
A Domain-Specific Programming
Language for Secure Multiparty

Computation

Janus Dam Nielsen

PhD Progress Report

Department of Computer Science

University of Aarhus

Denmark

Abstract

Creating tools with strong security guaranties which exploits the benefits obtained
by combining confidential information without compromising it, is feasible and use-
ful.

In this progress report we document the research carried out so far to establish
the feasibility of constructing useful tools which makes it possible to take advantage
of secret information from multiple sources without revealing the information. We
focus on the Secure Multiparty Computation Language (SMCL) a domain-specific
language for Secure Multiparty Computation (SMC).

We present the area of SMC along with a conceptual analysis highlighting the
central concepts essential for a domain-specific language for SMC and present one
realization of such a language SMCL. SMCL provides high-level abstractions and
strong security guaranties to aid the programmer in producing programs for se-
cure multiparty computation which do not reveal unintended information. We also
provide a comprehensive survey of related work.

We hereby demonstrate the feasibility of constructing a useful programming
language with strong security guarantees for writing SMC programs. Furthermore
we present a number of ideas for future work including further developments of SMC
and ideas for new tools which provide access to confidential information without
compromising it.

iii

Contents

Abstract iii

1 My Thesis 1

1.1 Introduction . 1
1.2 Structure . 2

2 Secure Multiparty Computation as Domain 3

2.1 Introduction . 3
2.2 SMC . 3
2.3 SMCR a Runtime Environment for SMC 3
2.4 Conceptual Analysis . 4
2.5 Conclusion . 5

3 SMCL Language Description 7

3.1 Introduction . 7
3.2 An Example . 7
3.3 Basic Concepts . 8

3.3.1 Clients and Server . 8
3.3.2 Functions and Control . 8
3.3.3 Types . 10
3.3.4 Tunnels . 10
3.3.5 Groups . 11

3.4 The Example Elaborated . 11
3.5 Implementation . 12
3.6 Efficiency . 12
3.7 Conclusion . 13

4 Security in SMCL 15

4.1 Introduction . 15
4.2 Adversary Traces . 15
4.3 Timing and Termination attacks . 17
4.4 Hoistability . 20
4.5 Semantic Security . 22
4.6 Conclusion . 23

5 Related Work 25

5.1 Introduction . 25
5.2 Languages for SMC . 25
5.3 Language-Based Security . 25

5.3.1 Noninterference . 26
5.3.2 Declassification . 26
5.3.3 Timing Attacks . 27

v

5.4 Information-Flow Aware Languages 28
5.5 Validation of Cryptographic Protocols 29
5.6 Conclusion . 29

6 Future Work 31

6.1 Introduction . 31
6.2 SMCL . 31
6.3 Secure Multiparty Computation for

Relational Databases (SecRas) . 32
6.4 SVM . 33
6.5 SPL . 34
6.6 Conclusion . 34

7 Conclusion 35

Bibliography 37

A Syntax and Terminology 41

vi

Chapter 1

My Thesis

1.1 Introduction

Creating tools with strong security guaranties which exploits the benefits obtained
by combining confidential information without compromising it, is feasible and use-
ful. This progress report provides a status on our research into testing this thesis
and our plans for future work. The thesis is relevant in an economic and a scientific
perspective.

Information is a resource of huge importance and economic value to individuals,
public administration, and private companies. This means that the confidential-
ity of information is crucial, but at the same time significant value can often be
obtained by combining confidential information from various sources. Overcoming
this fundamental conflict between the benefits of confidentiality and the benefits of
information sharing leaves a huge yet unused potential for solving many problems of
considerable economic value, like secure auctions where no information beside the
final price is revealed, or information mining without revealing sensitive data. The
combination of confidential information without revealing it has been know to be
possible for quite some time using the technique of secure multiparty computation.
However no tools have emerged which have provided any of the potential benefits.
This is the challenge we have undertaken, to develop such tools.

Our first step towards providing tools which deliver the advantages of exploiting
confidential data without revealing them is a domain-specific programming lan-
guage [51] based on SMC. By providing a domain-specific language we allow people
with a very limited understanding of SMC to solve problems like auctions and fi-
nancial benchmarking using SMC. In this way we open for the easy development of
new tools which exploit confidential information without revealing it.

We present the Secure Multiparty Computation Language (SMCL) a domain-
specific language for SMC. The development of SMCL is based on an analysis of
the SMC domain and experience with previous applications based on SMC. The
language is carefully designed to provide high-level abstractions and strong security
guaranties. The abstractions makes the application of SMC to many problems like
auctions and benchmarking easy for newcomers to SMC. Security is a central issue
in SMC, no information may be leaked unintended, and we identify and prevent a
range of attacks including implicit flow and timing attacks. By applying a concept
of checked annotations we raise the programmers awareness of which information
is released.

Creating a programming language is only a first step and we envision many other
tools which may provide advantages in various fields. In Chapter 6 we will present
some ideas for future work mainly focusing on a idea for a database system based
on secure multiparty computation, where organizations may jointly query their

1

2 Chapter 1. My Thesis

collective databases for interesting statistics and information without compromising
their individual information.

In this report we are going to be using the term “secret” a lot, with a number
of different semantics. The default meaning will be the most general, an entity is
secret if it should not be revealed for some reason. An entity may also be “secret”
if it is not known by some person, client, user, or organization of which we speak.
The meaning should clear be from the context, if not we will make the meaning
explicitly clear.

We expect the reader to be familiar with static analysis and basic cryptogra-
phy on a level equivalent to the knowledge taught in most undergraduate courses
on static analysis (or compiler construction) and cryptography [47]. Furthermore
we expect the reader to have a rudimentary understanding of secure multiparty
computation [17] and language-based security [40].

1.2 Structure

This progress report is mainly focused on our work on the SMCL language, and is
thus organized to give a firm introduction to the language. In Chapter 2 we give an
analysis of secure multiparty computation as domain and present the key linguistic
concepts we have identified in the domain. Chapter 3 describes SMCL. Security of
SMCL programs is discussed in Chapter 4 along with language semantics and we
conclude our treatment of SMCL in Chapter 5 where we present and discuss various
work related to SMCL. We conclude the report with an overview of our ideas for
future work in Chapter 6.

Chapter 2

Secure Multiparty Computation as

Domain

2.1 Introduction

In this Chapter we introduce Secure Multiparty Computation (SMC) as domain.
We give a short introduction to SMC and SMCR a runtime for SMC. Based on this
we provide a conceptual analysis to determine the central concepts of SMC.

2.2 SMC

The seminal example of SMC is the Millionaire’s problem which involves a number
of millionaires who want to find out which is richer, but all of them refuse to disclose
their net worth. A conventional solution would involve an external trusted third
party that could perform the comparisons and report the result. Using SMC it
is possible to find the richest without involving a trusted third party. Yao [56]
presented a solution for two millionaires that does not require an external party or
any degree of trust between the two parties, and in Section 3.2 we present a solution
to the Millionaire’s problem expressed in SMCL.

A secure multiparty computation involves a number of parties that do not trust
each other but still want to collaborate in performing a computation. In the abstract
version, we have n parties P1, . . . , Pn that wish to jointly compute the value of an
integer function f(x1, x2, . . . , xn), where party Pi only knows the input value xi

which must be kept secret from the other parties.

2.3 SMCR a Runtime Environment for SMC

SMCR (a further development of the system used in [11]) enables such computations
to take place by allowing each party to make their input values secret, exchange
them, and perform joint operations on such values. The final value of the function
evaluation can only be revealed by collaboration from all parties.

Under standard cryptographic assumptions it can be proven that no party can
obtain any extra information. SMCR is robust in the sense that the secrecy can
only be compromised if a certain fraction of the parties decides to collude in pas-

sive corruption, where they pool all their secret values but continue to follow the
protocol. The standard threshold is n/2+1 parties, but (more expensive) protocols
exist where the threshold is n − 1, i.e. where each party trusts no other. SMCR is
currently not robust against active corruption where the parties choose to sabotage
the computation by not adhering to their individual part of the protocol, but such

3

4 Chapter 2. Secure Multiparty Computation as Domain

Clients Server

Figure 2.1: Conceptual and concrete view of clients and server

behavior is guaranteed to be detected and some (even more expensive) protocols
can even tolerate a threshold of n/3 such parties.

SMC computations will generally involve complex protocols that involve many
rounds of communication between all parties [11]. Thus, simple operations become
several orders of magnitude more expensive than their non-cryptographic counter-
parts. Technically, the SMCR runtime is a Java API with support for public key
encryption, secret sharing, primitive SMC operations, and distributed deployment
and communication. We will not discuss the cryptographic challenges and techni-
calities in realizing the SMCR any further, but refer to [11].

2.4 Conceptual Analysis

Based on experiences with current and earlier versions of SMCR [12,26,48], we can
identify a number of concepts that are used in describing realistic SMC computa-
tions.

First, a practical application will typically involve a number of clients that pro-
vide the inputs and receive some computed results. The computation itself is per-
formed by a server which is conceptually a single machine that is realized through
a number of separate parties that perform the SMC computations by running iden-
tical copies of the code in lock-step, see Figure 2.1. In a realistic example, involving
the Danish commodities market for sugar beets, there are around 3000 farmers as
clients and the server would be implemented by parties representing the buyers, the
sellers, and a Government office. In general, there will be (possibly overlapping)
one-to-many mappings from the various kinds of clients and the single server to
physical machines.

Note that the clients are in principle unrelated to the parties mentioned in
Section 2.2, as every secret client input is represented secretly on each of the server
parties. Also, from the programmer’s point of view, the server is a single entity.

Clients communicate with the server only and have no incentive to communicate
directly with each other, since they generally do not trust each other. Potential
attacks based on clients communicating directly and not through the server are
captured in the adversary’s capabilities as described in Chapter 4.

The division into clients and a single server separates public computations from
secure computations respectively, in the sense that SMC computations are per-
formed only on the server. Note that we actually have three kinds of values (and
corresponding computations):

• secret values that reside on the server and are owned jointly by the server
parties;

• public values that reside in plain view on the server; and

2.5. Conclusion 5

• private values that reside only on a single client.

Public and private computations are performed on ordinary values with a standard
runtime representation. A secret value has a different runtime representation con-
sisting of secret shares residing on the machines that physically realize the server
parties, and the execution of primitive operations on such values will typically in-
volve complex protocols with several rounds of communications. The server will
have the ability to explicitly open a secret value which requires collaboration from
all server parties. Careful limitations must be placed on the use of secret values
as conditions in the control flow to avoid attacks that observe public side-effects of
computations.

