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Abstract

Checkpoint and Tollback Tecovery is a technique that

allows a system to io~eTate a faihwe by pe?’iodically sav-

ing the eniipe siaie and if an emoT OCCUTS, Toliing back

to the prioT checkpoint. This technique zs paTticulady

suited to applications with long execution times such as

those typically found m supercomputer environments.

This paper presents a technique that embeds the sup-

port for checkpoint and Tollback recovery dmect~y into

the virtual memory translation hardware. The scheme

is general enough to be implemented on various scopes

oj data such as a portion of an address spacej a sin-

gle address space OT multiple address spaces. A basic

model is developed which measures the amount of work

required by the scheme as a function of the checkpoint

internal szze. Using this model the degree to which

the overhead decTeases as the interval size increases is

shown.

1 Introduction

Checkpoint and rollback recovery is a technique

that allows a system to tolerate a failure by period-

ically saving the entire state and if an error occurs,

rolling back to the prior checkpoint. This has long

been used in database systems. The basic idea is that

there are two copies of each piece of data, or at least

a way to create two copies of the data. One, called

the active set, contains the copy that can be updated.

The other, called the checkpoint set, contains a com-

plete and consistent copy of the active set at some

prior time. The active set is where the state advances

past the prior checkpoint. A checkpoint is performed

by saving the active state. A rollback is accomplished

by purging the active state and then replacing the ac-

tive state with the checkpoint state. As mentioned,

both copies need not always exist but at least must be

retreatable. For example, to tolerate to program fail-

ure one could save only the active set, plus a record of
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all changes made to the original data. Thus, from the

active data, one could recreate the checkpoint data by

undoing all changes made to the active data.

One cost of a restart is the re-execution of the work

in progress at the time of a failure. Supercomputer

applications generally have the characteristic of signif-

icantly long execution times (e. g., measurable in min-

utes, hours). Although processor speeds continue to

increase, it is unlikely the long execution times will

ever abate, This is due to two aspects of their com-

plexity; namely the scope of the problem and the ap-

proximation techniques in the solution, We illustrate

this with an aerodynamic calculation from [12]. In re-

gards to the problem scope, there can be an increase

of 102 in computational requirements between fiows

about the air foil and the complete aircraft. For the

technique used in the solution, there is a change of 105

in computational requirements based on the technique

(e.g., simulation , approximation). The net result is

that as processor speeds increase, there will be an ex-

pansion in the problem scope and refinements in the

solution technique to absorb the new speed. Another

issue is the class of architectures supporting supercom-

puter applications. For example, two of IBM’s gen-

eral purpose systems, the RS/6000 workstation and

the 3090 mainframe, have been shown as a feasible

platform for supercomputer applications [8, 14]. We

believe the ideas presented in this paper have a wide

variety of applicability in general purpose computing

and are particularly suited to long running supercom-

puter applications.

Shadow paging is a technique used to support

checkpoint and rollback recovery[l 1]. This technique

has two complete mapping vectors which are only

used on disk references (i.e., misses to the main stor-

age database), Read-only requests share pointers to

the original data while modify-requests copy the data

from the original location but allocate new disk slots

for subsequent page outs. The data is committed by

forcing all changed data to disk and writing a status
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record to a special file which indicates the active and

checkpoint versions of the mapping vectors. While

the shadow paging uses two complete mapping vec-

tors, there are several schemes that use a single fixed

mapping to disk slots where each disk slot contains

two copies of the page. These schemes are only in-

voked on the disk accesses and each disk slot has a

header field which contains additional information to

determine the correct version of the page. Reuter first

proposed this “twin page” storage system to support

checkpoint and rollback recovery [13]. Each page has a

time stamp and transaction identifier which are used

to identify the most recent version of the page. Fur-

thermore, pages modified by a single transaction are

linked together to allow selected backout of a single

transaction. A full backout requires a scan of all disk

pages to find the active pages. Thatte first extended

the twin page scheme to be applied in a persistent

virtual memory environment [18]. He removed the re-

quirement of making the disk pages adjacent and pro-

vided an algorithm to convert the dual pages to single

versions for read-only data. Wu and Fuchs optimized

the rollback process of the twin page based system for

use in both a database system[20] and a recoverable

distributed virtual memory system[21] by allowing de-

ferred backouts.

