear in the same subcategory, OR them

together rather than AND; (2) drop one of the terms; (3) replace a term by its

parent.

Shoval [24] developed an expert system to assist users in selecting the right

vocabulary terms for a database search. The knowledge base of words,

concepts, and phrases and their semantic relationships is stored in a seman-

tic network. Decision rules are used to locate appropriate vocabulary terms

in the semantic network and suggest them to the user for possible query

expansion. These rules were based on descriptions and observations of the

search practices of information specialists. The user’s initial search term’s

node is located in the semantic network. Candidate search terms are identi-

fied by expanding along directed links from the original node to nodes

containing related terms. Terms which are linked to at least two active nodes

are presented to the user. The user then decides whether or not the candidate

terms are relevant and should be used to replace the terms in the nodes

which point to it. This process may be continued until no new terms are

generated.

13R [12] incorporates user modeling and relevance feedback. The query

formation process is a dialogue between the user and the system, during

which the user supplies a short natural language query or an initial relevant

document. The domain knowledge expert infers related concepts from the

query and presents them to the user for confirmation. If the thesaurus-like

knowledge base does not contain related information and the initial query

contained too many high-frequency terms, the user may be asked to provide

additional keywords. A ranked list of documents is presented to the user. The

user then indicates which terms in each document are interesting. These new

terms may be used to modify the query. This specification of exactly which

parts of the documents are relevant is an improvement on traditional
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relevance feedback. A blackboard architecture is employed to control the

search process, which consists of the user dialogue, probabilistic search,

cluster-based search, and user feedback.

Fewer projects have attempted to provide intelligent assistance for full-text

searching. The earliest such system is RUBRIC [17, 31] which has the user

describe his query in terms of rules. These rules describe the domain knowl-

edge for the system as a hierarchy of topics and subtopics. Rules may have

weights representing the certainty and/or importance of the dlefined relation-

ships. The lowest level subtopics define patterns in the text which indicate

the presence of that subtopic. Whereas the query 1anguage is very powerful,

it places a heavy burden on the user.

At OCLC, the emphasis to date has been on providing an intelligent online

help function, but a few basic reformulation strategies were provided in a
clernonstration full-text system [30]. Queries are broadened by asking the

user to OR together ANDed concepts, or to drop a concept altogether.

Narrowing is suggested when a single broad search term retrieves more than

30 passages. If this happens, the system first searches for multiword phrases

containing the term in the back-of-the-book index and the table of contents.

These phrases, if found, are presented to the user as alternate queries. If no

such phrases are found, the system returns the passages which are clustered.

If there is no clustering of hits, a random selection is shown.

1.2.2 Search Strategies. The automatic query reformulation incorporated

in the systems described in the previous section are, in gene-t-al, very primi -

tive. However, search strategies employed by both novice and experienced

searchers have been widely studied. These studies formed the basis of our

expert system’s searching knowledge base, which is described in detail in

Section 2.6.

Searching studies. The most thorough catalogue of search tactics was

compiled by Bates [1]. She outlines 29 search tactics in four areas: monitor-

ing, file structure, search formulation, and term manipulation. The tactics

for search formulation and term manipulation describe the available tech-

niques to broaden and narrow queries. The search formulation tactics include

the selection of appropriate initial search terms and the manipulation of

query structure; the term manipulation tactics describe the use of context,

thesaural terms, and stemming to modify queries. The tactics she lists

provide the basic operations for our expert system; however, she includes no

guideline as to when each tactic is appropriate. Bates concludes by saying

that knowing when to stop a search is a difficult problem.

Smith et al [27] identify a set of search tactics, including 19 which were

domain-dependent. They analyzed discourses between an expert intermedi-

ary and 17 real information seekers interested in the environmental litera-

ture of Chemical Abstracts. They noted when each of these tactics was

applied, and whether the intermediary used the tactic spontaneously or in
response to some cue in the retrieved document. The results of this study are

being used as the basis for EP-X, an online search intermediary. EP-X

represents the meanings of concepts and topics in the domain of interest in
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the form of hierarchically defined semantic primitives and frames. This

knowledge is used to identify and resolve ambiguities in user queries (cur-

rently expressed as lists of keyword phrases). In retrieving documents, the

hierarchy of concepts can be used to broaden the query to include specific

cases of that concept.

Williams [341 has developed a model of all possible search situations and

all possible responses, to be used as an expert system’s knowledge base.

Based on the desired, versus the achieved, values of three variables (numbers

of documents, precision, and recall), he identifies 64 search situations which

result in 27 unique states. He defines four variables (generality, exhaustiv -

ity, simplicity, ambiguity) which can be manipulated to respond to each state

in an attempt to achieve the desired search results. Although he describes

some techniques to manipulate the four variables, he does not indicate how

the techniques should be combined or when they should be applied. In

addition, several of the states have conflicting demands which are hard to

resolve. It is an interesting categorization of searching situations, but it is

not yet developed enough to become the basis of an automatic search

assistant.

Ef~ects of query expansion. Smeaton and van Rijsbergen [25] have studied

the effects of query expansion on retrieval performance. They find that

automatically adding terms based on their statistical relationships to the

user’s search terms degrades retrieval performance. They argue the need for

better criteria for selecting terms to add. Harman [161 also shows perfor-

mance degradation when adding terms from a statistically constructed the-

saurus. However, when only those thesaural terms which occur in documents

already flagged as relevant by the user are added, retrieval performance

improves over that achieved by the original query. Allowing the user to add

variants of the original search terms to the queries proves to be better than

selecting from thesaural terms. However, statistically selected terms from

the relevant documents proves to be the best candidate for query expansion.

Finally, the best performance is achieved when user filtering of the three

types of candidate terms (thesaural, term variants, and statistically selected

from relevant documents) is simulated.

Crouch [131 has investigated the use of terms from an automatically

constructed thesaurus for query reformulation. She concludes that augment -

ing a query with thesaurus terms, rather then replacing the user’s original

search terms, improves performance. She also advises that, for document

ranking, terms included from a thesaurus should receive lower weights.

2. SYSTEM ARCHITECTURE

2.1 Overview

The prototype system consists of five major components (see Figure 1):

(1) MICROARRAS [261, which serves as the full-text search and retrieval

engine,

(2) a full-text database of over 188,000 words,
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(3)

(4)

(5)

R<w:acel;:;-;
Fig. 1. System architecture.

a hierarchical thesaurus of approximately 7,424 vvords specific to

textbase’s domain,

255

the

an expert system of 85 0PS83 rules and over 5,000 lines of C code, which

interprets the user’s queries, controls the search process, analyzes the

retrieved text, and ranks the search results, and

a user interface, which accepts the user’s queries, presents requests for

information from the expert system, and displays the search results.