Clients and the server require secure and flexible communications: In some
scenarios, a client only submits an input and does not need to wait for the result,
whereas in other scenarios the interaction is more complex and ultimately requires
a client to be connected to the server for the duration of the computation. For
these purposes we identify the need for tunnels for asynchronous communication
and remote procedure calls for synchronous communication.

The classical SMC applications compute a single integer function, which is sim-
ilar to a straight-line program. While this is still at the core of large-scale ap-
plications, we will also allow the server to perform computations on public values
and to perform iterations. As a motivating example we may consider the use of
second-level protocols where a server repeatedly performs a sequence of secure auc-
tions until some market equilibrium has been attained. Conceptually, the server
will execute Turing-complete programs in which the data is separated into public

and secret types. However, computations that involve only secret values still only
corresponds to loop-free programs.

While the underlying cryptographic protocols are known to be provably secure, it
is still a challenge to write reliable SMC applications, since confidential information
may be propagated along non-obvious paths and may be leaked in subtle ways,
thus an unbounded number of potential attacks exists. Implicit flows and timing
attacks are classical examples [19, 28]. As another example, consider a variable x
containing a secret integer value. Revealing the values of x%10 and x/10 is sufficient
to effectively reveal x itself. Thus, programmers must keep track of such value flow
dependencies, which turns out to be a tedious task. However, since any non-trivial
application is bound to reveal something about its input, the programmer must
use careful judgment to determine what is acceptable. Thus, we are looking for a
concept of checked annotations ensuring that a programmer has been made aware
of all potential information leaks and has explicitly considered them.

2.5 Conclusion

To conclude, we have identified the following key concepts within the area of SMC
programming:

• Architecture: The client-server view forms the fundamental computing paradigm
of SMC, providing a separation between private, public, and secret computa-
tions and between logical and physical parties.

• Values : Values are either secret, private, or public, which also determines their
runtime representation and separates the efficiency of primitive operations by
several orders of magnitude.

• Communication: Clients communicate with the server only, either by using
tunnels or by reacting to remote procedure calls from the server.

6 Chapter 2. Secure Multiparty Computation as Domain

• Expressiveness : A general SMC framework must be able to perform any com-
putation; i.e., it must be Turing-complete on private and public values.

• Security: Writing reliable SMC programs that do not leak unintended infor-
mation, is a tedious and error-prone task that can benefit from automated
assistance.

Chapter 3

SMCL Language Description

3.1 Introduction

Based on the key concepts identified in Chapter 2 we have designed a novel language
called the Secure Multiparty Computation Language (SMCL). It is a high-level,
domain-specific language [51], which allows programmers to express concepts such
as clients, server, and operations on secret values directly using a special syntax
and control structures tailored to the domain of SMC.

SMCL enjoys the classical advantages of being a domain-specific language as
opposed to being a library API for a general-purpose language:

• The specialized syntax of SMCL closely matches the problem domain.

• A domain-specific compiler may generate more efficient code for SMCL.

• It is possible to perform domain-specific analyses that consider global prop-
erties of SMCL programs and provide stronger safety guarantees.

We start by introducing an example which gives a quick introduction to the look
and feel of SMCL and then proceed to a more in-depth presentation of the basic
concepts and continue with an elaboration of the example. Before concluding we
shortly discuss the implementation of SMCL.

3.2 An Example

We present an example program written in SMCL in Figure 3.1, which shows an
implementation of the solution to the Millionaires’ Problem, generalized to an ar-
bitrary number of millionaires.
The Millionaires client describes the actions of a millionaire and the Max server cal-
culates and reports who is the richest. Each Millionaires client has a main function
that initiates its execution. The other functions may either be invoked by the client
itself (as in line C6) or by the server as a remote procedure call (as in line S18). In the
example, each client submits its net worth via the netWorth tunnel (line C10). Tunnels
are described in more detail in Section 3.3.4.

The server declares that Millionaries may belong to a group named mills (line S2).
The group is processed in the main function of the server which describes the SMC
application that is executed jointly by all the server parties. The Max server uses two
secret variables max and rich to retain the current highest net worth and the identity
of the corresponding millionaire (lines S6 and S7). It then proceeds by using a for

iterator to process each client in turn (line S9), updating max and rich if required. The
update is guarded by the secret condition of the if command (line S11). To finish,

7

8 Chapter 3. SMCL Language Description

C1: declare client Millionaires:
C2:
C3: tunnel of sint netWorth ;

C4:
C5: function void main(int[] args) {

C6: ask();
C7: }

C8:
C9: function void ask() {

C10: netWorth .put(readInt ());

C11: }
C12:

C13: function void tell(bool b) {
C14: if (b) {
C15: display ("You are the richest !");

C16: }
C17: else {

C18: display ("Make more money!");
C19: }

C20: }

S1: declare server Max:
S2: group of Millionaires mills;
S3:

S4: function void main(int[] args) {
S5:

S6: sint max = 0;
S7: sclient rich;

S8:
S9: for (client c in mills) {

S10: sint netWorth = c.netWorth .get();

S11: if (netWorth > max) {
S12: max = netWorth ;

S13: rich = c;
S14: }
S15: }

S16:
S17: for (client c in mills) {

S18: c.tell(open(c==rich|rich));
S19: }

S20: }

Figure 3.1: The generalized Millionaries’ Problem in SMCL

the server reports to each client a boolean indicating whether or not that client is
the richest. The open operator downgrades a value from secret to public.

3.3 Basic Concepts

We now present the basic concepts of SMCL and the role they fulfill within SMCL,
how they are declared and what restrictions are put on their use.

3.3.1 Clients and Server

There is a clear distinction between the role of the server and the clients. The
server does the computation and has no input or output besides communication
with the clients. Clients take the input from the user, process it, provide it to the
server, receive output from the server, and display it to the user. This can go on
any number of times.

The server and client concept is central in the SMC world, it allows a wide
range of scenarios from the paranoid self-trust scenario where the participants do
not trust each other, to the more liberal scenario where some participants trust a
specific party to do their part of the computation. Clients are declared using the
reserved words declare and client followed by the name of the client and the
client body. Similarly the server is declared using the reserved words declare and
server followed by the server body. The client and server bodies are declared in the
same way, as a number of functions interleaved with a number of field declarations.

3.3.2 Functions and Control

Functions

The server and clients may declare a number of functions, however at least one
function, the void main(int[] args) function must always be present. Functions
may return any kind of values and may take any kind and any number of arguments.
Functions are declared using the reserved word function, prefix by a return type
and followed by a comma-separated list of argument declarations, and finally a block
command. An argument declaration is a type followed by a variable, the variable
has scope in the entire block command, but may be shadowed by other variable
declarations. Functions may be recursively defined.

3.3. Basic Concepts 9

Functions declared in a client may be invoked from the server. If the return
type is secret it is treated as if the return type is public, if invoked from within the
client. Otherwise the transmitted value is encrypted, and split into secret shares
for the server parties.

In addition to user defined functions there are two primitive functions for in-
put/output. The readInt and display functions are rudimentary primitives for
communicating with the person controlling the client (in a future version, this will
happen through a browser with support for appropriate GUI primitives). A third
primitive function, open(e|x,y,z) is provided for declassification of secret values to
public values. The operator computes and opens the secret expression e and declares
that the programmer recognizes the simultaneous indirect leaking of some informa-
tion about the secret variables x, y, and z. A program cannot be compiled unless it
is well-annotated, meaning that the programmer has recognized all potential leaks
(see Section 4.5 for further details).

Restrictions No recursion with secret stop conditional. No calls to functions with
side-effects within conditionals guarded by secret values. Clients may no invoke
functions defined outside the client.

Variable declaration

A variable is declared by first declaring its type and then its name. The name can
be any Unicode character, but must begin with a letter. Variables may be declared
by the server or client, as a field which is in scope throughout the server or client,
but may be shadowed. Variables may also be declared in block-commands, with
scope throughout the block, but may be shadowed.

While-commands

A while-command consists of the reserved word while followed by an expression
(the condition) and a block command, for example,

int i = 7;
sint x = 84;
while (i < 42) {

x += i;
i++;

}

Restrictions No while loops may occur with secret typed condition. No while

loops may occur inside conditionals guarded by secret values.

For-commands

A for-command is written with the reserved word for and then a variable decla-
ration, followed by the reserved word in, followed an expression which evaluates
to a group, and finally a block-command. The declared variable is in scope inside
the block-command and draws a new value from the group in each iteration of the
for-command. An example is:

S17: for (client c in mills) {
S18: c.tell(open(c==rich|rich));

S19: }

Restrictions Only groups can be iterated using for-commands.

10 Chapter 3. SMCL Language Description

If-commands

An if-command is constructed from the reserved word if, a conditional expression
followed by a command and an optional occurrence of the reserved word else along
with another command, for example,

S11: if (netWorth > max) {
S12: max = netWorth ;

S13: rich = c;
S14: }

Restrictions No I/O inside conditionals guarded by secret values. No assign-
ments to public non-locally declared variables inside conditionals guarded by secret
values. No function calls to functions which have side-effects inside conditionals
guarded by secret values. No return commands inside conditionals guarded by
secret values. No while loops inside conditionals guarded by secret values.

3.3.3 Types

The SMCL language supports the primitive datatypes int and bool. The identities
of clients also form a datatype client. All of these have secret versions, denoted
sint, sbool, and sclient. The types sbool and sclient are represented as secret
integers at runtime, because the SMCR only manipulates public values and secret
integers. A secret client is a client whose identity (IP-address) is secret shared; the
total number of clients is always public. Furthermore, it is possible to construct
records and multi-dimensional arrays of such primitive datatypes. Private, public,
and secret datatypes support the same standard primitive operations, and the type
system ensures that results are secret unless all arguments are public (this may
involve implicit conversions to the runtime representation of secret values).

3.3.4 Tunnels

A tunnel is a mean for asynchronous communicating between a client and the server,
and is declared in clients only. A tunnel is declared using the reserved words tunnel
and of, followed by the type of values that can be placed in the tunnel, and termi-
nated by the name of the tunnel, for example,

C3: tunnel of sint netWorth ;

A tunnel may be declared to contain data of any primitive type, int, sint, bool,
sbool. When a client sends a secret value to the server, the transmitted value is not
only encrypted, but it is also split into secret shares for the server parties, matching
the runtime representation of secret values. When the server sends a secret value to
a client, all server parties send encrypted version of the secret shares which are then
assembled on the client to yield a private value. Public values sent are encrypted
but not secret shared. A tunnel is equipped with functions for sending, put, and
retrieving, get data and for inquiring the emptiness, isEmpty of the tunnel.