Another option is to periodically take a snapshot of

the entire virtual address space. Li, et. al. proposed a

real time concurrent snapshot scheme which uses the

commonly found page write-protection bits[l O]. This

allows the checkpoint to proceed concurrently with

the snapshot by protecting those pages not yet saved

with the page-protect bits. Logging is a database tech-

nique of saving the changed data on a sequential file

(i.e., a log) to enable atomic updates and rollbacks of

changes. The IBM 801 storage architecture uses lock

bits (to prevent a page-out to the protected disk copy)

and a log (to save enough information to rollback) to

support atomic updates[6].

There are several checkpoint and rollback schemes

that have been proposed as transparent cache based

systems to handle processor transient faults [1, 4, 7,

22]. The active and checkpoint locations are spread

between different levels in the physical memory hi-

erarchy (e.g., cache and main memory). The use of

pseudo-protection bits are used to keep the active and

checkpoint data separated.

Several hardware-based solutions support rollback

recovery by providing dual copies of data. A recovery

cache has been proposed for the PDP- 11 [9] which is

a special device that manages rollback data by moni-

toring the address and data bus. Proposals have been

made for memory modules to understand the trans-

action concept from databases by having each logi-

cal module implemented with a dual set of memory

banks[2, 3]. All writes go to the first module until

which time the end of transaction is signaled and the

memory controller internally copies the data to the

second bank. Staknis proposed a write-many, read-

one memory organization in which writes can be di-

rected to multiple physical locations under the control

of a mask [17]. This allows checkpoints to be captured

by dropping a page from the target of future writes.

A new technique is presented here to use the virtual

memory translation mechanism to support checkpoint

and rollback recovery that is active on every mem-

ory reference. Normal virtual memory supports a two

level store (i.e., main memory and disk). This pro-

posal suggests a dual mapping where each individual

mapping still supports the normal two levels. For ev-

ery virtual page there now exists a pair of mappings,

one for the active state and one for the checkpointed

state. Thus, in addition to the dual disk mapping like

the shadow paging there are also dual real memory

mappings. The scheme allows the checkpoint process-

ing to be deferred to the next use of the data. This

is similar to the timestamp concept of the twin page

systems[13, 18, 20, 21], page protection bits in[l O] as

well as the unwritable-unchangeable concepts in the

transparent cache based schemes [l, 7, 22]. Only one

“time stamp” (v) is required per logical page mapping

along with a single bit (1) which orders the two pages.

The checkpoint is performed by simply incrementing

the global checkpoint counter V. On every memory

reference, V must be checked against the local COPY v,

and if appropriate, additional processing is performed.

The checkpoint processing can be very fast and typi-

cally requires only a manipulation of the page tables or

a memory to memory copy of a page. This is possible

because both the active and checkpoint versions are

embedded into the virtual memory domain (i. e., real

memory and disks) and multiple copies of the data are

often available (i.e., 2 disk slots and potentially 2 main

memory pages). It allows the operating system to

perform normal virtual memory management without

interfering with the checkpoint scheme. The scheme

could also be implemented directly in the translation

hardware with very little performance penalty.

The paper is organized as follows. In Section 2, a

detailed description of the architecture is presented.

Section 3 describes the operation in terms of all state

transitions. Section 4 discusses several important is-

sues in the implementation and proposes several opti-

mization. Section 5 presents a performance analysis

of the scheme. Finally, Section 6 discusses future work.
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2 Virtual Checkpoint Architecture

This section describes the details of the virtual

translation mechanism that supports checkpoint and

rollback recovery. Three primary topics in this sec-

tion are a detailed description of the translation fields

(Section 2. 1), the fault assumptions (Section 2.2), and

an overview of the operation (Section 2.3).

