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Abstract

This paper focuses on improving the usability of information flow type systems. We present a static information flow
type inference system for Middleweight Java (MJ) which automatically infers information flow labels, thus avoiding the
need for a multitude of program annotations. Additionally, policies need only be specified on 10 channels, the critical flow
boundary. Our type system includes a high degree of parametric polymorphism, necessary to allow classes to be used in
multiple security contexts, and to properly distinguish the security policies of different 10 channels.

We prove a noninterference property for programs that interactively input and output data. We then describe a mechanism
that allows users to define top-level policies, which automatically inserts the security policies at the proper points in the
program. This provides the further benefit that whomever is defining the policy does not necessarily need intimate knowledge
of the program source.

1 Introduction

While the foundations of static information flow systems are solid, there remains a usability gap that needs to be closed. The
overhead for adding information flow security to programs is potentially large, since existing systems usually require that
security annotations be added to the code. With large numbers of annotations, the likelihood of having incorrect annotations
also increases: a mistake can get lost in the noise of so many annotations. Input/output is another important practical concern
which has also not been fully integrated into static information flow systems.

Information flow research [4, 13, 24, 18, 31] has shown how type systems can be defined to statically guarantee that high
security data will not affect low security data. Woninterferencg12] property is usually shown for well-typed programs:
low security outputs are not affected by any high security inputs. The majority of these works assume a batch model of 10,
although O’Neillet. al. recently described a technique for enforcing information flow security for interactive 10, using a
simple imperative language and basic type system [21].

Our primary goal is to provide practical data secrecy and integrity protection to aid programmers in securing programs
they write. To this end, we present a provably correct static information flow type inference system, for a core subset of
Java (namely, Middleweight Java) that automatically infers information flow labels, thus avoiding the need for a multitude of
program annotations. Policies need only be specified on IO channels, which we will argue to be the only real flow boundary
that must be considered. The type system includes a high degree of parametric polymorphism, necessary to allow classes to
be used in multiple security contexts, and to distinguish policies of different 10 channels.

Our work places the focus on input and output pointthesmportant boundaries for securing data. Thus, we are only
indirectly concerned about internal flows, in how they ultimately will relate to the inputs and outputs. In general, we should
speak of securing theomponent interfacf80], since runtimes may be composed of multiple independent components with
distinct security policies; here we focus on just the 10 boundary for simplicity.

As is common practice in information flow type systems, we associate a flow label with each program value. Labels
are explicitly placed on input data and checking policies explicitly declared at output points; for points in between, the type
system automatically infers the labels and so programmers do not need to add declarations. Input statements are of the form
read, 1,)(fd), whereL, andL; are the declared security level policy for secrecy and integrity of the channel, respectively,
andfd is the file descriptor that names the channel. Similarly, output statements are of therform; _;.(e,fd). For
practicality we also support the ability to downgradeglassify secrecy labels, and upgradmgorsg integrity labels when
deemed safe to do so.

The type inference system provides an expressive form of parametric polymorphism. Polymorphism is crucial for mod-
eling information flows with fine enough granularity. Different objects of the same class (e.g. two completely different



HashSet objects) may be used in different security contexts, which must be differentiated in the analysis. Otherwise, secure
programs may be rejected by a type system that unnecessarily merges flows. In our system, security policies on IO channels
are defined at the level of Jagaream classes. This allows bowOutputStream class to have a different security require-
ment than &ighOutputStreanm class. As described in Section 2, our fine-grained polymorphic type inference algorithm is
essential for providing a fine enough distinction on 10 channels. To demonstrate the correctness of our system, we prove a
type soundness result, and we also show a noninterference property, extended to account for interactive inputs and outputs.

One weakness of Java and other programming languages is how the 10 points can get buried in the code through sub-
classing, method callgtc This in turn makes it difficult to observe the policies on the use of 10 channels without digging
through the whole program. This lack of a clear top-level 10 interface means anyone who wants to understand the informa-
tion flow properties of a whole program must have knowledge of the code details in order to understand what information
flows occur through 10. We describe a simple mechanism that allows users to define concise top-level policies which are then
automatically applied to the proper 10 points in the program. This reduces the burden on both the programmer as well as the
policy validator — the security policy for the whole program is now defined in one place.

The result of our strong type inference system and 10 policy declarations is a usable system for a real language, where
programmers need only specify the security policy of 10 channels, and the type system ensures the program does not violate
the policy.

2 System Overview

Our syntax is based on Middleweight Java (MJ) [8], extended with labeled input and output operations, declassifying and
endorse syntax as well as other minor additions. Input and output statememisadrg; (fd) andwriteq (e, fd),

wherefd is the file descriptor of the 10 channel,is what is written to the output channel, an@ndlL’ are sets of labels
specifying the secrecy and integrity levels of the channel, respectively. For convenience, we use labels sets and the usual set
relations as our security lattice [11].

At the point of a read operation, the returned value is tagged with the security labels of the channel. Further, checks are
performed to ensure it is safe to read in the current security context. For example, a low read must not occur under a high
guard. Otherwise, an attacker would notice that the amount of data read from a low stream would differ if the high guard
differed. For example, one execution may read from a low stream three times, while another execution with a different high
guard may read from the stream seven times, indirectly leaking information in the three vs. seven number. At each write,
the labels on the value to be put to the channel are checked against the channel policy, to ensure that high secrecy data is not
output to a low secrecy channel (and, dually that low integrity data does not flow into a high integrity channel).

Integrity is an important dimension of information flow security that is often ignored. While most research correctly
states that integrity is a dual to secrecy [7], there are subtle differences [15, 17], and for this reason we model both secrecy
and integrity in detail. Our goal of providing a usable information flow system provides further motivation for including
integrity in our analysis, since integrity is an important dimension of information assurance.

We provide aDeclassify(e,L) statement, which removes secrecy laliefsom e. This serves to declassify data in
infrequent, explicitly allowable instances [20, 34]. For example, in a program where a password is being checked, the result
of a password comparison may be declassified, so the resulting boolean will not carry the high security label of the password.
Programmers must be very careful when using declassify operations, because they may reveal too much information and
compromise security. We also provide the integrity dBafiorse (e,L), which increases the integrity label of the argument,
specifying increased confidence in the data.

We define a static constraint-based type inference system, with a form of automatic label polymorphism inference that
is related to CPA-style concrete class analyses [3, 27, 33]. The need for label polymorphism inference will become evident
when we study the example program of Section 2.2.

2.1 Program Constants and Default Policies

The use of security-critical constants directly in the program text can create security holes: hard-coded secret data may be
mislabeled and leak out of a program through output operations, or by an unauthorized agent reading the source code itself.
Similarly, program constants may adversely affect data integrity,if a rogue string constant is inadvertently written as a

user’s password. Remarkably, programmers continue to make such mistakes, even in recent commercially available programs
and devices [25, 2, 10], where hard-coded passwords resulted in security problems.



Example 1Password Changing Program

class PwdFile extends Object { public class SysFileIS extends FileIS {

String fileName; String tempName; public int read() {

bool ChangePwd(String uname,oldpwd,newpwd){ return read({nignsys}.(nignsys}) ()5 }
bool succ = false; String line; }

BR passIn = getPwdReader(); public class UserIS extends IS {

PrintWriter tempOut = getWriter(); public int read() {

while((line = passIn.readLine()) != null) { return Endorse(super.read(),{high});}
if (isUser(line,uname,oldpwd)) { }
tempOut.println(uname + ":" + newpwd) ;
succ = true; public class PwdFileOS extends File(OS {
} else { tempOut.println(line) } public void write(int v) {

} WIite({nigh,sys},{nign}) (V,£d); }

/l rename tempFile to fileName }

return Declassify(succ,{high,sys});

} void main(){

Reader getPuwdReader() { String fileName = "/etc/passwd";
SysFilelIS fin = new SysFileIS(fileName); String tempName = "/tmp/tmppasswd";
return new BR(new ISReader (fin)); PwdFile pf = new PwdFile(fileName,tempName) ;

) /lread uname,oldpwd,newpwd froma UserIS.

Writer getWriter() {

PwdFile0S fou? = ngw PwdFile0S (tempName) ; bool succ = pf.ChangePwd(uname,oldpwd,newpwd) ;
return new PrintWriter(fout); if (suce) {

} System.out.println("Success");

bool isUser(String line, uname, oldpwd) { } else {

/I parseline and return true ifiname andoldpwd match System.out.println("Failure");

} }

} }

We take the approach that hard-coding of secret data or low-integrity data simply should not happen: the only reasonable
way to view program constants are as low secrecy but high integrity data, and this is how our type system treats all constants.

Establishing default policies for input and output channels is a closely related problem. This is important for establishing
security for programs where not all IO channels have been given a security policy, and in describing policies for the standard
input and output streamsSystem. in, System.out andSystem.err in Java). The default policy for an input channel is
established as low secrecy and low integrity. This means the data is considered public and unreliable, which is a natural
default for an unknown channel. The default policy for an output channel is also low secrecy and low integrity. This means
the channel is considered observable to public users, and does not require any degree of confidence in the integrity of the data
being output.

2.2 An Example Java Program

In this section we elaborate on how information flow is controlled at IO points in our system, by the study of a simple
example. In the following subsection we then give an overview of our parametric polymorphism and label inference system.
IO channels in Java are created through subclassing, creating classes BiltbIaputStream, DataOutputStream,
SocketInputStream, etc. We build on this approach by defining different information flow policies via subclassing the core
IO classes. In particular, a different subclass is created for each distinct security category of 10. This 1-1 relationship between
class definitions and security policies makes fophject-orientecapproach to information flow policies, harmonizing with
the existing language structures.
We now focus on an Example 1, a program for changing passwords, where data security is important in both secrecy and
integrity dimensions. This example is somewhat oversimplified but is short enough to illustrate the key concepts. Firstly, we
want to provide secrecy for the user name and password information contained on the system, making sure this information



Example 2Password Changing with Polymorphism

c.. void main() {

bool ChangePwd(IS in,0S out,String uname, Il ... same code as above
String oldpwd, String newpwd){
bool succ = false; String line;
BR passIn = new BR(new ISReader(in));
PrintWriter tempOut = new PrintWriter(out);
Il ... same code as above

} pf.ChangePwd (in,pout,uname,oldpwd,newpwd) ;

pf.ChangePwd(in, tout,uname,oldpwd,newpwd) ;

String ts = "/etc/topsecret";

SysFileIS in = new SysFileIS();
PwdFileOS pout = new PwdFileOS(tempName) ;
TopFileOS tout = new TopFileOS(ts);

public class TopFileOS extends FileOS { }
public void write(int v) {
WIite({topnigh,sys}.{top.nign}) (V,d);}}

is not leaked to a public channék. the screen. Secondly, we want to ensure the integrity of the system password file by
not allowing it to be tainted by improper data, thereby altering user names and passwords on the system. These are two
well-defined goals for a programmer of a password changing application.

We take some liberties with syntax that is not described in our calculus, such as the use of local vatiabtss,, and
awhile loop. We make some abbreviations to shorten the presentafidar InputStream, 0S for OutputStream, PS for
PrintStream. B abbreviate®uffer, andBR is BufferedReader. Other obvious abbreviations have been made, and some
code is omitted.

The modifications needed to support information flow analysis here are minor. The most significant requirement is to
define distinct subclasses biputStream andOutputStream for each distinct 10 policy. In this case we are defining three
new IO policies, in the class&ysFileIS andUserIS (for input), andPwdFile0S (for output). ForSysFileIS, theread
method labels input values withigh andsys for both secrecy and integrity. Therite method ofPwdFile0S allows
secrecy labelsigh andsys, and requires the integrity labeigh, thereby enforcing the policy that only certain data may be
written to the password file. THeserIs class is defined with aBndorse operation, expressing confidence in the integrity
of the data on the channel. (Note that IO can occur with other methods suchmasfilee, but we are simplifying a bit in
this example). There is also a declassification of secrecy labels at the endCabif=Pwd method, necessary to allow the
success or failure of the program to be output to the screen.

Note that this program shows how code is written in the language, no explicit parametric type declarations are needed, and
no label type declarations need to be placed on variables — type parametricity and variable information flow labels are both
inferred automatically. So, the underlying Java program only needs to be changed to declare the appropriate IO channels and
policies, and to add any needed downgrading and upgrading constructs. The underlying program structure remains largely
unchangede.g.aSysFileIS objectsysin is still accessed viaysin.read (), with no need for annotation.

Proper typing of this example imposes some requirements on the type system: the typeeafithedwrite methods
simply cannotbe the same across all subclasses, otherwise all of the work we made to separate the policies in separate classes
would be for nothing since the type system would merge the information flows. So, a form of parametric polymorphism is
needed to distinguish between subclasses. It is even more subtle because a variable declaredipusS@rean can
at runtime be any of its subclasses suclsgsFileIS or UserIS, and so it may look very difficult to type these methods
distinctly. Our solution is to use a polymorphic form of concrete class analysis [3]: we use a constraint-based type system that
specializes the type of an object at each method call site for each different type of object that it could be. This technique leads
to a very accurate typing [3, 33], and allows the methodology of placing different security policies in different subclasses to
be sound yet expressive. The most obvious forms of polymorphic type inference, based on treating each class or interface
as polymorphic and not each method and message send, are too weak to properly treat examples shighuas tiheam
mentioned above.

2.3 Polymorphism

To better illustrate the expressiveness of our polymorphic type system we show an alternate implementatitang#rad
method in Example 2. This implementation takeslaputStream andOutputStream as arguments for reading from and



Example 3HashSet Polymorphism

public class HighFileIS extends FileIS { void main() {
public int read() { HashSet highSet = new HashSet();
return read({nign} {nign}) (fd); }} FileIS hin = new HighFileIS("high_infile");
int i;

while(i = hin.read()) {
highSet.add(i);

}
public class LowFileIS extends FileIS { HashSet lowSet = new HashSet();
public int read() { FileIS lin = new LowFileIS("low_infile");
return read(gg) (fd); }} int j;

while(j = lin.read()) {
lowSet.add(i);

}
. . . Iterator lowlIt = lowSet.iterator();
public class LowFileQS extends File0S { File0S lowout = new LowFile0S("low_outfile");
public void write(int v) { lowout.write(lowIt.next());
write(g) (v,fd); }} }

writing to the password file, respectively. Thein method in Example 2 uses this new implementati@apFileQs is
subclassed froriiile0S, and thewrite method of the new class checks the output data for the integrity TakpelIn the
main portion, two different calls are made thangePwd, one with aPwdFileQS, as before, and one toTapFile0sS.

Our polymorphic type system is expressive enough to directly support thiShevgePwd method. Additionally, since
we are statically inferring the concrete classes of objects, we can create different security policies for overriding methods,
and the type system will know the correct policy to use. In this example, the first calkiggePwd will type properly, but
the second call will cause a type error, since the data passedieihe method of theTopFile0S is not labeled withtop.

In addition to the need for polymorphism for discriminating input and output streams, we also need polymorphism for
code re-use. Code should be reusable in multiple contexts, and those contexts may also have different information flow
policies. This means concretely that library classes and methods must be allowed to be instantiated at multiple security
contexts, and the type system must not merge all of the flows. We illustrate this with the program in Example 3, which uses
differentHashSet objects: one holding high data, and the other holding low data.

We define two input stream classes, one for reading in high data, and one for low data, and an output stream class for
writing low data. The program reads data from both high and low streams and puts them in segpsrate objects. A
value is then taken from tH&ashSet containing low data, and written to the low output channel.

This clearly shows the need for polymorphism over security levels. If the types for theséabiBet objects were
merged, the program would be rejected, because high data would appear to flow out a low channel. Our system views
HashSet as polymorphic and theighSet andlowSet are typed distinctly, so the program typechecks.

3 Types for Data Tracking and Checking

We now present the formal type inference system. In order to simplify the reasoning and presentation of the system, we define
alabel type inference systesolely for typing data flows, and use the existing MJ type system for normal MJ typechecking
not related to information flow. Our label type system is strong enough to handle any valid MJ program, including those with
mutually recursive class definitions, and method recursion. A program type checks if and only if it type checks in both the
MJ type system and the label type system.

3.1 The Language

Our language is an extension of Middleweight Java (MJ) [8]. MJ contains the basic object constructs of Java, including state;
it omits some of the more complex features of Java, which allows formal properties to be established. We eliminate local
variables, which complexify the operational semantics and proofs, although their typings are a straight forward extension of



P = CL;8 program
CL == classCextendsC{C¥%; KM} class
K == C(Cx){super(e);s constructor
M == RTm(Cx) {8} method
RT == C]void return type
L == {I},wherel are unique labels. label
C0 == c|b|str|null|fd constant
e == x|this|CO|e.f|(C)e] expression
e ®e | pe|Declassify(e,L) |
Endorse(e,L) | read( 1)(fd)
pe == emn(8)|newC(e) | promotable exp
s u= pe;|if ethen {5} else {5} | statement
;] {8} |e.f:=e; |returne; |
write 1)(e, fd)

Figure 1: Grammar

object fields. We addonstantqint, bool, string, file descriptorpperators(+, - etc.), in order to better reason about infor-
mation flows in real programs. We also add low level read and write operations to the language, of theafdyim (£d)
andwrite( 1) (e, fd), wherefd is the file descriptor of the 10 channeljs what is written to the output channel, andnd
L’ are sets of labels specifying the secrecy and integrity levels of the channel, respectively. We alBedddaify(e,L)
construct, which removes the secrecy labels from those ore. Endorse (e, L) is the integrity dual of declassification that
adds integrity labels to those ore. The grammar for our Extended MJ (EMJ) language is given in Figure 1.