Currently a tunnel is only working as long as the client and the server are
running. That is if one of them terminates, any information in the tunnel is lost and
the remaining process is likely to terminate abruptly. In a future version we would
like to introduce various different kinds of persistent tunnels, e.g. an XML-tunnel,
database-tunnel, or a plain file-tunnel, where all values are serialized and stored
persistently. The values can be store in different places. In a central computer if all
values are encrypted using the public keys of the server parties. Another possibility
is to store the values for each party at a computer owned by the organization running
the server party.

3.4. The Example Elaborated 11

client: Millionaires
gates.microsoft.com 4001 0x85FFA494 mills
ebenezer .scrooge .org 4001 0x5532BB72 mills

ingvar.ikea.com 4001 0x2333DDCC mills
larry.google.com 4001 0x631DE7F2 mills

sergei.google.com 4001 0x7587B5AF mills

server
gates.microsoft.com 4000 0x857722B7
smcl.brics.dk 4000 0xF471BCA7

survey.fortune .com 4000 0x66A7FF35

Figure 3.2: A map identifying the concrete participants

Restrictions Only primitive types can be sent through a tunnel.

3.3.5 Groups

A group is a collection of clients. Currently a group may only contain clients of
the same kind, they have to be homogeneous. Groups may only be declared in the
server. A group is declared using the reserved words group and codeof followed by
the name of the clients and the name of the group, for example,

S2: group of Millionaires mills;

The members of a group are specified externally by a mapping supplied to
the SMCR runtime describing the concrete participants involved during runtime.
Figure 3.2 shows a hypothetical example. Each participant is identified by an IP
address, a port number, and a public encryption key. Note that the same machine
may serve both as a client and as a server party. Clients may further be listed as
belonging to a number of groups, in this case only the single group mills containing
all clients.

Restrictions Only homogeneous groups.

3.4 The Example Elaborated

1: for (client c in mills) {

2: c.tell(open(c==rich|rich));
3: }

(A) public booleans, public receivers

1: for (client c in mills) {

2: c.tell(c==rich);
3: }

(B) secret booleans, public receivers

1: for (sclient c in mills) {

2: c.tell(open(c==rich|c,rich));
3: }

(C) public booleans, secret receivers

1: for (sclient c in mills) {

2: c.tell(c==rich);
3: }

(D) secret booleans, secret receivers

Figure 3.3: The combinations of server knowledge

In generalizing the original Millionaries’ Problem from two to many millionaires,
we have in our solution chosen that while the net worth of each millionaire remains
secret, it is actually public information which millionaire is the richest, see Fig-
ure 3.3(A). In a stricter version of the generalized problem we could also keep this
information secret and only allow each millionaire to know his own status. In our
program, we would then change lines S17 through S19 into the lines of Figure 3.3(B).

12 Chapter 3. SMCL Language Description

Here, we do not open the secret boolean before it is sent to the client. This means
that the server parties send their shares representing the value of type sbool to the
client which combine the shares into a value of type bool. An equivalent effect can
be achieved by changing the iterator c to have type sclient and thus keep it secret
while revealing the comparison result, Figure 3.3(C). Consequently, the invocation
c.tell(...) is now implemented by sending to all clients the same message that can
only be understood by the intended recipient (function invocations with illegible
arguments are ignored by the clients). Since c is now also secret, the open operation
must also recognize responsibility for compromising it (ever so slightly). In a yet
stricter version, we may change the three lines into the lines of Figure 3.3(D).

For this particular example, however, this refinement makes no difference (since
the server always sends one true value and a number of false values).

3.5 Implementation

SMCL is implemented by a prototype compiler (SMCLc) which produces Java code
based on the SMCR API. A Java program is created for each kind of client and for
the server. Deployment scripts can be used to install and start applications. Cur-
rently, all communication takes place through a coordinator process (that only sees
encrypted information). The coordinator could itself be distributed using broadcast
protocols.

3.6 Efficiency

Our experiences with SMCR show that Secure Multipart Computations are feasible
in practice. However, secret computations are quite expensive as they are based
on complex protocols that involve several rounds of communications between the
server parties. To illustrate this, we consider a program which computes the sign
of a polynomial given coefficients a, b, and c and a data point x. We provide three
versions of this program shown in Figure 3.4. To enable proper timings, the client
network communications have been replaced with simple assignments. The ideal
version keeps everything secret until the output is revealed. The pragmatic version
has x as a public value and chooses to allow the value of the polynomial to be public
as well as its sign. The public version merely performs an ordinary computation.

In Figure 3.4, we show the timing results from running the compiled versions of
these programs on SMCR with 3, 5, and 7 server parties distributed on an equal
number of Intel P4 1,8 Ghz with 512 MB of memory (the timings are for one execu-
tion of the programs and do not include the time for preprocessing, which is a part
of the protocols that SMCR uses for multiplications and comparisons). The time
needed for preprocessing depends on the number of multiplications done in the com-
putation. The SMCR can be instructed to preprocess a number of multiplications
and furthermore use idle time to maintain a pool of preprocessed multiplications.
The numbers 1, 2, and 3 denote the threshold that is used in the respective case.
Our conclusion is that SMC primitives are expensive but feasible. The slowdown
from the public to the pragmatic version is significant but many practical applica-
tion exists where the slowdown is acceptable. An example is offline auctions where
ample time is available for executing the auction. The slowdown from the prag-
matic to the ideal version is stunning, but it is to a large extent an unavoidable
price for obtaining the full invulnerability of our security properties. In practice,
applications will be written in the pragmatic style—making a convincing case for
automated proof support like our simple annotation language. It should also be
noted that there are still many opportunities for optimizing SMCR.

3.7. Conclusion 13

sint x = 17;
sint a = 42;
sint b = -5;

sint c = 87;
sint p = a*(x*x) + b*x + c;

sint sign = 0;
int output ;

if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = open(sign|p);

Ideal version

int x = 17;
sint a = 42;
sint b = -5;

sint c = 87;
int p = open(a*(x*x) + b*x + c|a,b,c);

int sign = 0;
int output;

if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign;

Pragmatic version

int x = 17;
int a = 42;
int b = -5;

int c = 87;
int p = a*(x*x) + b*x + c;

int sign = 0;
int output ;

if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign;

Public version

ideal pragmatic public
(3,1) 12 sec 30 ms <1 ms
(5,2) 17 sec 65 ms <1 ms
(7,3) 30 sec 132 ms <1 ms

Figure 3.4: Three versions of the polynomial program and their timing results in
SMCR

The SMCL compiler employs a range of static analyses to boost efficiency, and
the timing results clearly show that the potential payoff can be dramatic. These
analyses are all simple instances of the monotone framework [16] based on funda-
mental analyses described in [38], but they are interesting because they solve im-
portant domain-specific problems and thus illustrate the benefits of using a domain-
specific language.

3.7 Conclusion

We have described the Secure Multiparty Computation Language, a high-level,
domain-specific language, which allows programmers to express concepts such as
clients, server, and operations on secret values directly. We have discussed the
basic concepts of SMCL, how they are connect, their restrictions and use. We have
presented the seminal Millionaire’s problem in SMCL and how it may be generalized
in different ways. Furthermore we have show results witnessing the feasibility of
SMCL and SMCR.

Chapter 4

Security in SMCL

4.1 Introduction

As discussed in Chapter 5, security requirements are many and multidimensional.
Also, the problems to be considered depend heavily on the capabilities that an
adversary are assumed to possess [14, 29].

For SMCL, we are able to obtain quite strong security properties in the face
of powerful adversaries due to two properties: 1) the use of strong cryptographic
protocols in SMCR , and 2) a careful design of SMCL and its semantics.

To handle many specific but important modes of attack in a common framework,
we will assume an unusually strong model of the adversary, which is able to observe
the physical state of the server: At every clock cycle the entire layout of memory
and the instruction pointer are available for inspection. However, the secret values
are not visible to any adversary (unless more than the given threshold of the server
parties have been corrupted in which case no guarantees are given) and neither are
the private values of the clients. We assume that clients cannot corrupt other clients
but clients may collaborate, e.g. share information. This is a strong adversary who
is capable of many common attacks including e.g. simple eavesdropping and more
complex attacks which are a function of the program trace, like interference, and
timing [23, 28].

To formally define these notions, we have provided a small-step operational
semantics of SMCL programs which we will describe in Section 4.3. We consider
only well-typed programs as described in Section 4.4, which have the simple property
that variables with public types can never contain secret values [46, 52, 54].

4.2 Adversary Traces

To formalize our security guarantees, we introduce a notion of adversary traces,
which contain the information that is made available to an adversary. Such a
trace consists of the entire sequence of system states (configurations in the small-
step semantics) that is encountered during the evaluation of a program with three
restrictions:

• secret values on the server and in tunnels are masked out;

• the private states of clients are not available; and

• no open operations are performed.

15

16 Chapter 4. Security in SMCL

The capabilities of an adversary are then limited to observing these traces. We will
use an illustration to show an adversary trace T from a state with public values P
and secret values S to one with public values P ′ and secret values S′:

P

S

P’

S’T

Also, we use an illustration to show a transition where a part S1 of the secret state
is made public using the open operation to become the public state P1:

P

S

P

S

S

P1

2

1

2

A complete computation that occasionally makes use of the open operation for
downgrading is then described by an alternating sequence of adversary traces and
these transitions:

The security guarantees of well-typed SMCL programs can now be expressed through
two properties that will be ensured by the compiler.

The Identity Property

The identity property states that whenever we have the two situations

P’

S’

S’T

T1

2
2

1

P

S1

P

S2

P’’

then T1 = T2 (and thus also P ′ = P ′′). This is a strong property stating that
computations from initial states with the same public values will have identical

observable traces from the point of view of the adversary. This implies the property
of noninterference, which normally only requires that the resulting public values
must be equal [40].

This property implies that SMCL programs are immune to a range of attacks
that attempt to exploit information leaks, namely all of those where the leaked
information is a function of the adversary trace. This includes timing attacks as
discussed in [10, 28] and also more exotic attacks, e.g. based on measuring radi-
ation from the server [13]. SMCL programs are even immune to stronger timing
attacks, since we not only assume that computations have the same overall duration
regardless of the secret values, but also that the instruction pointer of the server
is independent of any secret conditionals at any point in time. Invulnerability to
attacks of course hinges on the same properties holding for the basic operations on
secret values, where the protocols are independent of the argument values.

