
A Ultra Fast Euclidean Division Algorithm

for Prime Memory Systems

Benoit Dupont de Dinechin

C. E. A., Centre d’Etudes de Limeil-Valenton

94195 Villeneuve St Georges cedex France

Abstract

In this paper, we describe a general method which is
suitable for ejjicient hardware implementation of eu-

clidean division by numbers of the form 2n & 1. This
method relies on the properties of two’s complement bi-

nay arithmetic to perform simultaneous computations

of the quotient and the remainder of a q-bit number in

Pogz([q + n~)l i- 1 addition steps. Because it is re-
stn”cted to 2 + 1 numbers, on which it operates one

order of magnitude faster than the previously known
constant division algorithms, our method appears to
be better suited for implementation in super-computer
and image processing memory systems.

Specifically, it oflers a viable alternative to the sim-
ple low-order interleaving in multi-bank memory de-
Sagn,as severalnon-linear skewing schemes no longer

involve the speed nor the costs penalties that used to

be associated with them. Moreover, since numbers of
the form 2n&l include 3,5,7,17,31, 127,257.. . which

are ail primes, implementations of the related pn’me

memory systems turn out to be affordable as well.

1 Introduction
A typical parallel memory system is composed with

three parts : a set of A4 memory banks, a routing net-
work, and a memory cent roller. Each bank is an in-
dependent storage device, able to process one request
every TC cycle at the most. The routing network em-
beds the various paths, switches and buffers necessary
to connect the banks to the memory ports, while the
purpose of the memory controller is to ensure proper
address and data flow through the network.

The main objective in parallel memory system de-
sign is to achieve a high bank use, in other words$
allow the average memory bandwidth to approach ~.
Although low bank use usually results from the cofi-
junction of several factors, the most important in a
well designed memory system is related to bank con-
flicts. A bank conflict happens when two or more re-
quests are addressed to the same bank within a time
interval inferior to Tc cycles, When dependencies [1]
hold between requests issued to a bank, the processors
must be halted until the conflict is cleared.

“This research was supported at the MASI Laboratory by
the Direction des Recherches, Etudes et Tecti]ques (DRET) of
the D61.6gation G6n&de pour l’Armement (DGA) under grant
86/1358.

From the designer’s standpoint, the bank conflict
probability is closely related to address mapping, i.e.
the conversion of processor addresses into bank num-
bers. A popular address ma ing scheme is the so-

rrcalled low-order interleaving 8, where the remainder
of the address by A4 is used to select the target bank.
This organization is particularly appropriate in high
performance systems since it allows accesses to consec-
utively stored words to be performed at full memory
throughput, a useful feature when it comes to filling
and saving caches or transferring 1/0 data. Moreover,
low-order interleaving is easy to implement when M
is a power of two, because the low-order bits of the
address directly express the required remainder.

Unfortunately, accessing adjacent words at full
bandwidth is not enough if arrays must be processed
by rows, diagonals or sub-blocks as often happens in
scientific computing or image processing. This has led
numerous researchers to investigate the so-called skew-
ing schemes, that is, conversions of array coordinates
into bank numbers. Since many interesting skewing
functions rely on such operations as integer division
and remainder, an efficient means of performing them
is of the highest importance.

This paper is organized in three parts. The first
part reviews several results on skewing and lists some
skewing functions that would benefit from improved
division and modular reduction operations. In the
second part, we expound the intuitive origin of our
method, stating its main results and presenting a
generic hardware implementation.

The last part is devoted to the design of a by-127
modular reduction / division circuit which operates on
numbers between O and 228 – 1. The interest of the
“pseudo-prime” address mappings, which can be im-
plemented using this or similar devices, is illustrated
on a Cray Y-MP computer. The mathematical proofs
are developed in the appendix.

2 Background

2.1 Address Skewing
Following Shapiro [10], a skewing scheme for a

~o;,F’ ~arix is a function H : {0,1,..., P - 1} x
. . . –l}l+{o,l,. ... M - 1}, p(i, j) being

th; bank number where the matrix element A; @
stored. A skewing scheme is said to be periodic If
Vi, j : p(i, j) = ~(i -I- &l,j + M), and is linear if

56
@ 1991 ACM 0-89791-459-7/91/0056 $01.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F125826.125874&domain=pdf&date_stamp=1991-08-01

3U, V : Vi, j : p(i, j) = (ui + vj) %iM1. Most skewing
schemes likely to be encountered in literature are peri-
odic, while linear skewing schemes are commonly used
on today’s supercomputers under a restricted form
(more on that later).

A fundamental result from Wijshoff and van
Leeuwen [12] states that if J4 is square-free (not di-
visible by the square of a prime number)? any periodic
skewing scheme can be reduced to a hnear skewing
scheme up to a permutation of the bank numbers,. In
addition to the p function, the address where A> is

stored within bank p(i, j) ESsometimes specified, and
we denote it by the expression a(i, j). It is usually
less demanding to compute a than p, since the bank
number is the first information required for routing
through the network, and because in many csses the
complexity of a can be traded if necessary against
some wasted space within the banks.

