hhhhhhh

TEACHING DATA STRUCTURES WITH Ada:
AN EIGHT-YEAR PERSPECTIVE

Michael B. Feldman
Professor
Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science
The George Washington University
Washington, DC 20052

(202) 994-5253
mfeldman@seas.gwu.edu

INTRODUCTION

This paper discusses our eight years of experience in teaching a data structures course using Ada as
the primary programming language. The recent history of the course is summarized, emphasizing

the transition to Ada. Language-to-language comparisons of several particularly attractive Ada
features are given.

THE RECENT HISTORY OF CSci 159

CSci 159, Programming and Data Structures,is an undergraduate course in the George
Washington University Department of Electrical Engineering and Computer Science, required for
undergraduate majors in computer science and computer engineering. The course is also populated
by would-be graduate computer science majors who have a weak background in modern data

structures, and by graduate students from other fields. Typical enrollment is in the neighborhood
of 100-150 students per year.

The author has been teaching this course and others like it since 1975. The primary language used
was Fortran in 1975; transitions were made to PL/1 (1978), Pascal (1980) and finally Ada in 1985.
Recent primary textbooks have been those of Horowitz and Sahni [Horowitz77], Tenenbaum and
Augenstein {Tenenbaum81], Aho, Hopcroft and Ullman [Aho83], and finally this author’s own

text [Feldman85). At the risk of appearing to “plug” the book, we refer to it as Feldman in the
sequel.

Previous papers have focused on our early use of abstract data types (ADT’s) as an idea or “design
language” [Feldman80] and on our early use of Ada in this course: [Feldman84]; other teachers
[Lang89 and Owen87, for example] have reported similar experiences. It is of interest to
summarize the integration of Ada into the course as follows:

1981 rext: Tenenbaum, with this author’s rough notes on packages;
Ada packages used as “design language” for ADT's;
compiler: Pascal (Ada compilers did not yet exist!)

1982 rext: Tenenbaum with some typescript chapters of Feldman;
compiler: TeleSoft subset compiler for Vax/VMS;
about 10% of students coded in Ada, others used Pascal.

SIGCSE
BULLETIN Vol. 22 No. 2 June 1990 21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126445.126450&domain=pdf&date_stamp=1990-06-01

1983 text: Aho et al with most chapters of Feldman in preprint;
about 25% of students coded in Ada.

1984 rex:: entire Feldman preprint, Aho et al used as backup;
compilers: TeleSoft subset compilers for Vax and IBM 4381;
50% of students coded in Ada.

1985 text: Feldman book;
90% of students coded in Ada.

1986 compilers: validated (full-language) Verdix compilers on Vax and Sun;
100% of students coded in Ada.

1988 compilers: Meridian AdaVantage site license for DOS-based desktop computers;
many students are acquiring their own compilers for home machines;
computer center “help desks” distribute Ada programs for self-study.

WHY Ada HAS BEEN MY FAVORITE DATA STRUCTURES LANGUAGE

Our eight years of experience, with perhaps 100 students per year involved, confirms our view that
in the family of widely-available procedural languages, Ada embodies the most effective collection
of features to facilitate the teaching of data structures. This is especially true if one holds, as we
do, that a primary focus of a modem data structures course should be abstract data types. We shall
present this view with reference to other candidate languages, specifically standard (ANSI) Pascal,

Turbo Pascall, Modula-2, and C.

CSci 159 fits into our curriculum at about the sophomore level; the students have typically had a
semester or two of Pascal. The emphasis in the first two courses is necessarily on program control
and algorithm development, and the whole complex of issues we call “structured programming.”
The primary focuses in the third course are data abstraction (or abstract data types) and algorithm
performance prediction.

Ada supports data abstraction better than “the competition” in a number of ways. Chief among
them are

. functions can return structured objects, not just scalars (alternatively, objects are “first-
class” in that they can be passed to and frora subprograms with impunity);

. packages impose a separation of specification and body;

. private types cxist and there is no restriction on the type classes which can be made private;

. arrays can be “conformant” (to use Pascal terminology) in all dimensions.

Function result types: Ada. That a function may return a value in any type class, including
specifically a record or array, is a feature about which little fuss is made in the Ada literature. But
it makes a big difference. Consider the standard example of a rational type:
type Rational 1s record
Numerator: Integer;
Denominator: Positive;
aend record;

! A serious question of principle is whether, in this age of portability concerns, a single
compiler vendor should be able to define the de facto standard for a programming language. This
is a matter of taste; we maintain that it should not. Using Turbo Pascal sends a message to our
students that portability and standardization play second fiddle to bells and whistles. We discuss
Turbo Pascal in this paper because it is, for better or worse, so popular.