4.3. Timing and Termination attacks 17

The Commutativity Property

The commutativity property states that open operations and computations commute:

T1

P1 P’1

P’

S1

P P’

S’1

T2

P

This property evidently expresses that the secret representation is sound. Note
that T1 and T2 will in general clearly be different, but the commutativity property
implies that T1 terminates exactly when T2 does.

Ensuring Security Properties

Validity of the two security properties hinges on two properties of the SMCL lan-
guage:

• a runtime semantics where both branches of an if command with a secret
conditional always terminate and are always evaluated in sequence; and

• static analyses of well-typed SMCL programs to verify that such branches
have no public side-effects.

4.3 Timing and Termination attacks

In this section we describe how the semantics of SMCL are carefully crafted to
prevent timing attacks and furthermore we describe how termination attacks are
prevented.

Timing attacks exploits the information signaled through the time at which an
action occurs or the time an action takes to complete. Similar, termination attacks
exploit the information signaled through the termination or non-termination of
a computation. Differences in execution time of an SMCL program may occur as
result of the execution of a conditional command where one branch takes longer than
the other. Or when a computation is redone as in while loops or after a conditional
command, where the same computation was done in either branch (cache-timing
attack [10]). Termination attacks are only relevant in connection to while loops
and recursive functions.

By timing the execution of a secret guarded conditional (or while loop) with
standard semantics an adversary may reveal the secret information. We cannot of
cause allow this possibility, thus a solution is needed. A solution cannot be based
on running either of the branches since we assume the adversary has access to the
instruction pointer. This observation also rules out the solution by Agat [3] where
branches are cross-padded with dummy instructions. However the approach by
Agat can be taken to an extreme which is the execution of both branches in the
store obtained after evaluating the condition of the conditional no matter what the
condition is. Then if we combine the results of the two branches in the end based
on the condition we get the correct result as if only the right branch had been
evaluated.

18 Chapter 4. Security in SMCL

To formalize this we now introduce the formal semantics of SMCL. We will be
needing a good deal of terminology which we introduce as we go along. A complete
list can be found in Appendix A.

SMCL is a concurrent imperative language where a number of clients contribute
data to and consume data from a server. Concurrency means that the server and
clients may be executing at the same time. The server and clients may be executed
with an arbitrary interleaving of commands and expressions, and only need to syn-
chronize for communication. SMCL consists of a number of functions containing
commands, which are executed sequentially. Commands may contain expressions
which potentially have side effect on the state of the program.

An SMCL program consists of a server, σ and a set of clients, χ. The execution
of an SMCL program is modeled using a number of transition systems with config-
urations γ ∈ Γ, terminal configurations T ⊆ Γ, and transition relation ⇒⊆ Γ × Γ.
The server and clients are both evaluated using the concepts of commands and ex-
pressions, but the possible computations and semantics are different on the server
and the clients. We model this difference by using different transition systems for
client-side expressions, client-side commands, server-side expressions, and server-
side commands. The transition systems are fairly standard and we will not go into
detail with these transition systems here, but refer to [37], the non-standard parts
will be discussed below to some extent. The transition systems are used in the SC

transition system described below. The SC system is an overall system describing
the interaction and communication between the server and clients.

ΓSC = Γ1
COMcl

× . . . × Γn
COMcl

× COMsv × Statesv

∪ Γ1
COMcl

× . . . × Γn
COMcl

× Statesv

TSC = T1
COMcl

× . . . × Tn
COMcl

× Statesv

A configuration in the SC transition system consist of a number of configurations
from the respective transition systems, one for each client process and one for the
server. We write configurations, G ⊢ ‖i∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉, in the SC system as
a number of concurrent configurations for the clients which are in the set χ, similar
to [50], and an additional configuration for the server. κi : C means that client κi

is about to evaluate the command C and similarly for the server, σ.
We define the Global client store G in Figure 4.1 to be a tuple containing the

client stores, κi.S, and all the tunnels, κi.θj . We write G[O 7→ U] for the store G
where the component O is updated to hold U . The server and each client, ξ, have
a local store, ξ.S defined as a map from variables to values: ξ.S = V ar 7→ Value.
The local stores also work as environments. We will not describe it further since it
works as one would expect. A preliminary store is a store when the computation
begins. The preliminary local store is initialized with bindings from function names
to function bodies. Also bindings from field variables to an initial value which
depend on the type of the field are added. From here on fields are treated as
ordinary variables which may be shadowed in the current scope.

G : [κ1.S, . . . , κn.S, κ1.θ1, . . . , κ1.θj , . . . , κn.θ1, . . . , κn.θk]

Figure 4.1: The global client store of an SMCL computation

The transition rules of the SC system are described in Figure 4.2 where the first
rule describe how clients are evaluated and the second rule describes how the server
is evaluated. In this way a client or server may be evaluated one step using the

4.3. Timing and Termination attacks 19

appropriate transition system. We will not present all of the rules here but focus
solely on the evaluation of conditionals on secret values, because they are the focus
point of timing attacks. The rest are mainly standard.

G ⊢ 〈κi : C〉 →COMcl
〈κi : C′〉

G ⊢ ‖i∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉 →SC ‖i∈χ 〈κi : C′〉 ‖ 〈σ : C, σ.S〉
(client-eval)

G ⊢ 〈σ : C, σ.S〉 →COMsv
〈σ : C′, σ.S′〉

G ⊢ ‖i∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉 →SC ‖i∈χ 〈κi : C〉 ‖ 〈σ : C′, σ.S′〉
(server-eval)

Figure 4.2: One-step evaluation of an SMCL computation

We present a part of the semantics related to evaluation of condition on secret
values because it is essential to ensure security from timing attacks [3]. Timing
attacks may be possible if the computation of the two branches does not take the
same amount of time. Furthermore we operate in a scenario where the code is
executed on an untrusted computer, thus an adversary may inspect the program
pointer and compare values in registers and memory and maybe discover some
correlation he should not have.

An adversary who is in control of the program pointer knows which branch is
being evaluated thus we must develop a scheme that lets us compute the correct
result, but in a way that does not reveal which branch was taken in a conditional.
The solution is based on the idea of conditional assignment : x = b*y+(1-b)*z. The
variable x is assigned the value of y or z based on the value of condition b. Applying
this technique after the execution of both branches in the same initial store, where
y and z are the values of x resulting from the then and else branch respectively
gives the correct value. Furthermore it removes timing attacks as a security threat
if values are immutable and if two representations of a secret value are not equal.
Fortunately the two last requirements are properties common in secure multiparty
computation and thus already present in SMCR.

In Figure 4.3 we present two of the seven transition rules concerning evaluation of
conditional commands on secret values. The other 5 rules are mainly concerned with
evaluation of the command in each branch to obtain the forms shown in Figure 4.3
and will not be presented here. We use v to denote a secret value (we cannot see
it, it is inside a box).

The rule If-sbool-else is the result of evaluating command C1 as far as possible. C1

has been evaluated in a local store, Uthen which is created as a copy of the original
store S which is threaded along. Rule If-sbool-else says that in order to evaluate C2, we
should evaluate C2 with the store S (effectively a copy of S) in the server-command
transition system. The evaluation results in a store S′ which we save as part of the
new state of the conditional as the store Uelse. The evaluation of C2 now proceeds
in a number of steps using the store Uelse, and eventually the system end up in a
configuration as the one in rule If-sbool-phi. The last step of evaluating a conditional
command is the combination of stores from each branch. The result is a store
σ.S′ which is the same as the original store S but updated for each variable which
has been assigned to during the execution of a branch. We update a variable x

by looking up x in both Uthen and Uelse and combine the values using conditional
assignment. If a variable has not been updated in a branch its value is unchanged
compared to the original store and conditional assignment ensures that the result
is correct.

20 Chapter 4. Security in SMCL

Evaluation of both branches removes timing attacks because the execution time
is independent of the condition. Cache-timing attacks are also eliminated because
which branch gets executed is independent of the condition, and thus the state of
the cache contains no information about the value of the condition.

Evaluation of both branches is however not sufficient to ensure the security prop-
erties. Since we always execute both branches, we need to make sure that they will
both always terminate. To this end, the SMCL compiler performs a static analy-
sis that conservatively checks the branches for termination (using simple syntactic
criteria in the present implementation). Furthermore no return commands, I/O, or
function calls with side-effects are not allowed.

while loops on secret conditionals and calls to recursive functions which recur
based on secret conditions, cannot be treated in the same way as conditionals on
secret values. In conditionals we only needed a finite number of additional stores,
in a loop or recursion and unbounded number is needed. Currently we can see no
better alternative than to disallow while loops and recursive functions based on a
secret condition. Iteration through a group of clients is possible using a for iterator,
and if the identities of the clients are secret then the iteration is performed through
a secret random permutation of the clients computed at the time of use to avoid
revealing any secret information.

G ⊢ 〈C2, S〉 →COMsv
〈C′

2, S
′〉

G ⊢ 〈if(v) {} else {C2}, Uthen, S〉 →COMsv
〈if(v) {} else {C′

2}, S
′, Uthen, S〉

(If-sbool-else)

σ.S′ = S[x 7→ v ∗ Uthen(x) + (1 − v) ∗ Uelse(x)]

∀x ∈ S |Uthen(x) = v = Uelse(x) ∨Uthen(x) = v′ ∧ Uelse(x) = v′′

G ⊢ 〈if(v) {} else {}, Uelse, Uthen, S〉 →COMsv
〈σ.S′〉

(If-sbool-phi)

Figure 4.3: Sample of server-side semantics for secret conditional commands

4.4 Hoistability

In this Section we introduce the concept of hoistability and describe a type-system
based approximation. As described before merging the two branches of conditionals
removes timing leaks. However it does not prevent implicit flow [19]. This includes
assignments to public variables with scope outside the branches, function calls,
IO, and communication with clients. To this end, the SMCL compiler performs a
static analysis that conservatively checks that all public side-effects can be hoisted
out of the two branches without changing the semantics; specifically, this includes
non-local assignments, function calls, and communication.

Note that hoistability is a general (and undecidable) concept that is implied by
conventional requirements for noninterference [46,52,54]. Instead of fixing a specific
decidable requirement, we will allow the implementation of the SMCL compiler to
perform any sound approximation of this property.

