
HAL Id: ensl-00180322
https://ens-lyon.hal.science/ensl-00180322

Submitted on 18 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Spill Everywhere under SSA Form
Florent Bouchez, Alain Darte, Fabrice Rastello

To cite this version:
Florent Bouchez, Alain Darte, Fabrice Rastello. On the Complexity of Spill Everywhere under SSA
Form. ACM SIGPLAN Notices, 2007, Volume 42 (Issue 7), pp.103 - 112. �10.1145/1254766.1254782�.
�ensl-00180322�

https://ens-lyon.hal.science/ensl-00180322
https://hal.archives-ouvertes.fr

en
sl

-0
01

80
32

2,
 v

er
si

on
 1

 -
 1

8
O

ct
 2

00
7

On the Complexity of Spill Everywhere under SSA Form
Research Report no RR2007-42

Florent Bouchez
ENS-Lyon

Alain Darte
CNRS

Fabrice Rastello
INRIA

Université de Lyon, LIP, ENS Lyon, UCBL, CNRS, INRIA, France
firstname.lastname@ens-lyon.fr

Abstract
Compilation for embedded processors can be either aggressive
(time consuming cross-compilation) or just in time (embedded and
usually dynamic). The heuristics used in dynamic compilation are
highly constrained by limited resources, time and memory inpar-
ticular. Recent results on the SSA form open promising directions
for the design of new register allocation heuristics for embedded
systems and especially for embedded compilation. In particular,
heuristics based on tree scan with two separated phases — onefor
spilling, then one for coloring/coalescing — seem good candidates
for designing memory-friendly, fast, and competitive register allo-
cators. Still, also because of the side effect on power consumption,
the minimization of loads and stores overhead (spilling problem) is
an important issue. This paper provides an exhaustive studyof the
complexity of the “spill everywhere” problem in the contextof the
SSA form. Unfortunately, conversely to our initial hopes, many of
the questions we raised lead to NP-completeness results. Weiden-
tify some polynomial cases but that are impractical in JIT context.
Nevertheless, they can give hints to simplify formulationsfor the
design of aggressive allocators.

* Categories and Subject Descriptors: D.3.4 [Programming Lan-
guages]: Processors—Code generation, Optimization; F.2.0 [Anal-
ysis of Algorithms and Problem Complexity]

* General Terms: Algorithms, Performance, Theory.

* Keywords: Register allocation, SSA form, Spill, Complexity.

1. Introduction
Register allocation is one of the most studied problems in compila-
tion. Its goal is to map the temporary variables used in a program
to either machine registers or main memory locations. The com-
plexity of register allocation for a fixed schedule comes from two
main optimizations,spilling andcoalescing. Spilling decides which
variables should be stored in memory to make possible register as-
signment (the mapping of other variables to registers) while mini-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’07 June 13–16, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

mizing the overhead of stores and loads. Register coalescing aims
at minimizing the overhead of moves between registers.

Compilation for embedded processors is either aggressive or
just in time (JIT). Aggressive compilation is allowed to usea long
compile time to find better solutions. Indeed, the program isusu-
ally cross-compiled, then loaded in permanent memory (, flash,
etc.), and shipped with the product. Hence the compilation time
is not the main issue as compilation happens only once. Further-
more, especially for embedded systems, code size and energycon-
sumption usually have a critical impact on the cost and the quality
of the final product. Just-in-time compilation is the compilation of
code on the fly on the target processor. Currently the most promi-
nent languages are CLI and Java. The code can be uploaded or sold
separately on a flash memory, then compilation can be performed
at load time or even dynamically during execution. The heuristics
used, constrained by time and limited memory, are far from being
aggressive. In this context there is trade-off between resource usage
for compilation and quality of the resulting code.

1.1 SSA Properties

The static single assignment (SSA) form is an intermediate repre-
sentation with very interesting properties. A code is in SSAform
when every scalar variable has only one textual definition inthe
program code. Most compilers use a particular SSA form, the strict
SSA form, with the additional so-called dominance property: given
a use of a variable, the definition occurs before any uses on any
path going from the beginning of the program (the root) to a use.
One of the useful properties of such a form is that the dominance
graph is a tree and the live ranges of the variables (delimited by
the definition and the uses of a variable) can be viewed as subtrees
of this dominance tree. A well-known result of graph theory states
that the intersection graph of subtrees of a tree is chordal (see de-
tails in [13, p. 92]). Since coloring a chordal graph is easy using
a greedy algorithm, it has the consequence for register allocation
that the “assignment problem” [10, p. 622] (mapping of variables
to registers with no additional spill) is also easy.

The fact that the interference graph of a strict SSA code is
chordal, and therefore easy to color, leads to promising directions
for the design of new register allocation heuristics.

1.2 Recent Developments in Register Allocation

Spilling and coalescing are correlated problems that are, in classical
approaches, done in the same framework. Even if “splitting”, i.e.,
adding register-to-register moves, is sometimes considered in such
a framework, it is very hard to control the interplay betweenspilling
and splitting/coalescing. The properties of SSA form has led to new

approaches where spilling and coalescing are treated separately: the
first phase of spilling decides which values are spilled and where,
so as to get a code with Maxlive≤ k where Maxlive is the maximal
number of variables simultaneously live andk is the number of
available registers. The second phase of coloring (assignment),
maps variables to registers with no additional spill. When possible,
it also removes move instructions, also called shuffle code in [18],
due to coalescing. This is the approach advocated by Appel and
George [1] and, more recently, in [6, 17, 4, 5]. The interest of this
approach for embedded systems is twofold.

1. Because power consumption has to be minimized, it is very im-
portant to optimize memory transfers and thus design heuristics
that spill less. This new approach allows to design much more
aggressive spilling algorithms for aggressive compilers.

2. For JIT compilation, this approach allows to design very fast
spilling heuristics. In a graph coloring approach [9], the spilling
decision is subordinate to coloring. On the other hand, whenthe
spilling phase is decoupled from the coloring/coalescing phase,
i.e., when one considers better to avoid spilling at the price
of register-to-register moves, then testing if spilling isrequired
simply relies on checking that the number of simultaneous live
variables (register pressure) is lower thank. This simple test
can be performed directly on the control flow graph and the
construction of an interference graph can thus be avoided. This
point is especially interesting for JIT compilation since building
an interference graph is not only time consuming [9], but also
memory consuming [7].

The second advantage of the dominance property under SSA
form is that the coloring can be performed greedily on the control
flow graph. The principle for coloring a program under SSA form
can be seen as a generalization of linear scan.