2.1 Detailed Architecture

There are several additional fields which must be

added to the translation mechanism. A normal virtual

memory translation mechanism is assumed to take the

virtual page number as the input and output a real

frame number (if it exists) and a disk slot number.

There is also a change bit that indicates if the data

in the real frame has been modified. The new page

translation mechanism has information to distinguish

among checkpoint and active versions of the page. To

avoid cumbersome notations, we shall assume that

our focus is the translation of a single virtual page.

This means the notation shall exclude any reference
to the virtual page number. For each page, the map-

pings are replicated and are referred to as ml and mi.

The mapping mi contains mappings for the real frame

(rl) and the disk copy (dt). The alternate mapping,

mi, has similar fields. Each page translation mecha-

nism has a one bit field, 1, which can be thought of

as a switch which points to the most recently used

mapping. Thus, ml is always the mapping that was

used last. In addition, each page translation mech-

anism has a k-bit field (v) which contains a copy of

the checkpoint number (V) during the previous ref-

erence. The checkpoint number, V, is a global value

which is incremented on every checkpoint. The scope

of the checkpoint number can take on various ranges.

For example, it could be the entire system, several ad-

dress spaces, a single address space, or a portion of an

address space. Each real frame, designated by rz, con-

tains a change bit (ct ) which indicates if the data at

the real frame has been changed and is different than

the disk copy at dl.

Figure 1 shows the fields required for the translation

of a single page. Generally, the page map table (for

virtual to real) and external page map table (for vir-

tual to disk) are physically separated. Although they

are shown together, this is not a requirement of the

scheme. Furthermore, even though each page transla-

tion contains a pair of mappings, ~ and ml, they can

be independently operated upon by traditional page

managers in regards to real storage management by

the operating system (e.g., page stealing).

The scheme not only has the dual disk mappings

Iike[l 1] but extends this to the real memory mapping.

7’i I di ‘mi

Figure 1: Overview of single page mapping

However, instead of having disjoint mappings for the

active and checkpoint, they are now scattered between

the two mappings based on the data references since

the prior checkpoint. The correct mapping is identified

when referenced using a technique conceptually simi-

lar to the twin page schemes [13, 18, 20, 21]. However,

instead of only checking the status on disk fetches,

our scheme determines the correct version on every

memory reference. Furthermore, these other schemes

require two timestamps, one per slot (the location of

the time stamps are the disk header, though Thatte

suggests the disk map table as an alternative[18] ). The

scheme proposed in this paper uses a single time stamp

plus a one bit switch which are both located in the

page map table used for virtual to real translation.

Note that the deferred back outs of [20, 21] would

not work well unless an additional associative memory

were added to contain the identifiers of the backed-out

transactions.

2.2 Fault Assumptions

A very important issue with a design for a highly

reliable system is the fault model. The ultimate en-

vironment for this proposal is that of a system with

non-volatile memory. The recovery in this environ-

ment would be to protect against faults such as pro-

cessor transient faults [4, 7, 22] or complete system fail-

ures provided the main memory has back-up power[4].

Under these assumptions, the checkpoint is taken by

simply incrementing the global checkpoint counter V,

However, this architecture is not dependent on non-

volatile memory. If the memory is considered volatile,

then in addition to incrementing V, modified portions

of the page table plus modified pages must be forced to

disk. Although this creates additional overhead, the

scheme would work identically for non-modified pages.

An intermediate ‘scheme would be a system with

both volatile and non-volatile memory. The page ta-

ble and the modified pages could be stored in the non-

volatile memory. Examples of this are the Sequoia sys-

.n.
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tern where writable memory is duplexed with battery

backups [4] or the addition of fault tolerant memory

modules into the processors address space[2, 3].