In our current implementation, hoistability is approximated by a type system
based on a type system by Volpano and Smith [52, 54] which includes effects in
the style of Jouvelot and Gifford [27]. We extend this type system by tracking all

4.4. Hoistability 21

public side-effects and allowing assignments to locally defined public variables in
secret value conditionals.

We use a lattice of security levels as introduced and used by many others be-
fore [19–21, 52, 54]. The lattice has two security levels, the secret or high-level, S,
and the public or low-level, P, where P ⊑ S. The lattice describes the highest se-
curity level at which a variable has been read, and we call it the Read-lattice. In
order to record the other public side-effects we introduce two more lattices. First,
the Write-lattice describing the least security level at which a variable has been
written to and whether the variable is declared in the current scope. PG (public,
global written) ⊑ PL (public, local written) ⊑ SG (secret, global written) ⊑ SL

(secret, local written). Second, the I/O-lattice, a lattice describing whether I/O
has occurred IO (I/O occurred) ⊑ NIO (no I/O occurred).

The partial ordering, ⊑, of the lattices gives rise to straightforward reflexive,
transitive, and anti-symmetric subtyping relations ≤ when we view the elements of
the three lattices as types. The least upper bound ⊔ and greatest lower bound ⊓
operator on the lattices give rise to the least common super type ⊻ and the greatest
common subtype ⊼. The operations naturally extends from the binary to n-ary
case, ⊻

n
i=1ρi and ⊼

n
i=1ρi and similar for the other types.

We adapt the approach by Volpano and Smith [54] and define four kinds of
type. The variable types, (τ, ρ)-var, describes the kind, τ , of values which may be
assigned to the variable and the security level of the value, ρ ∈ Read − lattice.
Expression types (τ, ρ, ν, ιo)-exp are assigned to expressions. Intuitively an expres-
sion has a given type (τ, ρ, ν, ιo)-exp if the value computed by the expressions has
type τ , there will be a read from variables of at most security level ρ, assignments
to variables of at least ν, and ιo describes whether I/O will be made during the
evaluation of the expression. Command types are assigned to commands. A com-
mand with type (ν, ιo)-cmd is expected to maintain the invariant that no assign-
ments are made to a variable in the command of type lower than ν. ιo describes
whether I/O is going to occur during the evaluation of the command. Function

types (ν, ιo)-ρ-fun(ρ1, . . . , ρn)are assigned to functions.
The typing context, Γt = [Σ, η, µ, ̟], is a tuple of the server declaration Σ, the

var-typing η, the write-typing µ, and the return type of the current function ̟. The
var-typing and the write-typing are a finite maps from variables to variable-types
and write types (from the write-lattice) respectively.
A typing judgement has the form Γt ⊢ C : (ν, ιo)-cmd for commands. The judg-
ment means that command C has type (ν, ιo)-cmd, assuming that Γtprescribes the
server declaration, types for any variable in C and a return type for the current
function. Similar for variable, expression, and function types. The server declara-
tion contains information from which we can easily construct the type of tuples and
functions (arguments and return type).

We now present the three most interesting type rules of the type system. The
other type rules are mainly as one would expect, for a complete treatment see [37].
In Figure 4.4 we present the type rule for assignment. The rule is as one would
expect, except for the use of the write function. We would like to allow assignments
to public variables if they are declared within the branch in which the assignment
occurs. We use a local reaching definitions analysis which for each program point
computes the set of variables declared in the same scope to decide this. The write
function uses the result of the local reaching definitions analysis to decide which
element from the write-lattice should be returned.

In Figure 4.5 we present the typing rules for conditional commands. The first
rule TIf-secret define the type of conditional commands with a secret condition and the
second rule TIf-public the type of conditionals with public condition. The rule TIf-public

just propagate the side-effects of the condition and the branches, whereas the rule
TIf-secret is more interesting. Here we require no I/O in the branches and assignments

22 Chapter 4. Security in SMCL

[Σ, η, µ, ̟] ⊢ x : (τ, ρ)-var [Σ, η, µ, ̟] ⊢ e : (τ ′, ρ′, ν′, ιo′)-exp τ ′ ≤ τ
ν = write(x, η, x = e)

[Σ, η, µ, ̟] ⊢ x = e : (τ, ρ ⊻ ρ′, ν ⊼ ν′, ιo′)-exp
(TAssign)

Figure 4.4: Typing rule for assignment

must be of type at least public and local. This rules out implicit flow to local
variables declared outside the branches, but allows assignment to variables declared
inside the branches, a formal proof of soundness is work in progress. The I/O of
the condition determines the I/O of the conditional. The variables written to is the
greatest common suptype of those in the branches, PL, and in the condition. A

Γt ⊢ e : (bool, S, ν, ιo)-exp
Γt ⊢ C1 : (PL, NIO)-cmd Γt ⊢ C2 : (PL, NIO)-cmd

Γt ⊢ if (e) {C1} else {C2} : (PL ⊼ ν, ιo)-cmd
(TIf-secret)

Γt ⊢ e : (bool, P, ν0, ιo0)-exp
Γt ⊢ C1 : (ν1, ιo1)-cmd Γt ⊢ C2 : (ν2, ιo2)-cmd

Γt ⊢ if (e) {C1} else {C2} : (
2

⊼
i=0

νi,
2

⊻
i=0

ιoi)-cmd

(TIf-public)

Figure 4.5: Typing rules for conditional commands

4.5 Semantic Security

The security properties provide some basic guarantees about the behavior of SMCL
programs. With these guarantees, any computation (without while loops) can be
made invulnerable to attack by being structured as an ideal computation:

S S’

P

S’’

Here, all information is kept in secret variables and only at the very end are the
outputs P made public. However, as shown in [36], computations on secret val-
ues are quite expensive. Thus, a pragmatic computation will keep information in
public variables as much as possible without compromising the overall security re-
quirements. The commutativity property ensures that the ideal computation and
the pragmatic computation will produce the same output, but the programmer now
has the burden of (manually) proving that these two computations will only reveal
the same relevant secret information. Since such proofs are difficult to construct,
the SMCL compiler provides a simple annotation language to aid the programmer.

The open operation may be annotated with the names of some secret variables:
open(e|x,y,z). The meaning of this annotation is that the programmer recognizes
responsibility for compromising the secret values of these variables, and the com-
piler should check that all compromised variables are mentioned, so the programmer

4.6. Conclusion 23

is fully aware of his proof obligations. A program is then only accepted as well-

annotated if all potential semantic information leaks are explicitly allowed by such
annotations. To be conservative, which is a good attitude when security is con-
cerned, any secret variable whose value may have influenced the opened value is
viewed as potentially compromised. Thus, for any open operation the SMCL com-
piler computes the set of secret variables that have ever contained a value that
may have influenced the value currently being opened. From this set of potentially
compromised secret variables we subtract the corresponding sets from all previously
executed open operations whose values have not since changed. The resulting set
of newly compromised secret variables must explicitly be mentioned in the open

operation. The set of variables which must be mentioned may grow fast thus for
ease of annotation we also subtract the variables which may have influence any
already mentioned variable. The corresponding analysis is a mixture of a def-use
analysis, a liveness analysis, and an available expressions analysis [38]. A simple
constant folding analysis also takes care of cases such as multiplying a secret value
by the constant zero. This is essentially a bookkeeping procedure where we try to
reduce the annotation burden as much as possible. Of course, little is gained if the
programmer blindly use these annotations to accept responsibility for the behavior
of the pragmatic computation: The idea is that it will be easier to prove equiva-
lence to the ideal computation when the compiler has verified that the program is
well-annotated.

4.6 Conclusion

To conclude we have discussed the security guaranties related to SMCL programs.
We operate with a particular strong model of adversary which we assume even has
access to the physical machines executing the server. We provide security against
any attack which is a function of the trace due to the notion of adversary traces.
This include among others explicit flow, implicit flow, and timing attacks. To obtain
these security guaranties we have carefully designed the semantics to avoid timing
attacks and provided an extension to the well known type system based approach
to noninterference which also allows assignment to variables defined in the same
scope.

Chapter 5

Related Work

5.1 Introduction

To the best of our knowledge, SMCL is the first imperative programming language
for general Secure Multiparty Computation. We discuss its relation to two other
languages for SMC, and we survey the areas of language-based information-flow
security and cryptography and explain their relationship to our work.

5.2 Languages for SMC

Closely related is the Fairplay project [31], which has developed a DSL for secure
two-party computation (that is the special case of SMC where the number of parties
is restricted to two). The Fairplay system consists of a compiler from the Secure
Function Definition Language (SFDL) to one-pass boolean circuits described in the
Secure Hardware Definition Language (SHDL). SFDL is a procedural DSL where
all values are secret boolean, integer, or enumerations. SFDL also support arrays
and the usual logic and arithmetic operations on booleans and integers except for
multiplication and division on integers. The restriction to two parties and the use
of boolean circuits as target greatly reduces the complexity of the runtime and the
compilation. In contrast to the SFDL, SMCL allows both public/private and secret
values which may potentially boost efficiency and allows general loops and recursive
functions on public/private values. SMCL leaves the main burden of generating
sound and efficient code to the compiler. Also, SFDL is restricted to the two-party
scenario.

Another closely related language is the SMC language [45]. The language is a
declarative language for SMC based on constraint programming. A public program
is distributed among the parties in the computation along with an interpreter, each
party inputs his secret values and the interpreter calculates the result. Computa-
tions are specified as arithmetic circuits and lacks branches on secret values. The
computer of each party is considered secure in contrast to SMCL where the compu-
tation is done at the server parties, which we do not consider secure. SMCL is more
expressive, offers stricter security guarantees, and provides a higher abstraction
level.

5.3 Language-Based Security

Language based information-flow security aims at developing language mechanisms
for protection against deliberate or accidental release of information. A thorough
survey of language-based security is given by Sabelfeld and Myers in [40]. To SMCL

25

26 Chapter 5. Related Work

the protection of confidential information is of vital importance and SMCL applies
information-flow control to enforce security. Below we discuss areas of related work
relevant to language-based security.

5.3.1 Noninterference

Denning [19] was the first to present a solution to the noninterference problem
in terms of a static analysis which prevents explicit as well as implicit flow of
information, however Denning did not provide a formal argument of noninterference.

