skip to main content
article

Optimal pants decompositions and shortest homotopic cycles on an orientable surface

Published:01 July 2007Publication History
Skip Abstract Section

Abstract

We consider the problem of finding a shortest cycle (freely) homotopic to a given simple cycle on a compact, orientable surface. For this purpose, we use a pants decomposition of the surface: a set of disjoint simple cycles that cut the surface into pairs of pants (spheres with three holes). We solve this problem in a framework where the cycles are closed walks on the vertex-edge graph of a combinatorial surface that may overlap but do not cross.

We give an algorithm that transforms an input pants decomposition into another homotopic pants decomposition that is optimal: each cycle is as short as possible in its homotopy class. As a consequence, finding a shortest cycle homotopic to a given simple cycle amounts to extending the cycle into a pants decomposition and to optimizing it: the resulting pants decomposition contains the desired cycle. We describe two algorithms for extending a cycle to a pants decomposition. All algorithms in this article are polynomial, assuming uniformity of the weights of the vertex-edge graph of the surface.

References

  1. Bespamyatnikh, S. 2003. Computing homotopic shortest paths in the plane. J. Algor. 49, 2, 284--303. Google ScholarGoogle Scholar
  2. Buser, P. 1992. Geometry and spectra of compact Riemann surfaces. Progress in Mathematics, vol. 106. Birkhäuser, Boston-Basel-New York.Google ScholarGoogle Scholar
  3. Cabello, S., and Mohar, B. 2007. Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Disc. Computat. Geom. 37, 2, 213--235. Google ScholarGoogle Scholar
  4. Carr, H., Snoeyink, J., and Axen, U. 2003. Computing contour trees in all dimensions. Comput. Geom: Theory Appl. 24, 75--94. Google ScholarGoogle Scholar
  5. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2004. Loops in Reeb graph of 2-manifolds. Disc. Comput. Geom. 32, 2, 231--244. Google ScholarGoogle Scholar
  6. Colin de Verdière, É., and Erickson, J. 2006. Tightening non-simple paths and cycles on surfaces. In Proceedings of the 17th Annual Symposium on Discrete Algorithms (Miami, FL). ACM, New York. 192--201. Google ScholarGoogle Scholar
  7. Colin de Verdière, É., and Lazarus, F. 2005. Optimal system of loops on an orientable surface. Disc. Comput. Geom. 33, 3, 507--534.Google ScholarGoogle Scholar
  8. de Graaf, M., and Schrijver, A. 1997. Making curves minimally crossing by Reidemeister moves. J. Combinat. Theory, Ser. B 70, 1, 134--156. Google ScholarGoogle Scholar
  9. Dey, T. K., and Guha, S. 1999. Transforming curves on surfaces. J. Comput. Syst. Sci. 58, 297--325. Google ScholarGoogle Scholar
  10. Efrat, A., Kobourov, S. G., and Lubiw, A. 2006. Computing homotopic shortest paths efficiently. Comput. Geom.: Theory Appl. 35, 3, 162 -- 172. Google ScholarGoogle Scholar
  11. Epstein, D. B. A. 1966. Curves on 2-manifolds and isotopies. Acta Math. 115, 83--107.Google ScholarGoogle Scholar
  12. Erickson, J., and Har-Peled, S. 2004. Optimally cutting a surface into a disk. Disc. Comput. Geom. 31, 1, 37--59.Google ScholarGoogle Scholar
  13. Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. In Proceedings of the 16th Annual Symposium on Discrete Algorithms (Vancouver, BC, Canada). ACM, New York, 1038--1046. Google ScholarGoogle Scholar
  14. Frederickson, G. N. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 6, 1004--1022. Google ScholarGoogle Scholar
  15. Freedman, M., Hass, J., and Scott, P. 1982. Closed geodesics on surfaces. Bulle. London Math. Soc. 14, 385--391.Google ScholarGoogle Scholar
  16. Hass, J., and Scott, P. 1985. Intersections of curves on surfaces. Isr. J. Math. 51, 1--2, 90--120.Google ScholarGoogle Scholar
  17. Hass, J., and Scott, P. 1994. Shortening curves on surfaces. Topology 33, 1, 25--43.Google ScholarGoogle Scholar
  18. Hatcher, A. 2000. Pants decompositions of surfaces. http://www.math.cornell.edu/~hatcher/Papers/pantsdecomp.pdf.Google ScholarGoogle Scholar
  19. Hatcher, A. 2002. Algebraic topology. Cambridge University Press, Cambridge---New York. Available at http://www.math.cornell.edu/~hatcher/.Google ScholarGoogle Scholar
  20. Hershberger, J., and Snoeyink, J. 1994. Computing minimum length paths of a given homotopy class. Comput. Geom.: Theory Appl. 4, 63--98. Google ScholarGoogle Scholar
  21. Kutz, M. 2006. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. In Proceedings of the 22nd Annual Symposium on Computational Geometry (Sedona, AZ). ACM New York, 430--438. Google ScholarGoogle Scholar
  22. Lazarus, F., Pocchiola, M., Vegter, G., and Verroust, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. In Proceedings of the 17th Annual Symposium on Computational Geometry (Medford, MA). ACM New York, 80--89. Google ScholarGoogle Scholar
  23. Massey, W. S. 1977. Algebraic Topology: An Introduction. Graduate Texts in Mathematics, vol. 56. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  24. Mitchell, J. S. B. 2000. Geometric shortest paths and network optimization. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds. Elsevier, Amsterdam, The Netherlands, 633--701.Google ScholarGoogle Scholar
  25. Mohar, B., and Thomassen, C. 2001. Graphs on Surfaces. Johns Hopkins Studies in the Mathematical Sciences. John Hopkins University Press, Baltimore, MD.Google ScholarGoogle Scholar
  26. Reif, J. H. 1983. Minimum s − t cut of a planar undirected network in O(n log2(n)) time. SIAM J. Comput. 12, 1, 71--81.Google ScholarGoogle Scholar
  27. Stillwell, J. 1993. Classical Topology and Combinatorial Group Theory, 2nd Ed. Springer-Verlag, New York.Google ScholarGoogle Scholar
  28. Takahashi, J., Suzuki, H., and Nishizeki, T. 1996. Shortest noncrossing paths in plane graphs. Algorithmica 16, 339--357.Google ScholarGoogle Scholar
  29. Tarasov, S. P., and Vyalyi, M. N. 1998. Construction of contour trees in 3D in O(n log n) steps. In Proceedings of the 14th Annual Symposium on Computational Geometry (Minneapolis, MN). ACM New York, 68--75. Google ScholarGoogle Scholar
  30. Tutte, W. 2001. Graph Theory. Cambridge University Press, Cambridge, MA.Google ScholarGoogle Scholar
  31. Vegter, G., and Yap, C. K. 1990. Computational complexity of combinatorial surfaces. In Proceedings of the 6th Annual Symposium on Computational Geometry (Berkeley, CA). ACM New York, 102--111. Google ScholarGoogle Scholar

Index Terms

  1. Optimal pants decompositions and shortest homotopic cycles on an orientable surface

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader