
High Level Support For Divide-and-Conquer Parallelism

Attila Gursoy

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

In thts paper we present a simple language based

on C for expressing dtvide-and-conquer computations.

The “language” conswts of a few stmple extensions

to C. It allows for many varzatzons tn the standard

divzde-and-conquer paradigm. It as tmptemented us-

ing the Chare Kernel parallel programming system.

The Chare Kernel supports dynamic creation of work

with dynamtc load balanctng strategies, and machine

independent executton. As a result, implementation

of languages and systems such as that described in

thts paper as stmp!ified significantly. A translator

translates divide-and-conquer programs to Chare Ker-

nel programs, handling details of synch roni~ata’on and

communication automatically. The design of the lan-

guage is presented, followed by a description of its im-

plementation, and performance results on many par-

allel machines, including NC UBE/two, iPSC/2, and

the Sequent symmetry. User programs do not have to

be changed to run on any of these machines.

1 Introduction

The dramatic advances in parallel, computer ar-

chitectures have led to an expectation that most

computation-intensive problems will be routinely

speeded up using parallel processing. Although many

commercial systems have appeared in the market, pro-

gramming them to meet this expectation is still a chal-

lenging task. Parallel programming is obviously more

difficult than sequential programming. It is necessary

to simplify and support the task of writing parallel

applications, and also to ensure that the investment

in parallel software is protected through architectural

advances and new generation of parallel machines.

The Chare Kernel [11] is a machine-independent

MIMD parallel programming system that is aimed

at this objective. The system provides an explicitly

parallel language - which uses C [12] as its base lan-

L.V. Ka16

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

guage. The system takes the responsibility of dynalmic

load balancing, scheduling (when to execute an eligi-

ble sub-computation), resource management, and pro-

vides machine dependent expression.

The base language provided by the Chare Kernel

is a general purpose parallel programming language.

However, with the research and experience of the past

years in parallel programming, a few specific parallel

paradigms have been identified - such as data-parallel

programming , compute-communicate-aggregate [15],

dynamic programming, etc. The approach we have

taken is that of developing sub-languages on top of

the Chare Kernel that are suitable for each specific

paradigm. The programmers can then use the lan-

guage that is most effective for expressing their specific

problem, translate it using a compiler to the chare ker-

nel language, and run it on the MIMD machine of their

choice. As the “languages” are often simply extensions

of the chare kernel kernel language, which itself can be

thought of as an extension of C, the compilation is rel-

atively straightforward. (We use the term “language”

if an extension requires compilation, to distinguish

from the case where an extension simply provides a

library of system calls. The term “co-ordination lan-

guages”, used by Gelernter et al [5] can also be used to

describe such languages.) Thus building such applica-

tion specific tools is relatively easy with this approach.

In this paper, we describe a language to express the

divide-and-conquer programs concisely and with ease.

After the discussion of divide-and-conquer method in

section 2, we give the description of the language in

section 3, and we discuss a programming example to

show how the system is used in section 4. The system

is implemented on top of the Chare Kernel parallel

programming system [11]. The Chare Kernel supports

dynamic creation of medium grained tasks with dy-

namic load balancing strategies, and provides machine

independence. It is a general purpose machine inde-

pendent parallel programming system, which can be

used to develop specific languages, such as the one dis-

cussed here, with relatively little effort. Thus the im-

283

@ 1991 ACM 0-89791-459-7/91/0283 $01,50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F125826.125985&domain=pdf&date_stamp=1991-08-01

plementation, discussed in Section 5, concerns mainly

translating the user program into a Chare Kernel pro-

gram. Performance on various shared and non shared

memory machines, including Sequent Symmetry, in-

tel’s iPSC/2, and NCUBE/two are described in sec-

tion 6, which is followed by a section summarizing the

paper.

2 Divide-and-conquer paradigm

Divide-and-conquer is a naturally parallel paradigm

and is considered to be a broadly applicable one [15,

1, 2]. In a typical divide-and-conquer computation,

a computational problem is broken down into smaller

subproblems, some of which may be of the same type

(of lesser complexity) as the original problem itself.

This process is continued recursively as many times

as necessary. When the sub-computations are simple

enough they are solved directly without further sub-

division. The results from the subcomputations are

passed to the parents which created them. The parent

node composes the solutions to subproblems to form

the solution to itself, which it then sends to its parent.

A few variations on this theme are also possible

within the paradigm. In search-type problems the

composition-of-subproblems is either trivial or absent

(if solutions are directly printed). In some other do-

mains, solutions to some sub-problems may lead to

creation of new sub-problems which must be solved.

This can happen, for example, due to a data or control

dependency among the sub-problems.

Many problems such as combinatorial optimiza-

tion, searches [13], many problems in computa-

tional geometry, in numerical methods [10, 16], and

problem-reduction in AI are formulated naturally as

divide-and-conquer computations. Stout [19] identi-

fies divide-and-conquer as an important strategy for

higher level image processing algorithms, and stresses

the significance of software support for expressing par-

allelism. Finkel [8] has implemented a software pack-

age that supports tree computations. It is a library of

services that are linked to user supplied code. Similar

approaches have been discussed in [3, 4, 17]. Gab-

ber [9] discusses implementation of a software system

that supports divide-and-conquer paradigm. Its im-

plementation on nonshared memory machines has not

being completed yet, and the author states that it is

a challenging task. Also, neither approach supports

arbitrary dependencies among subproblems.

Figure 1: A simple DJG

3 Language definition

A divide-and-conquer program is expressed as a set

of node definitions along with usual C functions. An

instance of a node definition corresponds to a node

in the computation tree. A node can also be visual-

ized as a Data Join Graph (DJG). A DJG is a depen-

dency graph where edges represent subcomputations

and vertices represent synchronization points. A sub-

computation originating from a vertex can start after

all immediate predecessor subcomputations have been

completed. For example, subcomputation labeled as

s, in Figure 1, can begin execution after p and r have

completed, and can receive data from them. A node

definition is expressed in C syntax with a few exten-

sions. It has a number of components (similar to

fork/join mechanism [7]) to conveniently represent a

DJG and the data it operates on. A BNF-like defini-

tion of the node syntax is shown Figure 2.

A simple toy example of node declaration is shown

in Figure 3. Different components of the node defini-

tion are described below.

3.1 Data declarations

in : { declaration-lisi }

It specifies the formal parameters to be received

by value.

out : { declaraiton-list }

It specifies the formal parameters to be sent to

the parent instance by value.

node node-declaration-list

Each subcomputation (or edge in the DJG)

should have a distinct label to differentiate it from

others. node-declaration-list declares all the la-

bels used in the node, and specifies the node type

each label refers to. Input and output param-

eters of a subcomputation are accessed through

the pointers label. in, label. out respectively. A

node can access its own input and output values

through the pointers called in and out.

cond cond-declaration-lzst

Any condttton varzable, that are used in the

284

node::=

node node-name {

in : { declaration-list}

out: { declaration-list }

node node-declaration-list ;

cond cond-declaration-list ;

local- declaration-list ;

mit-block

when-block*

}

tnii-block ::= init : { init-body }

when-block ::= when conditzon-list : { when-body }

node-declaration-ltst ::= node-name : label I

node-name : label , node-declaration-list

cond-declaration-hst ::= label I

label , cond-declaratio n-list

condation-hst ::= condition ~ conditton, condition-list

condation ::= identzjier I identifier [range-list 1

range-list ::= range I range , range-list

range ::= zntconstant 1 inconstant – inconstant

node-name ::= identifier

label ::= identifier ~ identtjier [mtconst 1

local-declaration-list ::= declaration-list

tnit-body ::= statement-list

when-body ::= statement-list

declaration-list is a list of C

declaration statements

statement-ltst is a list of C staternerits

Figure 2: Syntax of a node

conditaon-list’s of when-block’s, or in the set

statements (see below) must be declared here.

3.2 Blocks

init : { init-body }

When an instance of a node is created, the

intt-body is executed first. It usually contains the

initialization code and a termination check which

decide whether to subdivide the problem further

or solve it directly. It spawns a set of subcompu-

tations, if necessary. After completing init-body,

node suspends itself until one of the when-block’s

is satisfied.

when condztion-list : {when-body}

The labels in the condztion-list refer to subcom-

putations or condition variables. In other words,

node fib {
in : {int n;}
out: {int r~;u;:~)
node fib : : q;

init : {
if (in->n < 2) {

out-> result = in->n;
send result;
3

else {
p. +n->n = in->n - 1;

Y .
In->n = in->n - 2;

f:: [;

3
3

when p,q : {
out-> result =

p.out->result + q.out->result;
send result;

}
1

Figure 3: Node definition to compute fibonacci

numbers

3.3

fire

when-block is a synchronization point (vertex) in

the DJG, and condition-iist represents allincom-

ing edges. The condition-list of all when-block’s

of a node is checked when one of itssubcomputa-

tions finishes, and also after the execution of any

when-block. If all the subcomputations listed in a

condition-list have been completed and the con-

dition variables listed in the condition-list have

been set (by the set instruction), then the cor-

responding when-body is executed. If more than

one when-block are satisfied, they are executed se-

quentially with no particular order.

Statements

The syntax of a fire statement is:

fire labe~

It creates an instance of the node which is as-

sociated with label Before invoking a fire state-

ment, it is necessary to assign the required in-

put values to label. in. With the execution of the

fire statement, control of the data area pointed

to by label. in is transferred to the subcomputa-

tion, and it should not be accessed subsequently.

Similarly, the data pointed by label. out is valid

only after the sub computation label has been com-

pleted. Therefore, label. out should be used in

only proper when- block’s. Nodes may be indexed

285

for convenience. For example, Figure 4-a shows

the code for firing 10 subproblems. Instead of

writing 10 fire statements with 10 distinct labels,

the code can use a simple loop to fire them using

the indexed label p.

send result

A node sends its output, (data pointed by out),

to its parent node with the statement:

send result;

In addition to that, memory space allocated to

all responses that are received from subcomputa-

tions are released, and execution of that instance

is terminated.

are not actually activated are set explicitly in the

else part to satisfy the condttton-hst,

A set statement is useful for control of the or-

der of when-block’s. Consicler the example in

Figure 5-a: Let’s assume that p has been com-

pleted already, and the corresponding when- body

has been executed. When q is completed, both

the second when-block and the third one are eli-

gible for execution. In order to use the new value

of b, the third when-block should wait for comple-

tion of the second one. Correct order of execution

is achieved by utilizing condition variables as in

Figure 5-b.

Ambiguous vers ion:

node f:p[l O] I* a and ~ ~h~~d */

for{i=O; i<lO; i++)
when p .}

fire p[il ;
when q :{ b=::.}
when p,q : { f(a, b)}

(a) (a)

node f :p[lo] ;
Correct Version:

I* a and b shared *I

;;;ii=O;i<lO;i++)
cond c [2] ;

if (condition(i))
when p : { a=. .; set cIo]; }

fire p[i] ; when q : { b=. .; set cII]; }

else when CIO, I] : {f(a, b) . ..}

set p[il ;
(b)

when p[o-9] :{, ..3

(b)

Figure 5: Control of order of when-blocks

Figure 4: Variable number of subcomputations
3.4 Main node

set

set labe~

A label listed in condition-list is accepted as true

if it is set by a set instruction. A label may refer

to a subcomputation or a condition. Node labels

are allowed to be set explicitly in order to per-

mit variable number of subcomputations to be

activated. In Figure 4-b, the for-loop activates

a subset of sub computations p [01 . . .p [91. As-

sume that it is not known at compile time which

subset of p’s will be activated. How can spec-

ify conditions for a when-block that should be

activated when all the jired instances of a node

have completed? A solution to this problem uti-

lizes set instruction as follows: the conditton-list

of the when-block includes all labels that can be

potentially activated. However, the labels that

The source program should have one specially des-

ignated node named main. The definition of this node

does not have in or out declarations since it is the

root of the computation tree. In the m~t-block of the

main node, readonly variables are initialized. Read-

only variables can be accessed from any other node.

4 A parallel programming example

In this section, we consider the problem of multiply-

ing two n x n matrices. A simple divide-and-conquer

strategy for matrix multiplication is as follows: Let

A and B be two n x n matrices. The product matrix

C = A x B can be computed by decomposing A and

B into submatrices of size n/2 x n/2 and then com-

puting multiplication of those submatrices recursively

286

Figure 6: DJG of the matrix multiplication

according to the following equations:

CII = AIIBII +A12B21

(7I2 = AIIB12 + A12B22

C21 = AMBII + A22B21

The formulation can be optimized further to encode

Strassen’s algorithm [1], which creates 7 (instead of

8) subproblems. As the purpose in this paper is to

illustrate the language, we will stay with this simple

formulation.

Figure 6 shows the data dependencies in the ma-

trix multiplication algorithm. The corresponding node

definition is given in Figure 8.

Matrices A and B are declared as readonly so they

are shared among nodes. The input to each node con-

sists of the size and the row and column coordinates

of the left-upper corner of the submatrices to be mul-

tiplied. As the code at the init-block shows, grain-size

control is used to stop further division of the problem.

If size of matrices gets smaller than a threshold value,

multiplication is carried out sequentially. Otherwise,

matrices. are divided into smaller blocks. If the average

granularity (defined as the sequential execution time/

total number of node instances) is too small, the over-

head due to creation of large number of nodes and

messages causes performance degradation. If it is too

large then potential parallelism cannot be exploited.

In divide-and-conquer programs, user can easily tune

grain-size by comparing total number of nodes and

serial execution time. The labels p [01 . . . [p71 refer

to the subcomputations. The decompose function di-

vides the input problem into eight subproblems and

fills input fields of each subcomputation. Then, the

for loop fires sub computations. As product of subma-

trices arrive, they are added pairwise to construct one

I User Program I
I I

J
I I

I Node Translator I

I CK Translator I
I I

4I I I 1

I C - Linker ~ CK Run Time I

J
Parallel Machine

Figure 7: Layers of program development

quadrant of the local result in when-block’s. Although

in principle the add operations can be performed in

parallel, here they are carried out sequentially.

As illustrated by this example, parallel implementa-

tion of divide-and-conquer algorithms is significantly

simplified by the node construct, and the user is freed

from the following laborious tasks:

synchronization management : keeping track of

responses from subcomputations, and execution

of when-block’s if their conditions are met.

tree communication : handling parent-child com-

munication.

allocation : automatic allocation and deallocation

of messages.

Dynamic load balancing.

Machine dependent expression.

Once the algorithm is implemented with node con-

structs, it is translated into a Chare Kernel program.

Then, Chare Kernel translator produces the C code.

Finally, the C code is compiled and linked with Chare

Kernel Runtime environment, as illustrated in Fig-

ure 7.

5 Implementation

A translator has been developed to transform the

user program with node definitions into a Chare Ker-

nel program. A Chare Kernel program consists of

chare definitions, function definitions, and message

definitions. A chare is a parallel action with several

properties. They are not preemptible and execute for

287

readonly float Rl;

RI A[20] [20], B[201 [201;

node main {
node mult:root:
init : {“

InitMatrixo; /* read and initialize readonly matrices */
InitRootInput(root.in); /* fill row,column &d size fields of root.in */
fire root;

}
when root: {PrintResult(root out);}

}

node mult {
in : { int rowA, COIA, rowB, COIB, m;}

::0 :u:iOatp~&~->m*in-’ml;3 /* p[O] computes AIIxBI1 */
cond c[4]; /* P[ll computes A12xB21 */
init : {

. .

if (matrix-size < grainsize) { ~~ ~i+j computes A22x1322 ~~
sequentialmult (in,out);
send result;
1

else {
decompose(in,p) ;

for(i=O;i<8;i++) fire p[il;

}
}
when p[o,ll : ~ add(p[O] .out,p[ll .out,out,O); /* compute Cll */

set cIO];}
when p[2,3] : I add(p[2] .out,p[3] .out,out,l); /* compute C12 */

set c[ll;}
when p[4,5] : {add p[4].out,p[51 .out,out,2); /* compute C21 */

set c[21;}
when p[6,7] : {add p[6].out,p[71 .out,out,3); /* compute C22 */

set c[31;3
when cIO-3] : { send result;)

3

decom ose(in,p)
!mult_ Ii *in, mult_NODE *p;

{ /* fill fields of p[].in */}

add(plout,p20ut ,out,quad)
rnult_OUT *plout, *p20ut, *out;
mt quad;

< /* add corresponding quadrant of the input matrices

Out->c = plout->c+p20ut->c */ }

sequentialmult (in,out)
mult_III *in;
mult_OUT *out;
< /* sequential matrix multiplication */]

/* mult_IN, mult_OUT, and mult_NODE are defined by the translator */

Figure8: Matrix multiplication node definition

288

a very small time compared to a process in general.

A chare consists of a local data declaration block, a

number of entries and functions. A chare can send a

message to an entry of any other chare. When a mes-

sage is received, the code at the entry point specified

by the message is executed.

Figure 9 depicts the translation of a node definition

to a chare definition. Input and output definitions are

converted to message definitions. In addition to user

supplied data fields, input-messages cent ain two more

fields for parent chare address and entry point number.

For each label that is declared in node-declaration

statement, message pointers with the same label name

are declared in local data declaration block as follows:

/* node declaration */

node node-name : label;

/* message pointers */

struct node-name_ lfODE {

node-name *in;

node-name *out;

} label;

For each label again, a response entry is created to re-

ceive messages from the subcomputations associated

with the label. init-block is converted to an entry with

a name init. init entry allocates memory for the

outgoing messages, initializes other data structures

used by the system before executing user code in init-

body. Each when-body is converted to a private func-

tion of the chare.

In order to ensure synchronization as specified in

the node definition, a counter for each when-block is

initialized in the init entry to the number node and

condition labels listed in the condition-list. When a

response message is received from a subcomput ation,

the response entry that gets the message performs fol-

lowing synchronization-code:

entry label-response :

for all when-blocks depends on the label

decreruent counter of the when-block

if counter is zero invoke when-body

}

The response entry knows which when-block is de-

pendent on it (by examining condition-list again).

It decrements the counter of each dependent when-

block. Ifthecounter reaches tozero, thecorresponding

when- body is called. The set instruction also performs

same synchronization procedure. The Chare Kernel

code for fire label is :

label .in->parent = MyChareIdo;

label .in->epoint = label-response;

CreateChare (node-name,

node-name@ init, label. in) ;

/* where node-name is the one

that i.s referred by label */

It initializes the parent address field to the address

of the current chare, and the entry point field to the

number of entry which is created for the label. Then it

creates achare and sends the message label. in to the

init entry of the newly created chare. send result

statement is translated into :

SendMsg(in->epoint, out ,%(in->parent)) ;

free-rnessages-rec ei.ved-f rom-subcomputat ions

CkExit ();

It sends the message out to the parent chare using the

address information in the in message.

6 Performance

Tables 1-4 depict the performance results of sev-

eral programs on shared memory architectures (Se-

quent Symmetry, Encore Multimax) and on nonshared

memory architectures (intel’s IPSC/2, NCUBE/two).

Description of the programs is as follows:

Adaptive Quadrature Integration [6] of the func-

tion ~ over the interval [10-6,1] correct up to

10–l! Interval isdivided into twoif the accuracy

is not sufficient. If the difference between com-

puted error and required error is less than 10-11,

computation continues sequentially.

Partition Counting the number of partitions of n

identical objects into k piles, using the recursive

formulation:

~(n, k) =j(n-l, k- l)+ f(n-k, k), where

n=100, k=20 for this case.

Clique Finding the largest clique foragivenundi-

rected graph. All potential cliques are generated

with adivide-and-conquer approach [14].

Matrix Multiplication Multiply two 160x 160

matrices as in explained in section 3. When size

of the submatrices reaches below 20 x 20, multi-

placation is done without further division.

All programs achieved almost linear speedups on

shared memory machines. This indicates that enough

parallelism is available. However, on nonshared mem-

ory machines, the performance is not as good as ex-

pected. The second version of the chare kernel system

289

I
I

I

I
I

I
I message nult_IN < int n;

ChareIDType parent;

I int epoint; 3
I message mult_OUT{ int m;} I

a ,L:

I
P local-comp-21 chare func { I

I declare counters

~ declare messages for labels p,q,s I

local-
user data declaration I

local- I
compl s comp30 / entry init: { I

allocate memory for messages

local-com~i I
DJG for the func node I

i-------------------------------l Create chares for p,q and s

I 1}
Inode func { I entry p_response : {

I in : {int n;} synchronization check

I out: {int m;} I /* for each vhen-block dependent onp */ I

I node func=p, func=q, func=s; I /* decrement its counter */

I user data declaration I /* if counter is zero, execute it*/

I init
1}

: { local-compl I entry q_response : {

I

I

I

I

fire p; -
fire q;

fire s;

}

vhenp,q : {/* when

local-comp2

set c;

>

when S,C : {/* when
local-comp3

send result;

3

I sync~roni~ation check

1}
I entry s_response : {
I synchronization check
1}

body O */l
I whenO() { /*when body O */
I local-comp2
I synchronization check
1}

body 1 */l whenlo { /* when body 1 */
local-comp3

I send message out to parent
I terminate chare instance
1}
1}
I
I

I Node definition I Chare definition
I

I

I

I

I

I
I

I
I

I
.---------- ------- --------------- ----- -------------- ----------------------------

Figure9: Node tochare translation

290

machine serial 1 2 4 8 16 I 20

sequent 29.3 29.8 14.9(1.97) 7.5(3.91) 3.6(8.1) 1.8(16.2) 1.5(19.53)

max 81.7 83.3 41.7(1.96) 21.2(3.85) 10.2(7.99) - -

ipsc2 28.4 29 15.9(1.5) 9.7(2.97) 6.2(4.58) 4.2(6.76) -

ncube 12.5 13.1 7.1(1.76) 3.9(3.2) 2.4(5.21) 1.8(6.94) -

Tabiel: Adaptive Quadrature -time (speedup)

machine serial 1 2 4 8 16 20 32

sequent 17i.9 179.7 89.9(1.99) 45(3.96) 22.9(7.81) 11.2(15.97) 9.1(19.66) -

max 243.6 245.4 123.5(1.97) 62.8(3.88) 31.3(7.78) -

ipsc2 168.1 169.3 87(1.93) 47.3(3.55) 27.4(6.14) 16.6(10.13) -

ncube 116.4 117.8 x 31.3(3.72) 17.3(6.73) 10.4(11.19) - 6.5(17.9)
J

Table2: Partition -time (speedup)

machine serial 1 2 4 8 16 20 32

sequent 87.8 88.5 39.3(2.23) 21(4.18) 11.1(7.85) 5.4(16.35) 4.4(19.95) -

max 173 176.5 89.4(1,94) 45(3.84) 29.2(5.92) -

ipsc2 102.1 103.1 52.5(1.94) 27,3(3,74) 14.8(6.9) 8.1(12.6) :

ncube 110.5 113 55.6(1.99) x 15.5(7.13) x 6.6(16.74)

Table 3: Clique - time (speedup)

machine serial 1 2 4 8 16 20

sequent 87.4 83.2 41.4(2.11) 22(3.97) 11.1(7.87) 5.5(15.89) 4.7(18.59)

max 99.1 98.8 49.2(2.01) 25.3(3.92) 12.6(7.87) -

ipsc2 62.4 66.5 36.23(1.72) 19.9(3.13) 10.6(5.86) 6.7(9.31) -

speedup =

execution

Table4: Matrix Multiplication-time

serial-time/parallel-time

time

entries marked

is in seconds.

tri.th x are not available due to memory

(speedup)

management faults.

291

was recently completed. The load balancing scheme

[18] has not yet been fine tuned. Once that is done,

we expect the programs to yield as high performance

as reported for previous chare kernel programs. In

some cases, superlinear speedups are achieved on the

Sequent Symmetry. Since there is no speculative work

in these examples, it is highly probable that this is due

to higher data locality achieved by the parallel version.