SIGCSE

22
BULLETIN Vol. 22 No. 2 June 1990

Each object of this type is a record. In languages with unrestricted function return values, one can
define operations of the form

function Add(left, right: Rational) return Rational;

function Mult (left, right: Rational) return Rational;
and given four objects R1, R2, R3, R4, of type Rational, one can write statements of the form

Rl := Add(R2,R3);

R4 := Mult (R1l,Add(R2,R3):
The advantage of this functional notation and composition should not be underestimated: many
applications require manipulation of programmer-defined mathematical structures and the notation
used by programmers should model as closely as possible the notation used by mathematicians and
engineers. If Ada did not allow functions to return structured types, our operations would have to
be procedures, e.g.

procedurae Add(Result: out Rational; left, right: Rational);

procedure Mult (Result: out Rational; left, right: Rational):
and a use of the operation would be written as a procedure call, which cannot be composed. Our
nice composed expression above would have to be written

Add (TemporaryResult, R2, R3);

Mult (Rl, TemporaryResult);
which is much more cumbersome and surely docs not look mathematical.

A work-around in Pascal and Modula-2 is to pass pointers 1o the structured objects as function
arguments and results. This technique creates problems such as aliasing and dynamic allocation.
Such excessive use of pointers is poor software engineering; it is also difficult to explain to

students why it should be necessary.2

We note that Ada also provides for operator symbol overloading, so that e.g.
function "+"(left, right: Rational) return Rational;
function "*"(lefrt, right: Rational) zeturn Rational;
is permitted, with corresponding use
R4 := Rl * (R2 + R3);
making for a very mathematical-looking expression. This feature falls into the category of

convenient “‘syntactic sugar;” it is less fundamental or necessary than the unrestricted function
return value.

Ada also allows array objects to be returned from functions, so that one can write and use vector

and matrix operations very conveniently and intuitively. This is related to the general Ada array
capabilities, about which more below.

Function result types: the Competition. Standard Pascal does not permit records or arrays
to be returned from functions. Neither do the Pascal derivatives Turbo Pascal and Modula-2.
The proposed C standard allows records—but not arrays—to be returned. In the present
example, C would allow the rational type but not the vector or matrix.

2 Even where pointers are necessary in Ada (in linked lists, for example) they are easier to
use. Variables and record fields declared as pointers are always initialized to the null value.
Students are thus robbed of the unwelcome learning experience of program crashes due to
uninitialized pointers; we are quite happy to postpone this experience until the students learn C in
upper-division courses.

SIGCSE 23
BULLETIN Vol, 22 No. 2 June 1990

Ada’s unrestricted function return values makes Ada compilers undoubtedly more difficult to
implement; we think the price is worth paying.

Packages: Ada. The separate package specification introduces the student to the idea of a
“contract with the user.” Students trained in (standard) Pascal tend to focus on *getting an answer”
rather than “building a product.” Using packages encourages a student to design a software
component and carefully implement this contractual relationship with the component’s user. The
contract idea is reinforced by the separation of specification and body into separate files, separately
compiled: students can see clearly that if something is not written in the spec, it's not visible to a
client. Separate compilation means that programs dependent on a package need not be re-compiled
if only the body , not the spec, is changed.

In CSci 159, programming assignments often require just the building of a package, with no client
program at all except a test driver to validate the package. This is often not easy for students
whose intuition drives them to focus on pretty interfaces and getting an answer, as opposed to
developing a component intended for use by another programmer and not an end user. The
grading system for projects must place heavy weight on the contractual relationship: the contract
must describe how a package is to be used, not the details of what it does. CSci 159 allocates 30%
of the grade to the quality of the package specification and its supporting user document.

Packages: the Competition. Standard (1SO or ANSI) Pascal has, of course, no notion of a
package. Turbo Pascal provides a package-like structure called the “unit” (borrowed from UCSD
Pascal), but the interface (specification) and implementation (body) must be in a single file. This
diminishes the abstraction value—the student does not see the two sections as physically distinct—
and also requires recompilation of dependent program segments every time something is changed,
even if the change is only a detail in the implementation. A disadvantage of Turbo Pascal in
general is that it is not available on Unix and other shared machines, and also that, at least until
now, version k+1 has differed significantly from version k. And the IBM-PC and Macintosh

versions are not even compatible: even if one ignores special operations for graphics, etc., there are
syntacric differences between the two.

Modula-2 provides the library module, with definition (specification) and implementation (body)
modules (files), separately compiled. This capability is quite similar to Ada, in spite of differences
in the way import and export directives are written. Compilers are widely and inexpensively

available and support a (generally) common language. A serious liability is the treatment of private
types (see below).

