
Building Monitors with UNIX and C

Neil Dunsta n

University of New England, Armidale, NSW, 2351, Australia .

1. Abstrac t

An outline is given for structuring concurrent programs writte n
in C under UNIX System V using the concept of monitors . It i s
shown how a monitor can be implemented in UNIX System V
using the semaphore and shared memory facilities . Monitors ar e
a common topic in the studies of concurrent programming an d
operating systems .

2. Introduction

UNIX System V offers a variety of system calls for inter -
process communication and synchronization . These facilitie s
provide the means for low level solutions to man y
synchronization problems [Dunstan, 1989] . The monitor
[Hoare, 1972] is a high level concurrent programming construc t
that is a feature of several programming languages designed for
concurrent programming, such as Pascal-Plus [Welsh, 1979] ,
Concurrent Euclid [Holt, 1983] and Turing-Plus [Holt an d
Cordy, 1988] . Monitors have also been incorporated in a
language designed for teaching purposes [Terry, 1985] .

A monitor is an information hiding module with a procedura l
interface . Only one process at a time may be active within the
monitor. Typically, a monitor exists to coordinate access to a
resource or group of resources . Processes wishing to use the
resource call an appropriate monitor interface procedure . In
some circumstances, a process may become blocked inside th e
monitor until the monitor's internal state indicates that it ma y
continue . A blocked process is queued on a condition variable .

3. A Semaphore Implementation of Monitor s

A semaphore implementation of monitors is given in [Hoare ,
1972] and [Peterson and Silberschatz, 1985] . In this
implementation, each interface procedure is surrounded b y
entry and exit protocols to ensure the integrity of the monitor . A
semaphore is used to guard access to the monitor . Each
condition variable has an associated semaphore and a count o f
the number of processes suspended on that condition as a resul t
of invoking the wait operation . If a process signals a conditio n
and in doing so re-activates a suspended process, it mus t
suspend itself on yet another semaphore used for this purpose .
A count is kept of the number of such processes . When a
process exits from an interface procedure, the exit protocol will

release a process from this semaphore, if there is one, otherwis e
exclusion on the monitor is released .

4. Components of a Monito r

Three components of a monitor can be identified . The firs t
contains the semaphores and counters needed for ensurin g
monitor security, that is, mutually exclusive access to th e
monitor. This component is identical for all monitors and ma y
be represented a s

struct securit y
{

int mutex, signaller ; /* semaphores * /
int sig_count; /* suspded signllers * /

where murex represents the mutual exclusion semaphore ,
signaller represents the semaphore upon which signallin g
processes are suspended and sig_count is the number o f
suspended signalling processes .

The second component represents a condition variable .

struct conditio n

{
int q ; /* semaphore id * /
int count ; /* # blocked on q * /
}

where q represents the semaphore associated with the conditio n
and count is the number of processes waiting on the condition .

The third component encapsulates the internal state variables o f
the monitor. This will be different for each monitor application .
Here, a single resource monitor (as in [Hoare, 1972]) is used as
an example. In this example, only one boolean variable is
required . It indicates the availability of the resource .

struct intenral_state
{

int busy ;

More complicated monitors will require more variables t o
record their internal state .

SIGCS E
BULLETIN Vol . 23 No . 3 Sept . 1991 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126459.126462&domain=pdf&date_stamp=1991-09-01

8

The following code sections for the single resource monito r
example assume the variable declaration s

struct security *msecurity ;
struct condition *available ;
struct internal_state *mstate ;

5. Building a Monitor in UNIX

It is necessary for the three components identified in th e
previous section to be shared by all processes using the monitor .
Although it is possible to use only one shared memory segment ,
it seems simpler for each component to be a distinct shared
memory segment . Each process must attach to the shared
memory segments . Since this procedure is common to al l
processes, it is best kept as a function in an include file . Each
segment requires a unique key number and a pointer. Attachin g
to just one of the segments looks lik e

securityid = shmget((key_t)SECURITY ,
sizeof(struct security) ,

0666 I IPC_CREAT) ;
*msecurity = (struct security *)

shmat(securityid, 0, 0) ;

The entry and exit protocols for each interface procedure of th e
monitor are

mentry()
{

P((*msecurity) .mutex) ;
}

mexit()
{

if((*msecurity) .sig_count > 0)
V((*msecurity) .signaller) ;

V((*msecurity) .mutex) ;

The semaphore P and V operations used here are those define d
in [Rochkind, 1986] as a simplified (and more traditional)
interface to UNIX semaphores .