Linear scan: In a linear scan algorithm, the program is mapped to
a linear sequence. On this sequence, the live range of a variable is
an union of intervals with gaps in between. The sequence is scanned
from top to bottom and, when an interval is reached, it is given an
available color, i.e., not already used at this point. In Poletto and
Sarkar’s approach [19], each variable is pessimistically represented
by a unique interval that contains all the effective intervals (the gaps
are “filled”). It has the negative effect of overestimating the register
pressure between real intervals but it ensures that all intervals of the
same variable are assigned the same register. In some way, Poletto
and Sarkar’s algorithm provides a “color everywhere” allocation,
i.e., it does not perform any live-range splitting. Allowing the
assignment of different colors for a given variable requires shuffle
code [20, 21] to be inserted afterwards to repair inconsistencies.
Such a repairing phase requires additional data-flow analysis that
might be too costly in JIT context.

Tree scan: Coloring a program under SSA can be seen as a tree
scan: the program is mapped on the dominance tree, live ranges
are subtrees. The dominance tree is scanned from root to leaves
and when an interval is reached it is given an available color.
Here the liveness is accurate and there is no need for gap filling
or additional live range splitting. Replacingφ-functions by shuffle
code does not require any global analysis. In other words, tree scan
is a generalization of linear scan.

1.3 Spill Everywhere

As already mentioned, the dominance property of SSA form sug-
gests promising directions for the design of new register allocation
heuristics especially for JIT compilation on embedded systems.
The motivation of our study was driven by the hope of design-
ing both fast and efficient register allocation based on SSA form.
Notice that answering whether spilling is necessary or not is easy

— even if there can be some subtleties [5] — while minimizing
the amount of load and store instructions is the real issue. In other
words, if the search space is now cleanly delimited, the objective
function that corresponds to minimizing the spill cost has still some
open issues. So the question is: Is it easier to solve the spilling
problem under SSA? In particular is the spill everywhere problem
simple under SSA form?

The spilling problem can be considered at different granularity
levels: the highest, so called spill everywhere, corresponds to con-
sidering the live range of each variable entirely. A spilledvariable
will then lead to a store after the definition and a load beforeeach
use. The finer granularity, so called load-store optimization, corre-
sponds to optimize each load and store separately. The latter prob-
lem, also known as paging with write back, is NP-complete [11]
on a basic block even under SSA form. The former problem is
much simpler, and a well-known polynomial instance [2] exists un-
der SSA form on a basic block. To develop new spilling heuristics,
studying the complexity of spilling everywhere is very important
for the design of both aggressive and JIT register allocators.

1. First, the complexity of the load-store optimization problem
comes from the asymmetry between loads and stores [11]. The
main difference between the load-store optimization problem
and the spill everywhere problem comes from this asymmetry.
We have measured that, in practice, most SSA variables have
only one or two uses. So, it is natural to wonder whether this
singularity makes the load-store optimization problem simpler
or not. The extreme case with only one use per variable is equiv-
alent to the spill everywhere problem. More generally, evenin
the context of a traditional compiler, the spill everywhereprob-
lem can be seen as an oracle for the load-store optimization
problem to answer whether a variable should be stored or not.
In the context of aggressive compilation [15, 14], a way to de-
crease the complexity is to restore the symmetry between loads
and stores as done in [1]1.

2. Second, spill everywhere is a good candidate for designing
simple and fast heuristics for JIT compilation on embedded
systems. Again, in this context, the complexity and the footprint
of the compiler is an issue. Spilling only parts of the live
ranges, as opposed to spilling everywhere, leads to irregular
live range splitting and the insertion of shuffle code to repair
inconsistencies, in addition to maintaining liveness information
for coalescing purpose. All of this is probably too costly for
some embedded compilers.

Studying the complexity of the spill everywhere problem in the
context of SSA form is thus important to guide the design of both
aggressive and JIT register allocation algorithms. This the goal of
this paper. To our knowledge this is the first exhaustive study of this
problem in the literature.

1.4 Overview of the paper

The rest of paper is organized as follows. For our study, we consid-
ered different variants of the spilling problem. Section 2 provides
the terminology and notation that describe the different cases we
considered. Section 3 considers the simplified spill model where a
spilled variable frees a register for its whole live range; we provide
an exhaustive study of its complexity under SSA form. Section 4
deals with the problem where a spilled variable might still need to
reside in a register at its points of definition and uses. Here, the
study is restricted to basic blocks as it is already NP-complete for
this simple case. Section 5 summaries our results and concludes.

1 In this formulation, a variable might be either in memory location or in a
register, but cannot reside in both.

2. Terminology and Notation

Context: For the purpose of our study, we consider different con-
figurations depending whether live ranges arerestricted to a basic
block or not. Indeed, on a basic block, the interference graph is an
interval graph, while for a general control flow graph, understrict
SSA form, it is chordal. We also consider whether the use of an
evicted variable in an instruction requires a register or not. If not,
spilling a variable corresponds to decreasing by one the register
pressure on every points of the corresponding live range. Other-
wise, spilling a variable does not decrease the register pressure on
program points that use it: in that case, instead of having the effect
of removing the entire live range, spilling a variable corresponds to
removing a version of the live range with “holes” at the use and def-
inition points. We denote those two problems respectively as with-
out holesor with holes. Finally, we distinguish the cases where the
cost of spilling is the same for all variables or not. We denote those
two problems respectively asunweighted(denoted byw(v) = 1 for
all v) or weighted(denoted byw , 1).

Decreasing Maxlive: As mentioned earlier the goal of the spilling
problem is simply to lower the register pressure at every program
point, while the corresponding optimization problem is to minimize
the spilling cost. At a given program point, the register pressure is
the number of variables alive there. The maximum over all program
points, usually named Maxlive, will be denoted byΩ here. Let us
denote byr the number of available registers. Hence formally, the
goal is to decreaseΩ by spilling some variables. If we denote byΩ′

the register pressure after this spilling phase, we distinguished the
following four problems:Ω′ ≤ Ω − 1, Ω′ ≤ Ω − k wherek is a
constant,Ω′ ≤ k wherek is a constant, and the general problem
Ω′ ≤ r where there is no constraint on the number of registersr.

A graph problem: The spill everywhere problem without holes
can be expressed as a node deletion problem [22]. The general
node deletion problem can be stated as follows: “Given a graph
or digraphG find a set of nodes of minimum cardinal, whose dele-
tion results in a subgraph or subdigraph satisfying the property π.”
Hence, the results of the first section have a domain of application
not only on register allocation but also on graph theory. Forthis
reason, we formalize them using graphs (properties of the interfer-
ence graphs) instead of programs (register pressure on the control
flow graph) while the algorithmic behind is actually based onthe
control flow graph representation.

Perfect graphs: Perfect graphs [13] have some interesting prop-
erties for register allocation. In particular, they can be colored in
polynomial time, which suggests that we can design heuristics for
spilling or coalescing in order to change the interference graph into
a perfect graph. For a graphG, the maximal size of a complete
subgraph, i.e., a clique, is theclique numberω(G). The minimum
number of colors needed to colorG is thechromatic numberχ(G).
Of course,ω(G) ≤ χ(G) because vertices of a clique must have dif-
ferent colors. A graphG is perfect if each induced subgraphG′ of G
(includingG itself) is such thatχ(G′) = ω(G′). A chordalgraph is
a perfect graph; it is the intersection graph of subtrees of atree:
to each subtree corresponds a vertex, and there is an edge between
two vertices if the corresponding subtrees intersect. A well-known
subclass of chordal graphs is the class of interval graphs, which are
intersection graphs of subsequences of a sequence.