We assume some familiarity with MJ, and do not reproduce its typing or semantic definitions; see [8] for the details. Note
that EMJ follows MJ and types expressions with respect to a global class ¢db)ehat contains the types of all classes. At
the top level a sequence of statemgrbrresponding to theain method is typechecked with respect to this table.

In MJ, type assertions are of the fol@"; I" -1 e : C meaning under class tab{eT” and type environmerit, expression
e has typeC (note thisT is different from our definition). A similar definition is given for statements. In addition to the
standard type rules for MJ, we add the type rules corresponding to the EMJ extensions; they are mostly straightforward, and
are omitted for lack of spaceread . 1/ (fd) is typed to input an integer angrite 1/ (e, fd) outputs an integere(has
an integer type), whilé€d is of typeFileDescriptor. ForDeclassify(e,L) andEndorse(e,L), the resulting type of the
expression is the same typegsince the label tracking is only handled in the label typing rules.

3.2 Label Types

EMJ values are either objects or primitive constants. Objects may be labeled, as may the internal fields of an object. Thus,
Label types;, are four-tuples S, Z, F, A); S is a set of secrecy labels for the current objécts a set of integrity labels
for the object,F is a record containing sets of labels, representing the internal fields of the objegt,isata-type, a type
representing the concrete class of the object, explained below. The type definitions are summarized in Figure 2.

An object’s fields has its own labels, represented by the field fpevhich is a mapping of field names to types,
{f1 — 7,..., I, — 7o }. The individual labels may be accessed by a dot notatfoti:S is the secrecy label on thefield
of the object. Primitive constants are labeled as objects with no fields.

The a-types are used to express a form of parametric polymorphism over the inheritance hierarchy, allowing the super-
class and subclass to differ in their labeling. The usual Java type declaration is insufficient for determining the class of an
object, as it may be an object of a subclass, which contains a different policy, or returns different labels. As discussed in Sec-
tion 2, we need a more expressive form of polymorphism. We employ an analysis that is closely related to Data-polymorphic
CPA 27, 33], a variant of CPA [3]. This ensures proper creation of distioctours(polyinstantiations) when needed to give
the type expressivity required for our system, while on the other hand merging enough contours to make sure the analysis
terminates.

We usel to represent a concrete label, and for label variables in the secrecy and integrity domains, respectively.
NotationL refers to a set of concrete labdls}, and label set§, Z may contain both concrete label sets and label variables,
the latter used when the concrete label is not yet known. For example, when typing methods, the argument labels are variables
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Figure 2: Type Definitions

since the actual labels are not instantiated until the method is invoked. Additioh&lg field variable referring to abstract
fields of an object, and is either an abstract or a concrete field mappings a variable referring to an unknown class, and
A is either an abstract classor a concrete class. o defines the contours necessary for polymorphic method typing, and
type variables are extended to allow a contour superscript, §€)gande represents no superscript. For convenience, we
generally omit the superscript on variables when it is unimportadenotes a full four-tuple of label types, and is simply
short-hand.

We implicitly work over a simple equational theory of sets in typing and constraint closure. Concrete hiogs,
whereS = {1} andS’ = {1’} are considered equivalent to the unionedSetS’ = {1,1’} (without repeats). An analogous
equivalence holds faf N Z’ whenZ andZ’ are concrete label set§. — S’ is also equivalent to the obvious set difference
when both are concrete label sets. For field acddss; 7}.£;.S is equivalent taS;, wheret; — (S;,Z;, Fi, A; ). A similar
equivalence analogously holds for af/+— 7}.£;.1, {f — 7}.£,.F, or {f — 7}.£;.A.

We use a label tabld,T", to keep track of the label types of all classes when typing expressions. This is analogous to the
class tableC'T of the MJ type system that keeps track of all class types. However, since we are inferring label types here, we
must build up the label table while typing the classes, as discussed in Section 3.2.4.

Label type rules are of the forin, PC' + e : 7\C andT’, PC I s : 7\C, meaning in label environmeft, with program
counterspe and pe; (PC' is short-hand fomc, pc;), expressiore (or statement) has label typer with constraint set.

I" binds variables to label type variabldsxz) = ¢t. Separate program counters for secrecy and integritp@end pc;,
respectively. They track implicit flows through programs and are a standard feature of information flow type systems.

The constraint sef;, contains normal subtyping constrairtsfor secrecy, integrity, field, ang-types. In addition, check
constraints of the forn¥C(L, S), andIC(L, Z), for secrecy and integrity checks, respectively, are placé€dind the closure
process will need to verify their correctness. Method constradnt$7, pepe, 7,) contain the necessary information to
tie up method invocations with the labels of the resulting method call. Methods in the label table are universally quantified,

Vi Lty Sote, t,\C, so they may vary parametrically. This allows distinct contours to be formed for each combination of
argument type and call site. We detail this analysis when discussing the constraint closure in section 3.2.5.
We proceed by discussing specific elements of the type inference system separately.
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Figure 3: Label Type Rules for Expressions

3.2.1 Expression Typing

The label type inference rules for expressions are given in Figure 3. Here are a few highlights of the rules. (Const) types
constants as label types containing optyfor secrecy, angc; for integrity, reflecting our view that constants should by
default have no secrecy and full integrity as discussed in section 2.1.

In (Field), we use @et constraint to obtain the type of a field access. These constraints are discussed further in section
3.2.3. The secrecy and integrity types include the labels on the field within the object, along with the labels the object itself
carries.

In (Invoke), the constraint.m(7, 7 t.) is added to the constraint sef. andZ are added to the program
counters, since the execution of methodepends on the object to which the method is being passed. The method type
eventually needs to be looked up in the global label tdlfle However, sinced may at this point be of unknown class we
postpone this decision until more information is known abduat constraint closure. The above type constraint records the
method call information so it can be propagated in the closure once the concrete claisskoown.

In (New), the names of the fields in the classre looked up usindields We cannot simply add the types of each
argument to the field types, since the constructor may not have this behavior. Thus, fresh type variables are created for each
field, and theF element of the type contains these variables. A constraint is added to capture the call to the constructor,
which is similar to a method call. The-type is given the concrete class name of the object being createmdpc; are the
secrecy and integrity labels on the new object, respectively. Like constants, objects are assumed to have no secrecy and full
integrity by default.

As expectedDeclassify(e,L) removed. from the secrecy labels efin (Declassify), whiléEndorse (e,L) addsL to
the integrity labels o# in (Endorse).

The type of aread .1/ (e) expression contains the security levels of the statement combined with the labels on the file

pcUS,pc;NT
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I'PCFe:7\C
I, PCF+;: (pc,pc;, 0, void )\ I,PCte;:7\C
T,pe,pe; Fe: {(S,ZT,F, ANC [,pcUS,pe; NI Fg1: (81,1, Fr, AL)\C
T,pcUS,pe; NI 832 (82, Ta, Fa, A2 )\C”
[, pc,pe; - if e then {81} else {$5} : (SUS U8y, ZNT; NIy, 0, void)\CULC UL
I, PCte:(S,T,F,ANC T,PCre (ST, F, AN
[LPCtef:=¢;:(SUS,INT 0 void)\CUC U{F.f <:set{(SUS,ITNI,F A}
I'NPCFs:7\C ILPCHs:7\C S#Cx(seq) IPCFs:7\C
ILPCFs;s:7\CUC I,PCF{s}:7\C
I'PCFe:7\C
I', PCF returne;: 7\
I,PCFe:(S,I,F,ANC T,PCre : (ST F AN
I, PC Furiter (e, &) : (SUS, ITNT',0,void)\CUC' USC(L,SUS)UIC(L,INT)

(No-op) (PE)

(If)

(F-Assign)

(Block)

Ret
C( eturn)

(Output)

Figure 4: Label Type Rules for Statements

descriptor argument. Secrecy and integrity checking constraints are also added to the constraint set. There are two reasons
for this. Firstly, the constraints ensure that low reads are not happening under high guards; as discussed previously, this may
cause an information leak (note the type of any sub-expression implicitly contains the types of the program counters, a fact
easily shown by structural induction enobserving the base cases all addpc; to the types). Secondly, if the file descriptor

value has a higher label than the channel policy, performing the read may result in a securieydeikd executions that

differ only in high inputs may read from different low channels, since the file descriptor for the channel differs).

3.2.2 Statement Typing

The type rules for statements are given in Figure 4. In rule (If), the secrecy and integrity types of the condition are added to
the respective program counters when typing each branch. (F-Assign) sel®astraint to the constraint set to set the flow
of labels into an object field. These constraints are described in section 3.2.3. Typiigeq, ;) (e, e’) statement produces
secrecy and integrity check constraints to ensure the type of the output aligns with the policy of the channel. The type of
the file descriptor is also checked against the policy for the same reaspasdasliscussed earlier. The remaining rules are
straightforward.

Statements that havewaid a-type (e.g. Output, If) could also have empty secrecy and integrity types. They are an
artifact of our proof technique. Inclusion of these labels does not affect the typability of programs, since they only occur on
statements; since statements cannot be passed as arguments to reads or writes, these labels will never affect a check constraint.

3.2.3 Get and Set Constraints

We useget constraints when typing fields in (Field), asét constraints for field assignment in (F-Assign). Constraint
closure rules (Get) and (Set) ensures that values assigned to a field flow to any read-point of the field, while ensuring that no
backward-flows occur in the types [27, 33]. For example,

X = I‘ead({low},{low})(fd);
Z = X

z = Tead({nign} {nign})(fd');

3

will not result inx having the secrecy typghigh}.



Initial Label Table:

t,ts, tr, sp, i, CONsist of fresh variables. t,ts, tr, sp, i, cONsist of fresh variables.
Each use ofnitialMethod() creates distinct variables.  Each use ofnitialConstructor() creates distinct variables

InitialMethod() = t,t; ot A\ InitialConstructor() = t, et t\D

k; = InitialConstructor() R; = InitialMethod()
Initial LT = LT[(C(),K) ko, (Co,I‘_’[o) : Ko, (Cl,K) LR, (Cl,l\_’ll) TRy, ]

Constructor Typing:
Co = class C extends D {C ;K M} K = C(C %) {super(g);§ D # Object
InitialLT (Co,K) : £ty ~2% .\ T[%: 1, this: t;],s,,ip, 0 &:7\C
[[z : £, this : t;],5,,ip - 8: 7\C ¥ = FreeTypeVar(t, t, 2> t,\C UC' U{DK(T,t; ~=2> 1,)})

InitialLT Fyy (Co,K) : VI .E, 8, 225 £.\CUC U {DK(T, t; 22 t.)} U {7 <: t,}

Co = class C extends Object {C ;K M} K = C(C %) {super();s}
InitialLT (Co,K) : £,t; 225 1,\( Uz : £, this : t;], 8,0, F 8:7\C ¥ = FreeTypeVar(t, t, ~=2 ,\C)

InitialLT ¥y (Co,K) : VI, £, 2% t.\CU {7 <: £}

Method Typing:

Co = class Cextends D {CF;KM} M=RTn(C%) {8}  InitialLT(Co,M) : L, t; -2 t,\0
[z : ¢, this: ty],sp,ip F8:7\C " = FreeType Var(f,t, 225 t,\C U {1 <: t,})

InitialLT &y (Co, M) @ VT, ¢, SLILN t\CU{r <:t,}

Class Typing:
IndtialLT Fpr (Co,K) : Ko InitialLT Fpp (Co, Mo) = Ro
InitialLT Fpr (C1,K) @ Ky InitialLT Fpp (Cq, M) @ Ry

Fo LT((Co,X) : Ko, (Co,Mo) : Fo, (C1,K) : K1, (C1, M) : Ray ... ]
Program Typing:

"C LT[(C(), K) . Ko, (Co,Mo) : 'T{'O7 (C17K) Ry, (Cl,l\_’li) : ;‘Z‘,l, .. }

0,0, ut5:7\C Closure(LT[(Co, o) : Ro, (C1,M) : R1,...],C) is consistent
Fp {Co,C1,...}; 8:7\C
Fields:
CT(C) = class Cextends D {Cf;KM}  fields(D) =Dg
fields(Object) =0 fields(constants) = () fields(C) =Dg,Cf*

Figure 5: Label Type Rules for Classes and Programs

3.2.4 Class and Program Typing

Type inference rules for typing programs, classes, and methods are found in Figure 5. Programs are typed by typing each
class definition, which types each method definition, which are in turn typed according to the expression rules in Ejgure 3.
representingrain is also typed. Notice the initial integrity program counter must be the highest integrity label, so as not to
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Closure Rules:
S1US < 53

T <: gett T <: setr’ Sy <:s SU(s—83) <: 8y ,
——(Get Se S-Trans S-Union
Tt ( ) < ( D SQU(81—83)<284 ( ) S < S5 82<283( )
TiNIy <: I Iy <:i iNZy <: 7. Fr < f f<: F
L2 > (Z-Intersect) ! 2 2 (Z-Trans) ! 2 (F-Trans)
I <: 13 To <: 13 IiNIy <: I3 F1 <: Fo
F <:f  Fcontainsf F <:f  Fcontainsf F <:f  Fcontainsf
STU(f£S-8) <: S Iinffl < T ff.F < F
1U{ 2) <i & (S-Field) : > (I-Field) - (F-Field)
81U(.7:.f.s—82) <: 83 ILTiNFfl< Iy FfF < F
f<:F F containsf
F < f ffA < A JF containsf i S<: ff.S i
A-Field S-Field’
F£A<: A ( ) S<: F£.S ( )
f< F JF containsf f<F F containsf f<F JF containsf
T<:ffl F' <:ff.F A< f£A
Z-Field’ F-Field’ -Field’
T Far (Lreld) Forep hed) A< Fia  AFEd
Al <:i i< A2
A-Trans
.Al <: .A2 ( )

c<:A An(7, 7 2225 1) mtype(C,m) = Vt'.t,; i N t.\C
%:<87I1f7“4> Tt:<St7:ZtaJTt7At> TT:<ST‘7:Z’F7JTT7AT‘> t7/:9({/vc7m7~’zlv~’4t7~'4r)
(Method)

[t' = t"][sp = pCyip > DCiy T Tty v Tyy by — 7,]C

SC(L,(sUSy) — S S <:s IC(L,Zo Ni Ty <:i
(L 2) ~ 52) - (SC-Trans) L. 22N - (IC-Trans)
SC(L, (81 USQ) —83) IC(L,ZQ ﬁIl)
F < f F containst F<:f F containst
SC(L,(SUffS) -8 _ IC(L,ZNff.l _
(L ( ) ,) (SC-Field) ( ) (IC-Field)

SC(L,(SUF.£S) -8 IC(L,INF.£l)

Auxiliary Definitions:

LT(C,m) =Vt ¢t oo, t-\C CT(C) = class C extends D {C £;K M} m is not defined it

mtype(C,m) = Vt' 1,1, Soite, t.\C mtype(C,m) = miype(D,m)

0(t,C,m, A, As, A) = o flatten(A, A Ar) flatten(A%) = A flatten(z,y,...) = flatten(x), flatten(y), . ..

Figure 6: Label Closure Rules and Definitions

unnecessarily reduce the integrity of any information. Methods require the type variables to be set in an initial label table in
order to support recursive class definitions and mutually recursive methods. Method typing fills in the constraint types in the
full label table, where the return type of the method body flows into the return label variable of the method. As previously

noted, methods and constructors are givelypes so that they may vary polymophically, and these types are instantiated

when computing the constraint closure.
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3.2.5 Label Closure

The key closure rules for label constraint sets are given in Figure 6, along with some necessary definitions. Most of the rules
add new constraints based on transitivity, obvious set propagations, and field labels. The closure rule (Method) is important
for tying up the types of method calls. As discussed above, method constraints are added during method invocation, when
the actual class of the object on which the method is being called may be unknown. Thus, for all cortstraiptswhere
C is a concrete class, the methods looked up inLT" via mtype which returns a typing for that method as found eitheg in
or in a superclass if not defined @ We then substitute the labels in theethodconstraint into this constraint set from the
label table, and replace all local label variables as defined by the furgttion

The manner in which local label variables are replaced definesathi®ursof a concrete class analysis. In other words,
different instantiations of th& type create unique types that distinguish different method invocations. Our definitbn of
creates a new contour for each distinct receiver typeethod namet, argument typed (A; is the type ofthis), and
return typeA,. This allows calls to be distinguished based on receiver and argument types, as in CPA [3], and additionally
distinguishes call-sites based on unique program points. Since the (Invoke) type rule creates fresh variables for each method
invocation, this serves as a unique marker of the call-site in the program;. ghus, the call-site of the method. Since
constructor calls during (New) are similar to method invocations, the analysis can distinguish most object instances via
call-sites and constructor arguments. Consider the following example.

x = new C(); y = new C();
x.put(readq} 1} (£d)); y.put(read fuy, a})(£d’))
x.get();

Here, our analysis produces separate contours for the creaticemofy, where CPA merges them into one. Even though
theput calls have different contours, since the types ahdy are not distinguished, the CPA analysis cannot determine that
x.get() is low. We obtain more precision, so we can correctly identify the flows of data into and out-of abstract objects on
the heap.

This precision is similar to that obtained in data-polymorphic CPA analysis [27, 33]; although DCPA includes many
optimizations to combine contours whenever possible, while still supporting data polymorphisnflatiérefunction is
necessary to merge contours for recursive calls and to ensure the analysis terminates. We discuss the termination of this
algorithm in section 3.2.7.

We define a constraint closure as follows.

Definition 3.1 (Constraint Closure) Closure(LT,C) is the least set that includ€sand any constraint that can be derived
from C by the rules of Figure 6, and with the additional constraint that the (Method) rule is only applied once in the closure
for each unique set of premises.

If we did not constrain Method rule as above, it could be applied arbitrarily many times, generating different fresh
variables each time.

