
REPORTS

HETEROGENEOUS COMPWNG
ENVIRONMENTS: REPORT ON THE ACM
SIGOPS WORKSHOP ON ACCOMMODATING
HETEROGENEITY*

The ACM SlGOPS Workshop on Accommodating Heterogeneity was
conducted in December 1985 in Eastbound, Wash., as a forum for an
international group of fifty researchers to discuss the technical issues
surrounding heterogeneous computing environments.

DAVID NOTKIN, NORMAN HUTCHINSON, JAN SANISLO, and MICHAEL SCHWARTZ

INTRODUCTION
A heterogeneous computing environment consists of
interconnected sets of dissimilar hardware or soft-
ware systems. Because of the diversity, interconnect-
ing systems is far more difficult in heterogeneous
environments than in homogeneous environments,
where each system is based on the same, or closely
related, hardware and software. Examples of hetero-
geneous environments include: a network with 3
VAXes, 16 SUNS, and 1 Syrnbolics LISP machine; a
network with 1 DEC-2060, 1 IBM-4341, and 20 IBM
PC-ATs: a network with 12 Xerox D-Machines, 6 of
which are running Interlisp and 6 of which are run-
ning XDE. In contrast, examples of homogeneous
environments include: a network of Macintoshes
linked together with AppleTalk; a network of Micro-
VAXes running IJltrix; a network of SUNS running
UNIX and NFS; a network running Eden [l]; a net-
work running Locus [12].

’ A preliminary vision of this report appeared in O{wrafing Sysf~n,.s Rrr~u~
20. 2 (Apr. 1986). 9-2-l and also as Technical Report 86-02-01. Department of
Computer Science. University of Ll’ashington (Feb. 19861. The report printed
hers is not a transcript: the order of the discussions has been changed. re-
marks ha\,c been paraphrased. and conlents have been condensed. However.
an attempt to remain faithful to the proceedings has been made.
Support for preparation (of this report was provided in part by NSF grant
OCR-8420945.

K 1987 ACM OOOl-0782,‘87/0200-0132 756

Heterogeneity is often unavoidable. It occurs as
evolving needs and resources lead to the acquisition
or development of diverse hardware and software.
As a computing environment evolves, there is a ten-
sion between retaining homogeneity and acquiring
new types of systems. Since some efforts are best
conducted on systems different from those already
available, this tension must at times be resolved in
favor of heterogeneity. For example, research on
constraint-based animation may be easier to perform
on a Smalltalk engine than on a more conventional
workstation environment.

Heterogeneity can be approached in many ways;
each style arises from a specific set of underlying
assumptions. Examples: Should a particular system
characteristic, such as distribution, be hidden?
Should a low-level facility, such as remote proce-
dure call (RPC), be provided in all systems? Is a
particular feature, such as transparent network file
access, worth the added development cost? How
much heterogeneity does the style anticipate? Differ-
ent assumptions appropriate for each style of hetero-
geneity lead to different technical issues and
problems.

Problems due to heterogeneity arise in several
specific areas:

132 Cortmutlicatiorls of the ACM February 1987 Volume 30 Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F12527.12529&domain=pdf&date_stamp=1987-02-01

Reports

Interconnection. How should heterogeneous sys-
tems communicate? Is message passing or remote
procedure call the more suitable communication
paradigm? How can systems and languages with dif-
ferent data representations (such as byte-ordering or
record layouts) be accommodated?

Filing. What kind of file system is needed in a het-
erogeneous environment? Should the file system
support typing? When heterogeneous systems share
data through a file system, where are the required
translations done?

Authentication. How is authentication supported
in a heterogeneous environment? What are the
sources of distrust and diversity in such an environ-
ment? How is local system autonomy over authenti-
cation provided in heterogeneous environments?

Naming. How is naming provided in heterogeneous
systems? What objects can be named across sys-
tems? How are they named? How does the environ-
ment evolve as new systems and naming approaches
are incorporated?

User Interfaces. How are varied user interfaces
accommodated and shared between heterogeneous
systems? Do you port an application? Do you provide
a veneer so that it appears that an application is
running on another machine? Do you split the user
interface from the basic application and run these on
separate systems?