The system is implemented on a Sun 3 worksta~tion. MICROARRAS and

the thesaurus construction and access routines are written in the C lan-

guage. The expert system consists of a knowledge base of production rules,

written in 0PS83, and a set of C language functions to carry out the actions

prescribed by the rule-base. The textual database for the current demonstra-

tion project consists of an unpublished manuscript on computer architecture

written by Gerrit A. Blaauw and Frederick P. Brooks, Jr. [4]. The search

process consists of a dialogue between the user and the expert system. The

user enters the initial Boolean query and the number of passages he would

like to retrieve. The expert system parses the query and translates it into a

request for information from MICROARRAS. MICROARRAS retrieves text

passages from the full-text database and informs the expert system of the

number of passages that satisfy the request. The expert system compares the

number retrieved with the target number to decide whether or not to

reformulate the query, and, if so, how. Once the target number has been

reached, or the expert system has run out of reformulations to try, the

retrieved passages are presented to the user in rank-order.

A major advantage of this architecture is the separation of strategic

knowledge, contained in the knowledge base for the expert system, from

domain knowledge, contained in the thesaurus. Now that the search strategy

rules have been developed and tested with the existing textbase, the expert

system can be tested with other content domains by simply providing a

suitable thesaurus for the new textbase.

2.2 MICROARRAS

2.2.1 Capabilities. MICROARRAS is a full-text retrieval and analysis

system. The system provides immediate access to any passage in the textbase,

regardless of the length of that document. Users can browse through a
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document’s vocabulary as well as its text. MICROARRAS provides Boolean

search on any word or set of words in the text and can compute and report

various frequency of occurrence statistics in the form of distribution vectors

over a text or set of texts. Contexts for searches can be indicated in terms of

words, sentences, paragraphs, etc., for the entire search expression or for

different parts of it. One particularly important feature for this project is a

generalized categorization option by which one may define sets of words or

text locations as well as recursive categories whose members are, themselves,

categories. Any command that accepts a word as a parameter will accept a

category name instead. Thus, categories can be used in search expressions,

making MICROARRAS particularly well-suited to work with a hierarchical

thesaurus.

To be inserted into MICROARRAS’ textbase, documents must first be

inverted (i. e., a dictionary is created with an entry for each word in the text.

Each entry contains the word and the numerical position in the text of each

occurrence of that word). However, they require no semantic preprocessing.

Once stored in the textbase, they can be examined individually or in groups.

They can also be moved from one textbase to another. Thus, documents can

be processed on a workstation or microcomputer, uploaded into a textbase on

a mainframe or textbase server, searched and analyzed there, or downloaded

for local use once again.

2.2.2 FLANGE. FLANGE is a two-way command language that was

developed as part of the MICROARRAS system. It serves two major func-

tions: it provides communication between the user interface and the analytic

engine that performs all search and analysis operation, and it provides a

formal specification for the system. It is written in a BNF-like notation.

Consequently, programs can easily construct command expressions which, in

turn, can easily be parsed. Additionally, the components of a FLANGE

“sentence” are strongly typed to further simplify processing and to ensure

reliable transmission across a communication interface.

One particularly useful feature of FLANGE is its two-way communication

capabilities. The following example outlines a typical interaction between

MICROARRAS’ user interface program and its analytic engine. Suppose the

user wishes MICROARRAS to display concordance information for a particu-

lar word in a text in the textbase. The user’s request for a concordance is first

translated by the interface program into a FLANGE expression. That expres-

sion is then sent to the MICROARRAS engine, either running on the same
machine or on a remote computer. The engine parses the message and

performs the operation requested. It then encodes the results in the conven-

tions of the return portion of FLANGE and sends that message to the user

interface. The user interface parses the messages, interprets the result, and

either displays the requested information to the user or engages the engine

in a further FLANGE dialogue.

It is FLANGE’s capability of providing a formal high-level text analysis

language and its capability of delivering its results in a structured and typed
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form–rather than as a stream of data–that makes it feasible for an expert

system to work iteratively with the textbase.

2.3 Textbase

The textbase contains the Fall (1986) draft of Computer Architecture, Volume

1 - Design Decisions by Blaauw and Brooks. The manuscript consists of

188,278 words comprising 8 chapters, titled: “Introduction”, “Machine Lan-

guage”, “Addresses”, “Data”, “Operations”, “Instruction Sequence”, “Su-

pervision”, and “Input/Output”.

Texts to be used as MICROARRAS textbases require format marks of

interest to users to be inserted in the text. TeX format marks were already

present and were used as the basis for the NHCROARRAS segments. These

included format marks to be used in the display of the retrieved text (line,

italics, label), as well as those which provide context information (chapter,

section, subsection, subsubsection, paragraph, sentence, item). A series of

programs are then run on the formatted text to produce an inverted file.

Finally, this inverted file is converted to fixed length records for fast access.

2.4 Thesaurus

All domain-specific knowledge is contained in a hierarchical thesaurus, The

expert system uses this information to reformulate queries. The thesaurus

was built by the author from the Brooks and Blaauw text, and it strongly

reflects the word usage of that textbase. In general, it should not be neces-

sary to provide a unique thesaurus for each textbase. An existing thesaurus

for the domain could be used, as long as there is a good match between

thesaurus classes and textbase word usage.

2.4.1 Logical Structure. This section describes the structure of the the-

saurus. There are several thesaurus constructs that require definition. Word

types which share a common stem are grouped into stemgroups. The mem-

bers of a given stemgroup are called stemwords. Each word type in the

Blaauw and Brooks text appears in exactly one stemgroup. Thesaurus classes

contain stemgroups which are synonyms for eaclh other. Stemgroups may

appear in zero, one, or more than one thesaurus class. Because the thesaurus

classes are linked together with parent-child links, they are also referred to

as nodes. The arrangement of the words into stemgroups, stemgroups to

thesaurus classes, and the classes into a hierarchy is discussed. Throughout
this discussion, word types will be written in lowercase, stemgroup names

with a leading uppercase letter, and thesaurus class names in uppercase,

At the lowest level, words with the same root are grouped into stemgroups.

A stemgroup contains all the words that lexically share the same root. Most

are easily identified by sorting the dictionary of word types in the database,

Common forms of word types not used in the textbase—for example if there
was no plural of a noun— are added to the stemgroup. Consider the grouping

of words with the root, structure.
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Stemgroup Name: Structure
Stemwords: structure, structuring, structured, structures

In addition to words that were lexically similar, words that are semanti-

cally forms of the same stem were included. Thus, run is the same stemgroup

as ran. Finally, each stemgroup also contains words formed from the stem by

the use prefixes. Thus, undecided is in the same stemgroup as decided.

Next, stemgroups pertaining to technical concepts are identified. Syn-

onyms among these stemgroups are combined to form thesaurus classes.

Nontechnical terms are not included in the thesaurus. Extremely low-

frequency stemgroups, those occurring only once in the textbase, are also

excluded.

High-frequency stemgroups represent broad concepts discussed throughout

the text. They are often excluded from thesauri since they are too general.

However, they are included in this thesaurus because they often occur in

meaningful word phrases. If the user enters a high-frequency word, like data,

the expert system could suggest the word phrases containing that word, for

example data structure and data type, as possible replacements to narrow the

query. If the high-frequency words are introduced during query reformula-

tion they are filtered out. For a given high-frequency word, the phrases

containing that word were identified by looking at all the sentences in which

it appeared. The meaningful word phrases which occur more than once are

included.