7 Summary

We presented a high level language construct to

support a convenient representation of parallel divide-

and-conquer algorit}lms on MIMD multiprocessors.

The end user is freed from tedious tasks such as

communication set up, and synchronization. We also

demonstrated that such systems can be built without

much effort on top of the Chare Kernel system. Pre-

liminary performance results encourage us to develop

high level support systems for other widely used par-

allel computational models. Currently, a divide-and-

conquer program written using the system described

here is a stand alone program. In the future, we plan

to allow linking different modules, each possibly writ-

ten in a different paradigm (with its own translator),

or using the Chare Kernel language itself, into a single

program.

References

[1]

[2]

[3]

[4]

[5]

A.Aho, J .Hopcraft, and J. Unman. The design

and analyszs of computer algorithms, Addison-

Wesley, (1974) pp230-232.

J .L .Bentley, “Multidimensional

divide- and-conquer,” Comm. ACM, vol. 23, no.

4., April 1980.

F. W. Burton, M .M.Huntbach, “Virtual Tree Ma-

chines,” IEEE Trans. Comput., vol. C-33, no. 3,

PP. 278-280, Mar. 1984.

F. W. Burton, “Storage management in virtual

tree machines”, IEEE Trans. Comput., vol. 37,

no. 3, pp. 321-328.

N .Carriero, D. Gelernter, “Linda in context ,“

Commun. ACM, vol. 32, no. 4, pp. 444-458, Apr.

1989.

[6] Conte and de Boor, Elementary Numertcal Anal-

ljStS, (1980) pp 328-332.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. B. Dennis, E. C. Van Horn, “Programming se-

mantics for multiprogrammed computations,”

Comm. ACM vol. 9, no. 3, PP.143-155, 1966.

R. Finkel, U. Manber, “DIB-A distributed imple-

mentation of Backtracking,” ACM TOPLAS 9(2)

pp.235-256, April 1987.

E. Gabber, “VMPP: A practical tool for the de-

velopment of portable and efficient programs for

multiprocessors”, IEEE Trans. Parallel and Dis-

tributed Sys., vol. 1, no.3, pp304-316, July 1990.

G .Golub, C. van Loan, Matrix computations,

Johns Hopkins University Press, Baltimore, 1983.

L. V. Kale, “The Chare Kernel parallel program-

ming language and system”, Proceedings of the

International Conference on Parallel Processing,

Vol II, Aug 1990, pp17-25.

B. W. Kernighan, D. M. Ritchi, The C Program-

ming Language, Englewood Cliffs, NJ: Prentice

Hall, 1978 ‘

V. Kumar, V.N.Rae, “Paral-

lel depth first search,Part 2: Analysis,” Int ‘1. J.

of Parallel Programming, Dec 1987, pp. 501-519.

C. Mead, L. Conway, Introduction to VLSI sys-

tems, Addison-Wesley, (1980) pp 307-312.

P.A. Nelson, L. Synder, “Programming paradigms

for nonshared memory parallel computer,”

in The Characteristics of Parallel Algorithms,

L. H. Jamieson, D. B. Gannon, and R. J. Douglas,

Eds. Cambridge, MA: MIT Press, 1987, pp. 3-20.

J. M. Ortega, Introduction to parallel and vector

solution of linear systems, Plenum Press, New

York, 1988.

F. J. Peters, ‘(Tree machines and divide-and-

conquer algorithms,” Proc. Conf. Analyzing

Problem- Classes Programming Parallel Comput-

ing, Nuremburg, W. Germany, June 1981, pp. 25-

36.

W.Shu, L. V. Kale, “Dynamic scheduling of

medium-grained processes on multicomputers”,

Tech. Rep. UIUCDCS-R-89-1528, Dept. of Com-

puter Science, University of Illinois at Urbana-

Champaign, July 1989.

Q. F. Stout, “Supporting divide-and-conquer algo-

rithms for image processing, ” J .Parallel Distrib.

Comput. J (1987), pp.95-115,

292