STYLES OF HETEROGENEITY
There is not a single, correct way to address the
problems of heterogeneity. Instead, there are many
possible different styles, each driven by its own set
of underlying assumptions and objectives. During
the Workshop we identified basic assumptions and
approaches participants use in their work. Without
question, there are other styles of heterogeneity that
were not represented by participants at the Work-
shop and are therefore not presented here.

Loose Integration Through Network Services
Accommodating heterogenous computer systems in
this style is motivated by an environment of a large
number of system types and a small number of in-
stances of some of these types. For example, such an
environment might have VAXes and SUNS running
UNIX, one or two Symbolics LISP machines, and a
number of prototypes of special purpose architec-
tures. Here, the current cost of accommodating new
systems is great.

A group at the University of Washington is inves-
tigating accommodating this style of heterogeneity

[a]. Their approach to these problems is to reduce
the cost of introducing a system and allowing it to
use basic facilities (RPC, naming, and authentica-
tion) and services (filing, mail, printing, and remote
computation). In general, transparent use of these
facilities and services is not necessary in this ap-
proach, although it would be possible in cases where
both economics and source code availability permit.
Instead, the approach is to construct an environment
based on simple clients and sophisticated servers. It
should be inexpensive to develop a new client to
take advantage of existing servers.

Sharing Among Different Languages Cultures
A second style of accommodating heterogeneity is
based on a desire to share programs written in radi-
cally different programming languages, to increase
the reuse of programs among groups of research pro-
grammers with different computing cultures, such as
LISP and CLU. In particular, one culture’s programs
should be able to invoke another culture’s programs
in a transparent manner. This style expects a large
number of instances of each system type. Hence, the
effort spent on accommodating each system type can
be greater than in the loose style of integration pre-
viously described.

A group at the Laboratory for Computer Science
(LCS) at MIT is studying this style of accommoda-
tion. Their approach relies on two components: an
invocation mechanism and a set of interfaces defin-
ing shared services. For invocation, the LCS group
is considering an RPC facility that supports caller-
initiated aborts, procedure parameters and callback,
exception handling, failure semantics, atomicity, ab-
stract types as parameters, a definition language for
types and program interfaces, and authentication.
For the second component, the LCS group plans to
include name servers, object stores, archival stores,
an authentication server, and a facility for cataloging
programs, interface stubs, and abstract data types.
This catalog contains converters and checkers
in addition to object definitions.

Front-Ends for Multiple, Existing Systems
Another style of accommodating heterogeneity con-
siders an environment in which there are multiple,
existing systems over which there is no control and
that cannot be changed, for example, using PCs to
access an existing corporate database. By adding an
understanding of the database to the PCs (which can
be changed), the systems will be able to accommo-
date the database in the PC environment. A “proto-
col generator” for user interfaces might help in this
style. Dave Reed of Lotus Development Corporation
introduced this style at the Workshop.

February 1987 Volume 30 Number 2 Communications of the ACM 133

Reports

Transparent Operating System Bridges
This style arises in an environment of several differ-
ent types of workstations sharing resources via a
common set of network backbone machines (e.g., a
collection of PC-DOS machines, Macintoshes, and
UNIX workstations served by a backbone of UNIX or
Locus machines [12]). The capability of each type of
workstation is extended by transparent access to re-
mote resources, but the remote resources appear to
be those of each particular workstation, rather than
necessitating users of a particular type of worksta-
tion to understand the properties of the backbone
machines. At the same time, the workstation user
should be able to take advantage of the backbone
machine’s unique capabilities whenever desired.

The Distributed Systems Laboratory at UCLA is
pursuing accommodating heterogeneity through
transparent operating system bridges (TOSB).
These objectives are achieved by intercepting oper-
ating system calls on the local system and passing
appropriate calls to a server process on the remote
system for fulfillment. Transparent access to remote
resources implies that programs designed for a par-
ticular workstation environment can take advantage
of remote resources without program modification.
The most important case is transparent access to a
remote file system; however, transparent operating
system bridges can support ,a spectrum of services
including local programs directly accessing remote
files, local programs invoking remote processes,
communication between local and remote processes,
and remote processes directly accessing local files,
There are some general principles for constructing a
TOSB, but each pair of operating systems provides
unique challenges, and solutions for them do not
tend to be very general. Thus, the TOSB approach is
best suited to environments with relatively few dif-
ferent types of operating systems.