C provides only a very rough equivalent to packages, namely the separation of groups of
subprograms and type declarations into different files. Compilers are legion; the language
supported is reasonably standard. Enforcement of interfaces, however, is strongly compiler-
dependent.3

Private types: Ada. The private type, with its hidden implementation, is of course intimately
related to the package. Ada allows any type to be made private or limited private; in particular,
structured types can be private, and this forms the basis for an abstract data type scheme.

3 C++, the recently-developed extension to C, provides an object-oriented programming
language more similar to Smalltalk than to Ada. C++ may become an important competitor, but is
not yet widely available. A disadvantage for students is the less-than-obvious syntax.

SIGCSE

- 24
BULLETIN Vol. 22 No. 2 June 1990

The software-component philosophy embodied in the package and the private type pays off
handsomely in more advanced courses, even if the student goes on 1o develop programs in other
languages. Private types are an important subject in CSci 159; we see anecdotal evidence that

CSci 159 graduates who choose to use C, for example, in senior projects, write better C because
of their Ada exposure.

Private types: the Competition. Srandard Pascal provides no private types. Turbo Pascal
allows a unit to export a type, but its internal structure is visible to clients. One could hide, e.g.,
the fraction record type definition in a unit whose existence is not advertised, then make the
fraction type itself a pointer to the hidden record type. This dodge is unsatisfying : it requires an

extra unit, spreading the code for a single abstract type into two units, and carries along all the
disadvantages of pointers.

Modula-2 improves the situation, but only a bit. A private type may be declared in a definition
module, but its type is required to be a pointer to another type declared in the implementation
module. At least the code for a single abstraction appears in a single library module, but the
pointer difficulties persist.

C provides no notion of a private type. A work-around similar 10 the one described for Turbo
Pascal could be invented, but it would surely be cumbersome.

An important consequence of the generality of function results and private types is that access
types (pointers) are unnecessary excepi to implement linked structures.We believe that it is
inappropriate to have to trade the niceness of functional notation for the forced clumsiness of
pointers, solely because of a language limitation.

Array handling: Ada. Ada provides the “unconstrained array type” for an arbitrary number of
dimensions. While the number of dimensions of an array must be specified in the type
declaration, the bounds may be left unspecified untl variables are declared. Further, unconstrained
array types may be used in subprograms as formal parameters and function results, This facilitates
a very natural implementation of vector and matrix packages, an important application often studied
in data structures courses. For example, consider a package exporting a matrix type

package Matrices 1is

type Matrix is

array(Integer range <>, -= bounds left open
Integer xanga <>) -= till variable
of Float; == is declared
function ™+" (left,right: Matrix) return Matrix;

Conformability Error: exception;

and Matrices;

g'lﬁ_fiséﬁm Vol. 22 No. 2 June 1990 25

Here we have combined many of the capabilities of Ada: the package, the unconstrained array type,
overloaded operator symbols, unrestricted function result types, and the definition of application-
dependent exceptions. In the package body, below, the code for the addition operator is given.
Note the use of the attribute functions First, Last, and Range, which give the low bound, high
bound, and bounds range, respectively, for the two dimensions. The subprogram can simply ask
its actual parameters what their bounds are, then operate accordingly—in the event, create a
temporary matrix sized according to the bounds of the inputs, fill it with values, then retum this
new matrix to its caller. Given three matrix objects

M1, M2, M3: Matrix(-5..5):
then the statement

Ml = M2 + M3;
can be written in the natural mathematical style. Note in the body of the addition operator that
Conformability_Error is raised if the addition of the two matrices would be mathematically
meaningless.

package body Matrices is
functicn "+"(left,right: Matrix) zreturn Matrix is

Temp: Matrix(left'range(l), left‘'range(2)):
-~ size of result gotten from size of input

baegin

if left'First(l) /= right'First(l) or
left'Last (1) /= right'Last(l) o=
left'First(2) /= right'First(2) or
left'Last(2) /= right'Last (2

then

raisa Conformability Error;
end 1if;

for row in left'range(l) loop
for col in left'range{2) loop

temp(row,col) := left (row,col) + right(row,col);
and loop;
end loop;
return temp; -- array!

end ll+ll;
aend Matrices:

Array handling: the Competition. Neither Standard Pascal nor Turbo Pascal nor C has
any equivalent at all to the unconstrained array type (which actually resembles a feature in PL/1),
Modula-2 provides the “open array parameter” for subprograms, in which a one-dimensional
array parameter may be passed without knowing its bounds; there is a rough equivalent to the
attribute functions in this case. But this is permitted only for one-dimensional arrays, so the ability

SIGCSE

BULLETIN Vol 22 No. 2 June 1990 26

to create a general matrix package in a natural way is severely limited.4

Following the body of this paper is a chart comparing, in summary form, the various features we
have discussed here. We have concentrated here on a selected few Ada features we believe are
especially useful in teaching data abstraction. We have not paid particular attention to linked data
structures, as these are essentially the same in all modern languages. For brevity we have not
included a discussion of generics; this subject warrants a paper in its own right.