3.2.6 Inconsistent Constraints
Inconsistencies in the label constraint sets come fs@rfrand /C constraints. Constraint consistency is defined as follows.

Definition 3.2 (Inconsistent Constraints) An inconsistent constraint is any constra$t’(L, L.,), whereL! € Lg; or any
constraint/C(L;,L}), whereL; € L;.

Note that constraint consistency is defined only on concrete constraint sets, which are formed during the closure after
all transitive flows into type variables have been considere@ldfure(LT,C) contains an inconsistent constraint, then the
closure is inconsistent, and type inference fails.

Secrecy policies are enforced B¢’ constraints. In the constraiSiC' (L, L), L, is the secrecy policy of the IO channel,
andL’, is the set of labels on the data at that point. Proper enforcement of the policy requires the labels on the data to be
a subset of the labels on the IO channel. For example, the consti@i{thigh, low}, {low}) is consistent, with low data
flowing to a high channel§C'({1ow}, {high}) is inconsistent, since high data is flowing to a low channel.

Similarly, integrity policies are enforced b§C' constraints. I/ C(L;,L,), L; is the integrity policy of the IO channel,
andL! is the set of labels on the data at that point. Since integrity is a dual to secrecy, the subset relation is flipped, meaning
L; C L. is required to satisfy the policy. For example, the constrBiit{Untainted}, {Untainted, Classified}) is con-
sistent, as the data is required to carry at least the untainted label; whiéfg@ritainted, Classified}, {Untainted})
is inconsistent, since the data must be both untainted and classified.
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3.2.7. Typing Complexity and Termination

A potential pitfall of this form of type inference algorithm is non-termination. If contours are continually created for recursive
method invocations, the analysis may not terminate. Our analysis merges contours for recursive calls, ensuring termination.
We now address the complexity of type inference and constraint closure computation.

Inferring types completes in linear time. Closing the constraint set can be exponential in the worst case. This is evident
from the definition off. ¢ inputs tof are all flat (i.e. have no superscript), since they are the free type variables that occur
when typing methodh of classC. Superscripted variables are only added during the closure. This m&absunded by,
the size of the program. Sincé, A;, and.A, are all flattened, the number of possibilities for these values is bounded by the
number of concrete classes and the number of fresh variables created in the program, which are eachiletisam
the worst case, we may create umfb5 contours (accounting also f@randm). This is a large exponential, but nevertheless
terminates. Many optimizationg.Q. combining contours and constraint garbage collection) can be performed to make this
practical, as shown in [27, 33] and elsewhere; this is out of the scope of the current work.

The type inference system provides separate compilation of classes, since type inference can be done separately, and the
final global constraint set must be closed and checked for inconsistencies. Classes and methods may be analyzed only once,
and their types and constraints built into the label table, which may be re-used for any number of programs.

4 Soundness and Noninterference

We now state the formal soundness and noninterference properties for our system. Soundness means that well-typed programs
will not produce any run-time secrecy or integrity check failures. Noninterference is shown here only for secrecy: changes
made to high inputs do not effect low outputs. We first provide an overview of the proof technique, which is a new method
for proving noninterference using a labeled operational semantics, and state the results.

In order to more clearly state our results, we make the following assumptions in the definitions and proofs in this section.
The program has a fixed, well-typed class tabl&, and a fixed, well-typed label tabl&T". We usehigh € S to represent
VS; € S,high € S;. In order to simplify our presentation, integrity labels have generally been omitted. While this does
affect the soundness theorem concerning integrity checks, extending the proofs to integrity labels is straight-forward. For the
purposes of proving noninterference, integrity labels and types are irrelevant; however, the dual prapetyitf nonin-
terference where low integrity inputs do not affect high integrity outputs can be shown, with an identical proof to secrecy
noninterference. In proving noninterference, we assume expressions and statements do not cabsaireanyfy(e’,L)
subexpressions, which would violate the property thigh inputs do not affectow outputs. Hence, in the proof of nonin-
terference, we assunbdeclassify does not occur in any programs. This restriction does not apply to the soundness result,
whereinDeclassify may occur in programs, and run-time check failures will not occur; these programs may, however,
permit interfering executions.

Our Noninterference property, Theorem 4.24, states that for a typeable prbgaamtwo runs of the program differing
only in high input streams will produce the same low output streams, and that the resulting low input streams are also
equivalent. The latter condition is necessary since the size of the low input streams after computation may convey secret
information, such as if one stream had been read five times, and the other seven; the attacker would know that a change was
made to a high input. We specify that the values must be integers for this theorem, as it intuitively doesn't make sense to
input or output heap locations (pointers). Since our system is termination-insensitive, both runs of the program are assumed
to terminate normally.

The proof of noninterference proceeds as follows. We define labeled configurations that are analogous to the definitions
of expressions and statements. We then translate the original program into a configuration, mapping the labels given by the
typing of each sub-expression onto each sub-configuration. This creates a one-to-one correspondence between the expression
types and semantic labels.

We define a small-step operational semantics, where computation is specified on four-tuples: configurations, heaps, sets
of input streams and sets of output streams. As expected, heaps consist of labeled objects and fields. Input and output streams
are represented by file descriptors, and the run-time streams also include policies. These policies must be checked against the
static policies of read and write commands when they are used. If we did not perform this check, we would allow multiple
security access levels to the same channel. This would mean that the security level on the channel is dynamically changing,
which is not supported by our system. Our definition of noninterference would not hold under these conditions, since a low
observer may have intermittent access to a channel that also uses high data. We assume in our proofs that the static policy
description of an IO command aligns with the run-time policy of the channel being used. Since the stream policy is a purely
dynamic property, it is impossible to verify statically.
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The first step in our formal analysis is a proof of a Fixed Point Lemma, which assures that during computation the labels
on configurations and the labels on the heap will never increase. This is analogous to a subject-reduction lemma, since the
types have been mapped onto the semantics. Using this Fixed Point Lemma, we then show soundness of the type system that
well-typed programs do not produce run-time check failures.

For proving noninterference, we first distinguish low and high input and output channels. The observational behavior of
the low user is defined by a set of secrecy lahels. Hence, low data is any data labeled with some set of labedsich
thatL C Low. High data is any data not observable to the low user, e.g. data labeled with a set of secrecy falmtighat
H Z Low.

Noninterference is then shown via bisimulation of the execution of two configurations. The bisimulation relagign,
states that high labeled values may differ, and any low values in the configurations must be equivalent. Furthermore, the data
labeled low in the heaps must exist in the other heap with the same values; high portions of the heap are not accounted by the
bisimulation. The final part of the bisimulation asserts the equivalence of low input and output streams.

We distinguish low reduction steps from high reduction steps based on the labels of the configuration, such that every
reduction step is either a low step or a high step. We then show that for typeable programs, assuming two executions where
the low input streams are identical, they each take the same low steps, with possibly differing high steps between, such
that after each low step and number of high steps, the resulting configurations remain bisimilar. Hence, when the execution
finishes, the result is a low-equivalent trace of inputs and outputs.

In order to cleanly state our result, we define an unlabeled semantics that works directly on expressions (and statements).
This semantics is equivalent to the configuration semantics, only lacking labels. The noninterference result on this semantics
is the same as that of the labeled semantics: that if a program is typeable, for two terminating executions of the program that
differ only in high input streams, the resulting low input and output streams are equivalent (as are the termination values of
the executions).

The structure of the remainder of this section is as follows. Section 4.1 provides some necessary definitions, and Sec-
tion 4.2 defines a labeled small-step operational semantics. The Fixed Point Lemma and Soundness theorem appear in
Section 4.3, and the Noninterference result is in Section 4.4.

4.1 Definitions

We define concrete secrecy types of expressions and statements in Definition 4.1 so as to more cleanly state our results.
Concrete secrecy types are the concrete secrecy labels for an expression as determined by the type of the expression and the
constraint set.

Definition 4.1 (Concrete Secrecy Types)', H, pc,C .o, € : S is an assertion and is a concrete secrecy type as follows.
For somepe;, Z, F, A, if T, pc,pc;, HE e : (S, Z,F, AN\C' or T',pe,pc;, H¢ s : (S,I,F, A\C' whereC' CC, Sisa
set containing every concrete labg],such that either

1.1eS;o0r

2. there exists ap € S, such thall <: s € Closure(LT,C); or

3. there exists arf.f.F.f’.S € S, such thatt <: f.f.F.f.S € Closure(LT,C)

The translation functioff ', H;, pc,C,¢] = (€)°, H is given in Definition 4.4. For every subexpressidrof ¢, the
concrete label type of is placed as the label on the corresponding subconfigurati¢é jii. Thus, there is a one-to-one
correspondence between concrete label types of subexpressigrandfthe labels on each subconfiguratior &)°. The
heap is also translated, as defined in Definition 4.2, such that any constréititséhhas a concrete label flowing into a heap
location is placed on the translated heap.

Definition 4.2 (Heap Translation) [T, H;,C] = H, iff Yo € H;, if H;(0) = (new C((v)5»))*, (o) =%, andS <:t € C,
thenH (o) = H;[o — (new C((v)5Y5) )]

Definition 4.3 (Expression and Statement Translation)lif T, H, pc,C t.on € : S, the translation[T', H, pc,C,e]. =
(€)® and is defined by straightforward structural inductioreohe base cases af&', H, pc,C,c]. = (c)®, [T, H,pc,C,x]. =
(x)%, [T, H,pc,C,(v)%]e = (v)®, and[ T, H, pc,C, (read.())” ] = (read.())®. new (&) is a special case, defined as
follows: [T, H, pc,C,new (8)] = (new C([T', H,pc,C,e].)%" ) iff T, pc, H - new (8) : (S,{f : (s, f,a)}, A)\C" and
forall ' <:5€C.

For example[T', H,pc,C,e ®e']. = ([T, H,pc,C,e]. © [T, H,pc,C,e].)".
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Concrete Labels: Final Configurations:
S, I == {1}, wherel are unique label names V= (0)? | (c)5 | CkFail | IOErr
Heap Objects: Expressions:
ho ::= (new C,{V})? e=...|V|(o)7 super(c,a)
Heap: Expr./Stmt.
H is afinite partial function from memory e=els
locations to heap objects. Configurations:
Object Identifier: €u=w|x|this | (€)7.£](C) () |
loc is a unique memory location in the heap (E)F @ (€)% [newC((E)3)5 | (E)Fm((E)F) |
o ::= loc'®"!) is an object identifier consisting of a read( 1) ((1€)§) | writewn (€D, (E)F) |
memory location with it's security level. Declassify((& D}?, L)|
IO Streams: if (E)7 then (&) else (&)7° |
Functions from file descriptors with pairs of security S s S e._(qerps’.
levels to streams of integers. (€07 {(IEDSI} | qggl'f = (¢ Dg’ |
L= (£d,8,1) — ¢ return (£)7; | (o)7.super((€)7)l;
- )2 Reductions:
wu= (fd,S,I) — ¢ p NS
values: (ENV7, Hyt,w~ (E')7  H WV w
v :=C0 | o | CkFuail | IOErr

Figure 7: Operational Semantics Definitions

Definition 4.4 (Translation) [T, H;, pc,C,e] = (€)%, Hiff [T, H;,C] = H and[T, H,pc,C,e]. = (£)°

4.2 Semantics

We now present a small-step operational semantics for our system. Figure 7 shows the necessary definitions for the semantics.
Configurations allow each sub-expression to be labeled. Reductions are then on labeled config{i£dtfoneith two label
setsS and/, for secrecy and integrity, respectively. Labels in the label sets may appear due to direct or indirect flows. Final
configurations( v )7, are values with an associated label setCbFail, denoting a failed label check, d0Err, denoting
a mismatch in read or write policies. Objects on the heap are labeled so we can sepdmteatiathigh portions of the
heap for noninterference. Object identifiers must contain additional labels to distinguish between two different pointers to the
same object. Thug, )& and(o)% point to the same object, but have different labels, due to computing in different contexts,
with different program counters.is a function mapping file descriptors and sets of security labels to a list of integer input
values.w is a function mapping file descriptors and sets of security labels to a list of integer output values.

Small-step reduction rules define the single-step reduction relgfidfi, H, ., w ~ (£')5 , H',//,w’. The semantics
is designed with a noninterference theorem in mind. As discussed previously, labels from the type system are mapped onto
configurations in the semantics. Thus, a semantic program runs with all of the labels inferred by the type system. Notice the
semantics are defined non-determinalistically, due to the use of the translations when invoking methods or calling construc-
tors. Since the type rules used during evaluations may contain uses of (Sub), the translation becomes non-deterministic. The
choice of the type variables addedItoin the (New-R) rule also allows non-determinism.

Reduction rules are given in Figure 8 and Figure 9. Reductions under context rules are in Figure 10. The reductions
implicitly work over environment§® and constraint set$, which are necessary for the method invocation and constructor
reductions, which require a typing translation during the reduction.

4.3 Soundness and Fixed Point

We now show that for translated programs, there exists a reduction such that the labels on each configuration are a fixed-point;
that is, the labels will never increase during computation. The existence of a reduction is due to the non-determinism in our
semantics, as discussed above. This means that any configuration reavkedll never compute to igh value, which

is necessary for noninterference. The fixed-point also allows us to state our soundness result that no typable programs will
produce run-time check failures (although they may have run-time IO errors, where the stream policy does not align with the
static stream label). We proceed by stating a few necessary lemmas before giving the results.
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(Field-R) ((0)% 205, Hyv,w ~ (0) 30598 H, 1w wherefields(C) = C £, and
H(0) = (new c(V) [)Svandv = (v)¥

(Op-R) (D @ (VDT Hytow ~ (0 oty w where v = ¢ & ¢’
(Cast-R) (D) ()7 )F, H,t,w~ (o) 57 H,t,w where C <: D
(Declassify-R) QDeclassify((]v[)i”j LD H 1w~ (]UD(ISQ;L)US H.w
(New-R)  (mew C((B)¥)5 )5, H,1,w ~ (€' (return (o)F; )5 )5, H' 1,0
Wherecnbo dy(C) = super(g);§ andclass C extends D {... } andI” = T'[o — {]
and(&')7 = [I',H',S,C, [z — (©)7", this — (0)7"]this.super(D, &); 5]
andH’ = H[o — (new C((nuIl)7))7]ando = newref(H, S, 1)

(Invoke-R) ( (o) .m((T)3") )5, H, v, ~ (E' V595, H,v,w
wherembody(m,C) = § )

and(&’)3 = [T, H,S,,C,[x — (v)3,this — (0])}*]5]

(Super-R) ( (o7 .super(C, (2)7") ), H,v,w ~ (€' )F5F H, v w
wherecnbody(C) = super(g); s andclass C extends D {... }

and(]€’D§,' =[I,H,S,,C, [z~ (]EDI ,this — (o) v]thls.super(D,é);é]]

(Super-R’) (](]OD}Q:’.super(Object) )7, H,ytyw ~ Qnulll)}gﬁls”,H Lyw

(IfTrue-R)  (if (True)? “then (& [)S1 else (& [)12 )9, H,v,w ~ (& [)ilﬁls,H Lyw

(Seqg-R) MUD,” S(EDT )Y Hyv,w~ ((E)FD3, H,t,w Where(]é’[)? is a sequence two or more configs.
(SeqR)  ((v)s s (€D )5 Hovw ~ (EDSF, Hovw

(Return-R) (return (]UDi“; )7, H,yvyw ~ (]v[)ij’muf,H, Lyw

(Block-R)  ({(E)F )T, Hyv,w ~ (EDISE H,v,w

(Skip-R) (D)7, H,t,w ~ (null)?, H,1,w

(Assign-R) ((o)f £ := (v)F; )5, H,e,w ~ (null )55 wherefields(c ) = C % andH(0) = (new ( V)5,

Hfo — (newc(..., (]UD}S%;S#I%;?? S AN andV; = (v [) , for i corresponding td in V

$.1)

newref(H, S, I) = o = loc\*"") wherei — 1 is the largest integer, such that*;/) ¢ H

Figure 8: Operational Semantics Reduction Rules

Lemma 4.5 shows that the type of every expression must contain the respective secrecy and integrity program counters.
Lemma 4.5 (Pervasiveness of program counters)

1. T, pe,pc;, HE e: (S, Z,F, A)\C, thenpc C S andpc; 2 7.

2. fT,H,pc,C Feon € : Sthenpe C S.
Proof.

1. By induction on the type derivation @f. For the base cases: Var, This, Const, New, Val, Heap, Label, Declassify,
No-op the lemma holds withc andpc; added to the typing. The inductive step is trivial, since each rule unions the
secrecy labels and intersects the integrity labels from the premise.

2. Directly by Lemma 4.5[1] and Definition 4.1.
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(Input-R) Qread(u/)((]fdpiff) )7, H,v,w~ (c)t, Ho' w whereL = S; andL’ = J;
andL(fd, Si, IZ) = C.L/(fd.7 Si, Iz)
andS; C LandL’ C I;

(Output-R)  (writeqr . ((c Df’;, (]fdl)}gff) )7 Hyv,w ~ whereL = §; andL’ = [;
(null [)icr:)i’#]s, H, W andw’(£d, S;, I;) = c.w(£d, S;, I;)
andS.U Sy CLandl’' C I. NIy
(InFail-R) Qread(L’L/)((]deif) ) H,1,w ~ CkFail, H, 1,w whereL = S; andL’ = I;

andc(£4, S;, ;)
andSy Z LandL'  I;

(OutFail-R) (writew1)((c Di“, (]defff) )7, H,t,w ~ CkFail, H,1,o whereL = S; andL’ = [;
andw(fd7 Si, Iz)
andS. U Sy ZLorl' € I. NI

(INErr-R) Qread(L,L/)((]de}gff) )7, H,t,w ~ IOErr, H,1,w whereL # S; orL’ # I;
andL(fd, Si7 ]Z)

(OUtErr-R)  (writew1)((c Dic, (]fd[)}qf) )7, H,t,w ~ IOErr, H,1,w whereL # S; orL’ # I,
andw(fd7 S;, Iz)

(CkFail-R) (&)5, H,t,w ~ CkFail, H,1,w where CkFuil is a subconf. of €))7
(ICEr-R)  (&)7,H,t,w ~ IOErr, H,1,w whereIOFErr is a subconf. of £ )7

Figure 9: Operational Semantics 10 Reduction Rules

O
Lemma 4.6 (PC Weakening)
1. IfD,pc, HF e: 7\C andpc’ C pe, thenl', pd’, H € : 7\C.
2. fT,H,pc,C beon €: S andpd C pe, thenl', H,pc',CFe: S.
Proof.
1. By induction on the derivation of, using the (Sub) rule.
2. Directly by Lemma 4.6[1] and Definition 4.1.
O

Fixed Point Lemma 4.9 shows that for any translated expression, taking a reduction step produces a configuration whose
secrecy label is no larger than the given configuration.