Coherence
Coherence carefully defines a layer of software so as
to enforce uniformity and permit implementation on
diverse hardware to accommodate heterogeneity.
Because the costs of providing coherence are great,
coherence is feasible only in environments with a
small number of system types with a large number
of instances of each type. This style has been
adopted in some instructional environments.

Figure 1 illustrates how RPC usually works. The
client is written as if it called the server directly
using conventional procedure call mechanisms. To
simulate this relationship across the network bound-
ary (represented by the striped line down the cen-
ter), two stubs are needed. The client stub’s interface
is identical to that of the server; the server stub’s
interface is identical to the client’s. The client stub
is responsible for translating the arguments into a
suitable format for transmission over the network
and also for passing the converted arguments to the
transport mechanism. The server stub, conversely, is
responsible for receiving the arguments from the
transport mechanism and converting the arguments
into the server’s format. Multiple calls may take
place between the stubs and the transport mecha-
nisms, depending on the actual RPC implementa-
tion.)ust as procedures must be linked before they
can call one another, it is necessary to bind clients
and servers together before RPC can take place.

CMU’s ITC project [8] and MIT’s Project Athena Although the synchronous nature of RPC is suita-
[2, 61 exhibit coherence most clearly. In the ITC ble for many applications, a mechanism is needed to
project, coherence is primarily at the level of the permit concurrent execution. Light-weight processes
logically centralizfed file service. In Project Athena, (LWPs), which permit a single program to define
coherence is primarily at the applications program- multiple threads of control, are the conventional so-
ming interface. Both projects rely on a uniform lution. LWPs share a single address space, allowing
underlying operating system, UNIX, and on their context swaps between LWPs to be done much more
window systems, each local products. quickly than traditional process swapping. Combin-

BASIC TOPICS IN HETEROGENEITY
The bulk of the sessions focused on specific areas
that must be considered when dealing with hetero-
geneity. Distilled discussions on these topics-inter-
connection, filing, authentication, naming, and user
interfaces-follow.

Interconnection
IS0 transport was too low a focus. The discussion of
interconnection of heterogeneous systems gravitated
to a discussion of the proper way for processes run-
ning on different nodes to communicate. The two
basic mechanisms for program communication, mes-
sage passing and remote procedure call (RPC), were
discussed. Message passing consists of passing a mes-
sage asynchronously from one process to another,
such that both the sending and receiving processes
proceed concurrently. RPC, as defined by Birrell and
Nelson [3, lo], provides semantics across a network
that are nearly identical to those of procedure
call in a standard programming language: the RPC is
synchronous, the caller blocks until a reply is re-
ceived or the call is aborted. In message passing, the
data usually appear to the system as a stream of
bytes, while in RPC the data have some structure
and are type-checked. The sending or calling process
is generally called the client; the receiving or called
process is generally called the seruer.

134 Communications of the ACM February 1987 Volume 30 Number 2

Reports

ing RPC and LWPs is natural: each remote call is
embedded in its own LWP and when that call
blocks, another LWP is scheduled. Hence, threads of
control in both the calling and called process are
active.

One point of view was that the RPC paradigm
provides an appropriate level of abstraction for com-
municating between programs across nodes. Given
this strict definition of RPC, the question became:
“Are these semantics sufficient?” The answer was,
in general, yes. However, there are times when a
more flexible model of communication is manda-
tory. Examples of such instances are asynchronous
operation when LWPs are not available, and a “no-
reply” option when the reply would contain essen-
tially no information. For instance, when a display is
updated, the program sending the data need not wait
for a reply from the output unit. There was some
discussion as to whether pure semantics could be
maintained given that light-weight processes were
available. The answer was a qualified yes; however,
performance will probably be reduced in “no-reply”
situations.

The discussion of RPC as an acceptable communi-
cation paradigm then shifted to problems directly
associated with heterogeneity. Several areas that re-
quire flexibility due to heterogeneity were identi-
fied. Transport protocols, such as TCP and XNS, dif-
fer across networks; how is it decided which proto-
col client and server processes will speak? Data rep-
resentations, such as byte-ordering and the layout of
structured data, differ from machine to machine and
compiler to compiler; how are the necessary trans-
formations identified and applied? Semantics and
type systems vary from language to language; how
can RPC semantics be maintained between lan-
guages that are dissimilar in this regard?