Finally, an ordering is imposed on the thesaurus classes. Conceptually, a

thesaurus class can be viewed as a node in a directed acyclic graph (see

Figure 2). Each node contains a name, a list of synonym stemgroups, the

names of zero or more parent nodes, and the names of zero or more child

nodes. Parent nodes—nodes higher in the thesaurus structure—represent

more general concepts than the current node. Child nodes—nodes lower in

the thesaurus structure—represent more specific terms. Nodes contain-

ing multiword phrases have as parents the nodes containing each of the

component stemgroups. For example, consider the thesaurus entry for
Data_ Structure:

Node Name: DATA. STRUCTURE

Node Stemgroups: Data _Structure
Parent Node(s): DATA, STRUCTURE, NAME .SPACE
Child Node(s): ARRAY, QUEUE, STACK, LIST

2.4.2 Thesaurus Words. The thesaurus was manually constructed from

the 8,313 different word types in the textbase. Removing numbers, punctua-

tion, English function words, proper names, and words which appeared only

once left 5,726 types. These were grouped into 1,993 stemgroups; common

word forms missing from the stemgroups were added, bringing the total to

6,990 types. Using a concordance and frequency of occurrence, 936 technical

stemgroups were selected to be arranged hierarchically in the thesaurus from

the 1,993 available, resulting in 753 thesaurus classes. The construction of

the thesaurus relied on the procedure outlined by Salton and McGill [221, the
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c“)Object P
Data_
!%ructure

Fig. 2. A sample thesaurus.

author’s knowledge of computer architecture, and the hierarchical arrange-

ment of sections in the Blaauw and Brooks text.

2.5 Query Language

When the user starts the system, the following prompt appears:

Enter a query, or quit, terminated by (return):

The system expects a Boolean query. A Boolean query language was chosen

because it is the most common type available on existing systems. We

wanted the main difference between this prototype and conventional full-text

retrieval systems to be the s4arching knowledge base so that any improve-

ment in search performance could be attributed to the encoded search strate-

gies, rather than the user interface. Possible improvements to the interface

are discussed in Section 4.

2.5.1 Operators. The operators provided, in decreasing order of operator

precedence, are: ANDNOT, AiND, and OR. A logical equivalent to any

Boolean expression can be constructed using these operators. Where there
are two or more operators of equal precedence, they are evaluated left to

right. Parentheses have the highest priority and can be used to override the
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default order of evaluation. The operators are distinguished from the search

words by their position.

2.5.2 Search Terms. When a query is parsed, the expert system inter-

prets each search term to represent a unique area of interest, or concept,

specified by the user. The concepts, and the operators, are flagged as positive

or negative based on whether they are specifying information the user does,

or does not, wish to receive. For example, the query ‘i/o ANDNOT (device OR

interrupt)’ contains three concepts: 1/O, device, and interrupt. 1/O is a

concept on which the user wishes information, so it is c~d a positive

concept. Dev~ce and interrupt indicate concepts on which the user does not

wish information, so they are considered negative concepts. The ANDNOT

and OR operators are followed by negative concepts, so they too are flagged

as negative.

2.5.3 Context. A default context of one sentence is used for the AND and

ANDNOT operators. For example, ‘virtual AND memory’ will retrieve all

passages in which virtual and memory appear within the same sentence,

regardless of order. Similarly, ‘page ANDNOT fault’ will retrieve passages in

which page appears, but not those in which it appears within the same

sentence as fault.

When the user is searching with the expert system, the expert system

controls the context. Initially, the default of one sentence is used, but the

expert system may adjust the context during query reformulation. However,

when the user is searching without the expert system, the AND and

ANDNOT operators may be augmented with a user-specified context. The

user may define the search context for AND or ANDNOT in terms of words,

sentences, or paragraphs. The most general context definitions have the

form:

left-expression operator [integerl to integer2 units] right-expression

where integerl must be smaller than or equal to integer2, and units is either

words, or sentences, or paragraphs. The integers specify the range around the

tokens satisfying the left-expression (tokenL) in which the tokens satisfying

the right-expression (tokenR) must appear. O represents the unit containing

the token from the left hand side. Thus, the default context of one sentence is

equivalent to

O to O sentences

indicating that tokenR must appear in the same sentence as tokenL. An

abbreviation for this context, sentence, is provided for the user’s convenience.

Negative integers indicate that tokenR must precede tokenL; positive

integers indicate that it must follow. Thus,

– 5 to + 3 words

specifies that tokenR must appear in the region around tokenL that includes

the five words preceding tokenL and the three words following it. If one is

looking for paragraphs containing a specific phrase, for example computer
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architecture, one would use the query

computer AND [+1 to +1 words] architecture

which requires that architecture immediately follow computer. There is also

a shortform for this relationship, called nextword.

Finally, since the retrieved passages are one paragraph long, search ex-

pression contexts should not be larger than one paragraph. Thus, the only

valid context involving the unit paragraph is

O to O paragraphs

and this context is abbreviated by paragraph.

Users may accidentally define contexts which, when evaluated, cross para-

graph boundaries. For example, if the user has specified a context of plus or

minus three sentences, tokenR may appear in a different paragraph than

tokenL. In this case, MICROARRAS retrieves the paragraph containing

tokenL. The user might be confused as to why a particular paragraph

containing only one of the tokens of interest was retrieved. In contrast, when

the expert system controls the context, it builds more complicated contexts

which specify that the tokens must appear in the same paragraph. For the

above example, the expert system would specify a context of plus or minus

three sentences within the same paragraph.

2.6 Knowledge Base

2.6.1 Overview. Professional search intermediaries use four main types of

knowledge–their knowledge of how particular databases are constructed,

knowledge about the domain being searched, knowledge of the user, and

knowledge of general search strategies–to form and improve queries. The

expert system handles all interactions with MICROARRAS, the text re-

trieval software used; the user will need no specific knowledge of this system.

Domain knowledge is all incorporated in the hierarchically structured the-

saurus. This system has no knowledge of the user’s true information needs,

other than the target number they specify to indicate how many passages

they wish to retrieve. The rest of this section discusses the knowledge base of

search strategies that forms the core of the expert system.

The expert system performs three main functions:

(1) it controls the operation of the system as a whole;

(2) it reformulates the Boolean query based on previous search results;

(3) it ranks the retrieved passages in decreasing order of estimated relevance

for presentation to the user.

To perform these functions the expert system contains a knowledge base of

the search process, search strategies, and passage ranking procedures.

2.6.2 Query Reform ulation Rules

Overview. Queries are reformulated based on the target number, the

number of passages retrieved, and the history of broadening and narrowing
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techniques already applied. The expert system has a collection of reformula-

tion tactics at its disposal. Bates [1] and others have identified successful

search tactics. However, no one has outlined an overall query reformulation

strategy combining these tactics. The guiding principles for this expert

system’s query reformulation knowledge base were (1) each search term in

the initial query represents one concept on which the user does, or explicitly

does not, want information; (2) the user’s initial search terms are the best

indication of the user’s areas of interest; (3) some terms from the thesaurus

may be helpful, but others will not; (4) the expert system should never

discard concepts in which the user has indicated an interest.