Lemma 4.7 (Substitution) If T'[ : #],s,,0 F € : 7\C, andT, pc, H - (%)% : 7\C, and there existgg such that for alli;
free in[s, — pc,t — 7IC, [f — t][sp, — pc,t — 7]C U C is consistent, thel, pc, H & [x — (v)]e : [f; — #]][s, —
pe,t— TIT\[t; — t]][sp — pc, ty, — T]C UC.

Proof.
By induction onl'[x : t], s,, 0 - € : 7\C. We present only a few cases. The remainder follow in a similar fashion.

Case € = x. Supposé = (s, f,a). Thenby (Van 'z : t],s,, 0 €: (sUs,, f,a)\D.
Sincex — (v)°, we have two cases.

Subcasevw is a constant. Then by (Val),, pc, H - (v ) : (S, U pc, D, int )\0.
Hencel,pc, H + [(v)% — x]x : [s, — pc,s — S, Upe, f — 0, — int](s U sy, f,a)\0, and by (Sub),
T,pe, HF [(v)% = x]x: [s, — pe,s — S, Upe, f — 0, a— int](sU s, f,a)\C.
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(Field-RC) (](]SDif.f[)}g,H,L,ww(](]E'Df,é.fl)}g,H’,L’,w’ if(]SDif,H,L,ww(]S’fo,,H’,L’,w’
(New-RC) (]neWC(V(] DicvquTS)D?aHaL?w ifqu%’H’L’wWqglbf'é7H/7Ll’wl
W(]newC(l_),(]g'I)}q,;7Q8_|)§ Ve, H W
(Invk-RC) (€5 m((E))DF. H,eow ~ (1) m((EDVD)DF H' oo i (EDSe, Hoyw ~ (E)5F H' o
(Arg-RC)  ((o)§"m(V, (€D, (E)5) ), H,1,w it (D57, H,iyw ~ (E')5F, H o
()5 m(V, (€ )5 (EV)F H oo
(Super-RC) (&) .super((€)7))7 H. 1, w it (ED7°, H,e,w~ (€)7, H' Vo'
w(](]S’I)f,é.super((]gﬁ)D}g,H’,L’,w’
(SArg-RC) (](]ob}qj.super(f/ QSD%,(]E[)?)[)}Q,H,L,LU if(]ngj,H,L,wW(ISIDf,é,H/,LI,w/
w (o) .super(V, (€')7 . (E)9))F, H' 1/’
- if ethen telse (&)72)7, I S H ,w -~ o H U w
(If-RC) 3 A &P H if (E)F, H gy H W'
~ (if ;°/th en (& else 2 U, w
( qe’Di (E1DF else (& )P F, H' o/ o'
(Seq-RC)  ((ED7=(EDF )7, He ww(](]S’l)f,é;qél)?Df,H’,L’,w’ if (€77, H,e WW(lf'Dp,H VW'
(Op-RC) (&) @ (EDP)F H, Lw if (£1)7,H, wW(]ngI} H' /W
(](]51D1/ (€ D DI?H/ VW'
(Op-RCY) (]VEB(]ED T )9, H, e, wW(]VQS(IS’DI/ ), H 0w if (]SD?:,H,L,Q)W(](‘:/Df,e,H/,L/,w/
(Cast-RC) ((c) QEDZ )7, H,u,w~ ((C )QE’[)I, ), H W if (]5[)?:,H,a,ww(]E’I)ff,,H’,L’,w’
(INPUt-RC)  (readw (€ )5S, H, 1w if (E0)5, H, 1,0~ (€] DZ{,H’,L’,w’
~ (read 1 (QSlDI/)I)f,H' VoW
(Output-RC)  (writeq 1) ((]51|) (IEQD )7 H,y o w f(]éi'll)]1 H,. w->(]€’|) 1 H' /W
~ (writeq 1 ((]81D1/ (]52D D)7 H W
(Output-RC")  (write )(V ,lel)[l)[)I7H,L,w if(]Sll)il,H,L,ww(]5{[)2}/,H’,L’,w’
~ (write o) (V, (E1)7H))F, H', o/, w'
(Decl-RC) (]Declassify((]gl)*ze,L) )7, H, o w if (]SD}S;C,H,L,w ~ (IE’D}g/é,H/,L',w’
~ (]Declassify((]é"l)f?/,L) ), H W
(Assign-RC) (& )5 £ := (& )52 )3, H,1,w it (€05 H, 1w~ ()5 H' o
~ (&7 A= (&P H W
(Assign-RC’) (V.f ::(]Sl)eDf,HLwWQVf —(]5’[)1/ Df, H' )/ if(]SD%,H,L,Q)W(Ingf,é,H/,L/,w/
(Return-RC) (]return(]é’[)i )7, H,t,w ~ (return (&) ,[)}9 H’ L’,w’ if (]SDif,H,L,ww & [)f,,,H’,L’,w’
(Val-RC) (](]g[)ie D?aHa%wW (]qg/[)f’; D?vH/aL/7w if qu%’H’L’wW (& Df', H' /W

Figure 10: Operational Semantics Reductions Under Context

Subcasev is an object identifier.
Then by (Heap)I',pc, H b (v)5 : (pcU S, U S;,{f = ¢'},C)\{t' <: set7}. Hencel,pc, H F [(v)% — x]x :
[sp = pc,s —pcU S, US), [ {f =1}, a— C|(sUs,, f,a)\{t’ <:set7}, and sincgt’ <: set7} C C, by (Sub),
T,pe, HF [(v)% = x]x: [sp — pe,s = peU S, US), fr {f =1}, aw C|(sUs,, f,a)\C.

Casee = ¢’ f.

By (Field), if [z : ¢],sp,0 - & : (S, F',ANC' Tz :t],5,,0F & .£: (s, f1, )\C'U{(S'UF £S,F £.fF,F £S) <

get<slafl7al>}

By induction,I", pc, H - [x — (5 )5]e’ : [f; — t[sp > pe,t — TS, F'L A N[ — t][sp — pe,tm — 7IC"UC,
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So, by (Field)T\ pe, H - [x — (0)5]e' « [ — Hllsy o pesf o 75 fa N o Blsy o pe b —
f]C'péU {lti = t]][sp — pe,ty, — T(S'UF' £.S,F £.fF,F'£.S) <: get(s;, f/, o))}, whichisT, pc, H - [x —
(D)S)e" £ : [f = t)][sp — pe, T TS, £, W[l = B][sp = pe, by — 7)(C'U{(S'UF'£.S, F .£.fF,F' £S) <:

get (s, fi,au)}) UC.

O

Lemma 4.8 (Method Substitution) If T', H, pc,C Feon (0)5*.m((7)5*) : S, and mbody(m,C) = &, then there exists a
typingT, H, pc,C Feon [ — (0)%,this — (o)®*]5: §’, such thats’ C S.

Proof.

By (Invoke) T, pe, H I (o) .m((7)5) : (SU's, f,a)\Co UC U {Cm(7, 7 25, /)}. By Method Typing [ —
t,this > t;], 8p, H F 5§ : 7,,\Cp U {7, <: t,.}. By (Invoke) and closure ruleMethod), [t +— t]][s, — pe,t — 7.t —
Tty = t2](Con U {7, <: t,}) is consistent. So by Substitution Lemma 4 7pc, H - [z +— (©)%,this — (o))%]5 :

[t = t)][sp > pe,t s Tty = Tyt > )T \[f = 8][sp > pe, by — Toty > Tt 5 2] (Co U {7 <t £,}) UC, UC.

Hencelt; — t)][s, — pc,t — T,t, — 7,t, — t,]7, <:t, € C, sinceC is the closed constraint set from the top-level
typing. Applying the substitution. — t;., we havelt; — t]][s, — pc,t — T,t; — 7|7, <:t]. € C.

Let [t; — t]][sp — pe,t — Tty = )T = (Smy Fms A ) @andtl. = (s, f,a). Let1 be any concrete label ifi’. We
have three cases according to Definition 4.1.

Casel € S,,. Since[t; — t)][s, = pe, T+ 7.t — 7)1y <: t. € C, by (S-Union), we havel <: s. So, by Definition 4.1,
les.

Case There exists an,,, € S,,,, such thatl <: s, € Closure(LT,C). Since[t; — t]][s, — pc,t — T,t; — T|Ty <: 1. €
C, by (S-Union), we haves,, <: s. So, by 6-Trans) and Definition 4.1, € S.
Case There exists aif,,,.f.F.f'.S € S, such thatl <: f,,.f.F.f".S € Closure(LT,C).

Sincelt; — t]][s, — pe,t — Tt > )7, <: t. € C, by (S-Union), we havef,,.£.F.£..S <: s. So, by S-Trans) and
Definition 4.1,1 € S.

So, for anyl € S’, we havel € S, henceS’ C S.
0

Lemma 4.9 (Fixed Point) For somev,w, if [T, H;, S,,C.e] = (€)%, H and (€)%, H,1,w ~ (€)', H',/ o', and
Yo € dom(H),H(o) = (newC((7)%))% then there exists a derivatiof€ )%, H,1,w ~ ("), H",//,w’ such that
H"(0) = (newc((v')%))%, 8" =8,5' =85,,58 =5.

Proof.

By induction on the reduction derivation &f

By Lemma 4.5,5, is a subset of all secrecy types. Hence it must be a subsgtrofranslated valueév )S. Thus, we
omit consideration of,, in this proof, as it always implicitly occurs in the values of each reduction. We assume, without loss
of generality, that the typing df, S,,, H F e : 7\C does not end in an instance of (Sub). This means each typing ends with a
syntax-directed type rule. (If the typing did end in (Sub), the same reasoning would apply, only adding an additional use of
(Sub) to end of the derivation.) We present most of the cases, and the remaining cases follow in a similar fashion.

Case (Op-R) ((c) @ (/)5 )5, H,t,w ~ (v)555 H, 1w
By type rule (Val), we hav&, H, S,,C Feon ()% : S andT, H, S,,C Feon ()5 : S.. By type rules (Sub) and (Op),
we havel', H, Sy, C Feon () @ (c')5 : S, such thatS, U S/ C S.
Now, by Definition 4.4, we havgl', H;, S, C, (c)%@(c/ )% ] = ((c)S@(c' )5 )5, H = ((c)%a(c )5 )5Uss H,
and the lemma follows.

Case (Field-R) ((o)% .£;)5, H,t,w ~» (v)5YSYS" H 1w
By premise to (Field-R), we havl (o) = (new C(V)))% andV; = (v )
By type rule (Heap), we haw, S, H - (0)5 : (8'US,, {f : 1},C)\{( S, F, A) <: sett}. By (Heap),['(0) =, so by
Definition 4.2,5; <: t; are all the constraints from concrete labels flowing iftim C. So by type rule (Field), closure rule
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’

(Set) and Definition 4.1, we obtaly H, Sy, C Feon (0)® .£; : S; U S U S,. Hence by (SUb)l, H, S, C Feon (0)5 £ :
S, such thats; U S"U S, C S.
Now, by Definition 4.4, we havérl, H;, S,,C, (0)5 .£;] = ((o)® .£:)%, H = ((o)®
follows.

Case (New-R) (new C((%)%)5 )%, H,1,w ~ ((&')%; (return (o) )%; )", Hlo — (new C((null)®))5],,w
The heaps are the same apart from the addition to the heap on the right side of the reduction. So, for all heap objects they
have in commons! = S, andS/ = S,. Since both configurations are labeled withthe lemma follows.

Case (Invoke-R) ((o)5 .m((7)5" )DS H, t,w~ (&)%Y H, 1w

’

£;)5Y595" H | and the lemma

By assumption( (o) .m((7)%) ), H = [[F Hi, S,,C,e], so by Definition 4.4¢ = (o) .m((5)%) and

I, H, Sy, C Feon (0)5 .m((0)5) : S.

So, by (Invoke), Definition 4.1, a nd Definition 48, H, S, C Fcon (o)5 : S,. By Lemma 4.5[2],5, C S,.
)

By prem|se to (Invoke-R)( &' )°" = [0, H, S,,C, [x — (©)%, this — (0)**]s], so by Definition 4.4", H, S,,,C *con
[% — ()%, this — (o])%]5: S’. SinceS, C S, by Lemma 4.6[2]I', H, Sy,C Feon [X — (0)%,this — (0)5]5 :
S’

Sincerl’, H, S,,C Feon (0)% .m((9)5*) : S, by Concrete Substitution Lemma 4.8, C S. The lemma follows by (Sub)
and Definition 4.4.

Case (Super-R) follows in a similar manner to (Invoke-R).

Case (Super-R’) follows in a similar manner to (Invoke-R).

Case (Assign-R) ((o)5 £ := (v)5; )5, H,1,w ~ (null])5YYS" Hlo— (new (..., (v])5USUs'Us:  ))S
By premise to (Assign-R), we havé (o) = (new C(V))S". By type rule (Heap), we havg, H, S,,C hm, (o
S"U S”, and by type rule (Val)I', H, S,,C Feon (v)5* : S,. So, by type rule (F-Assign);, H, S,,C Feon (0 )’
(v)S;:8"US”U S, and by (SUb)I, H, S, C Feon (0)5 £ := (v)5;: S, whereS’ U S” U S, C S.

By Definition 4.4, we havéT', H;, S,,C, (o) .£ := (v)%; ] = (o) £ := (v)5; )%, H = ((0)5 £ := (v)5; )55V H.
Now, by type rule (F-Assign), we have the constrdiat, f;, «; ) <:set(S"US”"US,,F,A) € C,forT'(o) = (s, f, ).
Thus,S’ U §” U S, <: s; € C. According to Definition 4.25" U S U S, <: s; € C meansS’ U §” U S, was placed on

the field in the heap. Thus/ U S” U S, C S;. SinceS’US” U S, C S, we haveS, U S U S US; = S;. The lemma
follows, since for the only change on the hedplu SU S U S; = ;.

Case (IfTrue-R)  (if (True)® then (& )% else (E2)*2 )%, H,t,w ~ (& )5V, H, 1w
Since[T, H;, S,,C,e] = (if (True)“then (& ) else (&)%), H, there exists; ands; such that
e = if (True)® then {s;} else {s,}. By Definition 4.4, we know[T, H;, S, U S,,C,{s1}] = (&), H, and
[T, Hi, Sy U Sy, Co{$:}] = ()%, H,and[ T, H;, S, C, (True))% | = (True)", H.

Thus,I', H, S, U S,,C Feon {S1}: S1,andl’, H, S, U S, C Feon {S2} ¢ So,andl, H, S, C Feon (True) : S,.
Now, by typerule (If) and Definition 4.1;, H, S,,C Feon if (True)S then (&) else (&2)%2 : S, U S; U Sa. So,
we haveS, U §; U So C S, and the lemma follows.

Case (Input-R)  (read.((£d)%7) )", H,t,w ~ (c)*, H, /' w
By type rule (Input), we havg, H, S, C Fcon ready((£d)57) : Sy UL. By (Sub),I', H, Sy, C Fcon ready((£d)5f) : S,
whereS; UL C S.

By Definition 4.4,[ T, H;, S,,C, read,((£d)57) ] = (read.((£d)57))®, H. Since by (Input-R)S U Sy C L, the lemma
follows.

Case (Output-R) (writer((c)®, (£d)%) )%, H,t,w ~ (null )5U5YS H 1 o'

By type rule (Val), we havé&', H, S,,C Feon (c)® : S.andl, H, S,,C Feon ()57 : Sy. By type rule (Output), we have
T, H, Sp,C Feon writep((c), (£4)5f) : S.U Ss. By (Sub),I, H, S, C Feon writer((c), (£d)57) : S, whereS, U
Sy C S. Now, by Definition 4.4, we havgl', H;, S,,C,uriter((c ), (£d)57)] = (write.((c )%, (£d)%) )% H =
(writer((c ), (£d)5r) )% %S H, and the lemma follows.

Case (Declassify-R) (Declassify((v)5,L) )%, H,1,w ~ (v )5 ~DYS H 1 w
By type rule (Val) or (Heap), we hawg, H, S,,,C tcon (v)5 : S, whereS, C S’. By type rule (Declassify), we have
T, H,S,,C Feon Declassify((v)5 ,L) : § — L. By (Sub),I', H, S,,C Feon Declassify((v)S ,L) : S, whereS’ —

L C S. Now, by Definition 4.4, we havéT', H;, S,,C,Declassify((v )% ,L) ] = (Declassify((v) ,L) )% H =
(Declassify((v)5,L) )(5»~YS H, and the lemma follows.

Case (Field-RC) ((&)5.£)%, H,t,w ~ ((E' )% .£)5, H', )/,

]

D
£
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By induction on the reductiofi€ )%, H, t,w ~~ (&')%, H',//,«’, we haveS! = S,, 5! = §,. Since the outer labe is
unchanged in the reduction, the lemma follows.