Volpano and Smith [54] recast the work of Denning in terms of a type system
for a simple imperative language and prove that well-typed programs obey the
noninterference property. The type system is based on the lattice proposed by
Denning. The partial ordering on the lattice extends naturally to a subtype relation.
Types are divided into security levels and variable- and command types. A variable
has a type τ -var if it contains values of security level τ or lower, while a command
has type τ -cmd if no assignments occur in the command to a variable of security
level lower than τ . The command-types are similar to the program counter label
used by others like Sabelfeld in [57]. The work by Volpano and Smith has ignited
a wide variety of work on the use of security types for enforcing noninterference.
The term security types has been coined by Sabelfeld and Myers in [40] to denote
annotation based approaches, e.g. type systems, to noninterference. The work has
been extended in various directions to languages with first-order procedures [52],
multiple threads [43, 46], and concurrent programs [53]. The type system based
approach has been applied to wide range of settings like the calculi SLam [25] and
DCC [1], the functional language FlowCaml [39], and recently VHDL [50].

Another approach to noninterference is the use of an “information-flow logic”.
Amtoft et al. propose a Hoare-like logic [5,6] on top of which they present an inter-
procedural and modular information-flow analysis where noninterference is enforced
as an end-to-end guarantee in object-oriented programs and programs with pointers.
The logic supports programmer assertions that specify more precise information-
flow policies. The technique has increased precision compared to previous type-
based approaches like the ones by Volpano and Smith [52] and Zdancewic [57].

SMCL is a security-typed language which is firmly based on the work by Denning
and by Volpano and Smith and is in line with the work done by others [23,40,50,57].
SMCL basically employs a two-level lattice of security levels, a type system based
on [52,54] (in the current implementation), which together with a semantics where
the trace is independent of secret values to enforce noninterference.

In the decentralized label model (DLM) of [34], information is marked by labels.
A label is a set of components consisting of an owner section and a reader section.
The purpose of labels is to protect the confidentiality of the owner principals that
may grant other principals the right to read their values. The DLM guarantees
that the privacy of principals is never compromised. SMCL is also concerned with
protecting the privacy of client input, and one could easily imagine that the DLM
would be suitable for SMCL to guarantee that the values from some kind of clients
do not flow to certain other clients. SMCL already has the notion of groups of
clients and it seems like the combination of groups and DLM make an interesting
match. We leave research into their synergies as future work.

5.3.2 Declassification

The noninterference property is often too restrictive in practice. Any practically in-
teresting program leaks some kind of acceptable information, e.g. a password checker
even leaks information when rejecting a candidate password. To accommodate this
intentional leak of information, a way to lower or declassify the security level is

5.3. Language-Based Security 27

needed. Allowing declassification without unintentional release of information has
been the focus of recent attention and the paper by Sabelfeld and Sands [44] pro-
vides a good survey of declassification. According to the survey downgrading may
be classified according to what information is revealed (The PER model [42], delim-
ited release [41], relaxed noninterference [30], and quantitative abstractions [15]),
by whom (The DLM and robust declassification [58]), where (non-disclosure [33]),
and when.

Partial information flow analysis regulates what may be downgraded. The PER
model [42] uses partial equivalence relations (a PER on a domain is an equivalence
relation on a subset) to model the adversary’s ability to distinguish between values.
The PER model is powerful and captures a wide variety of approaches like delim-
ited release [41], relaxed noninterference [30], and quantitative abstractions [15].
Downgrading in SMCL can quite possibly be formulated in a PER model. The
programmer is alerted by the compiler of the possible implicit leaks which may re-
sult from a downgrade. An interesting future direction of research is to relate the
warnings to the quantitative approach and deduce how much of the information is
released.

Who is downgrading the data is important since an adversary may use the
declassification mechanism to reveal more secure information than intended. The
DLM prevents this by only allowing the owner to downgrade information as specified
in the data security labels. This is resembling SMCL where a downgrade can only
occur if all server parties (or at least a number of parties equal to the threshold)
agree. Another approach is the robust declassification by Zdancewic and Myers. [58],
where declassification may only be carried out by the designated owner of the data.
In a later paper by Myers et al. [35], owner-ship information is used as integrity
information, and declassification is deemed safe in areas of high integrity. The
connection between integrity and owner-ship is further explored by Zdancewic, who
use the DLM extended with integrity labels to determine robust declassifications
in [57]. In SMCL all program points are of high integrity since an adversary may
alter the computation completely and try to open exactly the secret value he wishes.
He will not succeed unless he can corrupt a sufficiently large subset of server parties,
in which case he would learn the secret anyway.

The approach by Mantel and Sands [32] based on intransitive noninterference
and the non-disclosure approach by Matos and Boudol [33] are similar to downgrad-
ing in SMCL. The usual noninterference property does not hold in the presence of
declassification, but as observed by both Mantel and Sands and Matos and Boudol
the property may be enforced in maximal paths along which there is no downgrad-
ing, and then restart the bisimulation game in the context of any new low-equivalent
stores. Our notion of adversary traces achieves the same goal using similar tech-
niques: localization of declassification and enforcing the noninterference property
between downgrades. The trivial information flow relation is left implicit in SMCL
since we only have a two-level security lattice.

Information may be downgraded over time. The SMCR is based on computa-
tional security, so the values transmitted from clients to the server are encrypted
using public-key cryptography. Thus an adversary may reveal these values if he has
sufficient patience to break these cryptographic systems.

Recently there has been some effort to combine the four dimensions of declassi-
fication. Askarov and Sabelfeld [7] propose a localized delimited release as a combi-
nation of the what and where dimension.

5.3.3 Timing Attacks

Timing channels can present a serious threat. The problem of preventing timing
attacks has received significant attention, and we will only consider those approaches

28 Chapter 5. Related Work

closely related to SMCL.

Volpano and Smith [53] propose a notion of protected branches with atomic
execution time. Their approach guarantees absence of timing leaks observable in the
program, but does not prevent external timing leaks and forbid the use of loops in
secret conditionals. Agat [3] observed that branches of secret conditionals must have
the same timing characteristics in order to prevent timing attacks. Agat proposed to
use transformation as a tool to remove timing attacks. In secret conditionals time
parameters from the semantics are used to guide a cross padding of instructions
with dummy instructions to ensure the same execution time of the two branches.
The technique has inspired others like Barbosa and Page [9] who analyze functions
(branches) to find the least set of dummy assignments that make their execution
time equivalent. In some sense we employ the simplest possible variant of this
approach: execute both branches in sequence and join the effects on the store.
Our approach is potentially a lot slower than the approach by Barbosa and Page,
but we cannot apply dummy assignments because the adversary may inspect the
instruction pointer and thus learn which branch is being executed, so to eliminate
this possibility we must execute both branches.

Tolstrup and Nielson [49] consider VHDL programs for which they define a se-
mantic definition of security against timing attacks based on bisimulation and use
a type system to enforce the condition. In SMCL there is no need for transforma-
tions and a type system is only needed to prevent loops on secret values. The lack
of timing channels is vacuously true due to the semantics of SMCL. The model of
Köpf and Basin [29] is a general and abstract semantic model based on automata for
observable input and output, which is suitable for many situations but not entirely
for SMCL, since the capability of the adversary is not just a function of the input
and output, but also of the instruction pointer and state of the computation at any
time.

5.4 Information-Flow Aware Languages

A number of general-purpose programming languages have been extended with
support for information-flow security. The decentralized label model has been used
as basis for the Java extension JIF [34] where the Java type system is extended with
labels and principals. Other examples are FlowCaml [39] which is an extension of
Caml with security-types, and information-flow inference for ML [39]. SMCL is
similar to these in the sense of employing security types, but the goal of SMCL is
to make it easy to write secure SMC programs.

In [59] Zdancewic proposes secure program partitioning as a means of allowing
mutual distrusting hosts to execute a program. A program is partitioned into a
number of slices according to security types and trust declarations. Confidentiality
of information is obtained by restricting the computation on values to the host who
owns the values or any host trusted by the owner. This has some resemblance to
SMCL since both operate in a scenario of untrusted hosts, but whereas program
partitioning is aiming at removing the need for a universally trusted host, SMCL
realizes such a host through a combination of Secure Multiparty Computation and
language-based security. In SMCL the need for trust can be totally eliminated
by having each host execute a server party. A limitation of program partitioning
seems to be that functions on confidential values similar to the Millionaires’ Problem
are not possible to compute without revealing the total net worth to the other
millionaires.

The InCert project [18] suggests to develop a programming language that en-
ables the development of secure applications operating on multiple data sources
controlled by different principals without violating the security policies of the in-

5.5. Validation of Cryptographic Protocols 29

volved principals. SMCL may be viewed as realizing part of this ambitious goal
for the special case of the strictest possible security policy where no principal must
learn anything about any other.

5.5 Validation of Cryptographic Protocols

Much effort has been done in the area of validating cryptographic protocols [2,22],
and a domain-specific language for verifying such protocols has been proposed by
Gordon and Jeffery [24].

A language which tackles similar security threats as SMCL is CAO [8]. CAO is
a DSL for cryptographic software and it would be possible to implement the SMCR
in CAO, thus ensuring the absence of timing attack.

5.6 Conclusion

We have presented an overview and discussed the relation between SMCL and
related work. SMCL is an imperative programming language for general Secure
Multiparty Computation in contrast to Fairplay which is only for two-party compu-
tations and SMC which lacks branches on secret values. SMCL applies techniques
from within the area of language-based information-flow security in a novel way.
Furthermore we have found no apparent relationship between SMCL and languages
for verification of cryptographic protocols, besides that they may be used to verify
the implementation of SMCR.

Chapter 6

Future Work

6.1 Introduction

This Chapter is devoted to ideas for future work. Some of the ideas are just rough
thoughts that have emerged one or two times during the last year and some of them
have had substantially more work put into them and are thus more developed. We
will state the ideas and try to describe why they are interesting from the point
of view of our thesis and computer science in general and how we may persue to
develop them into scientific results.

6.2 SMCL

In Chapter 3 we described the current state of SMCL. Future development of SMCL
is possible in a number of directions which falls into either of the categories: lan-
guage design or security. In this Section we have not argued directly how the work
mentioned supports our thesis, since it should be obvious.

Within the area of language design it is still an open answer how to handle
compound data types and even arrays are not obvious. Thus a direction of future
research would be to figure out how to make it possible to handle arrays. There
are basically two parameters which can be secret regarding arrays (and most other
data types) the size of the array and the content of the array. An array of secret
length may be represented by padding with some random number of extra cells.
The question then becomes if this is secure and how iteration or lookup should
be performed. An array of secret values is easily implemented as in the current
implementation, but how does one index into an array with a secret number is not
obvious. Arrays of secret length and secret indexing are potentially useful and so
increase the usefulness of SMCL.