First consider data representation. There are at
least three ways to select a data representation for
transport. First, define and use a single standard rep-
resentation. Second, send the data and require the
receiving side to understand it. Third, negotiate a
representation at bind time (i.e., when a specific
client and server first decide to communicate). For
transport protocols, variations of the first and third
options are possible (the second is not possible for
transport since a common transport is required to
support the initiating conversation).

The problem with the single-standard approach is
the potential for unnecessary inefficiency. The most
obvious example is two systems with the same byte-
ordering would be required to communicate by
swapping and then unswapping bytes if their mutual
byte-ordering differed from the standard. Experience
with the DEC/SRC RPC system demonstrated the
potential for selecting transport protocols and data

call !
*

Client *
; return Server

Local prlocedure

I t
call

0
I

call return I call I
I
I t I

return

0

Client
Stub

Server
Stub

I
I

call

I t

return
I
I
I
I
I
I

call

1 I return

Transport Transport

FIGURE 1. Remote Procedure Call

representations (within a limited domain) at bind
time.

The relationship between efficiency and uniform-
ity, with respect to data representation. was dis-
cussed at length. On one hand, some people were
willing to accept a degree of ineffciency in the area
of data representation as the price of simplicity. Bill
Joy of SUN contended that the work required to
minimize byte-swapping, for instance, is of little
benefit since only as little as 5 percent of run-time is
spent filling in data packets. On the other hand, in
many cases it may be possible to reduce these costs
quite easily.

The heterogeneity imposed by varying semantic
and type models is usually addressed through the
use of stubs to make RPC look like conventional
procedure call, as shown in Figure 1. Stubs can be
quite complex as they are usually responsible for
packaging data and communicating with the trans-
port layer. To relieve the user from writing complex
stubs, stub generators are often provided with RPC
systems. Although stub generation usually accounts
for syntactic differences among languages, making
the semantics compatible with all existing languages
is at best difficult, and making them compatible with
yet-to-be-developed languages is impossible.

Interface description languages (IDLs) are often a
basis for generating stubs [7, 131. Is it possible to
define and use a single IDL? The adoption of a single
IDL does not preclude hand-coding of stubs for par-
ticular applications or esoteric requirements. The

February 1987 Volume 30 Number 2 Communications of the ACM 135

Reports

possibility of several classes of IDLs for separate
classes of languages was raised.

Filing
Andrew Black of the University of Washington in-
troduced filing with a chart (Figure 2) that catego-
rized some existing distributed file systems. (A sur-
vey on distributed file systems appears in [ll].) He
showed that the design space has many dimensions
and that file system designers made different deci-
sions in each dimension. Several of these dimensions
with respect to the effects of heterogeneity were
considered.

A large part of the discussion focused on file prop-
erties, particularly typing. On one hand, at a certain
level, files are all the same “type”-simply collec-
tions of bytes or blocks. On the other hand, all files
are implicitly typed in the sense that programs that
access a file make assumptions about the nature of
the data. If these assumptions are wrong, the data
may be misinterpreted: this is a type error. If files
are typed, then such an error can be detected before
it leads to a rubble of bits.

The UNIX file system is an interesting study of file
typing. The UNIX abstraction of an uninterpreted
sequence of bytes is a great simplification; program-
mers must provide any further abstractions at a
higher level. This abstraction makes some tasks eas-
ier but others harder. For instance, UNIX records
must be constructed and shared by unenforced con-
vention. On the other hand, generic utilities are
easily written since there is only one file type.

Typing is more of an issue in a heterogeneous en-
vironment because different machines use different
data formats, for example, different character cod-
ings and byte orders. Another reason is simply a
larger number of file structures. If a file is typed, the
file system can do the appropriate data conversion; if
not, the client must do its own conversion. Another
option is to provide self-describing data types, that
is, objects that carry their type information with
them. The advantage is that only the applications
that deal with a specific type need to know about
the type.

The relationship between file typing and the data
representation problems of RPC were discussed.
Files can be viewed as providing “time-shifted” com-
munication, a little like RPC over a delay line. Be-
cause the reader and writer do not communicate
with each other directly, the file system should have
the responsibility of communicating the information
an RPC system would exch.ange at bind time, and of
typing the data in the same way an RPC system
might. This can be achieved either by translating the
file contents into a common intermediate format, or

by recording the data in the sender’s format and
recording explicit formatting information.