O

Lemma 4.10 shows that a reduction of a translated expression produces an configuration that is also a translated expres-
sion. This is needed in the proofs of soundness and noninterference, that continually use Fixed Point Lemma 4.9, which
requires a translated configuration as a pre-condition.

Lemma 4.10 (Uniformity of Translated Expressions) For some, w, if [T, H;, pc,C,e] = (£)°, Hand( &), H, 1,w ~
< [)S’ ,H' /', then there exists an expressigha heapH|, a type environment, and apc’, suchthaf I, H., pc’,C, e’ ]| =
(&), H'.
Proof.

By induction on the reduction derivation &f

We assume, without loss of generality, that the typin@'géc, H + e : 7\C does not end in an instance of (Sub). This

means each typing ends with a syntax-directed type rule. (If the typing did end in (Sub), the same reasoning would apply,
only adding an additional use of (Sub) to end of the derivation.)

Case (Op-R) ((c)® @ (/)% )%, H, 1w~ (v)5V%5 H, 1w
By type rule (Val), we hav&, H, pc, C Fcon (v )5:9595 : S.US/US. Then, by Definition 4.4, we hajid, H;, pe, C, (v )5eUS:US | =
(v)5US:YS | H. The lemma follows.

Cases(Field-R), (Cast-R), (Input-R), (Output-R), (Declassify-R), (Return-R), (Skip-R), (Super-R’), and (SubVal-R) all fol-
low in a similar manner to (Op-R), since they all reduce to values.

Case (New-R) (new C((5)5)5 )5, H,1,w ~ ((&')%"; (return (0)5)5; )5, Hlo — (new C((null)5))5], ¢, w
By premise to (New-R), we havweibody(C) = super(g); s and
(&) =[I',H,S,C[x — ()5, this (o)®]this.super(D,&);s]., whereI” = I'[o — #]. By Definition 4.3,
(Seq), (Return), and (Heap), we ha\&', H, S,C, [x — (v)°,this — (o)°]this.super(D,&);§;return (o)?; J. =
10D (return (o) ¥)*; )¥.
We now show the heap translation condition holds. By assumption, Definition 4.3, and (New), W& lpayél; +
new C((0)%) : (S, {f : t},.A4)\C’ andS’ <: 5 € C. Hence, by Definition 4.2JT', H;[0 + (new C((null)®))%],C] =
Hlo + (new C((null)”))"].
The lemma follows by Definition 4.4.

Case (Invoke-R) ((o)5 .m((5)5) )5, H, t,w ~ (E' )55, H,1,w

By premise to (Invoke-R), we havebody(m,C) = § and(&’)S" = [0, H, S,,C, [z — (7)%, this  (0])5]5].. By
(Sub) and Definition 4.4’ )S'%S | H = [0, H, 5,,C. [z — (v)%, this > (0)]s

Case (Super-R) follows in a similar manner to (New-R) and (Invoke-R).
Case (IfTrue-R)  (if (True)® then (& )% else (&)%), H,t,w ~ (& )5V, H, 1w
By Definition 4.4, we havd £, )% = [T, H;,pc U S,,C, {5} ]. By (Sub) and Definition 4.4{ &, )%*Y = [T, H;, pc U
Su,C,{8}]
Case (Assign-R) ((o)5 £ := (v)5; )5, H,1,w ~ (null)5YS*YS" Hlo — (newC(...,(v])5*USUS'USi | ))5"] 1w
By Definition 4.4, Definition 4.1, and type rule (Val), we have
[T, H;lo— (newC(..., (v)% 598" VS )5 pe,C, (null])SV5Us" | =
(nu1l)5Y5e95" Hio — (new C(..., (v])S»SUs'US  ))S"].
Case (Sed-R) ((v)%;(E)%)5, H,v,w~ ((E)¥), H,1,w
According to Definition 4.4, we have
(E)5,H =[T,H,pc,C,s2];...; [T, H,pe,C,sa];
According to type rule (Seq);, H, pc,C Feopn 825 ... 84 1 S, SO we have
[T, H;,pe,C,sa; ... ;8q; | = ((E)5)5, H, and the lemma follows.
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Case (Block-R)  ({(E)%'})5, H,v,w ~ (€)Y H, 1, w
By Definition 4.4, we havd£)S', H = [T, H;, pe,C,§].
By premise to type rule (Block), we ha¥e H, pc, C tcon S2; .. .;8q;: S (in other words S = 7).
So, we havd I, H;, pc,C,5] = (£)5Y%", H, and the lemma follows.

Case (Field-RC) ((E)5.£)5, H, 1w~ ((E')5.£)5, H /'

By premise to (Field-RC), we haji& )5, H, 1, w ~ (&')5, H', 1, w. By induction, this mean&< )5, H = [T, H;, pc, C, e]
and(]é"[)S§7H’ = [T, H],pc,C,e']. Now, by Definition 4.4, we hav&’, H',pc/,C k.o, € : S.. According
to Fixed Point Lemma 4.95. = S, so by type rule (Field)I, H',pc’,C Feon €. : S. So, by Definition 4.4
((E")5.£)5, H = [T, H],pc',C, e .£].

Remaining cases: (*-RC)

Fixed Point Lemma 4.9 along with Lemma 4.10 produces the following soundness result.

Theorem 4.11 (Soundness)f ¢ : 7\C and Closure(LT,C) is consistent, then there exists a translatjdh @, ), C, €], such
that[0,0,0,C, €], t,w +* CkFail, H',//,'.

Proof. Suppos€]0,0,0,C,¢,t,w] ~* CkFail,//,o'. Let[0,0,0,C,e],t,w ~* (E)°,H',/, o', be the sequence of
reductions immediately before the check failure occurs. We have three cases.

Case (&)% = (read, ) ((£d)%))%

By Fixed Point Lemma 4.9 and Lemma 4.10), we know there exiBtsd’, andpc’, such thaf £ )% = [TV, H', pc/,C, €].
Hence, by Definition 4.4, Definition 4.1, and type rules (Input), (Val) and (Sub), we Raye’, H' + (£d)5' :
(Sy,0,FD)\D, whereS; C Sy, andI”,pc’, H' + read 1)((£d)%) : (S; UL,,int )\SC(L,Sy). By assumption,
SC(L, Sy) is consistent, so according to Definition 35, C L.

Now, by Definition 4.1 and Definition 4.4, H', pc’,C, read (1) ((£d)*/)] = (readq ) ((£d)))".

By (InFail-R), Sy UL ¢ L. However, we just showed tha} C L, and sincel. C L, we haveSy UL C L, a contradiction.
Hence, this step cannot have occurred.

Case (€)% = (writew)((c)%, (£d)%))* follows in a similar manner to the previous case.

Case CkFail is a subconfiguration of€ )*. By induction on the structure df¢ )~.

4.4 Noninterference

As stated previously, our Noninterference Theorem 4.24 states that for a typeable prograyrtwo runs of the program
differing only in high input streams will produce the same low output streams, and that the resulting low input streams are
also equivalent. A more detailed summary of the proof technique in this section follows.

We translate the program into configurations via Translation Definition 4.4 these map the label types of each sub-
expression onto each sub-configuration. Fixed Point Lemma 4.9 assures the existence of a reduction sequence, such that
the labels in the reduction sequence, and the labels on the heap will never increase. Translation Lemma 4.10 shows that a
reduction step of any translated expression produces a configuration that is also a translated expression; this allows Fixed
Point Lemma 4.9 and other lemmas to be applied, since a translated expression is required by assumption.

Now, let(&; ) be the initial configuration of the translated program. Without loss of generality, the reductiéin|of
with either set of inputs is broken into reductions of alternating zero or more high steps and one low step. According to the
High Reduction Lemma 4.23 and Low Reduction Lemma 4.22, if only the high inputs differ, there exists executions of the
configuration( &, )° that must make all of the same low reductions (with possibly differing high values); furthermore, the
low portions of the respective heaps must be the same. This means that each low input and output step must be the same
for both runs, resulting in equivalent low input and output streams. These existentials are due to the non-determinism in
the labeled semantics. We then define an unlabeled semantics, which is deterministic and executes identically to the labeled

22



semantics, only without the labels. We then re-state noninterference for this semantics, where the execution deterministically
produces equivalent low input and output streams.

We assumeow is the set of security labels the low observer has access to, so any subset of this set is accessible to the low
observer. Any security labels outside this subset relation are considigiee.g. ifHigh Z Low, thenHigh is considered a
high label and any data that carries this label is considered high data, which must not be revealed to the low observer.

A low computation step is any step that is not affected by high data, as defined in Definition 4.12. Definition 4.13 defines
any steps that are not low as high steps, i.e. any step that is affected by data labeled high. Thus, any reduetids step
either a high step, or a low step.

Definition 4.12 (Low step) A low step, denotel€ )5, H, 1,w ~+; ('), H', )/, isastep(E )5, H,1,w ~ ('), H',//, '
where the root of the context derivation tree contains only a subs&bwfsecrecy labels on the right hand side, i.e.
(&) H t,w ~ (IELI)SL,HQL’,w’ is the root of the tree and’. C Low, or the root of the context derivation tree is a
use of (Invoke-R), (Super-R), or (Super-Riyhere the object reference contains only a subsétoafsecrecy labels, e.g.
(o) m(V))% H,t,w~ & H' W' andS, C Low.

Definition 4.13 (High step) A high step, denotef€ )5, H, 1,w ~, (£')5", H',//, ' isastep(E )5, H,v,w ~ (E')5, H' /o'
where the root of the context derivation tree contains secrecy labels that arelngt on the right hand side, i.€.8,. ), H, 1, w ~»
(E.)%, H',/, " is the root of the tree and”. Z Low, and if the root of the context derivation tree is a usg(lokoke-R),
(Super-R), or (Super-R'}he object reference must contain secrecy labels that are netine.g. | (o) m(V) )%, H,t,w ~

& H',/, W' andS, Z Low.

Definition 4.14 (Termination) A configuration(€ )5, H, ., w terminates iff there exists éw)S’, H', //, andw’ such that
(]gDS)H)[’7w W* GUDS 7HI7L/)w/

Definition 4.15 specifies the bisimulation relation between configurations, heaps, and input and output streams.

Definition 4.15 (Bisimulation Relation)

1. (Labels).
S ~1ow 9 iff either

(@) S1 C Low, S5 C Low, andS; = Sy; or
(b) Sy  LowandS; € Low.

2. (Labeled Configurations)| &1 )5t ~1o (&2 ) iff either

(@) & = v, & = vy and either
i. S1 C Low, S3 C Low, S1 = S2, andv; = vy; OF
ii. 51 Z LowandS; & Low; or
(b) Si ~pow S @NdE; = & = x, for somex; or
(C) 51 ~ow S2 @NE; = & = this; or
(d) S1 row Sz, E1 = (E])%1.£, & = (E5)%2.£, and (€] )51 i (E5)52; OF
(&) St ~iow S, &1 = (€) (€15, & = (C) (€)%, and (€] )% ~uox (€5)%: O

(0 51 0w S, &1 = (E)TDIEN )T, €2 = (E4)% (5 )%, and (€] )5 ~pou (€5)%, (7D ~pow (€5)%;
or

(@) S1 oy S2, &1 = new C((E] )5S, & = new C((£)52)% , and (&] )51 ~poy (E5)5%, S’ ~i0w SY; OF

() S1 ~row S2, &1 = (E1)Sm((E))S), & = ()% m((EYDS), and (€] DS ~pow (E5)52, (€7D iow
(&) or
(i) Si ~pow S2, E1 = read( 1) ((E])%1), & = read( 1) ((E5)%2), and (€] )5 ~pou (E5)52; Or

() S1 ~ow S, & = writeq n((E])%, (7)), & = writewy((£5)5%, (E5)5), and (&) ~poy
(€502, (EF)S ~rou (E5)% ;5 0F
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1" 11

(K) i ~iow 52, &1 = if qs )% then (&7')% else qempsl 52 = if qs )% then (EY)5: else (&),
and (€] ) o (E5)7%2, (EF )5 20w (E5)%, (E)7 100 (E57)%; OF

(1) 81 ~pow S2, &1 = (&) )51, E2 = (E5)%, and (&) )% :Low (]E/l) 2: 0r

(M) S1 =10y 52, &1 = {(E1)%}, &2 = {(€5)%}, and (€] )% =100 (€5)%; 01

(

(n) 51 —Low 52, &1 = ‘%D L= qgl D &2 = (]52[) 2f = (]‘%IDS;?’ andQE{ DS{ Low (]‘%Dsé- (]5{/[)51/ Low
(EY)52; or

(0) Sy oy S2, &1 = return (& [)Sll;, &y = return (& DS2/;, and(é&; [)S/ ~1ow (&5 [)Sé' or

() 1 ~tox 52,1 = (01 ) -super({E])5), & = (02 )% .super(1€5)%), and(or )5 ~gou (02)%, (€11 ~1on
(€52 or

(@) S1 ~row Sz @ndéE; =& =; ;or

3. (Heaps) H ~., H’ iff the following two conditions hold:

(@) Yo such thatH (o) = (new C(V))?, if S C Low, thenH’ (o)

= (new C(V"))5', S = 5", andV ~o, V.
(b) Vo such that’(0) = (new c(V"))%, if $' C Low, thenH (o) =

(newC(V))%, S =S, andV ~,, V'.

4, (Output Stream Equa“ty)dl(fd, Ll) = WQ(fd, L2) iff wl(fd, Ll) = Cy, Ldg(fd, L2) = Co, andL1 = LQ, |61| = |62|,
VZ < |61|,C1i = Cg;-

5. (Input Stream Equality).;(£d,Ly) = t2(£fd, Ly) iff ¢1(£d,L1) = &1, t2(£fd,Ly) = &, andLly; = Ly, |G| = |&),
VZ < |C_1|,C1i = Cg;-

6. (Output Streams)v; 1oy wo iff dom(w1) = dom(we) andV(£4,L,) € dom(w1), either
(@) L; C Low, Ly C Low, andwy (£d,L;) = wa(£d,Ly); OF
(b) Ly € LowandL, Z Low.
7. (Input Streams)ty ~poy 2 Iff dom(11) = dom(i2) andV(£d,L,) € dom(iy), either
(&) L; C Low, Ly C Low, and¢; (£d,Ly) = to(£d, Ly); Or
(b) L; Z LowandL, Z Low.
8. (E1)%, Hy, 1, w1 ~row (E2)%2, Ho, Lo, wo iff (E1)% ~pow (E2)52, Hy ~1ow Ha, 11 ~iow L2, aNdw; ~1oy Wo.
Lemma 4.16 (Properties of Bisimulation)
1. (Reflexive) &1 )5, Hy, 1, w1 ~pow (E1)5, Hi, 01, w1
2. (Symmetric) &1 )%, Hy, 11, w1 ~row (E2)%2, Ha, o, wo, then( & )2, Hy, 1o, wa ~rey (E1)Y, Hy, 11, wr.

3. (Transitive) If (&1 )5, Hy, 11, w1 o (E2)%2, Ha, 1o, wo, and ()%, Ha, to,wo ~ow (E3)°, Hs,t3,ws, then
qgl DSl7H17L17w1 Low (IEBDSS;H37537WB

Proof. By induction on the structure gf¢; )°* and directly by Definition 4.15. O

Lemma4.17 If S C Low, S’ C Low, S = S' and H ~;, H', thennewref (H, S) = newref (H',S’)

Proof. By contradiction.

Supposenewref (H, S) = o, newref (H',8") = o/, ando # o. By the definition ofnewref, 0 = loc? ando’ = locis,l.
Now, by assumption$ = S/, so in order to satisfy # o', we must havé # i’. As per the definition ofhewref, leti — 1 be
the largest integer, such thiat: | € dom(H), and leti’ — 1 be the largest integer, such tﬁattz, 1 € dom(H'"). Without
loss of generality, assumie- 1 > i/ — 1.

Now, according to Definition 4.15[3], sincg C Low, andS’ C Low, we must havéoc? | € dom(H') andlocf;l,1 €
dom(H). Sincei — 1 > i’ — 1 andloc; | € dom(H'), theni’ — 1 is not the largest integer such tHatf,/_1 € dom(H'),
a contradiction. Hence, the assumptlon thgt i’ is wrong, and therefore the assumption that o’ is also wrong. Hence,
0o=0.

O
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Lemma 4.18 (Value Substitution) If [z — ], s,,0 = e: 7\Ce, T, S, H I (0 ) : 7,\C,, and there existg such that for
all t; free in[s, = Sp, T +— 7]Cc UCy, [t — t][sp — Sp, T +— 7]C. UC, is consistent, and [z +— 1], (), s, C Feon € = S then
L, H,S,,Cleon [2— (0)%]e: SUS,US,.

Proof.
Assumel’, S,, H + ()% : 7,\C, andl'[z — ], 5,,0 F € : 7\Ce.
By Substitution Lemma 4.T;, S, H - [z — ()% ]e : [t — t)][T = T, 8p = SplT\[f1 = B][E = T, 5 > Sp]Ce.
Lett = (S, F,A), [t — tz][f»—> Tos Sp = SplT = (81, F1, A1), 7o = ( Sy, Fu, Ay ), andt = (s, f, ).
Supposd’, H, S,,C Feon [X — (]17[)53)]6 : S1. We now show thas; C S U S, U S, by showing that ang € S, is also
inSUS, US,. Letl be any concrete label ifi. We have three cases according to Definition 4.1.

1. 1 € S;. We have two cases.

(a) 1 € S. Then by Definition 4.1 € §,s01 € SU S, U S),.
(b) 1 £S. Thenl € S, so by Definition 4.11 € §,. S0,1 € SU S, U Sj,.

2. Thereexists ag’ € Sy, suchthal <: s’ € Closure(LT,C). Now, s’ # 3, s,,, otherwise it would have been substituted
with S, or S,. Hences' € S, so by Definition 4.11 € S. So,1 € SU S, U S,,.

3. There exists arf’.£.F.f.S € S, such thatt <: f'.£.F.f'.S € Closure(LT,C). Now, f' # f, otherwise it would
have been substituted with,. Hence,f’.£.F.£’.S € S, so by Definition 4.11 € S. So,1 € SU S, U S,.

Hence,S; C S U S, U S,. Then by (Sub) and Definition 411, H, S,,,C Feon [x — (v)*]e: SUS,. O

Lemma 4.19 (Bisimulation of Sub§tituted values)If S, ~ou S, (7D ~pow (0/)50, 0 = o, Hy ~poy H), TR —

t], sp,Q)l—e ™N\Ce, T, Sy, H = (0)% : 7, \Co, T, S/, H' = (0 )%« 7I\Cl, (E2)%2 = [T, H, SU,C [x — (0)®, this —

(o] ]e]. there exists; such that for allf; free m[svp — Sy, t n]C U CU, [t; — 4][sp — Sy, t+— 7,]C. UC, C C andC
»—>t][ — S)t—T1]C.UC, C

—
is consistent, and there exigfssuch that for alk; free m[sp — S/t 7!]C. Ul |

ti
and(’ is consistent, then there exists a translatig# )5: = [[P’,HCS{),C’ [% — (v')%, this (]o’I)S’L]eﬂe, such that
(]‘92 D52 ZLow qgé DSQ

Proof.
By induction on the structure ef We present only a few cases. The remainder follow in a similar fashion.

— /

Casee = x. Hence[z — (0)%,this — (o)%]e = (v;)% and[z — (v')%,this — (o')S]e = (v])% and
(05 )5 ~pow (v})%. We have two cases fat.

Case v; is a constant. Then by (Val) and Definition 4.1, we havé{, S,,C F (v; )% : S,, U S, andT, H', S!,C +-
(v S, U S). Hence, by Definition 4.4(v; )% = [T, H,5,,C,[x — (o)° ”,thls — (o)*]e]. and
qv;[)svéusé =T, H’,S{,,C [% — (v')%,this — (o' )5]e].. Since(v; )5 ~ioq (]vQ[)S;w andsS, ~.; S, we have
(vi )S:USe ~op, (01) 5595 The lemma follows.

Case v; is an object identifier. Then by (Heap) and Definition 4.1, we HavH, S,,,C F (v; )% : Sy, U S, U S, and
T, H',S,CH (v)> Sy U Sy U S,, where H(v;) = (new C(V))% and H(vj) = (newcC(V'))%. Hence, by
Definition 4.4, (v; )5S = [T, H, S,,C,[& — (7)5,this — (o) ]e]. and(v AR (VS = [I,H',S,,C, [ —
(v')5, this — (o’ )]e].. We have two cases according to Definition 4.15[2a].

SubcaseS,, C Low, S, C Low, v; = v}, andS,, = S, .
SinceH; ~poy Hl, by Def|n|t|0n 4, 15[3] S Low s/

0"

Since(v; )5~y (v])% andsS, ~poy S), We have(v; SIS ~y o (o)) 50 Y50Y5% | The lemma follows.

SubcasesS,,  Lowands!, ¢ Low. Then by Definition 4.15[2a], we hay; ) 5:USvU%e oy (v] )% V%:Y%  The
lemma follows.
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Case e = e, .f.
Hence(&; )52 = [0, H, 8,,C, [x — (o), this — (0)5"]eq.f ]c, and(&L)S> = [0, H', 8.,C, [x — (v')5, this —
(0" )5 ])ea.t ]e.
Supposgx — 1,0, 5,,C Feon [% — (7)), this > (0)%]es.f : S, then by Lemma 4.18), H, 5,,C Feon [%
()%, this — (o) ]e..f: SUS,US, andd, H', S’ C,Fcon [x — (0')5, this — (o' )% ]ea.f: SUS US..
Since &) = [0, H,S,,C,[x — (0)%, this > (0)> et ]., and(€)% = [0, H',S),C,[% — (/)% this
(o [)Sf)]ea.f]}e, by Definition 4.3,5, = SU S, U S, andS; = SU S/ U S!. SinceS, ~io S andS, ~pey S, we have
SQ Low SQI
By Definition 4.3, (& )% = ((&, )% .£)%, where(&,)% = [0,H,S,,C,[x — (v)5 this — (o)%]es]., and
(E5)%2 = (( &L )% £ )%, where(EL )% = [0, H, S,,C,[x — (v')%,this QO'DSL]ea]]e.
By induction, (&, )5 ~poy (€ )5. SinceSy ~1, S5, by Definition 4.15[2d],| (£, )5*.£ )% ~poy ((E.)5%.£)5, that
iS (E2)% ~iow (E5)5%.

O

Lemma 4.20 (Deeply High Computation) If (€)%, H, t,w terminates,S, € Low, and the label on each subconfiguration
of (€)% containssS,, then there exists, H',./,w’, such that{ €))%, H, t,w ~} (v)%, H',//,w’ and S, Z Low.

Proof. By induction on~~; and the structure of€ )® using Definition 4.13. Since the label on each subconfiguration of
(€)* containsS,, observing each semantic rule showss, must also be on the configuration of the resulting computation,
and on each object reference, which by Definition 4.13 makes eachigteg~urthermore, sincé, is on the configuration
resulting from any computation, we haig C S, and since by assumptidf), Z Low, we haveS, Z Low. O

Lemma 4.21 (Bisimulation of High Computation)
1. (one-step) {E)5, H, t,w ~y, (&' [)S' H',/ ' thenH ~po, H', 1~y ¢/, andw ~pop w'.
2. (n-steps) (& )%, H,t,w ~} (&) H' i/, thenH ~poy H', 1 1y ¢/, aNdw ~poy o'
Proof.

1. By induction on the derivation of £ )5, H, 1,w ~;, (&), H',//,«', using Definition 4.15, Definition 4.13, and
Fixed Point Lemma 4.9.

2. By induction on the length of-}, using Lemma 4.21[1].

a

Lemma 4.22 shows that for two configurations that differ only in some high values, a low step results in the same
configuration, apart from differing high values. The low portions of the heap must be the same.

Lemma 4.22 (Reduction of Low Security Configurations)Let(&; ), Hy = [T, H;,pc,C,e]and( &1 )%, Hy, 11, w1~
(E2)%2, Ha, 1o, w2, and (& )51, HY = [TV, H],pc/,C’,e'] and (&1 )1, Hy, i1, w1 ~ow (£ )51, Hy, 0}, w4, then there ex-
ists derlvatlonsq & )%, Hy, twy (EY)S HY 19, wo, and (E] )51, HY, 1), W)~ (EY')S2", HY', 1y, wh, such that
qgé/[) 2 H27L25w2 ZLow qg/”[) 2 7Hé//,l,,2,w§.

Proof.
By induction on the context derivation tree-ef;, with case analysis on the last (bottom) reduction rule used.

Case (Field-R) Let(& )% = ((o)®.£,)" and (&} )5 = ((o D £;)%1. By (Field-R), ((0)%.£; )5, Hy, 11,01 ~
v )5S Hy 4, wi, whereH(o) = (new C(V))® andV; = (v ). According to Definition 4.15[2d], we have
((o)%.£:)% ~ow ((0')5 £5)51, hencei = j, S1 =~ S, andq )5~ (0)5". Since this is a low step, by
Definition 4.125; U S U S; C Low, henceS; C Low, so by Definition 4.15[1]5; = 5. We have two cases according to
Definition 4.15[2a].
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Subcase S C Low, S’ C Low, S = S/, ando = ¢'.
By (Field-R), ( (o' )5 .£; )51, H}, 1/}, w) ~ (v')SYS"9S1 HY Wb o, whereH (o) = (new C(V)])5 andV; = (v )5:.
By Definition 4.12 and Definition 4.15[3]{v’ )% = (v)%. As previously statedd = S’ andS; = S, hence
(v)5iUSUSL = (o) SiUS"USL thatis(uv])SYSUSt ~vp o, (0! ) 595951, By hypothesis and Definition 4.16y ) 5°SYSt ) Hy | 11, wy ™oy
(v DS{US’US{’E[{7 U,
Subcase S € Low andS’ ¢ Low.
By (Field-R), ( (o) .£; )%, Hy,t1, w1 ~ (v %YV Hy, 1y, w,. HenceS; U S U S, € Low, so by Definition 4.12,
this is not a low step, which contradicts the hypothesis, so this case cannot occur.

Case (New-R) Let(&; )5 = (new C((9)5)% )5 and( &) )51 = (new C((v’)SH)5 )51,
By (New-R),(new C((©)5)5 )51, Hy, 11, w1 ~ ((E2)%2; (return (o) )5; )5, Hijo — (new C((muIl)®) )], 11, wr,
enbody(C) = super(8); §, andclass C extends D {... }, and
(&)% = [T, Hy, S1,C, [x — (©)5, this — (0)5']this.super(D,&);5]..

According to Definition 4.15[2g]S ~ow 5, 81 ~iow S, and(7)5" ~14y (0')5:. By assumption, this is a low step,
hence by Definition 4.129; C Low, and sinces5; ~,, 5], by Definition 4.15[2a],5] C Low, and$; = 5.

Assume thaD # Object. The case wherd = Object is omitted, as it is similar, except the call saper has no
arguments.

Since we have a well-typed label table, by Constructor Typifig, — ¢, this + t],s,, H I § : 7.\C. andT'[x —
t,this — t;], 85, H -8 : 7\Cs.
By assumption and (New), we haliepe, H; = (5 )% : 7\C, T, pe, H; = (0)> : 7,\Co, andL", pc, H/ I (') : 7\,
I, pc/, H + (o' )% : 7/\C!, whereC, C,, C C andC’,C!, C C'.
By (New) and(Method), there exists consistent constraint Séts— #][s, — 7o, — T,t; = To, ty > t1](C. U Cs U
{DK(, tr -2 t,} U {70 <: t,.}) @and[t; — 6)][s, — 70,8 — 7/, t; = 7o, ty — £7](Ce U Cy U {D.K(Ts, b 2 £,} U {7! <:
tr}).
By (New-R),0 = newref (Hy, S1), and leto’ = newref (H{, S7). SinceS; C Low, S; C Low, S; = 5], andH; ~p, Hi,
by Lemma 4.1fewref (Hy, S1) = newref (Hj, S7), henceo = ¢o'.
SinceSy = 8], ()5 oy (0/)5, 0 = o/, and H; =0, Hj, by Lemma 4.19, there exists a translatipfy )5 =
[T, H}, S;,C [% — (v')%, this +— (o' )S1]this.super(D,&);5 ].. such tha( & )52 ~1q, (5] 2.
Hence, by (New-R)(new C(( o' )5)S" )51, H{, ¢}, w} ~ ((E,)52; (return (o )51 )51; )51, H{[o' — (new C((null)S"))51], ), w).
SinceS; = 5], 0 =0/, S; C Low, andS; C Low, by Definition 4.15[2a]( 0 )" ~p.y (0 [)51, and by Definition 4.15[1]
S ~1oy S]. Hence, by Definition 4.15[20]}return (0)5 )5t ~., (return (o' )51 ). Since(& ) ~ow (E5)52,
by Definition 4.15[21]( (£ )52; (return (o) 5" )5 )% ~; set((E})52; (return (o )51 )51; )51,
Now, S =, S’ implies (null)® ~, (null)S’ by Definition 4.15[2a]. Sincél;, ~., H}, 0 = o/, andS; = 5], by
Definition 4.15[3] we haveH; [0 — (new C((null)®))%] ~poy H}[o' — (new C((null)®’))5i]. the lemma follows
by Definition 4.15[8].

Case (Invoke-R)  Let(& )5 = ((o)5 .m((5)5))5 and (&])51 = ((o' )5 .m((v')5))5. By (Invoke-R), let
((o)% .m((D)5) )5, Hy,eg,wi ~ (E2)%950 Hy, g, w1

By Definition 4.15[2h,2a], we have two cases.

Subcase S, € Low.
By Definition 4.12, this is not a low step, so this case cannot occur.
Subcase S, C Low.
So, by Definition 4.15[2h,2a$, = S, ando = o'.
Now, by (Invoke-R),mbody(m,C) = s and( &, )% = [T, Hy, S,,C, [x — ()5, this — (o)%]s].
Since we have a well-typed label table, by Method Typiig, — ¢, this — ], $,, H F § : 7, \Cin,
By assumption and (Invoke), we haliepc, H; + (©)5 : 7\C, T, pe, H; - (6)5 : 7,\C,, andI”, pc’, H! + (0’ )5+ :
\C', T, pc, H] - (o' )5 : 7/\C., whereC, C,,C’,C!, C C.
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By (Invoke) and(Method), there exists consistent constraint Séts— t;][s, — 7,,t — 7,1, — 7ot — ,](Crp U
{Tm <:t,}) and[t; — t)][sp = 1), t = 7/ bty = 7, b = ] (Cop U {7 <: 80}).

SinceS, = S/, (0)5 ~oy (0')%, 0 = o, andH; ~i,, H}, by Lemma 4.19, there exists a translatiaf} ) 5> =
[T, H},S.C[x— (v')%, this — (o' )5]s]. such thal £ )5 ~iey (E5)%.

Hence, by (Invoke-R){ (o' )5 .m((v" )5¢) )51, H], /), w) ~ (E4)S2951, HY, 1), w).

SincesS) ~pow 1, (E2)52Y50 vy, (E5)52951,

Since the heaps and streams are unchanged by the reduction step, the lemma follows by Definition 4.15[8].

Case (Super-R) follows a similar reasoning to (New-R) and (Invoke-R).

Case (Seq-R) Let|& )% = ((v)5; (€))% and( &) = ((v' )% ()5 )5.
By (Seq_R)! Ie(](]vl)sv; quSD517H11L17w1 ~ (](]gDSDSI>H17L13w1 and
(0 )5 (€ ) )55, HY, o, wi ~ ((E)S )5, HY, 04
By Definition 4.15[21],( € )5 ~eu (£/)5" andS; ~1oy S]. Hence, by Definition 4.15[21)( (£ )5 )5* ~ou ((E')5" )51,
Conclude with Definition 4.15[8].

Case (Assign-R) Let( &) = ((o)%.£ := (v)%; )5 and (&) )51 = ((o')%.£ := (v')5; )5, By (Assign-R), let
((o)%.£ == (v)%; )%, Hy,e,wy ~ (null)5V%YUS% Hijo — (newC(...,(v])%U510%US )] 4 w; and
(o' )%t i= (') )51, HY,1f,wi ~ (null)S1950VSe Hio' s (new C(..., (v )SoVUSiUSaUsi ))Si] i, wf

According to Definition 4.15[2n,2a], we have two cases.

Subcase S, Z Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.
Subcase S, C Low. Theno = o’ andS, = S..
Again, according to Definition 4.15[2n,2a], we have two cases.

Subcase S, Z Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.

SubcaseS, C Low. Thenv = ¢’ and S, = S,. By Definition 4.15 and assumption, we also kn& ~,
S, and S; ~1o, S!/. Hence(uv))SUS1U5eUSi ~ (0 ])SsUS1US.US: | Therefore by Definition 4.15[3H;[0 —
(new C(..., (v])SeUSiUSeUSi  Y)Su] ~p oy Hi[o! — (new C(.. ., (v )SvUSi9US0Si  ))5h]. Furthermore,
(nu1l)S1USeUSe ~p o (null )S1USUS:, and the lemma follows by Definition 4.15[8].

Case (IfTrue-R)
Let (& )5 = (if (b)S then (&) else (&;)5 )5 and(&f)St = (if (b')Sthen (& )5 else (€)% )5 and
without loss of generality, assurbe= True. So, by (IfTrue-R)(if (b)% then (& )5 else (&7 )% )51, Hy, i1, w1 ~
(& )%, Hy,y g, w1
By Definition 4.15[2k,2a], we have two cases

Subcase S, € Low. Then by Definition 4.12, this is not a low step, so this case cannot occur.

Subcase S, ¢ Low. ThenS, = S/ andb = b’. Henceb’ = True, so by (IfTrue-R),
(if (V)5 then (&) else (]5}[)5} )51, HY, dp, W~ (&), HY, ), ). By Definition 4.15[2K], (& )% ~Loy
(e [)Sff. Since the heaps and streams are unchanged, the lemma follows by assumption and Definition 4.15[8].

Case (Input-R)  Let(&; )5 = (read((£d)5))S and(&] )5t = (ready((£d’)57))51.
By (Input-R), let(read, ((£d)) )5, Hy, 11, w1 ~ (c )b, Hy, t2,w; and(ready ((£d’ [)S}) [)Sll,H{, LW~ ()8 HY Uy, W
By Definition 4.15[2i,2a], we have two cases.
Subcase Sy ¢ Low. Then by premise to (Input-R), Z Low. However, Definition 4.12 requirds C Low for this to be a

low step. So this case cannot occur.

Subcase Sy C Low. ThenSy = S} andfd = £d'. By Definition 4.12,L. C Low, so by Definition 4.15[5];:(£d,L) =
(i (£d/,L). Hencec.io(fd,L) = c’.th(£d’,L), soc = ¢’ ande(fd,L) = «54(fd’,L). Thus, by Definition 4.15[2a],
(c)® ~row (c’)* and by Definition 4.15[5])42 ~1.y t5. The lemma follows by Definition 4.15[8].
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Case (Output-R)  Let(&; )5t = (writer((c), (£4)5))S and( & )5t = (write((c')5, (£a')57)]51.
By (Output-R), let|writer ((c ), (£d)%) )5, Hy, 11, wi ~ (null)5VSsYS 1y 1wy and
(writer((c' )5, (£d')57) )T, HY, o), w) ~ (null)SVSiVUST HY W) wh.