SMCL would benefit from some kind of component system, which would allow
already defined functions to be reused. This is a general problem for any program-
ming language when in use and the programs written becomes complex. Such a
mechanism posses additional challenges to SMCL besides those enjoyed by most
other programming languages. E.g. a component containing functions on secret
values should they be allowed to be used in clients and what should the semantics
be? Furthermore if we chose to use the object oriented paradigm then a whole new
set of possibilities for security must be taken into account [6].

Currently SMCL supports the notion of groups. Groups are currently static
sets of clients. We would like to extend the concept to dynamic sets where a client
may enter or leave a group based on the flow of the program. An extended group
concept may be combined with an object oriented paradigm where different kinds

31

32 Chapter 6. Future Work

of clients may share a common super type. Allowing groups to vary dynamically
will enhance the power of SMCL and makes a more fine grained reasoning about
who contributed with which values possible, and restrict the flow of values to and
from clients. However such an extension also raise new security issues, e.g. is the
current treatment of secret groups adequate.

How to support iteration though a collection of data has recently received some
attention, starting with the enhanced for loop construction introduced in Java 5.
Before that a lot of work has been done in the Haskel community where compre-
hensions based on monads [55] has proven to be a great tool. Comprehension based
language constructs for iterating a collection of values has recently found its way into
object oriented programming languages like Fortress [4]. Fortress has introduced
the concept of generators which in essence are comprehensions. SMCL is generator-
ready but lacks the machinery for user defined generators. Enhancing SMCL with
generators based on a monads similar to Fortress would be an interesting direction
for future work.

A more thorough formal treatment of SMCL especially a formalization of our
notion of adversary traces would allow us to formally prove various security proper-
ties of SMCL, e.g. no timing leaks or noninterference. We would also like to prove
the soundness of the typesystem sketched in this report and described in more detail
in [37]. A formal treatment will give us solid testimony for the strong security of
SMCL. We do not yet know how to adequately describe adversary traces formally
or how they relate in details to other approaches. On the other hand it should be
rather straightforward to prove the absence of timing leaks and prove the soundness
of the typesystem.

Declassification is an essential mechanism in SMCL and the control of declas-
sification is important. We have mainly been focusing on the where dimension of
declassification but there seems to be advantages in combining other dimensions
as well as suggested by Mantel and Sands [32]. As we noted in Section 5.3.2 one
could in particular imagine that a combination of the where and who dimension (in
the incarnation of the DLM) could be a nice match for SMCL. It is an open chal-
lenge to combine the four dimensions of declassification. Until recently [7], no one
has studied the combination of dimensions and it would be interesting not only to
SMCL but to area of language-based security in general to study the combinations
of dimensions.

6.3 Secure Multiparty Computation for
Relational Databases (SecRas)

Most data in modern society is contained in large databases, owned by companies
or government organizations who might be reluctant to share or combine the infor-
mation with others because it is too valuable or they are restrained from doing so
because it would invade the privacy of clients. Many interesting examples of these
scenarios exists e.g. company benchmarking without revealing crucial information
to competitors or insurance agencies wanting to prevent security fraud by combin-
ing client databases, but are disallowed to do so because it would invade the privacy
of all the law obeying costumers.

We propose to apply SMC to the database domain to obtain a solution which
would allow organizations to combine databases in such a way that it becomes
possible to answer queries on the joint data without revealing the data it self.

We imagine a use scenario where a number of users interact on behalf of the
organizations they represent. Each organization may posses one or more databases
containing secret or sensitive information. Each organization has some interest in

6.4. SVM 33

combining the information in the databases, but do not want to reveal their own
databases in their entirety. The organizations could be security agencies who wish
to find a (hopefully) limited number of customers who are cheating in relation to
their insurance, Or it might be a scientists who want to correlate information about
illness with information about occupation and income. A user creates a query
which involves secret information from a number of databases, the query is feed
to a database system based on SMC, and a result is returned. If the database
system is based on the relational model, then the result is a relation containing
some tuples which contains public as well as secret cells of information. Any user
may create any query involving any relation in any database to which he has been
granted access, but in order to reveal the contents of secret cells the other users
must accept this. An example could be the insurance agencies who would run a
number of standard “fraud detection queries” on their combined data, but in order
to reveal the relevant information of potential fraudsters they must have the accept
from a government office. The insurance agencies may of cause meet in secrecy and
exchange the information, but this is prohibited by Danish law, and thus the results
are void.

We would like to develop a database system based on SMC to make the above
scenario possible. Creating such a system with adequate security guaranties would
be another testimony to our thesis, creating tools with strong security guaranties
which exploits the benefits obtained by combining confidential information from
various sources is feasible and useful. Furthermore it solves a practical problem
which has potential for a huge economic impact on society as well as a great tool
for data mining highly confidential or sensitive information. The development of
such a tool is not trivial. A customized query language has to be developed where
great care must be put into the design in order to ensure that any constructable
query, except declassification queries, do not reveal too much information, for a
suitable definition of too much.

A possible realization of a secure multiparty database system can be based on a
relational algebra for Secure Multiparty Database Computation. The choice of the
relational model as a basis has been taken because it is well studied and forms the
foundation for many real world database systems. We are currently doing research
on how to design a variant of E.F. Codd’s relational data model suitable for a
database system based on SMC. In particular there are a number of performance
and security issues we must address. Relations should be shared among a number
of users efficiently, we plan on using the SMCR for this. The security guaranties are
multi-level. On the lowest level we must ensure that a user cannot singlehandedly
reveal information he does not already own. This is a classic application of SMC.
On the higher levels we must ensure things like indirect information release, e.g.
from the size of the result set or from combining the results of different queries.

6.4 SVM

As part of the SIMAP project the SMCR has been developed as the foundation for
SMC applications. The SMCR is currently implemented as Java API. The SMCR
handles most aspects of SMC, like setting up communication between clients and
server parties, handling client groups, and doing the actual secret computations. A
more streamlined interface to the SMCR would be desirable and a possible direction
of future work would be to turn the SMCR into a minimal virtual machine, with
it’s own interpreted language. The SMCR is the foundation on which our tools are
build, and a more convenient interface in the form of a low-level SMC language
would be preferable because the virtual machine could focus on making the basic
SMC operations fast without having to consider concepts like client groups which

34 Chapter 6. Future Work

is purely a SMCL concept. Design a low-level interpreted language suitable for
various applications of the virtual machine is not trivial and would most likely be of
interest in it’s own right. Before we start the design process for such a language it
would be an advantage to gain more understanding of how the virtual machine is to
support various applications of SMC. We already have some knowledge of this from
SMCL and we may gain additional knowledge from SecRas as described above. One
of the challenges is going to be the definition of the interface between the virtual
machine and the various applications, the knowledge from SMCL and SecRas will
help us here. Furthermore we need to strip down the SMCR and enhance the SMCL
compiler and SecRas system similarly.

6.5 SPL

During the development of the SMCR runtime it has been noted that there is a
large gap between how the cryptographic protocols are described in research papers
and their implementation. A possibility for future research is to develop a domain-
specific language for cryptographic SMC protocols. Such a DSL would make it
easier to implement and thus try out new protocols, which may increase efficiency
of the runtime. Any improvement in the efficiency of the runtime immediately
translates into more efficient tools for SMC. A number of domain-specific language
for cryptographic protocols in general do already exist, but they are too general
and we believe that a number of abstractions relevant only for SMC protocols
can be introduced with the usual benefits [51]. By analyzing the domain of SMC
protocols and the current literature on general languages for cryptographic protocols
we should gain a solid foundation on which we should be able to identify the needed
abstraction for a SMC protocol language.

6.6 Conclusion

We have listed a number of different direction for future work. Some of the ideas
are easily realized other take more work and yet others must be left for others to
finish due to restricted time. We are currently pursuing the enhancement of SMCL
and the realization of SecRas. This does however not mean that the rest are left
unattended but they are not our main priority.

Chapter 7

Conclusion

In this progress report we have documented the research carried out so far. We
have among other things documented that it is feasible to create a domain-specific
language for secure multiparty computation, which can be used to write programs
which combines confidential information without compromising it.

We have created the Secure Multiparty Computation Language which provides
high-level abstractions for secure multiparty computations along with strong secu-
rity guaranties which protects against a broad spectrum of security threats. However
we have also discussed a number of ideas for future research which document that
there is ample work to be done yet.

We conclude that we are well under way to document our thesis: It is feasi-
ble and useful to create tools with strong security guaranties which exploits the
benefits obtained by combining confidential information without compromising the
information.

35

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In Proc. ACM Symp. on Principles of Programming Languages,
pages 147–160, New York, NY, USA, 1999. ACM Press.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In ACM Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997.

[3] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles

of Programming Languages, pages 40–53. ACM Press, 2000.

[4] Allen, Chase, Hallett, Luchangco, Maessen, Ryu, Steele, and Tobin-Hochstadt.
The Fortress Language Specification. Technical report, SUN Microsystems,
2007.

[5] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow
analysis of pointer programs. Technical Report CIS TR 2005-1, Kansas State
University, July 2005.

[6] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in
object-oriented programs. In Proc. ACM Symp. on Principles of Programming

Languages, pages 91–102, New York, NY, USA, 2006. ACM Press.

[7] A. Askarov and A. Sabelfeld. Localized delimited release: Combining the
what and where dimensions of information release. In Proc. ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security, San Diego,
California, June 14 2007.

[8] M. Barbosa, R. Noad, D. Page, and N. P. Smart. First steps toward a
cryptography-aware language and compiler. Cryptology ePrint Archive, Re-
port 2005/160, 2005.

[9] M. Barbosa and D. Page. On the automatic construction of indistinguishable
operations. In IMA Int. Conf., pages 233–247, 2005.

[10] D. J. Bernstein. Cache-timing attacks on AES, 2004.

[11] P. Bogetoft, I. Damg̊ard, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft.
Secure computing, economy, and trust: A generic solution for secure auctions
with real-world applications. Technical Report RS-05-18, BRICS, June 2005.
37 pp.

[12] P. Bogetoft, I. Damg̊ard, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A
practical implementation of secure auctions based on multiparty integer com-
putation. In Proc. of Financial Cryptography, volume 4107 of LNCS. Springer-
Verlag, 2006.

37

38 Bibliography

[13] D. Brumley and D. Boneh. Remote timing attacks are practical. Comput.