3. Spill Everywhere without Holes
It is well-known that, on a basic block, the unweighted spillev-
erywhere problem without holes is polynomial: this is the greedy
furthest use algorithm described by Belady [2]. It is less known that
the weighted version of this problem, which cannot be solvedus-
ing this last technique, is also polynomial [23, 11]: the interference

graph is an intersection graph for which the incidence matrix is to-
tally unimodular and the integer linear programming (ILP) formu-
lation can be solved in polynomial time. This property holdsalso
for a path graph, which is a class of intersection graphs between
interval graphs and chordal graphs. We recall these resultshere for
completeness. We also recalled earlier that, under SSA form, once
the register pressure has been lowered tor at every program point,
the coloring “everywhere” problem (each variable is assigned to a
uniqueregister) is polynomial.

The natural question raised by these remarks is whether the
spill everywhere problem without holes is polynomial or not. In
other words, does the SSA form make this problem simpler? The
answer is no. A graph theory result of Gavril and Yannakakis [23]
shows it is NP-complete, even in its unweighted version: foran
arbitrarily large number of registersr, a program withΩ arbitrarily
larger thanr, spilling everywhere a minimum number of variables
such thatΩ′ is at mostr is NP-complete. The main result of this
section shows more: this problem remains NP-complete even if one
requires onlyΩ′ ≤ Ω − 1. The practical implication of this result is
that for a heuristic that would lowerΩ one by one iteratively, even
the optimization of each separate step is an NP-complete problem.2

Table 1 summarizes the complexity results of spilling every-
where (without holes). We now recall classical results and prove
new more accurate results. Let us start with the decision problem
related to the most general case of spill everywhere withoutholes.

Problem: S 
InstanceA perfect graphG = (V,E) with clique numberΩ =
ω(G), a weightw(v) > 0 for each vertex, an integerr, an
integerK.
QuestionCan we remove the vertices inVS ⊆ V from G with
overall weight

∑

v∈Vs
w(v) ≤ K such that the clique numberΩ′

of the induced subgraphG′ is at mostr?

T 1 (Furthest First).The spill everywhere problem for an
interval graph is polynomially solvable, with a greedy algorithm, if
w(v) = 1 for all v even if r is not fixed.

The algorithm behind this theorem is the well-known furthest use
strategy described by Belady in [2]. This strategy is very interesting
for designing spilling heuristics on the dominance tree (see for
example [16]). We give here a constructive proof for completeness.

Proof: An interval graph is the intersection graph of a family of
sub-sequences of a (graph) chain. For convenience, we denote the
chain asB, vertices ofB are called points, and sub-sequences ofB
are called variables. Consecutive points are denoted byp1, . . . , pm,
and the set of variables is denoted byV. Once variables are removed
(spilled), the remaining set of variablesV′ is called an allocation.
An allocation is said to fitB if, for each pointp of B, the number
of remaining variables intersectingp is at mostr. The goal is to
remove a minimum number of variables such that the remaining
allocation fitsB. The greedy algorithm can be described as follows:

Step 0 (init) Let V′0 = V andi = 1;

Step 1 (find first) Let p(i) be the first point from the beginning of
the chain such that more thanr remaining variables, i.e., inV′i−1,
intersectp(i);

Step 2 (remove furthest)Select a variablevi that intersectsp and
ends the furthest and remove it, i.e., letV′i = V′i−1\{vi};

Step 3 (iterate) If V′i fits B, stop, otherwise incrementi by 1 and
go to Step 1.

2 Note that providing an optimal solution for each intermediate step (going
from Ω to Ω − 1, then fromΩ − 1 toΩ − 2, and so on, untilΩ′ = r) does
not always give an optimal solution for the problem of going fromΩ to r .

weighted Ω′ ≤ k Ω′ ≤ r Ω′ ≤ Ω − 1
Chordal graph no P ↓ NP → NP 3-exact cover

= general SSA case yes P dynamic prog. NP ր NP ↑

Interval graph no P ↑ P greedy (furthest use) P ↓

= basic block yes P ↑ P ILP P dynamic prog.
Note: weaker results have arrows pointed to the proof subsuming them.

Table 1. Spill everywhere without holes.

Let us prove that the solution obtained by the greedy algorithm
is optimal. Consider an optimal solutionS (described by a setVS

of spilled variables) such thatVS contains the maximum number
of variablesvi selected by the greedy algorithm. Suppose thatS
does not spill all of them and denote byvi0 the variable with
smallest index such thatvi0 < VS. By definition ofpi0 in the greedy
algorithm, there are at leastr + 1 variables not in{v1, . . . , vi0−1}

intersectingp(i0). As S is a solution, there is a variablev in VS

(thus v , vi0) that intersectsp(i0). We claim that spillingW =

VS∪{vi0}\{v}, i.e., spillingvi0 instead ofv, is a solution too. Indeed,
for all points beforep(i0) (excluded), the number of variables in
V′i0−1 = V \ {v1, . . . , vi0−1} is at mostr. Since{v1, . . . , vi0} ⊆ W,
this is true forV \ W too. Furthermore, each pointp after p(i0)
(included), intersected byv, is also intersected byvi0by definition
of vi0. Thus, asp is intersected by at mostr variables inV \VS, the
same is true forV \W. Finally, this solution spills more variablesvi

thanS, which is not possible by definition ofS. ThusVS contains
all variablesvi and, by optimality, only those. This proves that the
greedy algorithm gives an optimal solution. �

T 2 (poly. ILP). The spill everywhere problem for an inter-
val graph is polynomially solvable even if w, 1 and r is not fixed.

This result was pointed out by Gavril and Yannakakis in [23] and
used in a slightly different context by Farach-Colton and Libera-
tore [11]. The idea is to formulate the problem using ILP and to
remark that the matrix defining the constraints is totally unimodu-
lar. For the sake of completeness, we provide the formulation here.

Proof: We use the same notations as for Theorem 1 except that,
now, v1, . . . , vn denote all variables and not only those selected
by the greedy algorithm. Letwi be the cost of removing (spilling)
variablevi . We define the clique matrix as the matrixC =

(

cp,v

)

wherecp,v = 1 if v intersects the pointp andcp,v = 0 otherwise.
Such a matrix is called the incidence matrix of the interval hyper-
graph and is totally unimodular [3]. The optimization problem can
be solved using the following integer linear program, where~x is
a vector with components (xi)1≤i≤n, ~w is a vector with components
(wi)1≤i≤n, ~r is a vector whose components are all equal tor, and
vector inequalities are to be understood component-wise:

max
{

~w.~x | C~x ≤ ~r , ~0 ≤ ~x ≤ ~1
}

Of course,xi = 0 means thatvi should be removed whilexi = 1
means it should be kept. The matrix of the system isC with some
additional identity matrices, which keeps the total unimodularity.�

The next two theorems are from Yannakakis and Gavril [23].