Non-linear skewing schemes have been proposed by
van Voorhis and Morrin [11] to solve the problem of
conflict-free access to vertical lines of length pq, hor-
izontal lines of length pq, and to p by q blocks (with
p, q design parameters likely to be powers of two) in
the screen memory of an image processing device. The
configurations studied included a M = pq bank mem-
ory system with the skewing functions pz(i, j) = (ig +
i+p+j) YO(m) and m(~, j) = (iq+(~+p) % q+~) %(pq).

The most versatile organization turned out to be a
memory system fitted with &f = pq + 1 banks, in as-
sociation with the function p4(i, j) = (iq+j) %(pq+l).

Unfortunately, practical implementation of the lat-
ter waa precluded by the necessity to perform opera-
tions modulo (pq + 1), even though van Voorhis and
Morrin describe in their paper a generic hardware im-
plementation to address this problem. The need to
compute addresses for the pq + 1 bank memory sys-
tem efficiently led Park [9 to design a more economical

11alternative, which nevert eless requires one operation
modulo pq + 1 to be performed for any access to a pq
vertical line, a pq horizontal line, or a p by q block in
memory.

2.2 Address Mapping

Although definitely useful for special purpose ap-
plications such as image or array processing, multidi-
mensional skewing schemes are difficult to use in their
most general form in high performance scientific com-
puters. The reason is that the multi-dimensional array
layout in memory is part of the definition of popular
high-level language such as Fortran or C, so it cannot
be altered without precluding the correct execution of
many valid programs.

For instance in Fortran, matrices are supposed to
be stored in column major order ; this feature is used
every time a sub-array is passed to a subroutine, and
also when arrays are aliased either explicitly using the
equivalence statement, or implicitly through multiple
definitions of a common block. In this context, any

1In this text, : denotes the integer division operation, ~0 the
modular reduction operation, and 1 the real division operation.
(z1 is the smallest integer greater than or equal to x, and [zJ
the greatest integer less than or equal to z.

usable skewing scheme must be reducible to the com-
position of the language-induced array layout with the
address mapping function provided by the hardware of
the computer at hand. So address mapping functions,
instead of general skewing schemes, must be consid-
ered while designing a supercomputer memory system.

Address mapping functions, akin to mono-
dimensional skewing schemes? are simpler to compare
than multi-dimensional skewing schemes. A popular
criterion is the number of banks referenced by an in-
finite stream of requests equally spaced by an address
stride s. The relevance of this measure is easy to un-
derstand, considering that equallys aced memory ref-

Ferences account for more than 90 0 of the requests
generated by scientific program loops [7].

Connecting strides to common access patterns in
a Fortran (1, *) matrix is straightforward to achieve,
since the effective address of the (i, j) element takes
the form i + lj + 1<, where K is a constant related to
the starting address of the array in memory. Walking
through a Fortran (1,*) matrix in column order yields
stride one request streams, whereas accesses to the
matrix following lines, diagonals and anti-diagonals
respectively yield stride 1, 1 + 1 and 1- 1 request
streams. These numbers must be doubled when deal-
ing with complex or double precision data.

As stated earlier, high-performance general-
purpose computers apply low-order interleaving,
which can be described by the simple address map-
ping function @ + @~. M. Combined with the col-
umn major order imposed by Fortran, the result-
ing skewing function for an (1, J) array is p(i, j) =
(i+lj+K % iV. This defines a linear skewing scheme,

1whose be avior on various access patterns is well-
known [4]. In constant stride request streams, the
number of banks refer~nced in a low-order interleaved
memory system is w].

One alternative to low-order interleaving has been
proposed by Harper and Jump [3] with the ad-
dress mapping function ‘@ w (@ + @ + itl) % M.

The advantage of this scheme is that the number
of banks referenced by a stride s request stream is

“) though it is as easy to implementmXM) g~ ~
aa low-order interleaving when M is a power of two.
Predictably, the application of this system to a num-
ber of banks which is not a power of two leads to a
cumbersome implement ation, involving lookup ROMS

and feedback adders.

2.3 The Problem

We set down the problems of skewing and mapping
as follows. When one can afford to perform integer di-
vision and modular reduction operations by constants
differing from a power of two, linear skewing schemes
appear to be sufficient in most cases. This is illus-
trated by the superiour behavior of the pq + 1 bank
configuration of van Voorhis and Morrin. Similarly,
a prime number of banks associated with simple low-
order interleaving is the absolute best for supercom-
puters, as exemplified by the effectiveness of the prime

57

memory system on the Burroughs Scientific Processor
[5].

On the other hand, when only divisions and reduc-
tions by powers of two are fast enough to meet the sys-
tem objectives, a difficult choice 1sto be made between
simple low-order interleaving and a non-linear skew-
ing scheme. All current supercomputers rely on the
first solution, so application programmers are taught
to avoid strides which are multiples of two, four or

s
eight depending on the machine) by increasing the
array imensions [6].