By Definition 4.15[2j,2a], we have two cases.

Subcase Sy Z Low. By Definition 4.12 this is not a low step. So this case cannot occur.
Subcase Sy C Low. ThenS; = S} andfd = £d’. Again by Definition 4.15[2j,2a], we have two cases.

Subcase S. € Low. By Definition 4.12 this is not a low step. So this case cannot occur.
SubcaseS. C Low. ThenS. = S/ andc = ¢'.

We have two more cases.

SubcaseL C Low. Then, by Definition 4.15[6]w;(£d,L) = w/(£fd’,L). Sincec = ¢/, we havec.w;(fd,L) =
c’.wi(fd’,L). Hence by Definition 4.15[6}w> ~0u wy. Further, sinceS. = 7, Sy = S, andSy = Sj, by
Definition 4.15[2a],(null ) 5USsUS1 ~ o (null ) %5751, The lemma follows by Definition 4.15[8].

SubcaseL ¢ Low. Then by Definition 4.15[6]ws ~iow wh. SinceS. = S/, Sy = Sf, andS; = Sj, by Defini-
tion 4.15[2a],(null )SYS1YUSt ~y o (null))5-YS:YS1, The lemma follows by Definition 4.15[8].

Case (Field-RC) Letq&[)s1 = ((E)5.£)5 and (&) )51 = ((E,)5 Dsi. By assumption, Definition 4.12, and
(Fle'd-RC),q qga[) D Hl,bl,wl ~3 (](]gbl)sb fDSl HQ,LQ,(UQ and(] D S Hy, 1, wy ~y (]ngSb,HQ,LQ,OJQ. Also
by (FIeId-RC)'(](IgaD D H17L13w1 2 (](]g/[)sb D H23L2aw2 and(] D ‘;aHilehwi M qgl/)DSé’Hé7L/27wé'

By assumption and Definition 4.15[2d]; ~1o, S and( &, )% ~1ow (£ )5. So, by Definition 4.15[8)( &, )%=, Hy, 11, w1 ~row

(& Dsf,HhLl,wl Hence, by induction, there exists derivatigids ) %, Hy, t1,wi ~ (& )%, Hy, 12, w2 andq&’l[)Sa,l%{,ul,w’1 )
(EL)5e ,/Hg’, th, wh, suchthaf & )%, Hy, 12, wa ~10u (€)%, HY', th,w). Then by Definition 4.15[2d]| (€. )% £ )% ~io
((&!)5.£)%. Conclude with Definition 4.15[8( (£, )5 .£ )5, HY , 1o, wo ~1ew ((EL)5.£ )51, HY' 1y, ).

Remaining cases: (Op-R) (Cast-R) (Super-R) (Super-R’) (Return-R) (Block-R) (Skip-R) (SubVal-R) (*-RC) O

Lemma 4.23 shows that for two configurations that differ only in high values, a series of high steps — where the high steps
complete by either reaching a value, or being followed by a low step — result in the same configuration with possibly some of
the high values substituted for other high values, and the low portions of the heap are the same.

Lemma 4.23 (Reduction of High Security Configurations)Let (&, )%, H, = [T, H;, pc,C,e], and

(]g{ DS{,H{ = [[F',H{,pc’,C’,e’]] and(]é’l DSl,Hl,Ll,wl ™ ow (]5{ DS{,H{,L&,wi and@é’ll) S Hy, 1, w1 W (]52[) 2 Hos, o, ws,
and eitheré&, is a value, or(]é‘QDS2 Hy, to,ws ~; (E3)%, Hs, 13, ws, for some(&s)%, Hs, 3, and UJ3, and assume
(&), Hyyeq, w01 and(]c‘:l[) Hl,Ll,wl both terminate; then there emstsdenvaﬂcﬂr&bsl Hy,o,wr ~5 (EX)S2 HY 19, w),
and (& )51, Hy, o), w) ~% (E5)52, Hy, th, wh, such that| £ )%, HY , 1o, wa ~row (E5 )2, Hb, thy, uh.

Proof.

By induction on length of the reductior;;, and the height of the reduction derivation tree.
Base Case (reflexive)( &, )51 = (& )52, Hy = Hy, 11 = 13, andw; = w,. Then, by reflexivity of-*, (&] )51 = (&),
H, = Hj, /) = i), andw| = ). The lemma follows by assumptio@‘l& )52, Ha, 1o, wa ~pow (E4)52, Hb, iy, wh.
Inductive Case: le DSI,Hl, L1,W1 ~p (]5[) H L,w W GEQD 2, Ho, 1o, ws.

By induction on the context derivation tree QJ&[) JHy u,wr ~n (€)%, H, 1w, with case analysis on the last
(bottom) reduction rule used.

Case (Field-R) Let(&; )5 = ((o)%.£;)5 and( &} )5 = ( (o' )% .£;)51. By (Field-R), let( (o)%.£; )5, Hy, 1, w1 ~
(]1} DSiUSlUSO, Hi,i1, w1 andq qO/ Dso.fz' I)Sl y H{, Lll,wi ~ (]U/ DSiUSlUSO7 HL Llla w/l'
By Definition 4.13,5; U S; U S, Z Low. By Definition 4.15[2d, 2a, 3], we hau® ~1., S/, S1 ~pow 51, @andS, >~y Se.

HenceS/ U S{ U S/ ¢ Low. Then, by Definition 4.15[2a](v )%Y51Y% ~ . (v’ )%Y5195:. The lemma follows by
Definition 4.15[8].
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Case (Invoke-R)  Let(& )5 = ((o)5 .m((5)5))5 and (&])51 = ((o' )5 .m((v')5))51. By (Invoke-R), let
(] (IODSU 'm((]@DSv) DSlaHla L1, w1 ~ qga DSIUS&,Hla L1, W1.
By Definition 4.13, we havé, ¢ Low. Hence by Definition 4.15[2h, 2a] and assumptiSfiZ Low.
By assumption( &, [)SIU:%, S,, Hy,11,w; terminates, and we have just shown tHatZ Low. By (Invoke-R),(&, )% =
IT,H,S,,C,[x — (v)°,this — (0)“*]§]., so by Lemma 4.5 and Definition 4.4, is on every subconfiguration
of (&,)%. Hence by Lemma 4.2Q,&, )51V% S, Hy,t1,w1 ~5 (E2)%2, Ha, 12, w2, Where&, = v, for somewvs, and
So & Low. By Lemma 4.21[2] H1 ~1ow Ho, t1 ~pow L2, @Ndw) ~14y wo.
Similarly, by (Invoke-R), lef| (o’ )5 .m((v" ) 50) )51, HY, 4, wi ~ (E,)%1Y%, HY, i}, w). By assumptiorf £, ) 5195, S), H, i/, w}
terminates, and we have shown thit ¢ Low. By (Invoke-R), (&, )% = [I',H’,S8.,C',[x — (v')%, this
(0')5]5]., so by Lemma 4.5 and Definition 4.4/ is on every subconfiguration df¢’ )% . (Regardless of which
actual typing is usedS/, as the program counter, will occur on every subconfiguration. (Sub) can only add labels, in
essence making things mohégh, which is inconsequential.) Hence by Lemma 4.28, )51Y5 S/ H{ i/}, wi ~7
(E5)52, H), 1h, wh, where&) = vl for someu,, andS) ¢ Low. By Lemma 4.21[2],H] ~yow Hb, i} ~1ey ¢, and
W] Moy Whe
Now, sinceS, ¢ Low, S5  Low, £ = vz, and&} = v}, by Definition 4.15[2]( £ )%~ (E5)%2. By Lemma 4.16[2,3],
we haveH, ~p ., Hb, 1o 1oy th andwy >, wh. Then by Definition 4.15[8]( &2 )52, Ha, 1o, wa ~1ow (E4 )52, Hb, 1, wh.

Case (New-R) Let(&; )5 = (new C((o )5 )% )5 and(&] )51 = (new C((v')55)5")51. By (New-R), let
QnewC(Q@D‘i')g )5t Hyyeq, w1~ ((Eq)%; (return (o)1 )5 )51, Hy, 0y, wy andH, = Hyo — (new C((]nullDS) )51].
By Definition 4.13,5, Z Low, and by Definition 4.15[2g]S] € Low. Now, we havenewref (H;, S;) = o = loc?* and
newref (Hy,S]) = o' = locfl. So, ifo € dom(H}), then by the definition ofiewref, H}(0) = (new C((V)5))5".
Similarly, if o € dom(H,), then by the definition ofhewref, Hy(o') = (new C((V')5))5. SinceS; ¢ Low and
S| € Low, by Definition 4.15[3],H, ~1... H..
The remaining argument follows the (Invoke-R) case.

Case (Super-R) follows a similar reasoning to (Invoke-R).

Case (IfTrue-R)  Let(&; )5 = (if (b)S then (&) else (&, )5 )5 and(&f)Si = (if (b')S then (&) else (&} )7 )5
and without loss of generality, assutme- True. So, by (IfTrue-R){if (b)% then (&) else (& )57 )5, Hy,t1, w1 ~
(& )%, Hy,y g, w1
We have two subcases:

Subcase S, C Low
Then, by Definition 4.15[2k,2a}y’ = b = True. Hence, by (IfTrue-R)(if (b')% then (&) else (£} )7 )51, H], i}, w} ~
(&[5, H, 1}, w}. The lemma follows by induction ofi€; )5+“5¢, Hy, 11, w;.
Subcase S, € Low
According to assumption and Lemma 4.5, each subconfigurati¢&;ifi* must contain the labels ifi,. SincesS, ¢
Low, the label on each subconfiguration is also not a subsetw{the label is thenigh). The lemma follows with the
same reasoning as the (Invoke-R) case.

Case (Assign-R) Let( &, )5 = ((o)%.£ := (v)5; )% and(&] )51 = ((o')5.f := (v’')S; ). Since both executions
terminate, By (Assign-R) and Fixed Point Lemma 4.9, there exists redudtipng™.f := (v)%; )%, Hy, 01,01 ~
(null)S1YSeUSe Hy vy w and (o )%.f = (/)% )%, H], /), o} ~ (null)51YS.YSe HY ) W, where Hy =
Hylo — (newC(..., (v)5Y5h0SUsS  Y)S] andHy = Hl[o' — (newC(..., (v )%YSaV%US5 ))%], such that
Sy USiuUS,uUs; =S ands, US;uUS uUS =85!

By Definition 4.13,5; U S, U S, € Low. Since by Definition 4.15[2d,2aK; ~ioy S7, Sy ~row S, aNdS, ~1ey S, We
havesS] U S/ U S/ ¢ Low. Hence, by Definition 4.15[2a],nu11 )51V8+USe ~; o (nu1l )Si1USiUss,

It remains to be shown thdf, ~;, H}. 51 U S, US, € LowimpliesS, US; US,US; € LowandS] US! US! Z Low
implies S, U S U S, U S! € Low. SinceS, US; US,US; =8 andS, U S US US! =S/, wehaveS; Z Low and
S! < Low.

According to Definition 4.15[2n,2a], we have two cases.
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Subcase S, ¢ Low. ThenS, Z Low.
According to Definition 4.15[3], we must satisfy two cases to stitw~; ., HY.
SubcaseDefinition 4.15[3a], ifo € dom(Hj).
Let H,(0) = (new C(...,(v;)%,...))% andH}(0) = (new (..., (v/ )% ,...))5". Thus,
Hy(0) = (new C(..., (v])5»U51U%US: )5 andHj(0) = (new C(..., (v} )5, ...))5.
Supposes;, Z Low. Then by Definition 4.15[3]S;, Z Low, and this case is satisfied.
Suppose instead tha} C Low. Then by Definition 4.15[3]S, = S; and(v; R (7 [)55/. SinceS, U S; U
S, U S; ¢ Low andS; Z Low, by Definition 4.15[2a](|v))S»U51U% S ~ ()%, and the case is satisfied.
SubcaseDefinition 4.15[3b], ifo’ € dom(H;).
Let Hy(o') = (new C(..., (v )5",...))%" andH}(¢') = (new C(..., (v})5,...))5. Thus,
Hy(0') = (newC(..., (v )5",...) )5 andH,(0') = (new C(..., (v )SoUSi1USUSi | y)Sh,
Supposes; Z Low. Then by Definition 4.15[3]5/"” Z Low, and this case is satisfied.
Suppose instead thaf, C Low. Then by Def|n|t|on 4.15[3]5" = S} and (v )% ~po (v])5. SincesS! U S; U
8/'US! € Low andS! € Low, by Definition 4.15[2a]( v/ ) %" ~p4, (v )5:U519%US1 and the case is satisfied.
Therefore, by Definition 4.15[3f ~1.. Hj.
Subcase S, C Low. Theno = o’ andS, = S..
Hence, by Definition 4.15[2a]{v )SvUS1U5eUSi ~y o (0! )SeUS1US.USI Therefore, since = o, by assumption
H,y ~p., Hi, and Definition 4.15[3]Hy ~p.0y Hb.

The lemma follows by Definition 4.15[8].
Case (Seq-R)  Let(&: )% = ((v]);(€)T)* and(&] )5 = ((v')%; (€))%

By (Seg-R), let| (v ])%; () )%, Hy, e, w1 ~ ((E))S, Hy,e1,w;1 and
GGU’DSL;Gg’Dg'DS@H{A’pwiWGGE’D@DS' Hi, 0w
By Definition 4.15[21], (€)% ~oy (€)% andSy ~1ou S{. Hence, by Definition 4.15[21] (€)% )%t ~p ((£7)5 )51
The lemma follows by induction of\( € )° )1, Hy, 11, ws.

Case (Input-R)  Let(&; )5 = (read.((£d)57) )5 and(&] )5 = (ready((£d')57))51.
By (Input-R), let(read, ((£d)°) )5, Hy, 11,w1 ~ ()b, Hy, 12, w1, ande; (£d, L) = c.io(£d, L),
(read  ((£d')51) )51, H, Uy, o) ~ (' )&, HY, iy, o), andd, (£d/, L) = ¢’ .14 (£d/, L).
By Definition 4.13,.L ¢ Low. Hence, by Definition 4.15[7}, =~ 5, and by Definition 4.15[2a]( c)* ~.y (c’)t. The
lemma follows by Definition 4.15[8].

Case (Output-R)  Let(&; )51 = (writer((c)5, (£d)57) ) and(&] )5t = (writer((c' )5, (£d')57))5.
By (Output-R), lefjwrite, ((c), (£d)%7) )%, Hy, 11, wr ~ (null )5U5Y50 Hy iy, wy, andws (£d,L) = c.wi (£d, L),
(writer ((c' )5, (£d')51) )51, H}, b W) ~ (null)5YSi950 HY L wh, andw)(£d/, L) = ¢’ (£d,L).
By premise to (Output-R)s. U Sy U S; C L. By Definition 4.13,5. U Sy U S; € Low. Hence,L Z Low, and by
Definition 4.15[6],ws ~1oy Wh.
By Definition 4.15[2j,2a],S. ~Loy S/, Sf Loy S}, @NdS) ~1ey 57, S0S,US;US] Z Low. Hence( null)SeUSrUs ~p o
(nu11)5:YSiY51 The lemma foIIows by Def|n|t|on 4. 15[8]

Case (Field-RC)  Let(&; )% = (( &, )% .£)5 and(&] )51 = (L)% £ )51
By assumption, Definition 4.13, and (Field-R@Q).&, )%« .£ )51, Hy, v1, w1 ~5 (&) .£)5, Ha, t2,ws and
(Ea )3, Hyyvr,w1 ~% (€)%, Ha, 1o, wo. By assumption and Definition 4.15[2d}, ~10, S; and( &, )% ~pou (E)%.
So, by Definition 4.15[8],(] )5 Hy, v, wn ~ew (EL)5, HY Wb o). Hence, by induction, there exists derivations
(lga DSa, Hla L1, W1 WZ (]gc DSC, Héla L2, W2 and(] gz/z DS‘;v H17 Lllv wll WZ (]5({ DSQ, Hé”v L,27w2* such thaﬂ Ee Dschélv L2, W2 ZLow
(EL)5, HY', 14, wh. Then by Definition 4.15[2d}| (£, )5¢.£ )5 ~1oy ((EL)5¢.£)51. By Definition 4.15[8],( (&, )5.£ )5, HY, 19, ws 1,
((ELDS.£ )55, Hy, i, wh.
Now, if ( (& )%.£ )5, HY  12,ws ~; (E3)52, Hs, 13, ws, then this case is complete. Otherwisd, (€, )%.£ )5, HY, 12, ws ~7
(&), Hs, 13, ws, conclude by induction ORF.
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Remaining cases: (Op-R) (Cast-R) (Super-R’) (Return-R) (Block-R) (Skip-R) (SubVal-R) (*-RC) O

The noninterference theorem assumes the initial input streams are bisimilar with regpectltoother words, the user
with access only to data labeled by a subset®f cannot observe anything about data with labels that are rigduir(i.e.
high). Initial output streams are also assumed to be bisimilar with respéetitoalthough for normal programs, they will
initially be empty. The theorem assumes the input streams are fixed before execution, but applestream of inputs.

Theorem 4.24 (Non-deterministic Noninterference)Supposé), 0,0 - 5 : (S, F, A)\C, and¢y >y, ¢f, andwy ~pey Wi,
and [0,0,0,C,8],¢1,w; and [0,0,0,C, 5], ), w] both terminate then there exists derivatidig 0,0,C,s], 1, w1 ~*
(] c DSCa H2a Lo, W2 and [07 ®7 q)a Cv s H? Llla wll - (] C/ DSCa Hé? L/Qa OJ/2, SUCh thau? “Low [’/2 andw2 ZLow OJ/2. (andq c DSC ZLow

(c'D%)

Proof.