T 3 (Yannakakis).The spill everywhere problem is NP-
complete for a chordal graph even if w(v) = 1 for each v∈ V.

Another important result of [23] is that the spill everywhere
problem is polynomially solvable whenr is fixed. Of course, there
is a power ofr in the complexity of their algorithm, but it means
that if r is small, the problem is simpler. Because of this, we call
the problem whenr is fixed “spill everywherewith few registers”.

Problem: S     (k)
InstanceA perfect graphG = (V,E) with clique numberΩ, a
weightw(v) > 0 for each vertex, an integerK, r = k is fixed.
QuestionCan we remove verticesVS ⊆ V from G with overall
weight

∑

v∈Vs w(v) ≤ K such that the induced subgraphG′ has
clique numberΩ′ ≤ r?

T 4 (Dynamic programming on non-spilled variables).The
spill everywhere problem with few registers is polynomially solv-
able if G is chordal even if w, 1.

When we proved our results, we were actually not aware of
Gavril and Yannakakis paper. Since Theorem 4 is very intuitive,
we logically ended with the same kind of construction. For com-
pleteness, we provide it here, with our own notations. This proof is
constructive and the algorithm (dynamic programming on program
points) is based on a tree traversal. It performsO(mΩk) steps of
dynamic programming, wherem is the number of program points.

Proof: A chordal graph is the intersection graph of a familyV of
subtrees of a treeT (Thm 4.8 [13]). We callpoints the vertices of
the treeT and, to distinguish the maximal subtreesTp rooted at
each given pointp from the subtrees of the familyV, we call the
latter variables. Given a pointp and a setW ⊆ V of variables,
let W(p) be the set of variablesv ∈ W intersectingp, i.e., such
that p belongs to the subtreev. If |W(p)| ≤ r, we say thatW
fits p and thatW(p) is a fitting set forp. We say thatW fits a
set of points if it fits each of these points. A solution to the spill
everywhere problem withr registers is thus a subsetW of V such
thatW fitsT. It is an optimal solution if

∑

v∈W w(v) is maximal. With
these notations,W corresponds toV − VS in the spill everywhere
problem formulation, and maximizing the cost ofW is equivalent
to minimizing the weight ofVS.

Given a subset of variablesW, we consider itsrestriction, de-
noted byWp, to a subtreeTp: it is defined as the set of variables
v ∈ W that have a non-empty intersection withTp. Note that
if W fits T, then its restrictionWp to a subtreeTp fits Tp. Fur-
thermore, ifp1 and p2 are children ofp in T then, because of the
tree structure, all variables that belong to bothWp1 and Wp2 in-
tersectp, and all variables inWpi intersectingp intersect alsopi ,
i.e., Wpi (p) = Wp(pi). These remarks ensure the following. LetW
be a fitting set forTp and letW′ be a fitting set forTpi such that
W′

pi
(p) = Wpi (p) (i.e., they coincide betweenp and pi). Then, re-

placingWpi by W′
pi

in W leads to another fitting set ofTp. This is
the key to get an optimal solution thanks to dynamic programming.

The final proof is an induction on the pointsp of T — from
the leaves to the root — and on the fitting sets of those points
Fp ∈ Fp = {W ⊆ V(p); |W| ≤ r}. Let us denote byWmax(p, Fp) a
subsetW of V that contains only variables intersectingTp, such
thatW(p) = Fp, and with maximal cost. It can be built recursively
as follows. For each childpi of p, consider all possible fitting
setsFpi that matchFp, i.e., such thatFpi ∩ V(p) = Fp ∩ V(pi)
and pick the solution such thatWmax(pi , Fpi) is maximal. From
these selected subsets, one for eachpi , Wmax(p, Fp) can be defined.
This construction is done for eachFp ∈ Fp. As there are at most

V(p)k ≤ Ωk such fitting sets forp, these successive locally optimal
solutions can be built in polynomial time. �

We now address the following problem, which is a particular
case of the more general spill everywhere problem.

Problem: I  
InstanceA perfect graphG = (V,E) with clique numberΩ =
ω(G), a weightw(v) > 0 for each vertex, an integerK.
QuestionCan we remove verticesVS ⊆ V from G with overall
weight

∑

v∈Vs
w(v) ≤ K such that the induced subgraphG′ has

clique numberΩ′ ≤ Ω − 1?

The following theorem can be seen as a particular case of
Theorem 2. The proof is interesting since it provides an alternative
solution to the ILP formulation for this simpler case.

T 5 (Dynamic programming on spilled variables).If G is
an interval graph, the incremental spill everywhere problem is
polynomially solvable, even if w, 1.

Proof: Let B = {p1, . . . , pm} be a linear sequence of points,pi < pj

if i < j, andV = {v1, . . . , vn} be a set of weighted variables, where
each variablevi corresponds to an interval [s(vi),e(vi)]. We assume
that the variables are sorted by increasing starts, i.e.,s(vi) ≤ s(vj)
if i < j. Without loss of generality, the problem can be restricted
to the case where any pointp belongs to exactlyΩ variables (any
other point can be deleted from the instance). So for each point,
one needs to spill at least one of the intersecting variables. What we
seek is thus a minimum weighted cover ofB by the variables ofV,
which can be done thanks to dynamic programming as follows.

Let W(pi) be the minimum cost of a cover ofp1, . . . , pi . Know-
ing all W(pj<i), it is possible to computeW(pi). Indeed, atpi , one
must choose a variablev ∈ V(pi), i.e., intersecting the pointpi . Asv
already covers the interval between its starts(v) andpi , we get:

W(pi) = min
v∈V(pi)

(w(v) +W(pred[s(v)])) where pred[pi] = pi−1

with the conventionW(p) = 0 for p < p1. W(pm) is the minimum
cost of an incremental spilling over the whole basic blockB. The
setV(pi) can be computed fromV(pi−1) in O(Ω) operations because
the variables are sorted by increasing starts. The overall complexity
is thusO(Ωm). �

T 6 (From 3-exact cover).The incremental spill every-
where problem is NP-complete for a chordal graph even if w(v) = 1
for each v∈ V.

Proof: As for Theorem 4 we use the characterization of a chordal
graph as an intersection graph of a family of subtrees of a tree. We
use the same notations. The proof is a reduction fromExact Cover
by 3-Sets (X3C) [12, Problem SP2]: letP be a set of 3n elements
{p1, p2, · · · , p3n}, andV = {v1, v2, · · · , vm} a set of subsets ofP
where each subset contains exactly three elements ofP. DoesV
contains an exact cover ofP, i.e., a sub-collectionS ⊆ V such that
every element ofP occurs in exactly one member ofS?