Query reformulation techniques. The expert system reformulates queries

using three different techniques: (1) expanding concepts; (2) adjusting con-

text; and (3) changing the query structure.

Expanding concepts. To broaden a query, search terms are added to the

positive concepts, whereas narrowing a query adds search terms to negative

concepts. Concepts may be expanded by stemming, adding synonyms, and

adding related search terms for the thesaurus. Crouch [131 found that aug-

menting a query with thesaurus terms, rather than replacing the original

search terms, leads to improved results. With this in mind, concepts are

expanded by adding thesaural terms (ORing them with the terms already in

the concept) rather than by replacing the terms already present.

The belief that some stemgroups from the thesaurus will be useful, while

others will not, is the basis for providing user filtering of the candidate

thesaurus terms. The domain-dependent search strategies identified by Smith,

Shute, and Galdes [271 involved the use of domain knowledge to choose the

appropriate terms from a thesaurus. In addition, Harman [16] showed that

search results improved when thesaural terms were filtered by the user.

Based on these two studies, we decided to allow the users to select which

stemgroups to add from a set of thesaural candidates.

Finally, candidate search terms selected from the thesaurus are filtered to

remove those which already occur in the query and extremely high frequency

terms. The remaining terms are added one at a time, in reverse order of

frequency, and the new number of retrieved passages is compared to the

target number.

Adjusting context. The expert system manipulates four different contexts;

it adjusts the distance between words in positive and negative multiword
phrases as well as the distance between positive and negative search con-

cepts. The expert system broadens queries by increasing the positive contexts

and decreasing the negative ones. Conversely, narrowing is done by decreas

ing the positive contexts and increasing the negative ones.

Changing query structure. The final variable the expert system can ma-

nipulate is the query structure. The query can be broadened in two different

ways: first, the positive AND operators can be switched to OR operators (and

the negative OR operators switched to ANDs); second, the negative parts of

the query can be dropped altogether. All of the AND operators are replaced
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at the same time. A better strategy would be to replace them one at a time,

in inverse order of the frequency of occurrence of the concepts. Similarly, the

query can be narrowed by replacing OR operators with ANDs. The expert

system does not have enough information about the user’s information needs

to decide which positive parts of the query to drop, so this technique is not

employed to narrow queries.

Flow of control. Figure 3 diagrams the flow of control among the reformu-

lation techniques. The left side of the Figure 3 diagrams the broadening

techniques, the right side the narrowing techniques. This figure is somewhat

simplified since it does not show the use of context to converge to the target

number once queries have been found which bracket the target number from

above and below.

The expert system records the type of initial query reformulation as the

global objective, If the reformulations in the original direction overshoot the

target number without achieving success, reformulations in the opposite, or

local, direction are tried, beginning at the top node on that side of the

diagram. Reformulation never continues in the local direction farther than it

reached in the global direction. Queries have been formed which bracket the

target number from below and above, otherwise the system would not have

tried both narrowing and broadening techniques. Rather than using tech-

niques which are considered less likely to produce good results, the expert

system adjusts the context.

Expanding a concept. The first reformulation technique tried, whether

broadening or narrowing, is adding the rest of the initial search term’s

stemgroup to each appropriate concept in term. Next, synonyms are added,

followed by related terms from the thesaurus. The order in which the terms

are added from the thesaurus is parents, then siblings, then children. Replac-

ing a term with its parent to broaden a query is a common practice, both by

searchers [1, 23], and in systems which automatically reformulate queries

[11, 33]. The rationale is that since parent terms represent broader concepts,

adding the parent term should broaden the scope of the query. Thus, parent

terms are added first. Siblings are added second since they represent related

concepts, and children terms are added third since they represent narrower

concepts and seem less likely to broaden the concept. While the expert

system uses this ordering, the reasoning is based on experience with search-

ing bibliographic databases using keywords. In full-text databases, we be-

lieve that the reverse order may make more sense. Broadening a concept

containing apple with children terms, yielding ‘apple OR mcintosh OR

granny_ smith’, seems more likely to retrieve relevant passages than broad-

ening with the parent terms, yielding ‘apple OR fruit’. Observing the system,

adding parent and sibling terms currently takes a lot of time since there are

so many candidates, but rarely do they increase the number of passages
retrieved. Adding child terms usually retrieves more passages. Attempting

this technique sooner would increase the speed of the expert system because

the reformulation might stop several steps earlier.
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Adjusting context. Whereas there were several sources of information to

draw from to determine the order in which to apply the search term expan-

sion techniques, there was less information available on the use of context to

reformulate queries. Contextual searching on document contents is not avail-

able on standard bibliographic systems, and full-text systems usually supply

operators for adjacency, same sentence, same paragraph and same document,

only, There is no established practice on when to adjust context rather than

expand search terms.

We chose to adjust context in four specific places in the expert system: after

adding all stemgroups from the same thesaurus class, but before adding any

stemgroups from related thesaurus classes; after adding all related stem-

groups from the thesaurus, but before changing the Boolean operators; after

changing the Boolean operators but before declaring failure; and after the

local reformulations have progressed as far through the search techniques as

was used in the original reformulation direction. These places were chosen

because it seems desirable to try adjusting context, which does not alter the

concepts being searched, before moving on to a new group of reformulation

techniques which may move the query farther from the user’s original

intentions.

Changing query structure. Manipulating query structure causes major

changes to the user’s original query. These techniques are only tried after all

close relatives from the thesaurus have been added and context has been

broadened twice. It is not likely that the new query will find passages that

the user will find highly relevant, but the goal is to find somewhat relevant

passages that users can read in order to reformulate their own queries and

try again.

Stopping. Bates [1] stated that knowing when to stop a search is a

difficult problem. We partially side-step this problem by having the user

explicitly state the number of passages he wishes to retrieve. Since the target

number he supplies is likely to be a rough guess, a range of 20 percent is

considered successful. A larger range may be desirable, but since the user is

able to stop the reformulation process himself, the size of the range is not

important. Left on its own, the expert system stops the reformulation process

when it achieves success, or it has run out of techniques to try.

2.6.3 Passage Ranking Rules. The dialogue between the expert system

and MICROARRAS normally produces a set of passages to be displayed to

the user. The last task performed by the expert system is to rank order those

passages in terms of their probable interest to the user. To do this, it

performs an elementary content analysis on each passage and computes a

weight representing probable interest.

