
TEACHING DATA STRUCTURES WITH Ada :
AN EIGHT-YEAR PERSPECTIV E

Michael B . Feldman
Professor

Department of Electrical Engineering and Computer Scienc e
School of Engineering and Applied Scienc e

The George Washington University
Washington, DC 20052

(202) 994-525 3
mfe ldman@ s eas . gwu. edu

INTRODUCTIO N
This paper discusses our eight years of experience in teaching a data structures course using Ada a s

the primary programming language . The recent history of the course is summarized, emphasizin g
the transition to Ada. Language-to-language comparisons of several particularly attractive Ad a
features are given .

THE RECENT HISTORY OF CSci 15 9
CSci 159, Programming and Data Strucrures,is an undergraduate course in the Georg e
Washington University Department of Electrical Engineering and Computer Science, required fo r
undergraduate majors in computer science and computer engineering . The course is also populate d
by would-be graduate computer science majors who have a weak background in modern dat a
structures, and by graduate students from other fields . Typical enrollment is in the neighborhoo d
of 100-150 students per year .

The author has been teaching this course and others like it since 1975 . The primary language use d
was Fortran in 1975 ; transitions were made to PL/1 (1978), Pascal (1980) and finally Ada in 1985 .
Recent primary textbooks have been those of Horowitz and Sahni [Horowitz77], Tenenbaum an d
Augenstein [Tenenbaum8l ], Aho, Hoperoft and Ullman [Aho83], and finally this author's ow n

text [Feldman85] . At the risk of appearing to "plug" the book, we refer to it as Feldman in the

sequel .

Previous papers have focused on our early use of abstract data types (ADT's) as an idea or "design
language" [Feldman80] and on our early use of Ada in this course [Feldman84] ; other teachers
[Lang89 and Owen87, for example] have reported similar experiences . It is of interest to
summarize the integration of Ada into the course as follows :

1981 text : Tenenbaum, with this author's rough notes on packages :,
Ada packages used as "design language" for ADT's ;
compiler : Pascal (Ada compilers did not yet exist! )

1982 text : Tenenbaum with some typescript chapters of Feldman ;
compiler . TeleSoft subset compiler for Vax/VMS ;
about 10% of students coded in Ada, others used Pascal .

SIGCSE

	

Vol . 22 No . 2 June 199 0BULLETIN
21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126445.126450&domain=pdf&date_stamp=1990-06-01


1983 text: Aho et al with most chapters of Feldman in preprint ;
about 25% of students coded in Ada.

1984 text: entire Feldman preprint, Aho et al used as backup;
compilers: TeleSoft subset compilers for Vax and IBM 4381 ;
50% of students coded in Ada.

1985 text : Feldman book;
90% of students coded in Ada .

1986 compilers : validated (full-language) Verdix compilers on Vax and Sun ;
100% of students coded in Ada .

1988 compilers : Meridian AdaVantage site license for DOS-based desktop computers ;
many students are acquiring their own compilers for home machines ;
computer center "help desks" distribute Ada programs for self-study .

WHY Ada HAS BEEN MY FAVORITE DATA STRUCTURES LANGUAG E
Our eight years of experience, with perhaps 100 students per year involved, confirms our view tha t
in the family of widely-available procedural languages, Ada embodies the most effective collectio n
of features to facilitate the teaching of data structures . This is especially true if one holds, as w e
do, that a primary focus of a modern data structures course should be abstract data types . We shal l
present this view with reference to other candidate languages, specifically standard (ANSI) Pascal ,

Turbo Pascal', Modula-2, and C .

CSci 159 fits into our curriculum at about the sophomore level ; the students have typically had a
semester or two of Pascal . The emphasis in the first two courses is necessarily on program contro l
and algorithm development, and the whole complex of issues we call "structured programming . "
The primary focuses in the third course are data abstraction (or abstract data types) and algorith m
performance prediction.