The problem with non-linear skewing schemes is
that they often cause annoying irregular behavior. For
instance, the p3 skewing function of van Voorhis and
Morrin allows parallel access only to p by q block start-
ing at a line number multiple of p, while the pz func-
tion extends this restriction to the pq vertical lines
too. In a similar fashion, Harper and Jump’s scheme
appears to be unusable for large M, since for strides
multiple of M – 1, up to A4 requests are stacked on
the same bank before the next one is addressed. With-
out extensive buffering, the apparent squaring of the
bank number provided by this system can’t be relied
on (see section 4.3). Even with buffering, dependen-
cies between requests would have to be especially loose
for the system to be effective.

Concluding that an almost perfect solution would
be to discover a fast way of computing quotient and
remainders by constants belonging to a class embed-
ding several odd, square-free and prime numbers, we
started working on the problem. The Burroughs Sci-
entific processor design with M = 17 banks, the fact
that 5 and 257 are primes, and the ikl = pq + 1 image
processing system of van Voorhis and Morrin with p

and q powers of two, oriented our investigations to-
wards the class of numbers expressible as 2“ + 1. We
also considered members of the class 2“ — 1, since

3,7,31,127 are also primes, and because p = 2k + 1,
q=2k–la it4=pq+l=22k. Aswe shall see,
fast divisions and modular reductions by 2“ + 1 and
2“ – 1 are very similar, so the work in demonstrations
can be almost halved.

3 The Method

3.1 Primitive equations
One may find how fast euclidean divisions by 2“ + 1

can be achieved by looking for a relation between x :
(2n – 1), x + 2“ and x + (2” + 1) for small values of
z. When two 2“ x 2n matrices are filled in line major
order with the quantities c– (x) = z+- (2” – 1) – z +2”

and c+(z) = z ;2m – z+ (2n + 1), two regular patterns
;p~e~;nas illustrated in figure 1 with n = 2. For O <

— l,c-(z) =lif3+2”~2n–l–x%2’ else

i
O,andc+ x)=lifz +2”>z%2”else0.

Thus, or the range of x we are temporarily con-
sidering, divisions by 2“ – 1 and 2n + 1 differ from
divisions by 2* by O-1 terms, which values result from
simple comparisons of z + 2n – ~ ~. 2“ to 2n – 1, and
of z + 2n + x ~. 2n to O respectively.

Starting from these observations, the first part of
our method is straightforward to devise : all we need

Figure 1: Relations between z: 2“ and z + (2” + 1).

is to express z + (2” * 1) for any z as a function of
x + 2“ and x + 2“ + x % 2“. From the definition of the
euclidean division :

x = p(z+p)+z%p Vx, pelN

-x = 2“x+2n+x%2n

= 2“X+2”+ Z%2”+Z+2”– X:2”

= (2”-1)Z+2” +(Z962”+X+2”)

Dividing both members by 2“ – 1, we get :

z+(2”– 1)= Z+2”+(X%2” +Z:2”)+(2”–1)

Dually, x = (2” + 1)x+ 2“+X’%2”–-X+2”,SO:

IZ+(2”+1)= Z+2”+(X%2” -Z+2”)+(2”+1)I

The expressions for the remainders are even simpler :

x 97(2” – 1)

= z – (2~ – 1)(Z + (2” – 1))

=x - (2” - 1)(X + 2“ + (xyo2”

+X+2”) +(2”–1))

= z - (2” - 1)(Z + 2“) - (2” - l)((Z %2”

+2+2”) +(2”– 1))

= X–2’(2! +2”)+ X+2” -(2”– 1)((X%2”

+X+2”) +(2”– 1))

= Z%2”+Z+2” –(2”–1)((X%2”

+X+2”) +(2”–1))

Therefore :

X%(2* –1)=(2%2” +X+2”) %(2” –1)

And dually :

zyo(2n + 1) = (X’? 42” – x +2”) 7.(2” + 1)

These equations are clearly recursive, and could be
used directly to compute quotients and remainders by
2“ + 1 in some implementations. However, consid-
ering that a linear time complexity would not be fast

58

enough for our purposes, we tried to achieve a logarith-
mic time complexity through derecursivation. This at-
tempt succeeded, as we got the following results (the
proofs are developed in the appendix) : let z be a bi-
nary number with q digits, and let t = [:1 ; depending.,. .
on the context, and assuming that : k > q + ek = O,
we shall write either :

a–1 1 I nt-1

mor:m
Let P-, P+, S– and S+ denote the expressions :

FEFl

x ..,.,.:.:.:.,,.,.:.:.:.:....,.:.,.,:.:,.,.,.:.,.,....,.:.,.:.,.,:.:.,.:.,.:..%,.,.:.:.:.,...............:m:a .:g&$
a T :..R:.jw
““”””””:”ti’’we’’:”: c- ‘;~.fl‘w

me bits :.:.:. :.:.:
ti p- si X%(m-1)

IMb

n+2 bits

me bits @p+~
. . .

X% (2n+l)

Figure 2: Modular reduction by 2n + 1.

t-1 n-1

P+ = x(–l)’ ~ 2k ed+k

/=0 k=O

FzT=l
ra(t-1-1)-l

s+= ~(-1)’ ~ 2k enil+l)+k
/=0 k=O

Then we get the following results :

Z%(2” – 1) = P- %(2” – 1)

z yo(2n + 1) = P+ yo(2” + 1)

lz+(2” - l)= S-+ P-+(2”–1)

lz+(2n+l)= s++ P++(2”+l)l

(1)

(2)

(3)

(4)

Fast modular reductions by 2“ A 1 based on the

?

application of equations (1) and (2 has been already
proposed by Yoon, Lee & Bahiri 13]. However, the
implementations they describe are based on modulo
2“ + 1 adders, which appear to be twice as slow as
regular binary adders. Moreover they do not consider
the problem of computing quotients by 2“ A 1, which
are also needed in a real memory system.