6. Operations on Condition s

When a process must wait on a condition within a monitor ,
exclusive access is released before the process suspends itsel f
on the semaphore associated with the condition . The wai t
operation i s

cwait(cond)
struct condition *cond ;
{

(*cond) .count++ ;
if((*msecurity) .sig_count > 0)

V((*msecurity) .signaller) ;
else

V((*msecurity) .mutex) ;
P((*cond) .q) ;
(*cond) .count-- ;
}

SIGCSE

	

Vol . 23 No . 3 Sept . 199 1BULLETIN

The corresponding signal operation will suspend the callin g
process if a process was waiting on the condition and i s

consequently released. This ensures that only one proces s
remains active within the monitor . The suspended signaller ma y
be released by the exit protocol of an interface procedure .

csignal(cond)
struct condition *cond ;
{

if((*cond) .count > 0)
{

(*m security) . sig_count++ ;
V((*cond) .q) ;
P((*msecurity) .signaller) ;
(*msecurity) .sig_count-- ;
}

}

7. Interface Procedure s

For the single resource monitor, only two interface procedure s
are necessary . To ensure the integrity of the monitor's interna l
state, each interface procedure must contain the entry and exi t
protocols . The interface procedures are

acquire()
{

mentry() ;
if((*mstate) .busy)

cwait(available) ;
(*mstate) .busy = TRUE ;
mexitO ;

}

release()
{

mentry() ;
(*mstate) .busy = FALSE ;
csignal(available) ;
mexitO ;
}

8. Monitor Initialization

The monitor must be initialized before any user process ca n
access it . All semaphores must have a unique identification key .
The semtran function used below is from [Rochkind, 19861 .

/* initialize condition * /
(* available) . count = 0 ;

/* initialize internal state */
(*mstate) .busy = FALSE ;

/* establish semaphores *1
(*msecurity) .mutex = semtran(MUTEX) ;
(*msecurity) .signaller =

semtran(SIGNALLER) ;
(*available) .q = semtran(AVAILABLE) ;

els e

}

/* initialize security */
(*msecurity) .sig_count = 0 ;
V((*msecurity) .mutex) ; /* initially 1 */

Bear in mind that the shared memory segments and semaphore s
should be removed from the system when the monitor is no
longer in use.

9 . Priority Conditions

Some synchronization problems (such as the diskhead
scheduling problem [Hoare, 1972]) are elegantly solved b y
employing prioritized scheduling of processes waiting o n
conditions . The next process to be released is the one with th e
highest priority (lowest priority number) . The priority wai t
operation must include a parameter to indicate the priorit y
number. The code for this operation utilizes an unconventiona l
feature of UNIX semaphores . A process can be delayed unti l
the semaphore value can be decremented by an arbitrary
number, not just 1 (as with conventional semaphores) . The
semcall function is defined in [Rochkind, 1986] .

prioritycwait(cond, priority)
struct condition *cond ;
int priority;
{

(*cond) .count++;
if((*msecurity) .sig_count> 0)

V((*msecurity) .signaller) ;
else

V((*msecurity) .mutex) ;
semcall((*cond) .q, -priority) ;
(*cond) .count-- ;
}

The corresponding priority signal operation for priority

condition variables continually adds one to the value of the

semaphore until a single process is released (this will be the on e

with the lowest priority number)' .

prioritycsignal(cond)
struct condition *cond ;
{

int newval, oldval;

if((*cond) .count > 0)
{

(*m security). si g_coun t++ ;
oldval = semctl (

(*cond) .q, 0, GETVAL, 0) ;
V((*cond) .q) ;
newval = semctl (

(*cond) .q, 0, GETVAL, 0) ;
while(newval == oldval+l)

{
oldval := newval ;
V((*cond) .q) ;
newval = semctl (
(*cond) .q, 0, GETVAL, 0) ;
}

P((*msecurity) .signaller) ;
(*msecurity) .sig_count-- ;

10 . Conclusio n

Monitors, conditions and their operations can be easily built i n
C with UNIX System V system calls . In addition, the specia l
features of UNIX semaphores enable the implementation of
priority conditions .

All internal variables of a monitor are necessarily provided i n
memory segments which are shared by the processes using it .
However, the code sections comprising the interface procedures
and operations on conditions must be housed in include files .

1 It is preferable to use GETNCNT (rather than GETVAL) for this purpose but it was found to be unreliable !

9

REFERENCE S

W. E . Dijkstra (1968) . Co-operating Sequential Processes ,

Programming Languages, (ed . P Genuys), 43-112, Academi c

Press .

N . Dunstan (1989) . Synchronization Problems and UNIX

System V, ACM SIGCSE Bulletin, Vol . 21, No . 4, Dec . 1989 .

C. A. R. Hoare (1974), Monitors : An Operating System

Str ucturing Concept, Communications of the ACM, Vol. 18, No .

2, 1974 .

R. C. Holt (1983), Concurrent Euclid, the UNIX System an d

TUNIS, Addison-Wesley, 1983 .

SIGCSE

	

Vol . 23 No . 3 Sept . 199 1BULLETIN

R. C. Holt and J. R. Cordy (1988), The Turing Programmin g
Language, Communications of the ACM, Vol . 31, No . 12, Dec .
1988 .

J . L. Peterson and A. Silberschatz (1985), Operating System
Concepts, Addison-Wesley, Second Edition, 1985 .

M. J. Rochkind (1986), Advanced UNIX Programming ,
Prentice-Hall, 1986 .

P . D. Terry (1985), CLANG - A Simple Teaching Language ,
ACM SIGPLAN Notices, Vol . 20, No . 12, Dec . 1985 .

J . Welsh (1979), Pascal Plus - Another Language for Modula r
Multiprogramming, Software Practice and Experience, Vol . 9 ,
947-957 (1979) .