The theorem follows by repeated use of lemmas 4.23 and 4.22 (allowed by Translation lemma 4.10). The reduction
consists of alternating-; and~~; steps. The number of high steps.#j; can also be zero. Sin¢é, 0, 0,C, s, 11, wo termi-
nates, we havgd, 0, 0,C, 5], t1,wo ~* (), Ha, 12, ws, which can be written g, 0, 0, C, 5 |, 11, wo ~5 (E5 )53, HY | 13, w3 ~
(ELVS HY taywa ~F oo~k ()5 HY 1, wo.

Then, according to Lemmas 4.23 and 4.22, there exists derivafiis0,C, 5], t1,wo ~7; (E3)2, Hs,t3,w3 ~
(]54 DS4,H47 Ly, Wy W;: cee WZ (]C Dscv Ho, L2, W2 and[[(/), Qv ®7C7 5]]; L1,Wo WZ (]8?/) DS‘éa H:/Sv L3, w3 ~ (154/1 Dsiv Hzlb Ly, Wy W;;

. WZ (] c DS(/:’ Héa L2, W2, such that] 53 DSS; H37 L3, W3 Zrow (Igé DSévH;/}a L3, W3, (]g4 DS47 H4; L4, W4 Z1ow (]6‘4/1 DSiv Hzlp Ly, W4,
and so forth, until{c )5, Hy, 12, ws ~1oy ()5, HY, 12, ws.

Hence, regardless of whether the execution ends in a low or high step, lemmas 4.23 and 4.22 both conclude that the low
input and output streams remain equivalent:~; ., w), andis ~.y ¢4, as do the final values: = ¢’. The theorem follows.

O

4.5 Unlabeled Semantics and Noninterference

We now describe an unlabeled semantics with a deterministic evaluation relation, and show that it's execution is equivalent in
terms of values to the labeled semantics, and therefore the noninterference result holds for this semantics. The deterministic
evaluation relation—, defined for unlabeled expressions and statements is identical to the semantic definitions of the labeled
configuration semantic relatior, only without the labels. Reductions are of the farm/], 11, w1 — €', M}, 12, w2, Where
M is defined identical tdZ, only lacking labels. The reduction rules are presented in Figure 11 and Figure 12. The rules for
reductions under context are similar to those in the labeled semantics, and are therefore omitted. In the deterministic seman-
tics, e is defined as in the original grammar in Figure 1, with the following additéon= ... | o | IOErr | o.super(C, ).

The bisimulation in Definition 4.25 shows the relationship between labeled configurations and unlabeled expressions and
statements. The latter are the same as the former, only without the labels. Further, the heaps are the sdnac&sly
labels, modulo exact heap locations.

Definition 4.25 (Bisimulation of Labeled and Unlabeled)

1. (Configurations and Expressions). For a partial functign {o} — {0'}, thene ~5 (& )¥ iff either

(8 e=&=co;or

(b) e =& = IOErr; or

(c) e=o0and& = p3(o); or

(d) e = & = x, for somex; or

(e) e = £ = this; or

() e=¢.£,&=(E)5 £, ande’ ~5 (£')5; or

@ e=(C)€,E=(C) (&), ande ~5 (E')5; or

() e=€cae, =) @), ande ~g ('), € ~5 (£7)5; or
(i) € =newC(¢), &2 = new C(( &’ [)S’)S_”, ande’ ~g W; or

() e=em(@), &= (&) m((E)5), ande’ ~5 ()5, ¢ ~5 (E7)5"; or
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(Field-R)

(Op-R)
(Cast-R)

0f;,, M,1,w — v;, M,1,w

cdc  M,w—v,M, 1w

(D)o, M, t,w — o, M, 1,w

(Declassify-R) Declassify(v,L), M, t,w — v, M,t,w

wherefields(C) = C £, and
M (0) = new C()
wherev =c@ ¢’

where C <: D

(New-R)  new C(v), M, ,w — s';return o, M’ 1,w
wherecnbody(C) = super(&); § andclass C extends D {... }
ands’ = [x — 9, this — o|this.super(D, &); §]
andM’ = Mo — new C(null)]ando = newref (M)
(Invoke-R) o.m(v), M, 1,w — s', M, Lw
wherembody(m,C) = § ands’ = [x — @, this — 0|8
(Super-R) o.super(C,v), M,1,w — s, M, 1,w
wherecnbody(C) = super(&); § andclass C extends D {...}
ands’ = [x — ¥, this — o|this.super(D, §);§
(Super-R’) o.super(Object), M,t,w — null, M, ¢, w
(fTrue-R) if True thene; elseey, M, t,w — ey, M, 1, w
(Seg-R) vie,M,1,,w —8 M, 1w
(Return-R) returnv;, M,t,w — v, M, 1,w
(Block-R) {e}, M,1,w — e, M, 1,w
(Skip-R) Mot w —null, M, w
(Assign-R) o.f :=v;, M, 1,w — null, wherefields(C) = C £ and M (o) = new C()

Mo+ newC(...,v,...)],t,w

newref(M) = o = loc; wherei — 1 is the largest integer, such that; , € M

Figure 11: Operational Semantics Reduction Rules

(Input-R)

(Output-R)

(InErr-R)

(OutErr-R)

(ICErr-R)

read( ) (fd), M,t,w — ¢, M,/ ,w
writew1)(c,fd), M,t,w — null, M, s, o’
read( 1) (fd), M,1,w — IOErr, M, 1,w
writeq (¢, £d), M, t,w — IOErr, M, 1,w

e,M,L,w— IOErr, M,t,w

whereL. = S; andL’ = I
andb(fd, Si7 IZ) = C.L/(fd7 Si, Il)

whereL = §; andL’ = I
andw’(fd, Si, ]i) = c.w(fd, S;, IZ)
whereL £ S; orL’ # [

andb(fd, Si7 Iz)

whereL # S; orL’ # I
andw(fd, Si, Iz)

wherelOFrr is a subexpression ef

Figure 12: Operational Semantics 10 Reduction Rules

(K) e = readq (<), & = readw i ((€')%), ande’ ~5 (€')"; or

() e =writer (€' €"), &= write(L,L/)((]E'DS’, (E")57), ande’ ~g (E')S, " ~pg (E")5"; or
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(M) € = if ¢ then ¢” else (& )%, € = if (&) then (E")5" else (€)%, ande' ~z (E')%, €' ~p5
(E7)5" (£ )5 g (7)o

(n) e=¢€,E= (&)Y, ande’ ~g (E')5"; or

) e={¢}, € ={(&)%}, ande’ ~5 (£')%; or

() e=ef:=¢",E=(&)5£:= (€)% ande’ ~g (£)5, " ~5 (£")5"; or

(9) e = return¢€’;, £ = return (&’ DS/;, ande’ ~g QE’[)S/; or

(N €= (01)5 .super(¢), £ = (0)¥" .super((£')5"), and(o1 )%t ~p ()", ¢ ~5 (€'); or

(s)e=E=; ;0r

2. (Heaps)M ~z H iff the following two conditions hold:

(a) g is a bijection betweedom (3) andrng(3).
(b) dom(B) = dom(M) andrng(8) = dom(H)
(c) Yo € dom(M), if M(0) = new C(v), thenH (5(0)) = (new C(V))* andv ~4 V.

We prove the equivalence of the evaluations of the labeled and unlabeled semantics in the following lemma.

Lemma 4.26 (Evaluation Equivalence)lf e, M, t1,w1 — €, Ma, 12, w2, and (&1 )51, Hy = [T, H;,pc,C, €], ande ~p
(&1 )%, and Hy ~5 M, then there exist®’ where3 C 3/, such that(&; )5, Hy,u1,w1 ~ (E2)2, Ha, L2, ws, and
€ ~3 (]52 I)Sz, and H; ~3 M;.

Proof. By induction on the structure efand using Soundness Theorem 4.11. O

The use of the soundness theorem is necessary since the labeled semantics has an a rule that may reduce a configuration
to CkFail. However, Soundness Theorem 4.11 shows this will not happen for a translated expression.

This further means that in the following Noninterference result for the unlabeled semantics, when we assume termination
we are assuming only the usual types of non-termination do not occur, since there is no check failure in the semantics. In
other words, all reads and writes that are ReErr will occur, but the following Corollary ensures the low 10 streams remain
equivalent.

Corollary 4.27 (Noninterference) Supposd), 0,0 - 5 : (S, F, A)\C, andiy ~1qy ¢}, andw; ~1o, wi, ands, vy, wq; —*
c, Ha, 1o,ws ands, vj, wi —* ¢/, HS, by, wh, theniy ~ o, vy andws ~4, wh, andc = ¢’.

Proof. Directly by Theorem 4.24 and Lemma 4.26. O

5 Top-level Policies

In this section, we present a system for declaring class-based policies at the top level of a program, meaning the policy will
not be buried in the code. This also provides a simpler means of adding information flow controls to programs, since the
underlying programs will not need to include any explicit flow annotations and so there is no need to define a new language
syntax for an information flow extension.

We use a simple translation-based approach for these top-level policies. Given a valid program and a top-level pol-
icy, the translation produces a new program with security levelgead andwrite expressions ofnputStream and
OutputStream subclasses, ambeclassify (andEndorse) statements on method return values, when downgrading (or
upgrading) is warranted. Policies are declared at the per-method level in a class. Each policy statement fopeoclasss
a translation, where methotis translated tor', which includes the information flow statement.

Policies consist of four types of statementgad policies declare the sets of security labels for an input channel using
the Java representation of anputStream subclassC. Hence, theread method ofC is re-written to perform a low level
read operation with the security labels given by the policy. In a similar mannete policies declare the sets of security
labels for an output channel using the Java representation@ftgrutStream subclass. Therite method is re-written to
perform a low level write operation with the security labels given by the policy. Notice we require bothgheStream
andOutputStream subclasses to have a file descriptor as a (private) field. While the abstract dapseStream and
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class C: (S9,7) whereC <: InputStream andFileDescriptor £d is a (private) field of.
int read() {§} = int read() {returnread g, )(fd); }

classC: (S,I) whereC <: OutputStream andFileDescriptor £dis a (private) field of.
void write(e) {8} = voidwrite(e) {write(g (e, fd);}

class C, method RTm(C %) : Declassify(L) whereRT # void
RTm(C %){§; returne;} = RTm(CX){§; returnDeclassify(e,L);}

class C, method RT m(C %) : Endorse(L) whereRT # void
RTm(C x){§; returne;} = RTm(CX){§; return Endorse(e,L); }

Figure 13: Top-level Policy Translation

OutputStream do not have such a requirement, usable stream classes do, skiche@gsputStream. In the Java imple-
mentation, low-level reads and writes are actually native methods. It is these low-level methods that we are re-defining. (In
actuality, there is some variation in the Java implementations of vagititisam classes. For exampl8ileInputStream

uses an additional private native methatdBytes for low-level reads of multiple bytes. For complete Java, we would need

to define additional translations to satisfy these inconsistencies, though the policy format will remain the same.)

Any sub-classes dfnputStream andOutputStream that do not have a defined policy receive the default policy, de-
scribed earlier. Hence all unspecified input streams are low secrecy and low integrity; the default policy for an output stream
is also low secrecy and low integrity.

Declassify statements specify what labels will be declassified from a method’s return value. Note that although we
provide the ability to specify declassification policies at the top-level, declassification of data requires knowledge of the un-
derlying code to be sure the data is truly diluted enough to warrant declassification, so it must be used viitletaseify
statements can only be applied to methods with netd return types, since it is the value that is returned from the method
that is declassifiedEndorse statements are defined analogously for integrity upgrading. Note that MJ requires that methods
only have one return statement, at the end of the method body. Generalizing the language to other return statements requires
the translation to be applied to any return statement within a method body.

5.1 Example Top-level Policies

The following is a top-level policy for the program for changing passwords in section 2.2.

class SysFilelS:
({high,sys},{high,sys})

class UserIS

read(): Endorse({high})

class PwdFile(S:

({high,sys},{high})

class PwdFile

ChangePwd (String uname,oldpwd,newpwd) :
Declassify({high,sys})

Supposing the program of Section 2.2 had all of the explicit information flow labels, checks, and declassifications re-
moved, to give a regular Java program; if the above policy were then applied to that stripped program, we would obtain the
program presented in Section 2.2 all over again. Even though programs may contain no explicit information flow policy
information, it still may be necessary to rewrite parts of a program for purposes of adding a fine-grained information flow
policy: a unique subclass needs to be defined for each different 10 security policy. This in fact can be viewed as a good step,
because it leads to a more object-oriented information flow policy. The problem is that most programs use a limited number
of classes for input and output operations. For example, file reads wiltilsnputStrean, regardless of the sensitivity
of the file being read.
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5.2 Policies at Code Deployment Time

One of the drawbacks of other information flow systems is the inflexibility of their security policy definitions. Many type
annotations are required, and security levels are added directly to the code. The result is that the programmer is the one
defining the security policy, not the users deploying the code in their specific setting — different deployment settings will have
different security requirements for the same program.

By contrast, our top-level policies are definable at deployment time, since whomever is defining the policy need not have
intimate knowledge of the source code. A drawback to our method is that a new static analysis must be done for each set of
policies. Although performance is less of an issue for a static analysis, we would still like to avoid long run-times, especially
if the policy needs tweaking. We can avert this in the following manner. Variables for labels are automatically generated
to represent input and output channels when typing classes and the program body. The constraint closure is then computed
with these variables. A user-defined policy describes the security level each channel represents, and each variable is replaced
by this security level in the closed constraint set. All that remains is a simple consistency cligClaofl /C constraints,
which will be much faster, since the majority of the cost of the analysis is due to closing the constraint set.

6 Related Work

Static analysis of information flow control systems is a well-studied area [13, 31, 32, 4, 1, 23]; Sabelfeld and Myers present a
survey in [26]. Much of the literature focuses on proving formal results for small programming languages, though there has
been some effort to define working systems. Flow Caml [24] is an information flow extension to Core ML. The Jif system
provides information flow control for full Java [18, 19].

O'Neill et. al. described an information flow security model for interactive 10 using a simple imperative language [21].
They demonstrate that a simple type system can be used to obtain noninterference in an interactive setting involving user
strategies, then expand the model to incorporate nondeterministic choice. Instead of dealing with user strategies directly, our
noninterference result accounts fmy possible set of input streams a user may define, which includes all strategies that a
user may employ. We do not, however, provide nondeterminism, which is a significant portion of their paper. In comparison,
our system provides security for Middleweight Java, a much larger language. This allows their type system to be much
simpler, although they do not describe an |O-based inference mechanism, as we do, and polymorphism is not a concern since
their language does not allow methods. To our knowledge, this is the only other information flow type system that formally
models interactive 10. All other systems consider only a batch input and output model, where all inputs are available prior to
program execution, and outputs are only available upon completion.

Jif [18, 19] is unique as an information flow system since it covers essentially the full Java language, but it lacks a formal
analysis. Checks on 10 channels are intermixed with the multitude of other internal checks within a program (e.g. on function
application, or assignment). Our system is designed to reduce the number of checks to 10 points only. Jif provides parametric
polymorphism and some inference of labels. Programs must be annotated with security labels, including label parameters for
polymorphic classes. This creates a backward compatibility issue, where all code must be re-coded to introduce the proper
annotations. Additionally, method overloading requires subclass types to conform to the types of the superclass.

In contrast, our type system infers all label types and parametric types, removing the need for additional program anno-
tations. Our label types are inferred for existing code, meaning libraries can be used as is, provided the proper labels and
checks are placed on the 10 points in the program. Our concrete class analysis [3, 22, 33] tracks the concrete classes of
objects through the program, allowing us to statically determine a conservative approximation of the runtime object. This
means overridden methods in the subclass can have different types from the superclass, and the type system will correctly
distinguish the information flow controls on the different objects statically.

Banerjee and Naumann [4, 5] prove a batch-model noninterference property for an information flow type system for a
Java-like language using a denotational semantics. They provide an inference extension for libraries that are parameterized by
security levels [29]. This form of polymorphism resembles Jif’s, requiring annotations in the form of label parameters. They
also require polymorphic types for methods must be satisfied by all overriding methods. As mentioned above, we employ a
more implicit polymorphism that requires no program modifications, and we prove soundness and interactive noninterference
using an extensible operational approach.

Flow Caml [24] provides label type inference and parametric polymorphism for an information flow extension to Core
ML. They prove soundness of type inference and a batch-model noninterference property. Our type system is significantly
different, since it is based on an object-oriented language, which presents unique issues, (i.e. inheritance and dynamic
dispatch) that do not arise in a functional language.
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Several works have developed policies for downgrading data. One approach is for the labels to contain downgrading
policies which describe when it is safe to declassify the data, whether after a certain method call, operation, or some other
property [16, 9]. In comparison, our policies for downgrading (and upgrading) are attached to the methods, similar to Hicks
et. al's notion of declassifiers [14]. The method policies describe what labels will be downgraded for data passed to the
method. This mechanism follows the object-oriented philosophy, allowing downgrading at the class and method level, and
showing it in the API.

7 Conclusion

We have presented a static information flow type inference system for Middleweight Java and formally proved its correctness.
Our type system provides a high level of polymorphism to promote 10-based policies and code re-use in multiple security
contexts. We provide a top-level policy description, which automatically inserts information flow controls in a program and
clarifies the policy in the API. Changes to Java programs are therefore minor, as only the underlying 10 operations change.
Type inference and easily identifiable policies are a necessity for a usable information flow system.
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