Ranking algorithms for document retrieval systems have been extensively

studied. There has been less work done on ranking for passage retrieval
systems. The FAIR system [10] performs a simple ranking based on the

distance between word pairs, the number of search terms represented and the

number of occurrences of the terms. The ranking algorithm used by the
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expert system considers the following factors: the number of different con-

cepts represented in the passage; the number of different word types for each

concept; the relationship of the concept’s word types to the user’s original

search terms; the number of occurrences for each word type from the search

expression appearing in the passage; and the contextual distance between

search terms. The passages are then ranked according to their respective

weights and presented to the user in order of decreasing rank,

Calculating passage weights. The weight WP~ of passage p for query q,

O < = WP~ < = 1, is a function of the weight C,P of each query concept i in p,

the relationship between the concepts (determined by the parse tree), and the

contextual closeness between the concepts. The concept weights are combined

by applying the rules for fuzzy logic [35] to the Boolean structure of the

query. Additionally, a closeness factor is associated with each of the AND

and ANDNOT operators. The closeness factor for the AND operator is set to

one of three values (1. O for same sentence, 0.9 for adjacent sentences, 0.8 for

same paragraph). The closer two positive concepts appear in the passage, the

higher weight that passage receives. Complementary closeness values are

used for the ANDNOT operator (O.8 for same sentence, 0,9 for adjacent

sentences, 1.0 for same paragraph).

w P(C, AND CJ) = min(C,P, CJP) *PositiveCloseness (1)

w P(CZOR C~) = max(CiP, CJP ) (2)

P,NOTCJ, = (1 - c,,)w (3)

From (1) and (3)

w P(CZ ANDNOT c.J) =
min(CLp, 1 – CJP) * NegativeCloseness (4)

The concept weights and closeness factors fall in the range [0, 1], therefore
the passage weights also fall in the range [0, 1].

Calculating concept weights. The weight of concept i in passage p, Cip, is

a function of the weight of each concept term T in query q, denoted TJ~ for

search term j, and the weight of each concept term in the passage, denoted

~P for search term j, and the number of search terms for the concept, The

weight of a search term in the passage is multiplied by the weight of that

search term in the query. Thus, the highest weight search terms are those
which are important in the query as well as the passage. The weights for all

the concept’s search terms are summed together and normalized by the

number of search terms for the concept, N.

C,p = l/N~ ~~ *?P where term j is in concept i (5)
J=l

The term weights fall in the range [0, 1], therefore, the concept weights also

fall in the range [0, 1].
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Calculating term weights. Two different term weights, T, are calculated:

the weight of the search term i in query q, Tiq, and the weight of the search

term i in passage p, T,P.

Query term weights. The weight of the search term i in query q, Ti,Z,

reflects the relationship of the search term to the user’s original term, The

relationships, from closest to most remote, are same word, stemgroup, syn-

onym, parent, sibling, child. These distances reflect the order in which search

terms are added to the concepts, which in turn reflects confidence in the

closeness of the relation of the search term to the original term.

Ti~ = 1.0 (word), O.9 (stemgroup), O.8 (synonym), O.6 (parent),

O.5 (sibling), O.4 (child) (6)

The query term weights fall in the range [0, 11 as required, with the original

word receiving a weight of 1.0. Terms added by the expert system receive

weights which decrease by 0.1 for every step away from the original term,

except for the step from synonym to parent terms. This step decreases the

term weight by 0.2, reflecting the large decrease in confidence which occurs

when terms are added from outside the thesaurus class.

Passage term weights. The weight of the search term i in passage p, T,P,

reflects the frequency of the search term in the passage, f,P, and the

frequency of the search term in the textbase, f,~. Ro [211 evaluated several

full-text ranking algorithms and concluded that those based on relative

document frequency provided the best performance, Thus, we chose relative

frequency for the term passage weights.

TiP = f,P / f,, (7)

The term passage weights fall in the range [0, 1], as required.

2.7 Sample Scenario

Before the system components are described individually, a sample scenario

will be presented to illustrate how they work together to provide an intelli-

gent online search assistant. Since our current textbase concerns the domain

of computer architecture, the following example describes the interactions of

the system and a user searching for information on the alignment of word

boundaries in memory.

The user might enter a query ‘boundary AND word ANDNOT page’, which

indicates that he wishes to retrieve passages containing information on word

boundaries but not page boundaries. Assume a target number of 15. Applied

to this textbase, the original query would retrieve only one passage, so the

expert system would attempt to broaden the query. The first step would be to

replace the word types boundary and word with their stemgroups. The

resulting query would be ‘Boundary AND Word ANDNOT page’, where the
capitalized search terms indicate the whole stemgroup is included. Notice

that page has not been expanded to its stemgroup, as it is a negative, or

excluded, concept. Four passages would now be retrieved.
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The next step would be to broaden the query by including synonym

stemgroups for each of the positive search terms, in turn. From the thesaurus

it is found that Boundary has one synonym, Limit, however there is no

synonym for Word. The query now becomes ‘(Boundary OR Limit) AND

Word ANDNOT page’, which retrieves seven passages. Relaxing the context

around the AND operator to adjacent sentences while decreasing the context

around the ANDNOT operator to within 5 words increases the number of

passages retrieved to nine. To further broaden the query, the parent stem-

groups for the positive concepts are added. Block and Segment are added to

the concept Boundary. The Word concept remains unchanged, since Word has

no parent in the thesaurus. The query becomes ‘(Boundary OR Limit OR

Block OR Segment) AND Word ANDNOT page’, which retrieves twelve

passages, Twelve is within 20 percent of the fifteen passages requested, so

the reformulation stops. If the user requests to see the retrieved passages, the

expert system would rank the retrieved passages and present them to the

user in decreasing rank-order.

3. EVALUATION

Evaluating an interactive system is difficult, Tague and Schultz [29] have

defined a framework for evaluating information retrieval system interfaces.

They identified three ways to measure the information retrieval system:

informativeness, time, and user friendliness, Informativeness is measured by

retrieval output (search effectiveness) and retrieval order (ranking). The

search efficiency of the system is related to Tague’s time factor. Finally, the

user friendliness of the system can be evaluated by a post-search question-

naire.

Our primary goal is to demonstrate that using an expert system to refor-

mulate queries can improve search performance for novice searchers. Ideally,

both their effectiveness and efficiency would be improved. The second, less

important, goal is to show that the expert system can rank the retrieved

passages in decreasing order of relevance.

To evaluate the expert system, subjects attempted to find relevant passages

in response to high-level questions. They queried MICROARRAS with three

interfaces with different capabilities: an interface whose only function was to

accept contextual Boolean queries and display search results; a similar

interface which also allowed the user to explore the online thesaurus; and a

third which incorporated the searching expert system. Each subject’s search

performance with the three interfaces was monitored and compared.

3.1 Hypotheses

Hypothesis 1: The expert system improves the search effectiveness for a

novice searcher.

Hypothesis 2: The expert system improves the search efficiency for a novice

searcher.

Hypothesis 3: The expert system can rank the passages retrieved by the

search in decreasing order of relevance.
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The effectiveness of the retrieval output is evaluated by looking at recall

(the number of relevant items found/ the total number of relevant items in

the database) and precision (the number of relevant items retrieved/ the

number of items retrieved). Two estimates of the number of relevant items

retrieved are examined: the number of passages the users mark as relevant

and the number of passages retrieved from the set of passages deemed

relevant by the author.