Let us consider an instance of X3C and define the following
family of subtrees of a tree: the main treeT is of height 2 with one
root point labeledp0 and 3n leaves labeledp1, p2, · · · , p3n. For each
vi = {pα, pβ, pγ} there is a subtree (variable) made of the rootp0 and
the tree pointspα, pβ, pγ. The number of variables intersectingp0

is m, so Ω = m. Let us create as many additional variables as
necessary (we call them non-labeled variables) so that the number
of intersecting variables is exactlyΩ for each point ofT. In other
words, for a leafpj that belongs tok subtreesvi , we createm− k
subtrees, each containing onlypj . Given this family of subtrees
of a tree, consider the corresponding intersection graph (which is

chordal). We now show that this instance of X3C has a solutionif
and only if it is possible to remove (spill) at mostn = K variables
such that, for each pointp, the number of remaining intersecting
variables is at mostΩ − 1. Notice that the reduction is polynomial:
the whole number of variables is not larger than 3n×m.

Suppose that there is a solution to the incremental spill every-
where problem and letVS be the set of removed variables with
|VS| ≤ n. There is no non-labeled variable inVS becauseΩ must
be decreased in the 3n leaves and only a labeled variable goes over
three leaves. HenceVS contains only labeled variables,|VS| = n,
and the corresponding set of subsetsS is a covering ofP. Con-
versely, suppose that the X3C instance has a solutionS and letVS

be the set of corresponding subtrees. SinceS is a covering ofP,
|S| = n and there is exactly one intersecting set inVS for each leaf.
So the number of remaining intersecting variables isΩ− 1 for each
leaf. As for the rootp0, all variables intersect it, so there is at least
one (labeled) variable removed and the number of remaining inter-
secting variables is at mostΩ − 1. In other words,VS is a solution,
with |VS| ≤ n, to the incremental spill everywhere problem.

This proves that the incremental spill everywhere problem is
NP-complete (the fact it belongs to NP is straightforward). �

The comparison between this last theorem and Theorem 4 is
very interesting. Indeed, our first (false) intuition was that choosing
which variables to remove so as to go fromΩ toΩ − k was exactly
the symmetric of choosing which variables to keep so as to get
down to k. At first sight, it seemed that dynamic programming
could be used, as for Theorem 4, to solve the incremental spill
everywhere problem. For interval graphs, both problems canindeed
be solved with dynamic programming as we previously showed.
The incremental approach would have then provided a heuristic
for the main spill everywhere problem, as an alternative to an
exact solution as in [1], which is too expensive whenr is large.
Unfortunately, Theorem 6 contradicts this intuition. In fact, the
two problems are not perfectly symmetric: to make the graphk-
colorable, the number of kept variables live at any point should
be at most kwhile to make a graphΩ − k colorable, the number
of removed variables live at any point must beat least k, as for the
point p0 in the proof of Theorem 6. This is where the combinatorial
complexity comes from.

4. Spill Everywhere with Holes on a Basic Block
The previous section dealt with the spill everywhere problem with-
out holes. To summarize, this problem is polynomial for a basic
block even in its weighted version whereas, most of the time,it is
NP-complete for a general control flow graph under SSA form. As
mentioned earlier, the model without holes does not reflect the re-
ality of most architectures. The goal of this section is to tackle the
problem of spill everywhere with holes on a basic block.

Where do the holes come from? For an architecture where
operations are allowed only between registers, whenever a variable
is spilled, one needs to insert load instructions before theuses of
this variable and a store instruction after its definition. This means
that new variables appear, with very short live ranges but which
nonetheless need to be assigned to registers. In other words, when
a variable is spilled, the number of simultaneously alive variables
decreases by one at every point of the live range,exceptwhere the
variable is defined or used. Thus spilling everywhere a variable
does not remove the complete interval, but only parts of it, since
there is still some tiny sub-intervals left. This is why, forinstance,
in Chaitin et al. algorithm [8], the register allocation must re-build
the interference graph and iterate if some variables are spilled.

Holes and chads: The notion of holes can be formalized as
follows. An SSA code on a basic block, orlinear SSA code, is a pair
C = (B,V) whereB = {p1, . . . , pm} is a sequence ofm instructions;

b spilledPunched intervals

Chads

a← . . .
b← . . .
c← . . .
d← a+ b
...

· · · ← a
· · · ← b
· · · ← c
· · · ← d

Intervals c spilled

a b c d

Sub intervals

a b c da b c da b c da b c d

Figure 1. Example of punched intervals.

and V the set of variables which appear in those instructions.
An instructionfirst uses simultaneously some variables andthen
possibly defines some other new variables. Each variable ofV
is defined at most once and, if it is not defined, it is live-in for
the sequenceB. Also, each variable either has a “last use” (last
instruction which uses it) or is live-out for the sequence. Avariable
is represented by a simple interval of the sequenceB, starting at the
middle of the instruction that defines it (or at the beginningof B for
a live-in), and ending at the middle of its last use (or at the ending
of B for a live-out).Spilling a variablev ∈ V decreases by one
the register pressure at each of its points but not at its definition
and uses points: the set of points that is actually “removed”is
the intervalv with holes on it, so we call it apunched interval.
The remaining pointsc ∈ v which are not removed are called
chads, as if, when spilling the variablev, one first had punched
the corresponding interval, leaving small intervals in place. See
Figure 1 for a graphical explanation.

Simultaneous holes:Also, we distinguish different cases depend-
ing on h, the number of simultaneous holes. This number corre-
spond to the maximum number of registers which can be used (ar-
guments) by the same instruction or defined by the same instruc-
tion. For instance,h = 2 in the following three operand addi-
tion add %reg1, %reg2 => %reg3. Finally, for a given pointp
of B, the set of variables live atp is denoted byL(p). Its cardi-
nal, the register pressure, is denoted byl(p) = |L(p)| and Maxlive,
the maximum ofl(p) over all pointsp ∈ B, is denoted byω(C).
Once some variablesVS have been spilled, the induced code can
be characterized as follows. The set of spilled variables live atp is
LS(p) = VS

⋂

L(p); the set of non-spilled live variables isL′(p) =
L(p)\LS(p). The new register pressure is denoted byl′(p). Notice
thatL′(p) does not contain any chad, whereas of coursel′(p) needs
to take remaining chads into account. Hencel′(p) is not necessarily
equal to|L′(p)| but, more generally,|L′(p)| ≤ l′(p) ≤ |L′(p)| + h.

All previous notions can be generalized to a general SSA pro-
gram. The sequenceB (linear code) becomes a treeT (dominance
tree) and punched intervals become punched subtrees. Now, the
(general) problem can be stated as follows.