Networks, 48(5):701–716, 2005.

[14] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proc. IEEE Symp. on Foundations of Computer Science,
pages 136–145, 2001.

[15] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of
confidential data. J. Theoretical Computer Science, 59(3):1–14, Jan. 2004.

[16] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. ACM Symp. on Principles of Programming Languages, pages 238–252,
1977.

[17] R. Cramer and I. Damg̊ard. Multiparty computation, an introduction, 2004.

[18] K. Crary, R. Harper, F. Pfenning, B. C. Pierce, S. Weirich, and
S. Zdancewic. Manifest security for distributed information. White pa-
per, http://www.cis.upenn.edu/˜ bcpierce/papers/incertproposal06.pdf, Mar.
2006.

[19] D. E. R. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

[20] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, Boston,
MA, USA, 1982.

[21] D. E. R. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, 1977.

[22] P. Giambiagi and M. Dam. On the secure implementation of security protocols.
Sci. Comput. Program., 50(1-3):73–99, 2004.

[23] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.

IEEE Symp. on Security and Privacy, pages 11–20. IEEE Computer Society
Press, 1982.

[24] A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. In Proc. CSFW 15, 2002.

[25] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy
and integrity. In Proc. ACM Symp. on Principles of Programming Languages,
pages 365–377, New York, NY, USA, 1998. ACM Press.

[26] T. Jakobsen and S. From. Secure multi-party computation on integers. Mas-
ter’s thesis, Department of Computer Science, DAIMI, University of Aarhus,
Denmark, July 2005.

[27] P. Jouvelot and D. Gifford. Algebraic reconstruction of types and effects. In
Proc. ACM Symp. on Principles of Programming Languages, pages 303–310.
ACM Press, 1991.

[28] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Proc. International Cryptology Conference on

Advances in Cryptology, volume 1109 of LNCS, pages 104–113, London, UK,
1996. Springer-Verlag.

Bibliography 39

[29] B. Köpf and D. A. Basin. Timing-sensitive information flow analysis for syn-
chronous systems. In Proc. European Symp. on Research in Computer Security,
pages 243–262, 2006.

[30] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
Proc. ACM Symp. on Principles of Programming Languages, pages 158–170,
New York, NY, USA, 2005. ACM Press.

[31] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - A Secure Two-Party
Computation System. In Proc. of USENIX Security Symposium, pages 287–
302, 2004.

[32] H. Mantel and D. Sands. Controlled declassification based on intransitive non-
interference. In Proc. of the ASIAN Symposium on Programming Languages

and Systems, volume 3303 of LNCS, pages 129–145, Taipei, Taiwan, November
4–6 2004. Springer-Verlag.

[33] A. A. Matos and G. Boudol. On declassification and the non-disclosure pol-
icy. In Proc. IEEE Computer Security Foundations Workshop, pages 226–240,
Washington, DC, USA, 2005. IEEE Computer Society Press.

[34] A. C. Myers and B. Liskov. Protecting privacy using the decentralized la-
bel model. ACM Transactions on Software Engineering and Methodology,
9(4):410–442, 2000.

[35] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification
and qualified robustness. J. Comput. Secur., 14(2):157–196, 2006.

[36] J. D. Nielsen and M. I. Schwartzbach. A Domai-specific Programming Lan-
guage for Secure Multiparty Computation. In Proc. ACM SIGPLAN Workshop

on Programming Languages and Analysis for Security, San Diego, California,
June 14 2007.

[37] J. D. Nielsen and M. I. Schwartzbach. The SMCL Language Specification.
Technical Report RS-07-9, BRICS, Apr. 2007.

[38] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[39] F. Pottier and V. Simonet. Information flow inference for ML. In Proc. ACM

Symp. on Principles of Programming Languages, pages 319–330, 2002.

[40] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE

J. on Selected Areas in Communications, 21, 2003.

[41] A. Sabelfeld and A. Myers. A model for delimited information release. In Proc.

of the International Symposium on Software Security, volume 3233 of LNCS,
pages 174–191. Springer-Verlag, Oct. 2004.

[42] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. In Proc. European Symposium on Programming, pages 40–58, 1999.

[43] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded
programs. In Proc. IEEE Computer Security Foundations Workshop, page
200, Washington, DC, USA, July 2000. IEEE Computer Society Press.

[44] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In
Proc. IEEE Computer Security Foundations Workshop, pages 255–269, Wash-
ington, DC, USA, 2005. IEEE Computer Society Press.

40 Bibliography

[45] M. C. Silaghi. SMC: Secure Multiparty Computation language, 2004. http:

//www.cs.fit.edu/msilaghi/SMC/tutorial.html.

[46] G. Smith and D. Volpano. Secure information flow in a multi-threaded impera-
tive language. In Proc. ACM Symp. on Principles of Programming Languages,
pages 355–364, New York, NY, 1998.

[47] D. R. Stinson. Cryptography Theory and Practice, Third Edition. Chapman &
Hall/CRC, 2006.

[48] T. Toft. Progress report - Secure Integer Computation with Applications in
Economics., July 2005.

[49] T. K. Tolstrup and F. Nielson. Analyzing for Absence of Timing Leaks in
VHDL. In D. Gollmann and J. Jürjens, editors, Proc. International Workshop

on Issues in the Theory of Security, Mar. 2006.

[50] T. K. Tolstrup, F. Nielson, and H. R. Nielson. Information Flow Analysis for
VHDL. In V. E. Malyshkin, editor, Proc. International Conference on Parallel

Computing Technologies, volume 3606 of LNCS, pages 79–98. Springer-Verlag,
Sept. 2005.

[51] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An anno-
tated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[52] D. Volpano and G. Smith. A type-based approach to program security. In
Proc. of Theory and Practice of Software Development, pages 607–621, 1997.

[53] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent lan-
guage. In Proc. IEEE Computer Security Foundations Workshop. IEEE Com-
puter Society Press, 1998.

[54] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Computer Security, 4(3):167–187, 1996.

[55] P. L. Wadler. Comprehending monads. In Proceedings of ACM Conference on

LISP and Functional Programming, pages 61–78, New York, NY, 1990. ACM
Press.

[56] A. C.-C. Yao. Protocols for secure computations (extended abstract). In Proc.

IEEE Symp. on Foundations of Computer Science, pages 160–164, 1982.

[57] S. Zdancewic. A type system for robust declassification. In Proc. of the Math-

ematical Foundations of Programming Semantics, Mar. 2003.

[58] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Com-

puter Security Foundations Workshop, pages 15–23. IEEE Computer Society
Press, June 2001.

[59] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program parti-
tioning. Technical Report 2001-1846, Cornell University, 2001.

Appendix A

Syntax and Terminology

The various constructs of the abstract syntax tree (AST) are typeset using different
fonts:
terminals, nonterminals, metavariables, variables, and sets.

In the following we present the symbols we use for various concepts in the language.

• Program: P

• Client: κ

• Client declaration: K

• Server: σ

• Server declaration: Σ

• Server or client: ξ

• Store: The server and each client has a local store, the stores are denoted
σ.S and κ.S respectively. Furthermore we use S to range over stores when
we do not care which specific server/client store it is related to. We write
σ.S[x 7→ v], κ.S[x 7→ v], or S[x 7→ v] for the stores where the location denoted
by x is updated with the value of v, where x is a variable in the current scope.

• Global store: G

• Field: d

• Field declaration: D

• Function names: f

• Function declaration: F

• Command: C

• Expression: e

• Values: Values are separated into public and secret values. Secret values,
the values in the sets SBoolean, SClient and SInteger, are denoted by v and
public values are denoted by v. A value which is either public or secret is
denoted by w.

• Variable: x

41

42 Chapter A. Syntax and Terminology

• Tunnels: θ. The operator @ is used for concatenation of two tunnels. Values
may be taken out of the tunnel in two ways: θ.get() is non-blocking and if the
tunnel is empty returns the special value Null. θ.take() is blocking and if the
tunnel is empty waits until a value becomes available. Values may be placed
in the tunnel using θ.put(v).

• Record name: r

• Record declaration: R

• Labels: ℓ ∈ LR denotes the set of labels in the kind of tuples declared by R.

• Types: τ denote types, defined in [37],

• Integers: i, n.

• Generator: ω, a generator is a value which may produce some other values
when the next() function is applied and more values are available in the gener-
ator. Furthermore a generator may be detected to be empty using the empty()
function.

• Operators: op. +,-,*,/,&&,||,=,<>,>=,<= with the usual semantics.

• SBoolean: contains the two integer constants 0 and 1. Where 0 denotes false
and 1 denotes true. In the concrete and abstract syntax, 0 and 1 are written
false and true, respectively.

In Figure A.1 we present the overall abstract syntax of SMCL. The client-side and
server-side abstract syntax is presented in Figure A.2 and A.3 respectively.

Program ::= K+ Σ

Figure A.1: SMCL abstract syntax and values

43

K ::= Declare Client name: D∗ F+

F ::= function τ f (τ1 x1,. . . ,τn xn) { C }
D ::= τ x = e

| Tunnel of τ x

C ::= τ id

| τ x = e
| while (e) { C }
| if e { C1 } else { C2 }
| C1; C2

| return e
| return

e ::= Value
| x

| f(e1, . . . , en)
| fun-app(C)
| θ.put(e)
| θ.get(e)
| θ.take(e)
| display(e)
| readint()
| new id(e1, . . . , en)
| new τ [e]
| e1 op e2

| e1 ? e2 : e3

op ::= + | - | * | / | == | && | || |=|>|>=|<=|<

Figure A.2: Client-side SMCL abstract syntax and values

44 Chapter A. Syntax and Terminology

Σ ::= Declare Server name: D∗ F+

F ::= function τ f (τ1 x1,. . . ,τn xn) { C }
D ::= τ x = e

| Group of name x

C ::= τ id

| τ x = e
| while (e) { C }
| for (τ x: e) { C }
| if e { C1 } else { C2 }
| C1; C2

| return e
| return

e ::= Value
| x

| f(e1, . . . , en)
| fun-app(C)
| e.f(e1, . . . , en)
| open(e|x1, . . . , xn)
| θ.put(e)
| θ.get(e)
| θ.take(e)
| new r(e1, . . . , en)
| new τ [e]
| e1.e2

| e1 op e2

| e1 ? e2 : e3

op ::= + | - | * | / | == | && | || |=|>|>=|<=|<

Figure A.3: Server-side SMCL abstract syntax and values