The degree to which files are shared affects design
decisions in a file system. To make these decisions
properly, it must be determined whether the sharing
supported by a file system is actual or just potential.
In Multics, there is virtually no short-term sharing.
Measuring sharing patterns before making decisions
was suggested. Such measurements may be decep-
tive, however, since the infrequency of actual shar-
ing does not imply a lack of need of actual sharing.

Several other questions were raised and briefly
addressed. Files are usually addressed by name; how
can heterogeneous file systems conform with diverse
naming systems? What happens when applications
demand more from a remote file system (e.g., locking
and record access) than the remote system can pro-
vide? Is the notion of “file” too restrictive for the
diverse environment we anticipate? (Although an
object-oriented approach was suggested as more
profitable, the fact remains that existing file systems
are not, for the most part, object-oriented.)

Dave Reed of Lotus pointed out an anomaly. There
is great diversity in file systems, but the Andrew
system [8], in an approach shared by many other
efforts, uses a single file system of its own design as
the “glue” that connects heterogeneous components.
This scheme relies on replacing the existing file sys-
tems with the new “glue” file system. But what is to
be done at the next level up, when the Andrew file
system needs to be connected to other similar sys-
tems? Presumably, at this level, we are not prepared
to discard the file systems and build a new system
that acts as “superglue.” We may therefore be forced
to provide remote access to a number of existing file
systems rather than a single common file service
where a file must live if it is to be shared.

Authentication
Discussions of authentication and authorization in
heterogeneous computer systems focused on classes
of problems rather than on specific authentication
mechanisms. Three broad problem areas were cov-
ered: (1) sources of distrust and diversity with re-
spect to authentication; (2) identifying the actual
function of authentication and authorization sys-
tems; (3) accommodating the need for local system
autonomy within global authentication environ-
ments.

Sources of distrust in heterogeneous systems in-
clude networks, gateways, hardware, operating
systems, run-time systems, application programs,
students, fellow researchers, family, and yourself.
Sources of diversity include hardware (especially
encryption support), programming environments, the

136 Communications of the ACM Februa y 1987 Voiume 30 Number 2

Sesame
I

yes

no, Unix locks

Tilde no, Unix locks

Xerox IFS
(transZtions

added)

Cedar

Sun NFS

Vice/Virtue

yes

no, no locks

no, locks

Junioer (XDFS) no. transactions

no, transactions

8th Edn NFS no, no locks

LOCUS no, Unix locks

Univenal/FSF?

Universal w/i Spice
FSF for world

Universal

Universal

FSF

FSF

FSF, but every
Sun w/s can be FS

FSF

FSF

FSF

Universal

Universal w/i Eden

FSF

FSF, stored
on clients

Universal w/i Unix

Reports

The columns have the following meanings:
Rrad OII/!/? Are files read only (yes) or overwritable (no). If no, what mechanism is used to prevent conflicting writes?
Uuir~ersa//FSF? Does the file service provide universal access to files in existing file systems, or does it provide a new kind of

file (a File Server File, FSF) that must be created explicitly?
Trarrsparerrt Access. Do the host operating systems hide the difference between accessing the local and distributed file

systems?
Locntiorl Imlepcrrtler~t Nnnres. At what level (if at all) is the name of a file independent of its location?
Replicatiorl. Is replication a standard feature, an option, or unavailable?
Cachiug. Is caching performed? If so, what is the unit of caching?
Fetch Grain. How is the file fetched from the server?

FIGURE 2. Comparison of File Systems [4]

class of problems being solved, tolerance of costs,
protocols for supplying and using authentication in-
formation, sheer size, and different administrations.

Although there was agreement on where problems
originate, there was hot debate on whether the goal
of an authentication mechanism was punishment or

prevention. If punishment were the ultimate goal,
then relatively passive mechanisms in conjunction
with logging and auditing could be used to record
information permitting the identification and appre-
hension of offenders. Prevention requires that more
complex, active mechanisms be used to control

February 1987 Volume 30 Number 2 Communications of the ACM 137

Reports

execution of undesirable actions, malicious or
inadvertent.

The punishment approach was criticized on the
basis of the difficulties that (arise in trying to track
down operations spanning more than one “bound-
ary.” The moral and administrative implications of
forming a “network police force” to implement pun-
ishment were also considered serious problems. It
was suggested that the real world functions by audit-
ing and logging, and that computer systems will
have to fit to human systems, and not vice-versa.
The problem of authenticating auditing information
was mentioned in this regard.