The implementation we present in the next section
computes modular reductions by 2“ + 1 in the same
number of additions steps aa the “fast” binary to mod-
U1O2n + 1 translator of Yoon, Lee & Bahiri. While
their implementation is based on modulo 2n & 1 adders,

ours requires nothing else than ordinary adders. For
this reason, we consider our euclidean division alg~
rithm as “ultra fast”.

3.2 A generic hardware implementation
Following equation 1, to compute the remainder by

2“ – 1, one must slice the number expressed in binary
notation in r~l parts each n bits long, starting from
the low-order bits, and sum them in any convenient
order. The result is the partial sum P– with n + e
bits, e = ogz([~l)1, and we shall assume that P-

!fits on 2n its, I.e. e ~ n . The n low-order bits of P-

are then added to its e high-order bits, and this gives
a pseudo-remainder R- with n + 1 bits. If lower than
2n – 1, this number is the required remainder. If not,
2n – 1 must be subtracted from it. This effect can be
achieved by using a signal C-, set if R- > 2n – 1 and
reset otherwise, to select between R- and R– – 2n + 1.

A straightforward implementation of this process is
illustrated in figure 2. For it to work aa expected, a
few conditions must be enforced. First P-, which lies
within [0, t(2n – 1)] must fit on 2n bits, so :

t(2”–l) <22n–l~t<2”+l

Second, R- must strictly be smaller than 2(2n – 1),
because our implementation allows 2“ – 1 to be sub-
tracted at most once from R- :

R-<2(2n –l)~P-<22n–1~

t(2n – 1) < 22n – l+t<2n+l*t <2”

When all the conditions are met, the device depicted
in figure 2 will compute remainders by 2n – 1 in e +
2 addition steps, but as we shall see section 4.2 the
two last sums can eventually be merged, leading to a
critical path only e + 1 steps long.

Similarly, to compute the remainder by 2n + 1 one
must sum t = [11 slices of the original number, but in
this case every o?her term must be complemented first.
All intermediate results must also be sign-extended
one bit before entering the next stage in order to prop-
agate the correct signs. The partial sum P+, sign-
extended to 2n bits, is halved in two n-bit slices which
are then subtracted. The sign bit of P+ is moreover

59

introduced as an extra borrow2 during this operation.
If the result R+ is positive, it is the required remain-
der. Otherwise it must be biased by 2“ + 1. Here again
a signal C+ can be defined as one if R+ <0, and used
to select between R+ and R+ + 2“ + 1.

The conditions for this implementation to work
properly are that P+ must fit on 2n bits, i. e.
p+ E [_2z~-1 , 2z~-1 – 1], and that R+ must lie within

[-(2n+l),2n+l[. Since P+ G [-l~J(2n -1), [~l(2n-

1)], we get :

On the other hand, from the way it is computed R+
always stays within [—2n, 2n – 1], so there is no ad-
ditional restriction on t.As in the 2n – 1 case, e + 2
addition steps are apparently required to compute re-
mainders by 2n + 1, but again some values oft and n
allow the two last steps to be merged into one.

To understand why an extra borrow is needed to
compute R+, remember that any q-bit binary number
in two’s complement notation can be written :

q–2 q-2 q-l+r

x=
E

zkek–~zq-~
‘x x 2ks-s2q+r

Zk ek +

k=O k=O k=q-1

2n-2

Applying this to P+ = ~ 2k ek – s 22”-1 ~ P+ =

E2n 2’ e’, with

k=O

produced from

——

k=o

e2n–1 = s and e2n = —s. R+ being

P+ following equation 2, we get :

‘&-l)l‘~’2’ en/+k

1=0 k=o

n-1 n-1

x
‘2’ e’ – ~ ‘2’ en+k + e2n

‘=0 ‘=0

n-1 n-1

E
zkek–~zke~+k–’

k=O k=O

Once the partial sums P-, P+ and the select sig-
nals C-, C’+ are available, fast divisions by 2n + 1

are easy to achieve. To divide a g-bit number z by
2“ – 1, one just needs to add the sum S- of the t – 1
terms Tk, 0.< k < t – 1, t = [:1 to the partial sum
P– right-shifted n bits and truncated, C- being intro-
duced as an incoming carry. Each term Tk is defined as
the original number z right-shifted n(k + 1) bits and

2We understand this word with its mathematical meaning,

that is, a quantity that is always subtracted from the result. In

data books the borrow is complemented, i.e. it must be set for

simple subtractions to be performed

$Aa,,q., &.3.&2.o%;%.3,?$.+.?,.,@@J& X.>>.,$m6,.?8,,??K2WJ. .&:. Jam .,.8.;.,.