Problem: S   
InstanceA codeC = (T,V) with Maxlive Ω = ω(C), a weight
w(v) > 0 for each variable, integersr andK.
Question Can we spill variablesVS ⊆ V from V with overall
weight

∑

v∈Vs
w(v) ≤ K such that the induced codeC′ has

MaxliveΩ′ ≤ r?
Other instancesThe spill everywhereon a basic blockdenotes
the case whereT is a sequenceB (linear code). The spill
everywherewith few registers(k) denotes the case wherer is
fixed equal tok. The spill everywherewith many registers(k)
denotes the case wherer is equal toΩ−k. Theincrementalspill
everywhere denotes the case wherer is equal toΩ − 1.

As explained in [11], the hardness of load-store optimization
comes from the fixed cost of the store (once a variable is chosen
to be evicted) while the number of loads (number of times it is
evicted) is not fixed. Neglecting the cost of the store would lead to
a polynomial problem where each sub-intervals of the punched in-
terval could be considered independently for spilling. Butwe feel
that this approximation is not satisfactory in practice because the
mean number of uses for each variable can be small. Indeed, we
measured on our compiler tool-chain, using small kernels represen-
tative of embedded applications, that most spilled variables have at
most two uses. Hence, minimizing the number of spilled variables
is nearly as important as minimizing the number of unsatisfied uses.
Consider for example a furthest-first-like strategy on sub-intervals
(see Figure 1 for an illustration of sub-intervals). To design such a
heuristic, a spill everywhere solution might be consideredto drive
decisions: between several candidates that end the furthest, which
one is the most suitable to be evicted in the future? Unfortunately,
as summarized by Table 2, most instances of spill everywherewith
holes are NP-complete for a basic block.

We start with a result similar to Theorem 4: even with holes, the
spill everywhere problem with few registers is polynomial.

T 7 (Dynamic programming on non-spilled variables).The
spill everywhere problem with holes and few registers is polynomi-
ally solvable even if w, 1.

Proof: The proof is similar to the proof of Theorem 4. The only
point is to adapt the notations to take chads into account. The
word “removed” has to be replaced by “spill” since variablesare
not removed entirely. Furthermore, the definition of “fitting set”
needs to be modified. A setFp of variables is a fitting set forp if,
when all variables not inFp are spilled, the new register pressure
l′(p) is at mostr. In other words, the set of fitting sets becomes
Fp =

{

L′(p); l′(p) ≤ r
}

. Hence, it is “harder” for a set to be a fitting

weighted Ω′ ≤ k Ω′ ≤ r Ω′ ≤ Ω − k Ω′ ≤ Ω − 1
h = 1 no P ↓ ? P ↓ P ↓

yes P ↓ NP stable set P ↓ P ↓

h ≥ 2 no P ↓ NP stable set P ↓ P ↓

yes P ↓ NP ↑ P dynamic prog. ← P

h not bounded no P ↓ NP → NP → NP set cover
yes P dynamic prog. NP ↑ NP ↑ NP ↑

Note: weaker results have arrows pointed to the proof subsuming them.

Table 2. Spill on interval graphs with holes.

set than for the problem without holes. Therefore, the number of
fitting sets is smaller and is still at mostL(p)k ≤ Ωk.

As in Theorem 4, the proof is an induction on pointsp of T
(from the leaves to the root) and on fitting live setsFp ∈ Fp.
Wmax(p, Fp) is built, for eachFp ∈ Fp, thanks to dynamic program-
ming, by “concatenating” some well chosenWmax(f , F f). Given a
child f of p, we select a fitting setF f ∈ F f that matchesFp, i.e.,
such thatF f ∩ L(p) = Fp ∩ L(f), and that maximizes the cost
of Wmax(p, Fp). We do this for each child ofp, and because by
construction they match onp, they can be expanded to a solution
Wmax(p, Fp) that fitsTp. The arguments are the same as for Theo-
rem 4 and are not repeated here. �

We have seen that, without holes, the spill everywhere problem
on an SSA program, with few registers, is polynomial whereasthe
instance with many registers (k) is NP-complete: the number of
spilled variables live at a given point can be arbitrarily large (up
toΩ). For a basic block, ifh is fixed, this is not the case anymore.
As we will see, this number is bounded by 2(h + k), leading to a
dynamic programming algorithm withO(|B|Ω2(h+k)) steps.

T 8 (Dynamic programming on spilled variables).The spill
everywhere problem with holes and many registers can be solved
in polynomial time, for a basic block, if h is fixed even if w, 1.

Proof: The key point is to first prove that, for an optimal solution,
for each pointp, |LS(p)| ≤ 2(h + k). Consider a pointp such that
|LS(p)| ≥ h+k+1. We extend this point to a maximal intervalI such
that on any pointp of this interval,|LS(p)| ≥ h+k+1. We claim that
there is no spilled variablev ∈ VS completely included inI . Indeed,
otherwise, ifv were restored (unspilled), then, at each pointp of v,
at least (h+ k+ 1)− 1 = h+ k variables would have been spilled, so
the register pressurel′(p) ≤ |L′(p)| + h ≤ (Ω − (h+ k)) + h = Ω − k
would still be small enough. This would contradict the optimality of
the initial solution. Hence, no variable ofVS is completely included
in I : either it starts before the beginning ofI , or it ends after the end
of I . But I is of maximal size, hence on both extremities, there are
at mosth+ k live spilled variables. This means that there is at most
2(h+ k) spilled variables live in any point ofI .

The rest of the proof is similar to the proofs of Theorems 4
and 7. The only difference is that spilled variables are considered
instead of kept variables. For a pointp, anextralive setEp is a set of
variables of cardinal at most 2(h+ k) and such that, ifEp is spilled,
the new register pressurel′(p) becomes lower thanr. LetEp be the
set of extra sets forp. It has at mostL(p)2(h+k) ≤ Ω2(h+k) elements.

The proof is an induction on pointsp of B = {p1, . . . , pm} and on
extra live setsEp ∈ Ep. Let Bpi = {p1, . . . , pi}. A set of variables is
said to fitBp if, for all points inBp, the register pressure obtained if
all other variables are spilled is at mostr. The induction hypothesis
is that a solutionWmax(p,Ep) of maximum cost, that fitsBp, and
with LS(p) = Ep, can be built in polynomial time. Letp be a
point of B and f its predecessor. LetEp ∈ Ep, and an extra live
set Ef that matchesEp, i.e., such thatEf ∩ L(p) = Ep ∩ L(f),

and that maximizes the cost ofWmax(f ,Ef). As noticed earlier,
∣

∣

∣E f

∣

∣

∣ ≤ Ω2(h+k) and it can be built, by induction hypothesis, in
polynomial time. BecauseEp and Ef match,Wmax(f ,Ef) can be
expanded to a solutionWmax(p,Ep) that fitsBp. The arguments are
the same as those used for Theorems 4 and 7.

The proof is constructive and provides an algorithm based on
dynamic programming withO(|B|Ω2(h+k)) steps. �

The next two theorems show that the complexity does depend
on h andk. If h is not fixed butk = 1, the incremental problem is
NP-complete (Theorem 9). Ifh is fixed but there is no constraints
on r, most instances are NP-complete (Theorems 10 and 11).