HOW DO THE STUDENTS TAKE TO Ada?

Our undergraduate curriculum encourages students to leam a number of programming languages,
because we believe that multilingual graduates are more openminded and accepting of change than
those steeped in a single language with only the most superficial exposure to others,

Recently we have made the syntactic transition to Ada a bit easier by distributing a diskette of about
fifty “small” Ada programs which cover the inner syntax of the language and the structure of the
input/output libraries. Some of these programs are “‘booby-trapped” with deliberate compilation
errors. The students are asked to compile and try these programs; if they can understand them all,
including the reasons for the various errors, they know the rudiments of the Ada “Pascal subset”
and are ready to dive into writing packages. These small programs also serve as templates for

writing other programs, especially those using various kinds of input loops. A diskette of these
programs is available from the author.

After a bit of grumbling about having to learn a new language for CSci 159, our students take
readily to Ada once they begin to sense its power for building systems. Once students have picked
up the rudiments, they often comment that syntactically, Ada is easier than Pascal; we tend to

agree. And increasingly they choose Ada for upper-division projects where they are given a choice
of language.

AVAILABILITY AND COMMONALITY OF COMPILERS

Recall that compiler validation means testing the compiler for conformance to a standard. In
the case of Ada, neither subsets nor supersets are permitted by the standard [Nyberg89]. This
gives a teacher confidence that all current Ada compilers will treat any reasonable classroom
example or project in the same way. This unusually high degree of commonality stands in
sharp contrast to the well-known difficuldes with Pascal and Modula-2.

There are currently nearly 300 Government-validated Ada compilers in existence, many of
which are available on systems commonly used in computer science education. There are, for
example, at least four validated Ada systems for the IBM PC family; educational prices for
three of these are within the budgets of typical insitutions or even individuals. Environmental
support (editors, debuggers, etc.) has greatly improved in the last two years, as has
performance of both compilers and resulting executable programs.

Vendors of Ada compilers have recently become aware of the needs and budget constraints of

4 Rumor has it that this restriction to one-dimensional arrays will be relaxed. If the rumor is
true we applaud the progress.

SIGCSE 2
BULLETIN Vol: 22 No. 2 June 1990 7

educational institutions, and are developing educational price lists and site-license arrangements
that have begun to be quite competitive with each other and with compilers for other languages.
The result is that integrating Ada into the computer science curriculum is now both technically
feasible and economically interesting.

Our decision to introduce Ada progressively starting in 1981 may have been a bit of a gamble;
looking back from 1990 we have no cause to regret the decision.

BIBLIOGRAPHY

[Aho83] Aho, A.V,, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms,
Reading, Mass.: Addison-Wesley, 1983.

[DoD83] U.S. Department of Defense. Reference Manual for the Ada Programming
Language. ANSI/MIL-STD 1815A, 1983.

[Feldman80] Feldman, M.B., “Teaching Data Abstraction to the Practicing Programmer,”

Proc. 11th SIGCSE Tech. Symp. on Computer Science Education, Kansas
City, Feb. 1980.

[Feldman84) Feldman, M.B., “Packages, Abstract Types, and the Teaching of Data
Structures,” Proc. 15th SIGCSE Tech. Symp. on Computer Science
Education, Philadelphia, Feb. 1984.

[Feldman85] Feldman, M.B., Data Structures with Ada, Englewood Cliffs, NJ: Prentice-
Hall, 1985.

[Horowitz77] Horowitz, E., and S. Sahni, Fundamentals of Data Structures, Potomac, Md.,
Computer Science Press, 1977.

[Lang89] Lang, J.E., and R.K. Maruyama, “Teaching the Abstract Data Type in CS2,”
Proc. 20th SIGCSE Tech. Symp. on Computer Science Education,
Louisville, Feb. 1989.

[Nyberg89] Nyberg, K.A., ed., The Annotated Ada Reference Manual, Vienna, VA.:
Grebyn Corporation, 1989.

[Owen87) Owen, G.S., “Using Ada on Microcomputers in the Undergraduate
Curriculum,” Proc. 18th SIGCSE Tech. Symp. on Computer Science
Education, St. Louis, Feb. 1987.

[Tenenbaum81] Tenenbaum, A.M., and M.J. Augenstein, Dara Structures Using Pascal,
Englewood' Cliffs, NJ: Prentice-Hall, 1981.

Si
Blﬁ_(i’_sé?rm Vol. 22 No. 2 June 1990 28