The efficiency of the system is measured by the number of Boolean queries

the subjects entered for each of several high-level questions, and by the

amount of time they spent searching for relevant passages for each question.
The ranking algorithm was evaluated by comparing the order of appear-

ance of relevant passages after they have been ranked with a random order of

appearance,

3.2 Method

3.2.1 Subjects. Twelve computer science graduate students participated

as subjects in the study. All subjects were knowledgeable in the use of

computers, but unfamiliar with online searching. Thus, they were represen-

tative of the anticipated users of future information retrieval systems,

3.2.2 Apparatus

Information retrieval systems. The user-alone configuration consisted of a

Sun 3 running MICROARRAS and a rudimentary expert system. This expert

system performed only the system control function, and did no query refor-

mulation or ranking of retrieved passages. The user was prompted for a

contextual Boolean query, this query was sent to MICROARRAS, and the

number of passages retrieved was reported back to the user. The user could

display the passages retrieved, if there were fewer than 25, or try another

query. Typing was minimized by using the Sun’s windowing package to cut

and paste the previous query, edit, and rerun it.

The user-thesaurus version consisted of a Sun 3 with one window running

MICROARRAS, as in the user-alone system, and a second window running a

thesaurus access function. In the thesaurus window the user had access to all

the thesaurus information available to the expert system. He could find out

the stemname for a specific word’s stemgroup. For any stemname, he could

ask for the stemnames of the corresponding synonym, parent, sibling, or

child stemgroups. These stemnames could be used in the user’s query to

MICROARRAS. Typing was minimized by using the Sun’s windowing pack-

age to cut the stemgroup from the thesaurus window and paste it into the

appropriate concept of the query.

In the user-expert system version the user did not have access to the online

thesaurus. Context and the addition of stemgroups were controlled by the

expert system. Thus, the user entered a Boolean query and a target number

of passages and the expert system reformulated the user’s query to attempt
to get close to the target number. The user was prompted to filter search

terms found in the thesaurus, and to continue or abandon the current

reformulate ion.
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To keep the response time approximately the same as for the other two

configurations it was necessary to run MICROARRAS remotely on the Sun 4

file server containing the textbase. The user worked with one window on a

Sun 3 which ran the full version of the query reformulation expert system.

The expert system communicated with MICROARRAS over the network.

This setup was approximately twice as fast as when MICROARRAS was run

on the user’s Sun 3. This speed up was necessary, not because the expert

system code itself was slow, but rather because the expert system tended

to form very long queries involving many MICROARRAS categories, and

MICROARRAS slows down linearly with the number of search terms in a

query.

Questions. Three sets of five questions were devised. Each set contained

one training question and four questions on which the subjects were moni-

tored. The questions covered material ranging over the whole textbase. The

number of relevant passages found by the author (see Definitions) follows

each monitored question.

Query Set A

Practice:

W’nat are some sources of error in floating point arithmetic?

Monitored:

(1) How is computer architecture distinguished from the other com-

puter design domains? (16)

(2) What are some upward pressures on the level of a machine lan-

guage? (16)

(3) Fixed length multiplication produces a double length result. How

have different machines handled this? (14)

(4) How are interrupts handled? Do not consider techniques to disable

them. (23)

Query Set B

Practice:

1/0 devices have moving parts. What is the effect of this motion on the

architecture of computers?

Monitored:

(1) What are some design principles that lead to clean architectures?
Do not consider the economic advantages of a quality design. (16)

(2) What techniques have been used to reduce bit traffic? (10)

(3) How are control structures implemented? (13)

(4) What role does buffering play in 1/0 transfers? (22)

Query Set C

Practice:

Fragmentation of memory is one problem of using a segmentation

scheme. How is paging used to fix this?
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Monitored:

(1) Discuss the two fundamentally different ways to formally specify

an architecture. (19)

(2) What aretheeffects ofhaving twozeros, asinthe sign magnitude

representation of fixed point numbers? (7)

(3) What is done to save state upon a procedure call? (15)

(4) Besides 1/0, where is concurrency practiced in the implementa-

tion? (16)

3.2.3 Procedure. Subjects were asked to try to find on the order of ten

relevant passages from the textbase in response to the questions they would

be given. They were informed that they might not always be able to find that

many, and they were allowed to stop working on a query whenever they were

satisfied that they had found as much as they could. The target number of

ten was chosen because it was large enough to require a high recall search,

yet small enough that the users would not become tired reading passages.

For similar reasons, Vernimb [32] also used a target number of ten when

developing an automatic query reformulation system for document retrieval.

Each subject worked with each of the three systems, in turn. This was done

to compensate for the large individual differences found in searching ability

[71. To compensate for learning during the experiment, the order of presenta-
tion of the three systems was counterbalanced among subjects. The order of

presentation of the question sets was the same for all subjects (Set A first,

then B, then C). Thus, each question set was searched on each system four

times. The subjects received a training session with each system before they

began their monitored searches. When they had completed all three sessions,

they were asked to fill out the questionnaire stating their preferences and

opinions.

3.2.4 Data Collection

Raw data. Data was collected in a trace file while the subjects worked

with the system. Each communication from the subject to the retrieval

system, and vice versa, was stored with a time stamp. Thus, timing informa-

tion was collected along with the history of queries entered by the subject and

the search results. When the subject chose to display the retrieved passages,

those passages and the subject’s relevance judgement of them were also

stored.
Several parameters were chosen from the trace file to represent each

subject’s sessions. Measurements were taken on time, number of queries, and

number of relevant passages. Before the variables to be compared are de-

scribed, we will provide a few definitions.

Definitions. A unique query was any error-free query entered by a sub-

ject. If a subject entered a query which contained a typographic or logical
error, and he indicated that he noticed the error by aborting the search and

reentering a corrected version, then the erroneous query was not considered a

unique query. However, if the subject gave no indication that he was aware

ACM Transactions on Information Systems, Vol. 9, No. 3, July 1991.



272 . S. Gauchand J. B. Smith

of the error, but instead moved on to a different query altogether, then the

erroneous query was considered unique.

The relevance weight of a passage is the relevance number assigned to the

passage by the subject. A very relevant (user) passage is one assigned a

relevance weight of two. A somewhat relevant (user) passage has a relevance

weight of one. A relevant passage (user) is one that is either very relevant or

somewhat relevant, as judged by the user. An irrelevant passage (user) is a

passage given a relevance number of zero.

It is necessary to have an estimate of the total number of relevant passages

available for each question, in order to calculate recall. This estimate was

calculated by forming the union, for each question, of the set of passages

judged very relevant by any subject. Passages in this set judged irrelevant by

the author were removed, The remaining passages form the absolute retrieval

set are called the relevant passages. Itwas necessary to remove some pas-

sages marked very relevant by a subject because, perhaps due to a misinter-

pretation of the question or a misunderstanding of the passage, some subjects

gave a relevance weight of two to irrelevant or marginally relevant passages.

This tendency to overestimate the relevance of passages may also be because,

in some cases, subjects were unable to find the truly relevant passages, and

thought that they had retrieved the best passages available when in fact they

had not.