[

w Q&7 _ @fgg@j:@@
““””’”’w”

...,.,,,.......:.,.,.......W ,= =

,.....>:.i ,:.:.:.:.,.... ,.,.,:::<A:RA.!..,,.,.,:.:.:.:.!::~

= “~
c+%iis7

x+w+u

Figure 3: Division by 2n + 1.

truncated. Similarly, to divide a q-bit number x by
2“ + 1, the t– 1 terms Tk must be summed with every
other complemented, the result St is added to P+ it-
self right-shifted n bits, truncated, and sign-extended,
while C+ is introduced as a borrow into the sum.

Using the associativity of addition, the t – 1 T’
terms can be summed in Pog2(t – 1)1 ~ e steps. Since
the partial sums (P– or P+) themselves need e steps
to be computed, the addition of S to the shifted and
truncated P can be performed at the (e + l)th step.

Simultaneously, the select signals (C’- or C+) can be
evaluated in 1 or 2 addition steps, so the quotient can

be made available through selection at the (e + l)t~

or (e + 2)** addition step, depending on the peculiar
values of n and t (figure 3).

4 Applications

4.1 Prime memory systems

Perhaps the most promising application of our fast
division / modular reduction algorithm is the imple-
mentation of prime memory systems on forthcoming
supercomput ers. As noted earlier, low-order interleav-
ing is the single most interesting choice for implemen-
tation in high-performance computers, because con-
tiguous accesses account for the largest part of mem-
ory references.

Array layout in memory is bound to the definition
of the high-level language used (column major order
in Fortran, and row major order in C), so users must
cope with linear skewing schemes they can partially
tailor through adjustments of the array dimensions.

The mam parameter left to the computer architect is
the number of banks M, but his freedom is limited,
for the overall design of a memory system must be
balanced according to some proven rule of thumb such
as providing a theoretical bandwidth one to four times
the cumulative throughput of the access channels.

To understand why and when a prime number of
banks is appealing in supercomputer design, one must
first agree that the primary purpose of these machines
is to allow a noticeably faster execution of most scien-

60

tific programs, before being highly efficient on a nar-
row class of computations.

As a first consequence, as long as address decod-
ing stays one order of magnitude faster when A4 is
a power of two, other solutions are not even worth
considering in supercomputer design. The reason is
that memory latency, which includes address decod-
ing time, is directly involved in scalar performance.
On the other hand, as soon as the speed penalty in-
duced by the choice of an h4 not a power of two can be
limited (as in the Burroughs Scientific processor case,
where the cycle time is long, or with the availability
of our fast division / modular reduction procedure), a
prime number of memory banks turns out to be of the
highest interest.

First, a prime number is square-free, so a wide
range of skewing effects are achievable if necessary
through the control of the array dimensions. A prime
number of memory banks also reduces on average the
frequency of recurring memory conflicts for constant-
stride request streams, since problems arise only when
the strides are multiples of M. But the most apparent
advantage is that programmers and automatic paral-
lelizers are relieved of the burden of avoiding strides
multiples or powers of two, which occur frequently in
scientific computing. This feature is especially handy
when code must be transferred to a supercomputer
from a scalar machine which not fast enough.

4.2 A by-127 euclidean division circuit
Returning to the numbers expressible as 2“ A 1, the

2n – 1 class appears to offer better candidates for selec-
tion than the 2“ + 1 class as the number of banks in the
memory system of a supercomputer. The main reason
is that popular interconnection schemes between the
processors and the memory such aa Benes and Omega
networks require the number of inputs and outputs to
be a power of two. If M = 2“ + 1, the network must
be scaled to 2ntl, with almost half of its routing ca-
pacity unused. On the other hand, access to 2* – 1
banks can be performed through a network of size 2n
only, which is twice as cost-effective.

The second advantage of fitting out a memory sys-
tem with 2“ – 1 banks is that programs tuned to run
on existing supercomputers often use overdimensioned
matrices to avoid strides powers of two [6], so pat ho-
logical behaviors are far less likely to occur than in
the M = 2“ + 1 case. Last, the first prime numbers
belonging to the class 2“ – 1, namely 31 and 127, fit
better into the range of possible choices for the num-
ber of banks of a supercomputer memory system than
17 or 257. Facing the two remaining candidates, we
chose to reduce / divide by 127 since, given an address
range, higher n yield lower e and therefore allow faster
implementations.

The device depicted in figure 4 operates on numbers
between O and 228 – 1, that is, q = 28, and given that
n = 7, we get, t = 4 and e = 2. Since skewing usually
applies at the word level, and for words are 64 bits long
on supercomputers, this allows real byte addresses up

to 231 – 1 to be processed. Compared to the generic
implementations depicted in figures 2 and 3, the device
of figure 4 is distinguished by the fact that eight-bit

full adders are used everywhere, and that subterms
are shared as much as possible between the quotient
and the remainder chains.

Moreover the values of n and t allow the critical
path to be compressed to e + 1 addition steps, taking
advantage of the following observations :

●

●

●

The subtraction of 2“ – 1 and the comparison to
2“ – 1 are the same operation.

Instead of subtracting 2“ – 1, one can add 2n + 1,
since we are using n + l-bit adders.