Ada supports data abstraction better than "the competition" in a number of ways . Chief amon g
them are

• functions can return structured objects, not just scalal-s (alternatively, objects are "first -
class" in that they can be passed to and from subprograms with impunity) ;

• packages impose a separation of specification and body ;
private types exist and there is no restriction on the type classes which can be made private ;
arrays can be "conformant" (to use Pascal terminology) in all dimensions .

Function result types : Ada . That a function may return a value in any type class, includin g
specifically a record or array, is a feature about which little fuss is made in the Ada literature. But
it makes a big difference . Consider the standard example of a rational type :

type Rational is record

Numerator : Integer ;
Denominator : Positive ;

end record ;

t

	

A serious question of principle is whether, in this age of portability concerns, a singl e
compiler vendor should be able to define the de facto standard for a programming language . Thi s
is a matter of taste ; we maintain that it should not . Using Turbo Pascal sends a message to ou r
students that portability and standardization play second fiddle to bells and whistles . We discus s
Turbo Pascal in this paper because it is, for better or worse, so popular .

SIGCSE

	

Vol . 22 No . 2 June 199 0BULLETIN
22



Each object of this type is a record . In languages with unrestricted function return values, one ca n
define operations of the form

function Add(left, right : Rational) return Rational ;

function Mult(left, right : Rational) return Rational ;
and given four objects R1, R2, R3, R4, of type Rational, one can write statements of the form

R1

	

Add(R2,R3) ;

R4 : e Mult(Rl,Add(R2,R3) ;
The advantage of this functional notation and composition should not be underestimated : man y
applications require manipulation of programmer-defined mathematical structures and the notatio n
used by programmers should model as closely as possible the notation used by mathematicians an d
engineers. If Ada did not allow functions to return structured types, our operations would have t o
be procedures, e .g .

procedure Add(Result : out Rational ; left, right : Rational) ;

procedure Mult(Result : out Rational ; left, right : Rational) ;

and a use of the operation would be written as a procedure call, which cannot be composed . Ou r
nice composed expression above would have to be writte n

Add(TemporaryResult, R2, R3) ;

Mult(R1, TemporaryResult) ;

which is much more cumbersome and surely does not look mathematical .

A work-around in Pascal and Modula-2 is to pass pointers to the structured objects as functio n
arguments and results . This technique creates problems such as aliasing and dynamic allocation .
Such excessive use of pointers is poor software engineering ; it is also difficult to explain t o

students why it should be necessary . 2

We note that Ada also provides for operator symbol overloading, so that e .g .
function "+"(left, right : Rational) return Rational ;

function " t " (left, right : Rational) return Rational ;

is permitted, with corresponding use
R4 : e R1 * (R2 + R3) ;

making for a very mathematical-looking expression . This feature falls into the category o f
convenient "syntactic sugar;" it is less fundamental or necessary than the unrestricted functio n
return value .

Ada also allows array objects to be returned from functions, so that one can write and use vecto r
and matrix operations very conveniently and intuitively . This is related to the general Ada arra y
capabilities, about which more below .

Function result types : the Competition . Standard Pascal does not permit records or arrays
to be returned from functions . Neither do the Pascal derivatives Turbo Pascal and Modula-2 .
The proposed C standard allows records—but not arrays—to be returned . In the present
example, C would allow the rational type but not the vector or matrix .

2

	

Even where pointers are necessary in Ada (in linked lists, for example) they are easier t o
use . Variables and record fields declared as pointers are always initialized to the null value .
Students are thus robbed of the unwelcome learning experience of program crashes due t o
uninitialized pointers ; we are quite happy to postpone this experience until the students learn C i n
upper-division courses .

SIGCSE

	

Vol . 22 No . 2 June 199 0
BULLETIN

2 3



Ada's unrestricted function return values makes Ada compilers undoubtedly more difficult t o
implement; we think the price is worth paying .