T 9 (From Minimum Cover).The incremental spill every-
where with holes is NP-complete even if w(v) = 1 for each v∈ V
and even on a basic block, if h can be arbitrary.

Proof: The proof is a straightforward reduction fromMinimum
Cover [12, Problem SP5]. LetV be subsets of a finite setB and
K ≤ |V| be a positive integer. DoesV contain a cover forB of
sizeK or less, i.e., a subsetV′ ⊆ V such that every element ofB
belongs to at least one member ofV′? Punched intervals can be
seen as subsets ofB, they contain all points, except chads.

Consider an instance of Minimum Cover. To each element ofB

corresponds a point ofB. To each elementν of V corresponds a
punched intervalv that traverses entirelyB and that only contains
points corresponding to elements ofν. In other words, there is a
chad for each point not inv. At each pointp of B, the number
of punched intervals and chads that containp (live variables) is
exactlyΩ = |V|. A spilling that lowers by at least one the register
pressureΩ provides a cover ofB and conversely. So, settingK = K
andr = Ω − 1 proves the theorem. �

Notice that the previous proof is very similar to the proof of
Farach-Colton and Liberatore [11] for Lemma 3.1. This lemma
proves the NP-completeness of the load-store optimizationprob-
lem, which is harder than our spill everywhere problem. Still, their
reduction is similar to ours since they used a trick to force the over-
all load cost to be the same for all spilled variables, independently
on the number of times a variable is evicted. Hence, the optimal
solution to their load-store optimization problem just behaves like
a spill everywhere solution.

The main limitation of the reduction used for Theorem 9 is
that the proof needs the number of simultaneous chadsh to be
arbitrary large, as large as|V|. This is of course not realistic for
real architectures. In practice, usuallyh = 2 and evenh = 1 for
paging problems. Similarly to ours, the reduction of Farach-Colton
and Liberatore use a large amount of simultaneous uses (in [11] a
read corresponds to a use andα corresponds toh). Theorem 3.2
of [11] extends their lemma to the caseα = 1 but again, it deals
with load-store optimization problem, which is harder thanspill
everywhere. Unfortunately, their trick cannot be applied to prove
the NP-completeness of our “simpler” problem and we need to use
a different reduction as shown below.

vuV − {u, v} δu δv (fi)

α α α αα 1 1 β

|V| + 1

|V| + 2

|V| + 3

|V| + 2

|V| + 1

weights:

variables:

register pressure

vuV − {u, v} δu δv

α α α αα 1 1
register pressure

|V|

|V| + 1

|V| + 2

|V| + 1

|V|

region for edge (u, v) removal of chads ofδ and (fi) variables

Figure 2. For each edge inE, a corresponding region inB. With β large enough, spilling this region withr registers is equivalent to spilling
the simplified region withr − 1 registers.

T 10 (At most 2 simultaneous chads).The spill everywhere
problem with holes is NP-complete even if w(v) = 1 for all v ∈ V,
even with at most2 simultaneous chads, and even on a basic block.

Proof: The proof is a straightforward reduction fromIndependent
Set [12, Problem GT20]. LetG = (V,E) be a graph andK ≤ |V|
be a positive integer. DoesG contain an independent set (stable)
VS of sizeK or more, i.e., a subsetVS ⊆ V such that|VS| ≥ K

and no two vertices inVS are joined by an edge (adjacent) inE?
Consider an instance of Independent Set. To each vertexν ∈ V

of G corresponds a variablev ∈ V which is live from the entry ofB
to its exit. To each edge (µ, ν) ∈ E of G corresponds a pointp(u, v)
of B that contains a use of the corresponding variablesu and v.
In other words, there are two chads for each point ofB. The key
point is to notice that spillingK variables inVS lowers the register
pressure to|V| − K + 1 if and only if the corresponding set of
verticesVS is an independent set. Indeed, ifVS contains two
adjacent verticesu andv, then at pointp(u, v), the register pressure
would be|V| − K + 2. Hence, by lettingK = K andr = |V| −K + 1,
we get the desired reduction. Indeed, if there existk ≤ K variables
that, when spilled, lead to a register pressure at mostr = |V| −K+1
then, first,k must be equal toK and, second, the corresponding
vertices form an independent set of sizeK. Conversely, if there is
an independent set of size at leastK, then spilling the corresponding
variables leads to a register pressure at most|V| − K + 1. �

T 11 (No simultaneous chads).The spill everywhere prob-
lem with holes is NP-complete even if h= 1 and for a basic block.

Proof: As for Theorem 10, the proof is a reduction fromIndepen-
dent Set. Consider an instance of Independent Set. To each vertex
ν ∈ V of G corresponds a variablev ∈ V (called vertex variables),
which is live from the entry ofB to its exit. To each edge (µ, ν) ∈ E
of G corresponds a region inB whereu and v are consecutively
used. As depicted in Figure 2, such a region contains two additional
overlapping local variablesδu andδv (calledδ variables). For real
codes, every live range must contain a chad at the beginning and a
chad at the end. For our proof, we need to be able to remove the
complete live range of aδ variable, which is not possible because
of the presence of chads for such variables. To avoid this problem,
we increase the register pressure by 1 everywhere, except whereδ
variables have chads. See Figure 2 again: we add new variables fi
such that the union of their live ranges covers exactly all points
of B, except the points that correspond to the chad of aδ variable.
The costβ of spilling a variablefi will be chosen large enough so
that fi variables are never spilled in an optimal solution. So, from

now on, without loss of generality, we consider the simplified ver-
sion of the region (right hand side of Figure 2) whereδ live ranges
contain no chads. We letK = K andr = |V| − K + 1. The cost for
spilling a vertex variable isα while the cost for spilling aδ variable
is 1. The suitable value forα will be determined later.

The trick is to make sure that an optimal solution of our spilling
problem spills exactlyK vertex variables and at least|E| of the δ
variables (one per region). We do so by lettingα = 2|E| + 1 (in fact
α = |E| + 1 would be enough but we do so to simplify the proof).
First, spillingK − 1 vertex variables in addition to allδ variables is
not enough: on the chad of one of the spilled variables, the register
pressure will be lowered to|V| − (K − 1) + 1 = |V| − K + 2 > r.
Second, spillingK vertex variables requires to spill at least oneδ
variable per region and spilling allδ variables is enough. Hence,
the minimum cost of a spilling with exactlyK vertex variables is
betweenKα+E andKα+2E. Finally, spillingK+1 vertex variables
has a cost equal to (K + 1)α = Kα + 2|E| + 1.