The sum of 2“ + 1 and of the e most significant
bits of P- can be merged, since bits e 11,... ,0
and n are disjoint.

We compute R- and 2“ + 1 + R- simultaneously, C-
being generated as a by-product of the second addi-
tion. This outgoing carry is used to select the proper
remainder according to figure 2, and also to increment
the quotient directly.

4.3 Pseudo-Prime Memory Systems
Retrofitting an existing supercomputer with a fast

by-(2n – 1) reducer / divider with (2n – 1) being prime,
or including it in a new design is an especially simple
matter. Let us first suppose that the original mem-
ory system is fitted out with ikl = 2n banks. Since it
is low-order interleaved, the n low-order word address
bits enter the enabling decoders, while the remaining
address bits go unchanged to the banks. To convert
this design into a (2” – 1)-bank memory system, one
just has to insert a device of the kind described sec-
tion 4.2 in the address path, with Ro–Rn - 1 going to
the decoders and QP–QO directly entering the banks.
In this modified memory system, nothing is changed
except that the 2nth bank is no longer accessed, and
that conflicts arise only for strides multiples of 2“ – 1.

If M = 2m is less than 2“, the modification is the
same except that the n— m high-order bits of R now go
directly to the banks. The resulting address mapping
function takes the form : @ + (Cl %(2” – 1) + 2“@ +
(2” - 1)) % 2m = (@ %(2” – 1))% 2m. We name the
resulting memory systems (2n, 2m)pseudo-prime. As
long as strides are not multiples of 2n – 1, requests are
distributed evenly on the average, except for the last
bank which is accessed 1 – 2m-n times as often as the
others. The problem with such configurations is that
up to 2“-’” requests may be stacked on a bank before
the next one is addressed. Request stacking may in-
cur substantial performance degradations on memory
systems wit h a small amount of buffering, so the use-
fulness of pseud~prime memory systems is likely to
be limited to cases with m & n.

To evaluate the effectiveness of prime and pseudo-
prime address mappings, we ran a set of experiments
in dedicated time on a Cray Y-MP 8/8128 computer
to measure the average memory bandwith achieved
by the loop 1 shown below, with the iz array suitably
initialized. The memory of the Cray Y-MP 8/8128 is
divided in 128 banks. However, as far s-sone processor
is concerned, the memory system behaves as if it had
only 32 distinct banks, due to the provision of a three

61

A27-A21 I

A20-A14 1

Al 3-A7 S

A6-AO !!

\\\\\\\\\\\\\\\\\\\v
!~!!!~yfi:.:.:::.=:::;.~..:!...:i:l:l:I,l:a:.:.v!l:.%m!is!!i!!j! !rjti!!!!!lwl%!i!!:

.

76543210 7654321 76543210 7654321 76543210 7654321d

8-W M Adcxr S-Bit full ti

C8 76543210 C6 76543210

.

76543210 7664321

6-SitfullAdder

C8 76543210

.

ttlin~

I76543210 7654321 76543210 7654321

Y
a-mfull A&w

C8 76543210 co It

Q21-Q14

1 6atfullAdder I

8-W full Adder

~ ‘=’l?’;
a-m full Ad&

Cs 76543210 co II Cs 76543210 CO C6 76543210 CO ~

\\\\ws+ss&-\\s ..:.:.:.:.:.:.:.>:.:.:,,.,,: .:,:,:,.,:

f i i fi!~{ I,i

&y’ ,, ii:

$

.:.:,,.:..,.:.,.:.:.:., *
.!.,. -, w-----,,:: y,~,~;fi... $!,~:!;,?,~,~,~,j,~,fi~!,,,.:.:.:.:.:.. ,,::.:y

+:,:::::..,W ,Y::ti ..:.:.:..:.:.::::::~ .. yJj,:::,.,,,.. ,+,.,:,: W,iw, ::y..:.:.:

$

$

76543210 7654321 # 76543210 7654321

013-07 Hexlof2NMtlplemr
.!

a-at full Adder

Q6-CX2 k\\~

N

g76543210 Sal C8 76543210 co +1,
,:::;;~:j,~:; >,J,$ ~ix$w:~: ,::..~

i!!!!!!!!!!fifi!!!il!!! !i!!!!!l!!!!!!! !:!!w

layer Btructure which
processor [2].

do 1 i=l,n
v(ix(i)) =

1 continue

Figure4: Fast by-127 Euclidean division

comprises 32 “subsections” per

s

This can rechecked in figure 5(a)~ where themem-
ory bandwidth in Mwords / second 1s plotted against
the stride is for the simple values iz(i) = (i . is YOn

I(here n i6 the size of the ix array, always set to a arge
multiple of the period of the address mapping function
considered). In figures 5 (b) and 5 (c), the effects of
(32, 32) and (128, 32) pseudo-prime address mappings
onthememory bandwidth are measuredly initializing

\

Lr(i) to the values ((i . is) %31 +32 (i. is) + 31)) ~0 n,
and ((i. is) % 127+ 128((i. is)+ 127) ~. n respectively.
Figure 5 (d) shows the effectiveness of the address
mapping function described by Harper & Jump, i.e.
ix(i) = (i . 2’S + ((i . iS) + 32)) ~on.