Packages : Ada. The separate package specification introduces the student to the idea of a
"contract with the user ." Students trained in (standard) Pascal tend to focus on "getting an answer"
rather than "building a product . " Using packages encourages a student to design a softwar e
component and carefully implement this contractual relationship with the component's user . The
contract idea is reinforced by the separation of specification and body into separate files, separatel y
compiled: students can see clearly that if something is not written in the spec, it's not visible to a
client. Separate compilation means that programs dependent on a package need not be re-compile d
if only the body , not the spec, is changed.

In CSci 159, programming assignments often require just the building of a package, with no clien t
program at all except a test driver to validate the package . This is often not easy for student s
whose intuition drives them to focus on pretty interfaces and getting an answer, as opposed to
developing a component intended for use by another programmer and not an end user . Th e
grading system for projects must place heavy weight on the contractual relationship : the contrac t
must describe how a package is to be used, not the details of what it does . CSci 159 allocates 30%
of the grade to the quality of the package specification and its supporting user document .

Packages : the Competition . Standard (ISO or ANSI) Pascal has, of course, no notion of a
package. Turbo Pascal provides a package-like structure called the "unit" (borrowed from UCS D
Pascal), but the interface (specification) and implementation (body) must be in a single file . This
diminishes the abstraction value—the student does not see the two sections as physically distinct--
and also requires recompilation of dependent program segments every time something is changed ,
even if the change is only a detail in the implementation . A disadvantage of Turbo Pascal i n
general is that it is not available on Unix and other shared machines, and also that, at least unti l
now, version k+1 has differed significantly from version k . And the 1BM-PC and Macintos h
versions are not even compatible : even if one ignores special operations for graphics, etc ., there are
syntactic differences between the two .

A fodula-2 provides the library module, with definition (specification) and implementation (body)
modules (ides), separately compiled . This capability is quite similar to Ada, in spite of difference s
in the way import and export directives are written . Compilers are widely and inexpensively
available and support a (generally) common language . A serious liability is the treatment of privat e
types (see below) .

C provides only a very rough equivalent to packages, namely the separation of groups o f
subprograms and type declarations into different files . Compilers are legion; the languag e
supported is reasonably standard . Enforcement of interfaces, however, is strongly compiler-
dependent . 3

Private types : Ada . The private type, with its hidden implementation, is of course intimatel y
related to the package . Ada allows any type to be made private or limited private ; in particular ,
structured types can be private, and this forms the basis for an abstract data type scheme .

3

	

C++, the recently-developed extension to C, provides an object-oriented programming
language more similar to Smalltalk than to Ada . C++ may become an important competitor, but i s
not yet widely available . A disadvantage for students is the less-than-obvious syntax .

SIGCSE

	

Vol . 22 No . 2 June 199 0
BULLETIN

24



The software-component philosophy embodied in Ehe package and the private type pays of f
handsomely in more advanced courses, even if the student goes on to develop programs in other
languages . Private types are an important subject in CSci 159 ; we see anecdotal evidence tha t
CSci 159 graduates who choose to use C, for example, in senior projects, write better C because
of their Ada exposure .

Private types: the Competition . Standard Pascal provides no private types. Turbo Pasca l
allows a unit to export a type, but its internal structure is visible to clients . One could hide, e .g . ,
the fraction record type definition in a unit whose existence is not advertised, then make th e
fraction type itself a pointer to the hidden record type . This dodge is unsatisfying : it requires a n
extra unit, spreading the code for a single abstract type into two units, and carries along all th e
disadvantages of pointers .

Modula-2 improves the situation, but only a bit . A private type may be declared in a definitio n
module, but its type is required to be a pointer to another type declared in the implementation
module. At least the code for a single abstraction appears in a single library module, but th e
pointer difficulties persist.

C provides no notion of a private type . A work-around similar to the one described for Turb o
Pascal could be invented, but it would surely be cumbersome .

An important consequence of the generality of function results and private types is that access
types (pointers) are unnecessary except to implement linked structures .We believe that it i s
inappropriate to have to trade the niceness of functional notation for the forced clumsiness o f
pointers, solely because of a language limitation .