2.3 Operational Overview

This section provides a high level overview of the

operation of the system. A detailed description is

found in Section 3. As noted, on every reference the

values V and v must be compared. When a page is

referenced there are two cases which must be distin-

guished. Figure 2 shows the first case where the page

has been referenced at least once since the prior check-

point and ml has an active < ri, dl > mapping. This

is detected by the global checkpoint number V match-

ing the local number v for the individual page. In this

case the translation is allowed to proceed without in-

terruption. The mapping ml provides access to the

correct data.

check oint
1’

v–1 v

&i nil t

checkpoint active

V<v V=v

Figure 2: Case 1- page previously referenced

Figure 3 shows the second case where the page

has not yet been referenced since the prior check-

point. This situation occurs because the processing

of the checkpoint is deferred until the next time of

use. The mapping ml refers to the previously ac-

tive mapping which must become the checkpoint ver-

sion. The mapping mi previously contained a check-

point version and now contains data of no value. This

situation is detected by unequal values of the global

checkpoint value, V, and the local number v. At the

point of translation mz shall be called the “old-active”

(or new-checkpoint) and mi shall be called the “old-

checkpoint” (or new-active). It does not matter if mul-

tiple checkpoints occurred since the last reference to

the page. The basic idea is that the data from ml is

used while the meaning of ml and mi are switched.

This allows mi to be the active while ml becomes

the checkpoint. However, the data from ml must be

copied to mr The checkpoint number V is copied to

the local value v and the 1 bit is inverted. This puts

the page map into a state such that subsequent refer-

ences proceed as in the Case 1 example.

v–1 checkk
t-
t

checkpoint active

V<V V<v

Figure 3: Case 2- first reference after checkpoint

A rollback is functionally performed by discarding

any data that has been modified since the prior check-

point. If the page has not yet been referenced since

the prior checkpoint then the page is essentially in a

rolled back state and nothing needs to be done (e.g.,

Case 2 in Figure 3). If the page has been referenced

since the prior checkpoint then there is an active page

that must be discarded. So for all pages with V = v,

the v value is decremented and the 1 bit is inverted.

This forces the status to be like Figure 3 where ml (mi

before 1 was inverted) contains the checkpoint and mi

(ml before 1 was inverted) contains useless informa-

tion.

3 Virtual Checkpoint Operation

This section provides a detailed description of the

operation of the scheme. There are six states defined

for each page mapping which are based on the primary

and secondary real frame mappings (i.e., q and ~i) and

the change bit for the primary frame (i.e., Cz). These

are summarized in Table 1. The notation fi indicates

that some physical page is mapped while @ indicates

that no physical frame is mapped.

EEB
State rZ r- CZ

IA f, fj o
IB f, fj 1

11A f~Oo
IIB f201

III Ofx

IV 00x

Table 1: Summary of page states

Figure 4 shows all possible state transitions that

can occur for each page mapping. There are five
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classes of events that can cause these transitions;

namely initial page references, first references aft er a

checkpoint, program stores into non-modified pages,

normal program page faults, and operating system

page management functions.

State 1A

A first reference after a checkpoint when in state

IA, designated by PCT1 in Figure 4, causes a tran-

sition to state IIB. Table 2 illustrates this transi-

tion. The active copy has a real frame fl which

has not been changed since being read from disk.

The old-checkpoint mapping points to a different real

frame (j2) whose contents are not needed. The old-

checkpoint frame (~2) is freed and the old-active frame

is moved to the new active. The checkpoint page now

\

exists only on disk. The change bit for fl is set to

invalidate the contents of dz.

A
P.t

P.f
PC,3

o~

03

IV

\

P.,lj

irst reference to page

01

A

02

Figure 4: State diagram for page mappings

3.1 First Reference After Checkpoint

This section describes all state transitions shown in

Figure 4 that are caused by a program making the first

reference to a page after a checkpoint has occurred.

By definition V # v, which causes the checkpoint pro-

cessing to be performed. At the completion of the

checkpoint process, the field v is set to that of V and

the 1 bit is inverted. A table accompanies each tran-

sit ion. Each table shows the before and after image

of the mapping. In the “before” image, ml is the ac-

tive mapping. In the “after” image, m~ is the active

mapping. The notation for the real map consists of

a triplet where the first element is the frame number,

the second element represents the data in the frame,

and the third element is the change bit. The notation

for the disk map consists of a slot number and a sym-

bol representing the contents of the page. The symbol

0 indicates a null pointer and + is a “don’t care” sit-

uation. Table 8 summarizes the actions performed at

each state transition caused by the first reference after

a checkpoint.

Before

Aft er

Table 2:

Mapping Memory Disk

ml fl,A,O dl, A
~. f2, B,o dz>4
ml 0 dl, A

State IA to IIB via a reference

State IB

A first reference after a checkpoint when in state

IB, designated by PC,2 in Figure 4, causes the page to

remain in state IB. Table 3 illustrates this transition.

In state IB the old-active is modified (ci = 1) which

means that the frame cannot be simply moved to the

new-active (because dl is not a valid checkpoint page).

In this case, the contents of frame fl are copied to

frame f2 which sets the change bit.

Table 3: State IB to IB via a reference

State 11A

stateA first reference after a checkpoint when in

11A, designated by PCT3 in Figure 4, causes a transi-

tion to state IIB. Table 4 illustrates this transition.

In this case the old-checkpoint (new-active) is not in

real storage and the old-active has not been modified

since being brought in from the disk. This means that

the old-active disk copy (dl ) can be used as the check-

point copy. Thus, the checkpoint is performed by sim-

ply having the new-active mapping point to the main

storage frame ( fl ). The change bit must be set for the
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new active to effectively invalidate the disk copy (dz ).

Table 4: State 11A to IIB via a reference

State IIB

A first reference after a checkpoint when in state

IIB, designated by PC,4 in Figure 4, causes a tran-

sition to state IB. Table 5 illustrates this transition.

In state IIB, the old-active has been modified which

means that the old-active disk version (dl ) cannot be

used as the checkpoint copy. A new frame is allocated

(fz) and the data is copied to this frame. The change
bit is automatically set during the copy to invalidate

the new-active disk copy (d2).

Table 5: State IIB to IB via a reference

State III

A first reference after a checkpoint when in state III,

designated by PCT5 in Figure 4, causes a transition to

state IIB. Table 6 illustrates this transition. State III

occurs when the old-active has been paged-out but the

old-checkpoint remains in storage. This only occurs if

the operating system steals the active frame but leaves

the checkpoint frame. This does not appear to be a

smart decision but is covered for completeness. The

data is paged in from dl to .fZ. The change bit is set

to invalidate the disk copy (d2).

State IV

A first reference after a checkpoint when in state

IV, designated by PCT6 in Figure 4, causes a transition

to state IIB. Table 7 illustrates this transition. State

IV considers the situation when both the active and

checkpoint frames have been removed from storage.

The valid version of the data is on dl. A new frame is

allocated ( f2) and filled with the contents of dl, The

Before

After

Mapping I Memory I Disk

ml 0 I dl, A

Table 6: State III to IIB via a reference

change bit is set in order to invalidate the disk copy

(dJ.

Mapping Memory Disk

Before ml 0 dl, A

‘T71.i 0 dz, $

After ml 0 dl, A

1 m-

f2, -4,1 I d2, @ I

Table 7: State IV to IIB via a reference

Transition States Actions

P.,1 IA+IIB ?l * ri

free rz frame

Cy=l

P.vz IB+IB (fz) + (fl)

PC,3 IIA+IIB PI + ?’i

q=l

PCT4 IIB+IB allocate frame fZ
I I ] (f2) + (fJ I

page in from dl to f2
C-=1

Table 8: Summary for first reference after checkpoint

3.2 Initial Page Reference

When the page is referenced for the first time 1 = O,

Tl = dl = @ and v = O which causes a transition to

state IIB. The change bit is set for the frame. This

is an optimization allowing the allocated disk slot to

contain whatever was there during the prior use. This

means that 1/0 is not required to zero out the disk

slot when initially allocated (the main storage frame

is cleared). The reasoning is that the page is most

likely modified soon after the initial reference.
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3.3 Program Store Transitions

A store into a previously unmodified page (cl = O)

causes a state transition as shown by P.t in Figure 4.

In state IA (rl # 0, r~ # 0), a store causes a transition

to state IB. In state 11A (rl # fJ, ri = 0) a store causes

a transition to state IIB.

3.4 Normal Page Fault Transitions

In states III and IV, the active mapping does not

have a real frame and a normal reference (V = v)

causes a page fault as shown by Pnf in Figure 4.

In state HI, a page fault causes a transition to state

IA. Note that this assumes the page is not modified.

Therefore, a store causing a page fault would first load

the page unmodified (to state IA) and then the store

would cause an immediate transition to state IB. Sim-

ilarly, a page fault in state IV causes a transition to

state 1- ‘.. However, if the fault was due to a store,

then an Immediate transition to IIB occurs.

3.5 Operating System Transitions

There are several transitions that can be caused

by the operating system during real storage manage-

ment operations. The transition 01 occurs when the

checkpoint frame is removed while the active frame

is retained. The transition 02 occurs when the ac-

tive frame (not modified) is stolen and the checkpoint

frame is retained. This should not occur as a normal

event as a preferred event would be to take the check-

point frame. The transition 00 occurs when a mod-

ified frame is written out to the disk slot while the

frame is retained and the change bit reset. Finally,

03 occurs when the active frame has been stolen after

the checkpoint frame has already been stolen.

4 Implementation and Optimization

This section describes some important issues which

are relevant to the implementation of the virtual

checkpoint scheme. The first issue regards the test

for V = v which must be done on every translation

of the virtual address. Two techniques are suggested

to make the performance of the test for the V = v

condition very fast:

1.

2.

Add a v field in the TLB entry and check in par-

allel with the TLB access.

Purge the TLB at the checkpoint time and only

check v on TLB misses.

When the check for V = v results in an unequal

condition, there are several other conditions which

must be tested (see Table 1) to determine the cur-

rent state and actions required. The current state of

the page could be implemented as a 6-state finite state

machine. This would require an additional 3 bits per

page map entry. Furthermore, the actions described

in Table 8 could be implemented in hardware to make

the checkpoint process transparent to the operating

syst em.

The space overhead for additional mapping fields

(~i, di, V, ~) can be greatly reduced by using a multi-

level page table (e.g., segment table and page tables).

Furthermore, the segment table could support an ad-

ditional bit for the type of page table supported. This

could allow the use of the proposed type of page table

or a standard type.

In the basic scheme presented in Figure 4, state

IB can be a predominate state and the overhead to

process the checkpoint is a fuIl page memory to mem-

ory copy. This may be excessive when the page was

not really modified during prior checkpoint intervals.

Note that ~ is set on the entry to state IB because

or the uncertainty of dF If we could force our way

into state 11A with the data at rz, dz and di being

equal, then the checkpoint could be handled in state

11A by simply moving the frame address from rl to

rz This would be a significant performance enhance-

ment for systems with large amounts of read only data.

To implement this optimization, a “data-equal” bit is

proposed for the page translation table. This is set

when rl = dr = di and reset whenever dz or di is writ-

ten. This would be supported in state 11A such that

checkpoints in this state would remain in state 11A

and could be pipelined to produce no significant de-

lay. Since a large percentage of the pages referenced in

any interval are not modified, this optimization could

provide significant gains at very little cost. This is

referred to as the DE optimization. Although this ap-

pears as a fundamental improvement, there is a set up

cost to get the equal copies. Therefore, this is studied

as an optimization and not incorporated into the basic

scheme.

5 Performance Analysis

This section presents a preliminary study of the

performance of the virtual checkpoint scheme. A pro-

gram address trace from a commercial batch program

on a large system is used. This is very similar to the

commercial trace used in[15]. Trace “batch5” consists

of 4.67 million references which reference 1.86 MB of

4K pages and trace “batch17” consists of 2.97 million

references which reference 1.75 MB of 4K pages,

The checkpoint interval depends on aspects such as

the total execution time, the failure rate, and the time

to perform the checkpoint. We have selected to study
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the checkpoint overhead as a function of deterministic

intervals. Given a checkpoint interval, the overhead

depends on the number of unique pages referenced in

each interval. We have measured this as a function

of the checkpoint interval for the two virtual memory

address traces in addition to the average number of

unique modified pages. The results for trace batch5

are shown in Figure 5. For short intervals of 1000

references, the number of unique pages is on the order

of 20. The overhead can be greatly reduced by going

to larger intervals (e.g., batch5 references an average

of 131 unique pages in a 100,000 reference interval).

batch5
3

I I I >,Z .
2 _g-

-=--

❑ Data (all pages)

-- M, (Cz)
--- ~(cz)
o Data (moiified pages)

— %{%1
1

2

t i
100 ~

,03 ,04 105 ,06

Interval size (references), Cl

Figure 5: Pages per interval vs. interval size

An analytic model is now developed to measure the

number of unique pages referenced per interval. This

model is similar to one reported by Thi6baut where

he looked at the number of unique cache lines refer-

enced during the entire address trace [19]. Thi6baut’s

model looks at the trace over two regions (before and

after the cache fills). The line before the knee is fit-

ted with a linear regression and the portion after the

knee is fitted with straight line from the knee to the

last point. The model presented in this paper does

not require such accuracy and its unique property is

the ability to select the parameters based only on the

total references and total blocks, Let NT be the to-

tal number of references in the trace, NP the total

number of 4K pages referenced and CI the checkpoint

interval. Our base model is founded upon the simple

observation that an interval of CI = NT would lead to

NP unique pages being referenced. Furthermore, ex-

periments show that a log-log graph of unique pages

is almost linear [19]. The data points also essentially

pass through the origin (i.e., an interval of 1 reference

must reference exactly 1 unique page). Thus, our base

model for the number of unique pages is:

U

NU(CZ) = C;”’N’ (1)

Equation 1 is plotted in Figure 5 and results in an

absolute error, averaged over each data point, of 16.4~o

and 22.5~o for batch5 and batch17 respectively (the

model underestimates the data in both cases).

The model is improved by forcing the curve to pass

through the data point C1 = 1, 000 with the slope

taken from Equation 1. This is an arbitrary choice; it

is reasoned that this point could be easily determined

by trace analysis or actual measurements. The term

Nlooo is the number of unique pages referenced over

the first 1000 references. The refined model for the

number of unique pages per interval CI is:

Equation 2 is plotted in Figure 5 and results in an

absolute error, averaged over each data point, of 8. l~o

and 5.070 for batch5 and batch17, respectively.

The final model is that of the number of unique

pages that are modified. Through observation of the

data, it was found that for all interval sizes, the ratio

of the number of unique pages to the number of those

modified remained constant. Using NM as the total

number of pages ever modified in the trace, the fol-

lowing model is used for the average number of unique

modified pages per interval:

NM
NUM(C1) = ~NrP(CI) (3)

Equation 3 is plotted in Figure 5 and results in an

absolute error, averaged over each data point, of 9.9~o

and 10. O~o for batch5 and batch17, respectively.