As an example of a middlle ground, Jerry Saltzer of
MIT stated: “Project Athena is building an authenti-
cation server primarily because each private work-
station is owned by a student, and each public
workstation is captured by indivdiual students as
superusers. Given this situation, there must be a
way to protect the services, such as mail, printers,
and file systems, from inadvertent errors. The goal is
to halt mistakes but not necessarily malice.”

The prevention approach requires pairwise agree-
ment between each two communicating entities.
Roger Needham of the University of Cambridge
pointed out that this approach is cumbersome; he
and Michael Schroeder showed how to optimize it in
a homogeneous environmem through the construc-
tion of a global authentication service with a distrib-
uted implementation [g]. Some problems, such as
making sure to avoid using untrustworthy authenti-
cation services, become far more serious in a hetero-
geneous environment.

Other problems arise because different environ-
ments often have different views of the level of pro-
tection that is necessary or desirable. Further, differ-
ent authentication or authorization boundaries may
exist within a single system (e.g., within a university
laboratory different rights might be provided de-
pending on whether the user was accessing a re-
search or an educational subnet). Deborah Estrin of
USC observed that any auth.entication scheme for
heterogeneous environments will require coopera-
tion between autonomous administrative units. In
this respect, there are very strong parallels between
the problem of authentication and the problem of
naming.

Authentication and authorization mechanisms are
usually intimately related to the local operating sys-
tem, relying on being “built,-in” to both prevent and
detect tampering. Is it possible to accommodate such
low-level OS dependencies in a distributed, hetero-
geneous environment?

Rick Rashid of CMU enurnerated classes of solu-
tions to the authentication problem: building appro-

priate size barriers to discourage casual breaches;
logging activities at each node; performing cross
checks at intervals to ensure consistency; instituting
a “network police force”; educating and applying
social pressures IO users; and punishing those found
guilty.

Rashid also presented a short discussion of author-
ization. The key point was that providing a solution
to the authentication problem is only half the battle.
The authentication information must then be inter-
preted in a consistent manner across systems. A
mechanism for performing this interpretation is a
separate problem that is at least as hard as the origi-
nal authentication.

Naming
John Zahorjan of the University of Washington iden-
tified four issues to be considered in naming in het-
erogeneous systems: accommodation of evolutionary
growth, name resolution, transparency, and name
acquisition. The discussion illustrated an underlying
theme of the workshop: We know how to provide
many styles of services, but which are the “right”
ones? And, can multiple “right” approaches be com-
bined smoothly?

In naming, several separate dimensions are appar-
ent. One key issue is whether names should be rela-
tive or absolute. An absolute name refers to the same
object regardless of the “context” (that is, the site,
the user, and possibly the application) in which it is
issued. Absolute names facilitate sharing since they
provide a common vocabulary with which to refer to
objects. A relative name is context dependent. A
common example that illustrates the utility of rela-
tive names is mail nicknames. Each user creates a
set of easily remembered nicknames to be used in
place of more cumbersome, network-dependent
mailbox names. The nickname leach, for example,
is much easier to remember than the complete name
of apollo ! pjl@uw- beaver. edu. Another ex-
ample of relative names is file names in a shared file
system. A standard mechanism for providing these
names imports or mounts a portion of a foreign
name space and attaches it to a local “root.” (E.g.,
this model has been used in the Andrew file system
[a].; A major advantage of relative names is that
convenient names for objects can be chosen within
each context independently of other contexts. Par-
ticularly in a heterogeneous environment, this flexi-
bility is a great asset since different contexts may
have fundamentally different requirements of the
naming scheme.

A notion closely linked to that of absolute and
relative names is whether there is a single global,
homogeneous name space or many local name

138 Communications of the ACM February 1987 Volume 30 Number 2

Reports

spaces. A global name space appears to be desirable,
but the cooperation and extent of changes required
to implement it are considerable, especially in a het-
erogeneous environment. Indeed, the environment
may be heterogeneous in part because individual
subsystems in the environment might prefer or re-
quire their own naming schemes. It was observed,
however, that if there is no global name space, then
it is not possible to name all objects in all name
spaces because some naming environments will
have no way to translate some names.