A successful retrieval set is a retrieval set containing at least five relevant

passages. Since the subjects were attempting to find ten relevant passages, a

successful retrieval set contains at least half the number for which they were

looking. The textbase contained approximately the same number of relevant

passages for each question, allowing the target number and size of the

successful retrieval set to be held constant.

The final retrieval set was chosen as the last successful retrieval set. If a

subject never retrieved a successful retrieval set for a given question, the

retrieval set with the highest number of relevant passages, as judged by the

subject, was chosen. The final query is the query input by the user which

resulted in the final retrieval set.

Variables. Total time per question is calculated from the entry of the

subject’s first query for the question until after the display, or decision not to

display, of the final set of retrieved passages.

Number of queries per question is determined by counting the number of

unique queries the subject entered for a given question.

Nurnbe. of relevant passages ( use.) found per question is determined by

counting the number of user indicated relevant passages in the final retrieval

set for the question.

User precision is calculated for the final retrieval set using the standard

formula of number of relevant passages (user) retrieved/ number of passages

retrieved.

Number of relevant passages found per question is determined by counting

the number of passages in the final retrieval set for the question that are

members of the absolute retrieval set.
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Precision is calculated for the final retrieval set using the standard formula

of number of relevant passages retrieved (absolute) / number of passages

retrieved.

Recall is calculated for the final retrieval set using the standard formula of

number of relevant passages retrieved (absolute) /total number of relevant

passages available.

The ranking balance point (R) for each retrieval set (not just the final one) is

calculated by

~ ~=~irrelevance ~ where n = number of passages in the retrieval set

i = position of the passage in the retrieval set
X ~=~relevance ~ relevance = relevance weight of passage i

This calculates where the midpoint of the relevant passages lies, accounting

for the relevance weight. The earlier in the retrieval set the relevant

passages occur, the smaller their midpoint. For example, consider a retrieval

set of five passages of which the first two are very relevant (weight = 2), the

next two irrelevant (weight = O), and the last passage somewhat relevant

(weight = 1). The ranking balance point for this set would be

(1*2) + (2*2) + (3*0) + (4*0) + (5*1)/5 = 2.2.

The random balance point (R) for each retrieval set is calculated by (n + 1)/2

where n is the number of passages in the retrieval set. A random distribution

of relevant passages in the set would have the midpoint (M) of the retrieval

set as the balance point. Therefore, the random balance point for the set of

five passages in the previous example would be 3.

The best case balance point (BC) for each retrieval set is calculated by

applying the ranking balance point formula to the case where all very

relevant passages preceded all somewhat relevant passages which in turn

preceded all non-relevant passages in the set. In this case, the ranking

balance point would be

(1*2) + (2*2)+ (3*1) + (4*0) + (5*0)/5 = 1.8.

The normalized ranking balance points were calculated from the ranking

balance points by moving the random balance point to O and adjusting the

range so that the best case balance point fell cm 1, and the worst case balance

point at – 1. The normalization performed was

Normalized ranking balance point (NR) = (M - R)/(M – BC).

For the example retrieval set, the normalized ranking balance point would be

(3 - 2.2)/(3 - 1.8) = 0.67’.

Summaries calculated for each system. For each system the means calcu-

lated were

—number of queries per question

—time per question (seconds)
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—number of relevant passages (user) per question

—user precision

— number of relevant passages (from absolute retrieval set)

—precision

—recall

For each ranking algorithm (the expert system’s, and randomness) the

normalized balance points were calculated.

3.3 Results

The means were compared to determine if their differences were statistically

significant. Pairwise two-tailed t-tests were performed. A difference was

considered significant if its probability of occurring due to chance was less

than 5 percent at the 95 percent confidence level (a 10 percent chance at the

95 percent confidence level was considered marginally significant). Pairs of

means with statistically significant differences are flagged with asterisks.

3.3.1 Search Effectiveness. All three systems retrieved comparable num-

bers of relevant passages. Whereas there seemed to be higher recall with the

thesaurus, shown by a mean of 7.688 compared to a mean of 7.292 with the

expert system, this difference was not significant (p = 0.5333).

—number of relevant passages (user) per question

—user alone 7.375

—user and thesaurus 7.688

—user and expert system 7.292

All three systems produced comparable precision, based on the subject’s

relevance judgments.

—user precision

—user alone 0.763

—user and thesaurus 0.786

—user and expert system 0.761

All three systems retrieved approximately the same number of passages

from the absolute retrieval set.

—number of passages from absolute retrieval set

—user alone 5.521

—user and thesaurus 5.708

—user and expert system 5.729

Recall was comparable across all three systems. There was a slight im-

provement in recall for the user and expert system configuration, but the

advantage over the user-alone configuration was not significant ( p < 0.6988).
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—recall

— user alone 0.364

—user and thesaurus 0.368

— user and expert system 0.379

The user and expert system configuration produced marginally significant

improvements in precision when compared with the user-alone configuration,

—precision

— user alone 0.530” (p < 0.0817)

— user and thesaurus 0.576

—user and expert system 0.604’

3.3.2 Search Efficiency. The expert system was not significantly slower

than the other two systems. However, the user was marginally significantly

slower when using a thesaurus. However, IvHCROARRAS was being exe-

cuted by a Sun 4 with the user-expert system configuration resulting in

approximately a doubling of its speed.

— mean time per question (seconds)

—user alone 474.5* (p < 0.101)

—user and thesaurus 571.5*

—user and expert system 539.8

The expert system improved search efficiency, as measured by number of

user queries over both the user alone and user plus thesaurus.

— number of queries per question

— user alone 4.833* (p < 0.0001)
—user and thesaurus 5.458** (p < 0.0001)

— user and expert system 2.354*,**

3.3.3 Ranking. The expert system ranked relevant documents more

highly than would be predicted by randomness. The expert system’s ranking

was compared to a random distribution for 74 sets of retrieved passages.

–balance points

—random 5.00 * (p < 0.0165)

—expert system 4.53 *

—normalized balance points (on range of – 1 to +1)

—random 0.000” (p < 0.0025)

—expert system 0.195*

3.4 Analysis

The first hypothesis that the expert system can improve the search effective-
ness for a novice user was not supported by this study. However, the expert

system produced marginally significant improvements in precision, and
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seemed to indicate improvements in recall. Providing the online thesaurus

produced no improvement in search effectiveness.

The possible improvements in precision may result from the expert system

applying better broadening techniques. The subjects, when searching alone,

would often stop with a very broad query and examine a large set of retrieved

passages (over fifteen) looking for relevant information. This type of strategy

results in the lower precision observed when the subjects search on their

own.

However, this browsing strategy also accounts for the ability of the subjects

to produce recall comparable to the expert system when there were a large

number of relevant passages in the textbase. For example, in two questions

with large absolute retrieval sets the subjects were able to retrieve, on

average, 10 and 10.25 relevant passages on their own compared with the

expert system’s retrieval of 8 and 7.75 passages respectively. By using a

target number of 10 for these broader questions, the expert system was

operating at a disadvantage. More relevant information was easily found,

judging by the high recall of the subjects, but the expert system did not even

attempt to further broaden the query. Clearly, 10 is not the ideal target

number for all queries.