Array handling : Ada . Ada provides the "unconstrained array type" for an arbitrary number o f
dimensions . While the number of dimensions of an array must be specified in the typ e
declaration, the bounds may be left unspecified until variables are declared . Further, unconstrained
array types may be used in subprograms as formal parameters and function results . This facilitate s
a very natural implementation of vector and matrix packages, an important application often studied
in data structures courses . For example, consider a package exporting a matrix type

package Maericea i s

type Matrix i s
array{Integer range <>,

	

do bounds left ope n

Integer range <>)

	

— till variable
of Float ;

	

m_ is declared

function " + '0 (left, right : Matrix) return Matrix ;

Conformability_Error : exception ;

end Matrices ;

SIGCSE

	

Vol . 22 No . 2 June 1990BULLETIN 25



Here we have combined many of the capabilities of,Ada : the package, the unconstrained array type ,
overloaded operator symbols, unrestricted function result types, and the definition of application -
dependent exceptions. In the package body, below, the code for the addition operator is given .
Note the use of the attribute functions First, Last, and Range, which give the low bound, hig h
bound, and bounds range, respectively, for the two dimensions . The subprogram can simply as k
its actual parameters what their bounds are, then operate accordingly—in the event, create a
temporary matrix sized according to the bounds of the inputs, fill it with values, then return thi s
new matrix to its caller. Given three matrix objects

M1, M2, M3 : Matrix(-5 . .5) ;

then the statemen t
Ml := M2 + M3 ;

can be written in the natural mathematical style . Note in the body of the addition operator tha t
Conformability_Error is raised if the addition of the two matrices would be mathematicall y
meaningless .

package body Matrices i s

function "+"(left,right : Matrix) return Matrix is

Temp : Matrix(left'range(l), left'range(2)) ;
-- size of result gotten from size of inpu t

begi n

if left'First(l) /- right'First(l) or

left'Last(l) /= right'Last(l) o r

left'First(2) /- right'First(2) o r
left'Last(2) /- right'Last{2

tha n

raise Conformability_Error ;
end if ;

for row in left'range(l) loop

for col in left'range(2) loop
temp(row,col) := left(row,col) + right(row,col) ;

end loop ;

end loop ;

return temp ;

	

°- array !

and "+" ;

end Matrices ;

Array handling : the Competition . Neither Standard Pascal nor Turbo Pascal nor C has
any equivalent at all to the unconstrained array type (which actually resembles a feature in PL/1) .
Modula-2 provides the "open array parameter" for subprograms, in which a one-dimensional
array parameter may be passed without knowing its bounds; there is a rough equivalent to the
attribute functions in this case . But this is permitted only for one-dimensional arrays, so the abilit y

SIGCSE

	

Vol . 22 No . 2 June 199 0BULLETIN 2 6



to create a general matrix package in a natural way is severely limited . 4

Following the body of this paper is a chart comparing, in summary form, the various features w e
have discussed here . We have concentrated here on a selected few Ada features we believe ar e
especially useful in teaching data abstraction . We have not paid particular attention to linked dat a
structures, as these are essentially the same in all modern languages . For brevity we have not
included a discussion of generics ; this subject warrants a paper in its own right .

HOW DO THE STUDENTS TAKE TO Ada ?
Our undergraduate curriculum encourages students to learn a number of programming languages ,
because we believe that multilingual graduates are more openminded and accepting of change tha n
those steeped in a single language with only the most superficial exposure to others .

Recently we have made the syntactic transition to Ada a bit easier by distributing a diskette of abou t
fifty "small" Ada programs which cover the inner syntax of the language and the structure of th e
input/output libraries . Some of these programs are "booby-trapped" with deliberate compilatio n
errors . The students are asked to compile and try these programs ; if they can understand them all ,
including the reasons for the various errors, they know the rudiments of the Ada "Pascal subset "
and are ready to dive into writing packages . These small programs also serve as templates fo r
writing other programs, especially those using various kinds of input loops . A diskette of these
programs is available from the author .