Now, it remains to show that the cost of an optimal spilling is
Kα + E if and only if the spilled variables define an independent
set for G. Consider an edge (u, v). All situations are depicted in
Figure 3. If bothu andv are spilled (in this case,V is not a stable
set), then bothδu and δv must be spilled and the cost cannot be
Kα + E. Otherwise, spilling eitherδu or δv is enough. �

5. Conclusion
Recent results on the SSA form have opened promising directions
for the design of register allocation heuristics, especially for dy-
namic embedded compilation. Studying the complexity of thespill
everywhere problem was important in this context. Unfortunately,
our work shows that SSA does not simplify the spill problem like
it does for the assignment (coloring) problem. Still, our results can
provide insights for the design of aggressive register allocators that
trade compile time for provably “optimal” results. Our study con-
siders different singular variants of the spill everywhere problem.

1. We distinguish the problem without or with holes depending on
whether use operands of instructions can reside in memory slots
or not. Live ranges are then contiguous or with chads.

2. For the variant with chads, we study the influence of the number
of simultaneous chads (maximum number of use operands of an
instruction and maximum number of definition operands of an
instruction).

3. We distinguish the case of a basic block (linear sequence)and
of a general SSA program (tree).

V −VS − {v} v δVS

|V| − K

|V| − K

|V| − K + 1

|V| − K

|V| − K + 1

|V| − K

|V| − K

|V| − K + 1

|V| − K

|V| − K + 1

V −VS VS δ

|V| − K

|V| − K + 1

|V| − K

V −VS VS δ

only u is spilled bothu andv are spilled non spilled

Figure 3. Different configurations whetheru andv are spilled or not withr = |V| − K + 1 registers. Non spilled variables are in bold.

4. Our model uses a cost function for spilling a variable. We
distinguish whether this cost function is uniform (unweighted)
or arbitrary (weighted).

5. Finally, in addition to the general case, we consider the singular
case of spilling with few registers and the case of an incremental
spilling that would lower the register pressure one by one.

The classical furthest-first greedy algorithm is optimal only for the
unweighted version without holes on a basic block. An ILP for-
mulation can solve, in polynomial-time, the weighted version, but
unfortunately, only for a basic block, not a general SSA program.

The positive result of our study for architectures with few regis-
ters is that the spill everywhere problem with a bounded number of
registers is polynomial even with holes. Of course, the complexity
is exponential in the number of registers, but for architectures like
x86, it shows that algorithms based on dynamic programming can
be considered in an aggressive compilation context. In particular,
it is a possible alternative to commercial solvers requiredby ILP
formulations of the same problem. For architectures with a large
number of registers, we have studied thea priori symmetric prob-
lem where one needs to decrease the register pressure by a constant
number. Our hope was to design a heuristic that would incremen-
tally lower one by one the register pressure to meet the number of
registers. Unfortunately, this problem is NP-complete too.

To conclude, our study shows that complexity also comes from
the presence of chads. The problem of spill everywhere with chads
is NP-complete even on a basic block. On the other hand, the in-
cremental spilling problem is still polynomial on a basic block pro-
vided that the number of simultaneous chads is bounded. Fortu-
nately, this number is very low on most architectures.

Acknowledgments
We would like to thank Christophe Guillon and Sebastian Hackfor
fruitful discussions.

References
[1] Andrew W. Appel and Lal George. Optimal spilling for CISC

machines with few registers. InACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’01),
pages 243–253, Snowbird, Utah, USA, June 2001. ACM Press.

[2] L. A. Belady. A study of replacement algorithms for a virtual storage
computer.IBM Systems Journal, 5(2):78–101, 1966.

[3] C. Berge.Graphs and Hypergraphs. North Holland, 1973.

[4] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice
Rastello. Register allocation and spill complexity under SSA.
Technical Report RR2005-33, LIP, ENS-Lyon, France, August2005.

[5] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice
Rastello. Register allocation: What does the NP-completeness
proof of Chaitin et al. really prove? InInternational Workshop
on Languages and Compilers for Parallel Computing (LCPC’06),
LNCS, New Orleans, Louisiana, 2006. Springer Verlag.

[6] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh.
Polynomial time graph coloring register allocation. In14th
International Workshop on Logic and Synthesis, June 2005.

[7] Zoran Budimlić, Keith Cooper, Tim Harvey, Ken Kennedy,Tim
Oberg, and Steve Reeves. Fast copy coalescing and live range
identification. InACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02), pages 25–32,
Berlin, Germany, 2002. ACM Press.

[8] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra,John
Cocke, Martin E. Hopkins, and Peter W. Markstein. Register
allocation via coloring.Computer Languages, 6:47–57, 1981.

[9] Keith D. Cooper and Anshuman Dasgupta. Tailoring graph-color-
ing register allocation for runtime compilation. InInternational
Symposium on Code Generation and Optimization (CGO’06), pages
39–49. IEEE Computer Society, 2006.

[10] Keith D. Cooper and Linda Torczon.Engineering a Compiler.
Morgan Kaufmann, 2004.

[11] Martin Farach-Colton and Vincenzo Liberatore. On local register
allocation.Journal of Algorithms, 37(1):37–65, 2000.

[12] Michael R. Garey and Davis S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[13] Martin Charles Golumbic.Algorithmic Graph Theory and Perfect
Graphs. Academic Press, New York, 1980.

[14] Christian Grothoff, Rajkishore Barik, Rahul Gupta, and Vinayaka
Pandit. Optimal bitwise register allocation using integerlinear
programming. InInternational Workshop on Languages and
Compilers for Parallel Computing (LCPC’06), LNCS, New Orleans,
Louisiana, 2006. Springer Verlag.

[15] Sebastian Hack and Gerhard Goos. Optimal register allocation for
SSA-form programs in polynomial time.Information Processing
Letters, 98(4):150–155, May 2006.

[16] Sebastian Hack, Daniel Grund, and Gerhard Goos. Towards register
allocation for programs in SSA-form. Technical Report RR2005-27,
Universität Karlsruhe, September 2005.

[17] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation
for programs in SSA-form. InInternational Conference on Compiler

Construction (CC’06), volume 3923 ofLNCS. Springer Verlag, 2006.

[18] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai.
Fusion-based register allocation.ACM Transactions on Programming
Languages and Systems, 22(3):431–470, 2000.

[19] Poletto and Sarkar. Linear scan register allocation.ACM Transactions
on Programming Languages and Systems, 21(5):895–913, 1999.

[20] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and
speed in linear-scan register allocation. InACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’98),
pages 142–151, 1998.

[21] Christian Wimmer and Hanspeter Mössenböck. Optimized interval
splitting in a linear scan register allocator. In Michael Hind and
Jan Vitek, editors,1st International Conference on Virtual Execution
Environments (VEE’05), Chicago, IL, USA, June 2005. ACM.

[22] Mihalis Yannakakis. Node-and edge-deletion NP-complete problems.
In Annual ACM symposium on Theory of computing (STOC’78),
pages 253–264, San Diego, CA, USA, 1978.

[23] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable
subgraph problem for chordal graphs.Information Processing Letters,
24(2):133–137, 1987.