As expected, request stacking prevent both the

$))128 32 pseudo-prime and the Harper & Jump ad-
ress mappings from achieving smooth behavior. The

(32, 32) pseudo-prime address mapping function ap-
pears to perform wery well on the Cray, allowing a
2.4 Yoincrease of the average memory bandwidth con~-
pared to the non-skewed case. Also the behavior of
thememory system appears to bemuch more regular,
with the noticeable performance losses being restricted
tothestrides multiple of31. Harper &Jump’s scheme

circuit.

I 8-BitfullMder I,g

seems to~erform well on these curves, but one should
remembe~that itsperiodicity is22n, that is, 1024 fora
32-bank memory system. The averaged memory band-
with of Harper & J ump’s scheme on strides ranging
from 1 to 1024 exposes a loss of about 1% compared
to the 5 (a) case.

5 Summary and Conclusions

A fast way of computing quotients and remainders
by numbers belonging to the class 2“ + 1 has been pre-
sented, and the related hardware implementations de-
scribed. The main interest of this technique lies in its
applications to addrew skewing and address mapping
in parallel memory systems. Although the proposed
implementations are based on two input adders, the
basic principles can be extended in a straigthforward
manner to three input adders, allowing even faster
modular reduction / division circuits to be assembled.

Acknowledgements

I wish to thank P. Feautrier, who appropriately sug-
gested the use of modular arithmetic to shorten the
proofs in the appendix. Thanks also to M. Patron
and J. David, who provided assistance while experi-
menting with the Cray.

References

[1] D. Y. Chang, D. J. Kuck, D. H. Lawrie : “On
the Effective Bandwidth of Parallel Memories”,

62

MQsm

mm a 1 1 1 I 1 1 L

200.00

150.00

lGO.W 3

Ea.sQ

3-d#iiul 3

Stide 16 32 48 S4S0 % 112 128

(a) ix(i) - mod(i%, n)

3SQ.W

2s0.00

200.00

1s0s0

1woo

SO.cm

&rdAdm

m .
I

su*162i4i&3i & 112 128

(c) ix(~ - mod(mod(i%,127) +128”((i%)/1 27),n)

Sride 16 32 48 6460 % 112 128

(b) ix(i) - mod(mod(i”is,31)+3z”((i%)/31),n)

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

300.00

254.2.I

20$.W

150.G+

100.00

woo

Iax+tAdtt

SW* 16 G 6 .2iM 96 112 128

(d) ix(i) - m.xl(i%+(i”is)/32, n)

Figure 5: Effects of address mappings functions on a Cray Y-MP computer.

IEEE Transactions On Computers, Vol. C-26, N
5, May 1977.

U. Deter, G. Hofemann : “Cray X-MP and Y-MP
Memory Performance”, Parallel Computing, Vol.
17, North-Holland 1991.

D. T. Harper, J. R. Jump : “Vector Access Per-
formance in Parallel Memories Using a Skewed
Storage Scheme”, IEEE Transactions On Com-
puters, Vol. C-36, N 12, December 1987.

D. H. Lawrie : “Access and Alignment of Data
in an Array Computer”, IEEE Transactions On
Computers, Vol. C-24, N 12, Dec. 1975.

D. H. Lawrie, C. R. Vera : “The Prime Memory
System for Array Access”, IEEE Transactions On
Computers, Vol. C-31, N 5, May 1982.

J. M. Levesque, J. W. Williamson : “A Guide-
book to Fortran on Supercomputers”, Academic
Press, 1989.

T. Matsuura, S. Kamiya, M. Takiuchi : “Design
Concept of the FACOM VP Based on Extensive
Analyses of Applications”, VLSI in Computers :
IEEE ICCD’84, Oct. 1984.

W. Oed, O. Lange : “On the Effective Bandwidth
of Interleaved Memories in Vector Processor Sys-
tems”, IEEE Transactions On Computers, Vol.
C-34, N 10, Oct. 1985.

J. W. Park : “An Efficient Memory System for
Image Processing”, IEEE Transactions On Com-
puters, Vol. C-35, N 7, JUIY 1986.

H. D. Shapiro : “Theoretical Limit ations on the
Efficient Use of Parallel Memories”, IEEE Trans-
actions On Computers, Vol. C-27, N 5, May 1978.

[11]

[12]

[13]

D. C. van Voorhis, T. H. Morrin : “Memory Sys-
tems for Image Processing”, IEEE Transactions
On Computers, Vol. C-27, N 2, February 1978.

H. A. G. Wijshoff, J. van Leeuwen : “The Struc-
ture of Periodic Storage Schemes for Parallel
Memories”, IEEE Transactions On Computers,
Vol. C-34, N 6, June 1985.

H. Yoon, K. Lee, A. Bahiri : “On the Modulo
M Translators for the Prime. Memory System”,
Journal of Parallel and Distributed Computing,
Vol. 8, N 1, Jan. 1990.