The second hypothesis that the expert system can improve the search

efficiency of novice searchers was supported. Using the expert system signifi

cantly reduced the number of queries subjects needed to answer a given

question. Subjects required fewer than half as many queries per question on

average versus systems in which the user queried without it, a substantial

improvement. The expert system reduced the amount of user effort required

by decreasing the number of queries a user needs to design to express their

information needs. If efficiency is measured in terms of total user time

the expert system fares less well. The expert system was not significantly

slower than either of the other two systems but it was necessary to run

MICROARRAS on a faster machine to achieve this. However, this version of

the expert system was designed with correctness rather than efficiency in

mind, and there are several ways that it could be sped up. In particular when
a stemgroup is added to a concept, the entire query is reevaluated against the

textbase, A large speed improvement could be gained by unioning the

passages retrieved by the new stemgroup with those retrieved by the rest

of the concept (which has already been calculated). Then, the resulting set

of passages could be merged with those retrieved by the rest of the query

(which has also been already calculated).

Allowing the subjects to access the online thesaurus actually decreased the

subject’s efficiency. They took significantly more time than when they

searched on their own, and required no fewer queries. This seems to indicate

that the improvement in efficiency seen above was due to the expert system’s

searching knowledge base, not just the provision of an online thesaurus.

The third hypothesis that the expert system could rank passages in de-

creasing order of relevance was supported. Although the expert system did

present relevant passages significantly earlier than would be predicted by

randomness, the improvement was not large enough to be considered truly
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successful. The current algorithm needs to be evaluated with different

weights, or a somewhat different algorithm needs to be tried, in order to

further improve the ranking function. Decreasing the query term weights

more quickly as the query terms move farther from the original may improve

the ranking by placing more emphasis on the user’s original search terms.

Using a more sophisticated closeness factor, one that took into account how

many words apart the search terms were in the passage, as well as sentence

and paragraph measures considered in this version, may also lead to im-

proved ranking.

Finally, some discussion of the number of reformulations performed by the

expert system seems appropriate. The number of reformulations performed

for a given question varies since some unsuccessful starting queries were

reformulated before (and sometimes after) a successful starting query is

found. The following statistics are given for the final query, The average

number of reformulations performed on the starting query for the twelve

questions, in order, were 4.25, 5.75, 4.25, 2.7’5, 6, 5.’75, 3.25, 3.25, 4.25, 2.75,

4, 1. This gives an average of 3.65 reformulations over all final retrieval set

queries. It is interesting to note that the highest average number of reformu-

lation is six. If the expert system is continually broadening the query (which

is the most common case), this means that even on the question requiring the

most reformulations it stops, on average, just after adding child stemgroups.

In fact, examining the 48 final retrieval set queries reveals that only in 3

cases did the expert system go past this point. Twice it went one more step

and adjusted the context, and once it performed all ten reformulations on the

broadening side before the user was satisfied with the number of passages

retrieved.

3.5 Questionnaire

The twelve subjects were asked which features of the expert system they

liked best. The automatic addition of terms from the thesaurus was the most

frequently mentioned (8 subjects), whereas the automatic context adjustment

was the second most popular feature (3 subjects). Many subjects (8) men.

tioned the decreased amount of work needed to perform a search, with three

of them specifically mentioning that they did not have to think as much.

Other features mentioned which decreased the user effort were the simplified

syntax, decreased typing, and the fewer queries to remember.

System slowness was the feature most disliked (6 subjects). Although the

amount of time necessary to answer a question was no greater with the

expert system (see Section 3.3. 2), there was less work for the user so time

seemed longer. The other main complaints concerned the user interface. The

subjects were fairly evenly split between wanting the system to proceed more

automatically, with less prompting from them (4 subjects), whereas others

wanted the system to explain what it was doing and/or allow the user to

direct it (5 subjects). These comments lead to the conclusion that if a usable

system is to be built based on the success of this research prototype, the

execution of the system must be sped up and more work on interface design is

needed.
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Almost all the subjects (10) found the user-expert system version the

easiest to use with the remaining two subjects split between the other two

versions. Not surprisingly, given the comparable effectiveness of the three

systems, the subjects were split on which system they felt gave the best

results. Three voted for the user-alone version, two for the user-thesaurus,

and three for the expert system. Three said it was a tie between the

user-thesaurus and the expert system, and one abstained.

4. FUTURE WORK

Running the experiment suggested several possible refinements to the sys-

tem. The experimental subjects had many useful comments, the bulk of

which dealt with the desire for a more sophisticated user interface. Desirable

changes include provision of a non-Boolean query language; allowing users to

adjust the amount of system interaction; having the user specify the type of

search desired, rather than having him give a specific target number; and

increasing the speed of the system by improving the way the expert system

uses MICROARRAS.

Observing the expert system reformulate real queries gave invaluable

insight into which types of queries it handled well, and which it did not.

Some possible knowledge base improvements will be suggested, but the

whole issue of the order in which to apply the search tactics need further

investigation.

Currently, the Boolean operators are loosened before negative concepts are

removed. It is a more drastic change to replace ANDs with ORS than to drop

the negative concepts from the query so the order of application of these two

reformulation techniques should be swapped.

A common type of query that required broadening was one that contained

the intersection of three or more concepts. In this case, broadening context

and adding search terms to each concept fails to address the fundamental

problem of intersecting too many concepts. The next step of replacing the

ANDs with ORS is too drastic a change, It invariably leads to too broad a

query. Instead, the expert system should take the original query and drop

each of the concepts in turn. For example, the query ‘A AND B AND c’

would have partial queries ‘A AND B’, ‘B AND C’, and ‘A AND C’. The

number of passages retrieved by each of the new partial queries should be

reported back to the user, and he could restart the expert system on whichever

partial query best reflects his interests.

The most common type of query requiring narrowing consisted of a single,

high-frequency concept. None of the current reformulation techniques were of

any use in this case. There were no operators to change, no context to adjust,

and adding search terms just makes the query broader. This type of query

should be treated as a special case. The concept’s child concepts from the

thesaurus should be presented as alternative, more specific, queries. The user

could also be encouraged to AND this concept with another.

The treatment of multiword phrases entered by the user which do not

appear in the thesaurus should be changed. Currently, the only expansions
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done are expanding each word to its stemgroup and loosening the context

allowed between the words of the phrase. It would be preferable to treat the

words of the phrase as separate concepts which are ANDed together with

adjacent context. Each phrase word could then be expanded using the full

range of thesaural relationships, as is the case with regular search terms.

Finally, more work is needed to improve the ranking of the retrieved

passages. The current ranking algorithm should be tried with different

weights for the query search terms and the closeness factor. It may be

necessary to try entirely different algorithms, possibly incorporating syntac-

tic or semantic information, to achieve high quality ranking.

In conclusion, we have demonstrated that an expert system can provide

online search assistance to improve the efficiency of novice searchers. Whereas

more research is necessary to develop a better search assistant, I have been

able to prove that a useful search assistant can be developed which separates

the search strategies from the domain knowledge, and that implementation

of such a system is feasible now.
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