After a bit of grumhling about having to learn a new language for CSci 159, our students tak e
readily to Ada once they begin to sense its power for building systems . Once students have picked
up the rudiments, they often comment that syntactically, Ada is easier than Pascal ; we tend to
agree . And increasingly they choose Ada for upper-division projects where they are given a choic e
of language .

AVAILABILITY AND COMMONALITY OF COMPILERS
Recall that compiler validation means testing the compiler for conformance to a standard . In
the case of Ada, neither subsets nor supersets are permitted by the standard [Nyberg89] . Thi s
gives a teacher confidence that all current Ada compilers will treat any reasonable classroom
example or project in the same way . This unusually high degree of commonality stands i n
sharp contrast to the well-known difficulties with Pascal and Modula-2 .

There are currently nearly 300 Government-validated Ada compilers in existence, many o f
which are available on systems commonly used in computer science education . There are, for
example, at least four validated Ada systems for the IBM PC family ; educational prices for
three of these are within the budgets of typical insitutions or even individuals . Environmenta l
support (editors, debuggers, etc .) has greatly improved in the last two years, as has
performance of both compilers and resulting executable programs .

Vendors of Ada compilers have recently become aware of the needs and budget constraints o f

4

	

Rumor has it that this restriction to one-dimensional arrays will be relaxed . If the rumor i s
true we applaud the progress .

SIGCSE

	

Vol . 22 No . 2 June 199 0
BULLETIN

27



educational institutions, and are developing educational price lists and site-license arrangement s
that have begun to be quite competitive with each other and with compilers for other languages .
The result is that integrating Ada into the computer science curriculum is now both technically
feasible and economically interesting .

Our decision to introduce Ada progressively starting in 1981 may have been a bit of a gamble ;
looking back from 1990 we have no cause to regret the decision .

BIBLIOGRAPH Y

Aho, A.V ., J.E. Hoperoft, and J .D. Ullman, Data Structures and Algorithms ,
Reading, Mass . : Addison-Wesley, 1983 .

U.S . Department of Defense . Reference Manual for the Ada Programming
Language . ANSI/MIL-STD I815A, 1983 .

Feldman, M.B., "Teaching Data Abstraction to the Practicing Programmer, "
Proc . 11th SIGCSE Tech. Symp . on Computer Science Education, Kansa s
City, Feb. 1980 .

Feldman, M.B ., "Packages, Abstract Types, and the Teaching of Data
Structures," Proc . 15th SIGCSE Tech . Symp . on Computer Science
Education, Philadelphia, Feb. 1984.

Feldman, M .B ., Data Structures with Ada, Englewood Cliffs, NJ : Prentice-
Hall, 1985 .

Morowitz, E., and S . Sahni, Fundamentals of Data Structures, Potomac, Md . ,
Computer Science Press, 1977 .

Lang, J .E ., and R .K. Maruyama, "Teaching the Abstract Data Type in CS2, "
Proc . 20th SIGCSE Tech . Symp . on Computer Science Education ,
Louisville, Feb . 1989 .

Nyberg, K .A ., ed., The Annotated Ada Reference Manual, Vienna, VA . :
Grebyn Corporation, 1989 .

Owen, G .S ., "Using Ada on Microcomputers in the Undergraduat e
Curriculum," Proc. 18th SIGCSE Tech. Symp. on Computer Science
Education, St. Louis, Feb. 1987.

[Tenenbaum8l ] Tenenbaum, A .M ., and M .J. Augenstein, Data Structures Using Pascal ,
Englewood' Cliffs, NJ : Prentice-Hall, 1981 .

SIGCSE

	

Vol . 22 No . 2 June 199 0BULLETI N

[Aho83 ]

[DoD83]

[Feldman80]

[Feldman84 ]

[Feldman85]

[Horowitz77 I

[Lang89 ]

[Nyberg89 ]

[Owen87]

28