Because sharing is so important, most existing
name services provide absolute names. However,
distributed, heterogeneous environments (among
others) usually provide for some style of relative
names as well. For example, in Locus a user may
invoke a computation without knowing on which
machine it will run. Thus, a mechanism is required
whereby a single name can refer to any one of a
number of executable files, each one appropriate to
a different system type. Similarly, some names bene-
fit significantly from being relative, such as the use
of /tmp to refer to a temporary directory in a distrib-
uted UNIX system.

A number of short presentations on aspects of
naming were given. David Cheriton of Stanford Uni-
versity described naming in the V system [5]. In
contrast to most systems, which present a single logi-
cally centralized service, name management in V is
distributed among the objects responsible for the
named entities. This can be an advantage, especially
in heterogeneous systems where name syntax and
operations may differ significantly from one site to
another.

Thomas Murtagh of Purdue University introduced
his notion of nice names, that is, names that are
location-transparent and symbolic, that can be used
as syntactic sugar to insulate the user from the
“nastiness” of the actual underlying naming scheme.
Murtagh said that nice names are local, not global,
and are required by the needs of application pro-
grams. Dave Clark of MIT suggested that nice names
might work in a distributed, universal name service,
assuming that they can be transported appropri-
ately (that is, that they can really be kept location-
independent). The possibility of using nice names is
generally a function of facilities available in the
command language, rather than the operating sys-
tem primitives. Even then, nice names can suffer
from the drawbacks of relativism, that is, path com-
pression, and finding alternate paths may be difficult
to do with nice names.

Karen Sollins of MIT discussed administrative is-
sues that arise in handling name services. In a typi-
cal hierarchical name space human “managers” are

responsible for subtrees of the name space at various
levels in the naming tree. Because the name service
provides some of the keys required to access the
named resources (and in some cases all of the keys),
it may be necessary to give control of access and
update authority to the local manager. This makes
managing the overall name service more difficult, as
it may not be possible to make changes uniformly to
all supporting servers.

Clark observed that so far little attention has been
given to the dynamic aspect of naming. The auton-
omy that is characteristic of heterogeneous systems
requires that there be provision for recovery from
system failures and on-line changes to the name
space (e.g., changed mailbox route or reincarnated
object). In some sense, the discussion focused more
on a name-management system than on a name
space.

User Interfaces
Mark Weiser of the University of Maryland intro-
duced this topic by observing that user interfaces are
qualitatively different from the other basic topics:
every system has one, they cannot, by definition, be
hidden from users, and they are impossible to con-
struct as a central service.

There are three ways to accommodate user inter-
faces. The first is porting, where an application is
moved to the system being accommodated. The sec-
ond is masking, where the application appears to
have been ported, when in fact it is actually running
entirely on another machine. The third is mapping,
where the user interface is moved, but the heart of
the application is not; the characteristics of each sys-
tem must be mapped to the other.

Weiser defined four levels of user interface hetero-
geneity: (1) what the user sees, (2) what the applica-
tion program sees and provides, (3) what the window
system sees and provides, and (4) what the hardware
provides. Different means of accommodation are
more applicable at these different levels. For exam-
ple, porting is a natural means of accommodating the
interface between levels three and four, but map-
ping is more appropriate between levels two and
three.

There was contention over the future of window
systems in a heterogeneous environment. One side
argued that they are too big and it is too difficult to
integrate applications into a window system, stating
that sophisticated applications almost always want
to use the screen in a “raw” mode. This side contin-
ued by stating that every window system that goes
into operation terminates work on user interfaces for
at least one and a half years because most systems
make too many decisions about the user interface,

Februa y 1987 Volume 30 Number 2 Communications of the ACM 139

Reports

which locks out innovation. The other side re-
sponded that there are examples of sophisticated
applications (such as Interleaf’s WPS product on
Apollos and SUNS) where raw mode was not needed
to get the efficienc:y necessary for success.

Any window system that accommodates heteroge-
neity must be able to support different user inter-
faces [e.g., tiled and overlayed), different program
interfaces (e.g., X and Sun Windows), and new input
paradigms (e.g., natural language, speech, and im-
ages). The possibility of supporting all this by adopt-
ing a standard, extensible protocol is being explored.

Another approach, described by Keith Lantz of
Stanford University, promotes the workstation as a
front-end to all available resources, both local and
remote. This way, the user is insulated from the
underlying heterogeneous system. The interaction
with all resources, since it is handled by local soft-
ware, is consistent and natural. The user interface
must support four levels of interaction: terminal
management, command interaction and response
handling, application specific interaction, and multi-
application interaction. Additionally, the user must
be permitted to configure the software components
of the system to meet individual preferences.

Acknowledgments. Ed Lazowska and John Zahorjan
put much time and effort into helping create and
revise this report for Communications. The other
members of the Heterogeneous Computer Systems
project at the University of Washington, including
Andrew Black, Dennis Ching, Henry Levy, John
Maloney, and Mark Squillante contributed as well.
Dave Clark, Terry Gray, Paul Leach, and Mark
Weiser supplied comments, suggestions, and (in
some cases) text for the report. Peter Denning en-
couraged us to submit the report to Comnzunicatio~~s
and then made several useful suggestions on how to
improve the report. Thanks also to Andrew Birrell,
Bill Joy, Jim Morris, and other members of the
organizing committee. Of course, thanks go to the
participants of the workshop.

REFERENCES
1. Almes. G.T.. Black. A.P.. Lazowska. E.D.. and Noe. I.D. The Eden

system: A technical review. IEEE Tram. Sofrrc~. Eq. SE-II,
1(lan. 1985).

2. Balkovich. E.. Lerman. S.. and Parmelee. R.P. Computing in higher
education: The Athena experience. Covtrnun. ACM 28, ll(Nov. 1985).
1214-1224.

3. Birrell. A.D.. and Nelson. B.1. Implementing remote procedure calls.
ACM T’mm Conrp~rf. Sysf. 2. l(Feb. 1984).

4. Black. A.. Lazowska. E.. Levy. H.. Notkin. D.. Sanislo. 1.. and
Zahorjan.). An approach to accommodating heterogeneity. Tech.
Rep. 85-10-04. Dept. of Computer Science. Univ. of Washington.
(Oct. 1985).

5. Cheriton. D.R.. and Mann. T.P. Uniform access to distributed name
interpretation. In Procredirlgs of flte 4fh Illfenlatiortal Corlfertvce 00
Disfrihrted S~/skwrr. (May 1984).

6. Gettys. 1. Project Athena. In USENIX Sunmwr Conference Proceedings.
(June 1984).

7. Jones. M.B.. Rashid. R.F.. and Thompson, M.R. Matchmaker: An
interface specification language for distributed processing. In Pro-
wcdqs of t/w I2fh ACM Syr~rpomnr on Prirriples of Progra~unriq
Larrgrqes. (Ian. 1985).

8. Morris. J.H.. Satyanarayanan. M.. Conner. M.H.. Howard.).H..
Rosenthal. D.S.H.. and Smith. F.D. Andrew: A distributed per-
sonal computing environment. Co~trrnun. ACM 29, 3(Mar. 198s).
184-201.

9. Needham. R.M.. and Schroeder, M.D. Using encryption for authenti-
cation in large networks of computers. Con~mun. ACM 21. lZ(Dec.
1978). 993-999.

10. Nelson. B.). Remote procedure call. Ph.D. dissertation. Tech. Rep.
CMU-CS-81-119. Dept. of Computer Science, Carnegie-Mellon Univ..
(May 1981).

11. Svobodova. L. File servers for network-based distributed systems.
ACM Compuf. Sum 16,4(Dec. 1984).

12. Walker. B. et al. The LOCUS distributed operating system. In Pro-
ceedings of fhe 9fh ACM Symposium m Operating Sysfem Priucipies.
(Oct. 1983).

13. Xerox Corporation. Courier: The remote procedure call protocol.
XSIS 038112. (Dec. 1981).

CR Categories and Subject Descriptors: C.2 [Computer Systems
Organization]: Computer Communication Networks; D.4 [Software]:
Operating Systems

Additional Key Words and Phrases: distributed processing,
heterogeneity

Contact: David Notkin. Department of Computer Science, FR-35. Uni-
versity of Washington. Seattle. WA 98195.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission

In response to inembership requests...

Volume i: Curricula Recom&&d&ions for Computer Science
Volume II: Curricula Recommbndations for Information S’yste&s

Volume III: Curricula Recomm&nda&s for Related Compu$ek Sciescd Programs in Vocationab
TechnicaI Schools, Cu~~~nity and Junior ColIeges:and Health Computing

Information available from rteborah Cott~n---Sfr$e Copy S&s (212): 869-7440 ext. 309

140 Communications of the ACM February 1987 Volume 30 Number 2