Appendix
In this section, we shall denote the congruence re-

lation by the = symbol. It is defined by :

Vx, y,m EZ:x~y~3k EZ:x– y=km

We also have the following properties :

}{

x+y-a+b
x~a

xy S a?
y~b *

m xn~a” VnEIN
m

Let x be a binary number with q digits, and let t =

nt-1

[~1. In the following we shall assume x = ~ 2: ei.
i=o

Modular reduction by 2“ – 1

63

nt–1 nt–1

x=
z E ‘n(i+n)+i%n’n(~+n)+~%n -

‘a ‘i =

$=0 i=O
t–in–l t-1 n-1

‘“xx ‘n’+kenl+’ = Dn’x’k’nl+’ *

/=0 ‘=0 1=0 k=O

t-1 n—1 t-i n-l

‘2E1Dn’ x’k’.f+’25,2z’k’nl+k = ‘-
1=0 ‘=0 /=0 ‘=0

(
t-l n-1

)

xYo(’” – 1) = ~~’k%[+k yo(’n– 1) ❑

/=0 k=O

Modular reduction by 2“ + 1

‘“ ~ _l*’nf =-,(-l)’ ==+
2“+1

‘~1+’ = yl” s (–I)f ‘k Vk,l e IN
2“+1

i=O i=O

t–in–l t-l n—1

t–1 n—1 t–l n—l

x2~,Dn’ Dk’.l+’ ,~lz(-’)’ z’k’.r+~ = ‘+

1=0 k=O /=0 k=O

(
t–1 n—1

)

X YO(’2n + 1) = ~(–1)~ ~ 2’ ‘n/+k 70(’” + 1)

/=0 ‘=0

u

Division by 2“ – 1

X= P-= p- – (’” – 1)(P- + (2” – 1))
2“-1 2“-1

This value belongs to [0, 2n – 1[, therefore :

x $ZO(’n – 1) = P- – (2” – 1)(P- + (2” – 1))

From the definition of the euclidean division :

x = (’~ – 1)(Z + (2” – 1))+ X%(’n – 1)

+z+(’”–l)=x–x~!’in–l)

x— P-— (’n – 1)(P- + (’n – l)))
=

2.–1

.~+P-+(2”–1)

Replacing P- by its value yields :

t-1rl-1

x - ~ ~ 2’ ‘.[+’

2+(2” –1)= 1=0 k=o
Zn–1

(

t-i n-l

)
+ x x ‘k “~+’ ‘(’n – 1,

?=0 ‘=0

The first term S- of this sum can be rewritten :

t-1 n-1 t-1 n–l

D“ X’k’nl+’-Zx’k’nl+’
s- = /=0 ‘=0 1=0 k=O

2n–1
t–1 n-l

‘-1 ~2ny _ ~ n-l
——

~ ‘n – 1 E ‘k ‘d+k
k=O

t–1 l–l n—1

= zz’n’ Z’k’nl+’
1=1 j=o ‘=0

The application of the four successive changes of
coordinates u=l–j, v=nj+ k,l=u–landv=k
leads to the expected result :

t-l l-i n-l

‘- = ~~~’n’+kenl+’+nj-nj
1=1 j=O k=O

t-1 t-1-u n-l

= Z E Z’nj+kenj+k+nu
/=1 j=O k=O

t–1 ?dt-1-u)+n-]

t–2 n(t-i-1)-l

= x x 2’ ‘n(~+l)+k

1= o ‘=0

And : x + (2” –l)=S-+P-+(2”–1) ❑

Division by 2“ + 1

z zn~l P+ zn~l P+ – (2n + 1)(P+ + (2” + 1))

This value belongs to [0, 2n + 1[, therefore :

Xyo(’” + 1) = P+ – (2” + 1)(P+ +(2” +1))

From the definition of the euclidean division :

x = (2” + 1)(X + (2” + 1)) + 2%(2” + 1)

*x+(’n+l)=x–~~\’ln+l)

x—(P+—— (’n + 1)(P+ + (’n + 1)))=

. ~ + p+ +2~2+n1+ ~)

Replacing P+ by its value yields :

t-1 n—1

a?- ‘y(-l)’ ~ ‘k ‘nl+k

2+(2” +1)= 1=0 k=O
Zn+l

(

t-1 n-1

)

+ ~(–1)’ ~ ‘k ‘./+’ ~(’n + 1)

1=0 ‘=0

64

The first term S+ of this sum can be rewritten :

t-1 n-1 t-1 n-1

z’n’x’k’n~+~ -xWD’’.~+~

s+ = 1=0 k=O 1=0 k=O
2“+1

t-1 n-1

~(’n’ - (-~)’) ~’k’.,+k
= /=0 k=o

Zn+l

= - ~(-~)1(~~)’ -1 ‘~2k ‘n/+k

1=1
–1

k=O
t-1 l-l n-1

1=1 jzO k=O
t-l 1-1 n-1

The application of the four successive changes of
coordinates u=l–j, v=nj+ k,l=u–landv=k
leads to the expected result :

t-1 /-1 n-1

t-i t-l-u n-1

= -~ ~ (--l)” ~’nj+k’nj+k+nu

1=1 jzO k=O

t–1 n(t-1-u)+n–l

= - ~(-l)” ~ 2“ e.u+v
U=l V=o

t–2 n(t-f-1)-l

And : l@2”+l)=s ++P++(2n+l)] ❑

65