The model is now used to formally quantify the ef-

fect of increasing the checkpoint interval. We have al-

ready stated that the overhead can be reduced by sim-

ply increasing the checkpoint intervaL Assume that

the overhead can be approximated by

Nut (Cl)
Oa(cr) = C1 (4)

The result of increasing the checkpoint interval by an

order of magnitude is now determined. Specifically, we

want to solve for /3 in Oa(CI)/@ = 0=( 10C~). Solving

this gives

(5)
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The values of logNp/logNT for batch5 and batch17

are 0.4015 and 0.4096, respectively. Thus, an increase

of the checkpoint interval by afactorof 10 reduces the

overhead by a factor of approximately 3.9.

The data presented thus far is from a commercial

batch workload. We want to show that the results are

applicable to workloads that would be found in super-

computer applications. Martin shows the memory size

(in words) and computational requirements for aero-

dynamic calculations of airflow for various problem

scopes and solution techniques [12]. NT was roughly

estimated as the total number of floating point opera-

tions and Np as the total number of pages (assuming

1024 words to a page). The values for logNP /logN~

are shown in Table 9. An interesting comparison of

I Non Linear. I Revnolds-Av~, I Larue-Eddy I

Inviscid Navier-Stoke; Sim-ulatio;

Air Foil - 0.26 0.41

Wing 0.34 0.42 0.47
Aircraft 0.40 0.44 0.51

Table 9: = values

scalar to vector code is made in[l 6] where a dramatic

reduction in the memory references is found. For the

same problem, the instructions decrease because sev-

eral instructions are replaced by single vector instruc-

tions. The data references are reduced because of the

heavy use of vector registers. In Table 10 the values for

logNP /logN~ are calculated. The vector numbers are

larger because the number of references are reduced

while the amount of data is held constant. Both these

studies have values near the original traces and pro-

duce ,b values in the range of 5.5 to 3.1. Therefore,

these programs should also exhibit the property of de-

creasing the overhead by increasing the checkpoint in-

t erval.

rScalar

LIN EQ 0.314

FFTIK 0.365

SIMPLE 0.411

ARC3D 0.377

Vector

0.356

0.421

0.417

0.395

Table 10: & values

view, the scheme could not be compared to the twin-

page, the snapshot or shadow paging as these are all

disk based. However, our scheme does work in a situ-

ation where the disk is considered the stable storage.

In this case our scheme would require a disk write of

all modified pages and modified portions of the page

tables. Our scheme would do better than the snapshot

scheme because ours only requires saving of referenced

data while the snapshot requires saving of all data.

Ours would be roughly comparable to the twin-page

techniques as it would require more processing to force

out the page tables, but this could be compensated for

with minor differences such as only having to fetch a

single page.

6 Future Work

The next step in the performance analysis is to

further understand the dynamic behavior of the vir-

tual checkpoint scheme. This involves assigning costs

to the transitions shown in Figure 4 and simulating

the address trace under some virtual memory man-

agement algorithm. The DE optimization suggested

in Section 4 should also provide significant improve-

ments. A preliminary analysis indicates the instruc-

tion overhead to be on the order of 5$70for intervals of

106 references[5]. These results also show the overhead

obeys the rule derived for ~ in Equation 5.

7 Conclusions

Thk paper has presented a technique that embeds

the support for checkpoint and rollback recovery di-

rectly into the virtual memory translation hardware.

The scheme is general enough so that it could be im-

plemented on various scopes of data such as a por-

tion of an address space, a single address space or

multiple address spaces. We have presented a basic

model which measures the amount of work required

by the scheme as a function of the checkpoint interval

size. Using this model the degree to which the over-

head decreases as the interval size increases is shown,

Characteristics of several supercomputer applications

are shown to agree with the model presented. Fur-

ther work is required to study the details of the per-

formance as well as advanced topics such as dynamic

interval sizes and algorithms to more aggressively de-

termine the read-only pages.
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